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The separation between the eyes shapes the distribution of binocular disparities and gives a special role
to horizontal disparities. However, for one-dimensional stimuli, disparity direction, like motion direction,
is linked to stimulus orientation. This makes the perceived depth of one-dimensional stimuli orientation
dependent and generally non-veridical. It also allows perceived depth to violate transitivity. Three stim-
uli, A, B, and C, can be arranged such that A > B (stimulus A is seen as farther than stimulus B when they
are presented together) and B > C, yet A 6 C. This study examines how the visual system handles the
depth of A, B, and C when they are presented together, forming a pairwise inconsistent stereo display.
Observers’ depth judgments of displays containing a grating and two plaids resolved transitivity viola-
tions among the component stimulus pairs. However, these judgments were inconsistent with judgments
of the same stimuli within depth-consistent displays containing no transitivity violations. To understand
the contribution of individual disparity signals, observers were instructed in subsequent experiments to
judge the depth of a subset of display stimuli. This attentional instruction was ineffective; relevant and
irrelevant stimuli contributed equally to depth judgments. Thus, the perceived depth separating a pair of
stimuli depended on the disparities of the other stimuli presented concurrently. This context dependence
of stereo depth can be approximated by an obligatory pooling and comparison of the disparities of one-
and two-dimensional stimuli along an axis defined locally by the stimuli.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction predicted instead by a version of the intersection-of-constraints
Binocularly viewed one-dimensional (1-D) patterns such as
gratings, lines, and edges are subject to the stereo ‘aperture prob-
lem’, which makes their disparity directions and magnitudes
ambiguous (Farell, 1998; Morgan & Castet, 1997). The result is that
stereoacuity and perceived depth for 1-D patterns vary with stim-
ulus orientation, a fact known for many years but open to diverse
interpretations (Blake, Camisa, & Antoinetti, 1976; Ebenholtz &
Walchli, 1965; Farell & Ahuja, 1996; Friedman, Kaye, & Richards,
1978; Morgan & Castet, 1997; Ogle, 1955; see Howard & Rogers,
2002). In general, the psychophysical effects of 1-D stimulus orien-
tation are consistent with an effective disparity that has a direction
perpendicular to the orientation (Chai & Farell, 2009; Farell, 1998,
2006; Morgan & Castet, 1997; Patel, Bedell, & Sampat, 2006; Patel
et al., 2003; Quaia et al., 2013), though the physiological evidence
is mixed (e.g., Cumming, 2002; Durand, Celebrini, & Trotter, 2007;
Maske, Yamane, & Bishop, 1986).

The perceived depth between a 1-D stimulus and a 2-D stimu-
lus is a case in which horizontal disparities do not predict stereo
depth perception (Chai & Farell, 2009; Farell, Chai, & Fernandez,
2009). The depth between a grating and a plaid, for example, is
rule (Fennema & Thompson, 1979; Adelson & Movshon, 1982)
applied to the two-dimensional disparity vectors. This calculation
orthogonally projects the plaid’s disparity vector onto the grating’s
disparity axis; examples are shown in Fig. 1. The perceived depth
separating the stimuli varies with the relative magnitude of dispar-
ity components along this axis (Farell, Chai, & Fernandez, 2009).
Equivalently, the disparities can be compared in the direction of
the plaid’s disparity; the grating’s disparity in this case is given
by the intersection of its constraint line with the plaid’s disparity
axis. We call the results of either version of this calculation the pro-
jected disparity value. Because relative but not absolute disparity
directions enter into the computation, it is possible for two simul-
taneously presented stimuli, one 1-D and the other 2-D, to appear
at the same depth even though the horizontal disparity of one is
negative and that of the other is positive (Farell, Chai, &
Fernandez, 2009). This allows us to create sets of stimuli that have
contradictory depth relations. We study the perception of such
stimuli here.
1.1. Violations of transitivity

Transitivity asserts that if A is further than B, and B is further
than C, then A should be further than C. A transitive series has a
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Fig. 1. Perceived depth predicted from projected disparities. (A) Arrows showing
disparity vectors of sample grating (top) and three plaids (with disparity magni-
tudes exaggerated relative to the pattern wavelength). Disparity directions are 0�
(horizontal) and ±45�. (B) Plaid disparities projected onto the grating’s disparity
axis. This axis is indicated by the dashed line. For clarity, the origins of the plaid
disparity vectors are displaced from the origin of the grating disparity vector. The
solid oblique lines intersect the grating’s disparity axis perpendicularly, giving the
projections of the plaids’ disparities. The projected values assume a disparity
magnitude is D for all three plaids. The relative sizes of the components along the
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consistent ordering, so its consistency is quantitative, not merely
qualitative. Considering the discussion above, however, it would
not be surprising to find violations of transitivity in depth when
A, B, and C include both 1-D and 2-D stimuli. For example, given
the proper choice of stimulus dimensionality and disparity, stimuli
A and B are seen at the same depth when they are viewed together;
B and C are seen at the same depth when they are viewed together;
but A and C are seen at different depths when they are viewed
together (see Figs. 1 and 2). Bringing all three stimuli together into
a single display would show whether these pairwise depth rela-
tions determine the depth structure of the display as a whole.
We ask here whether humans can see stable depth relations among
A, B, and C when they are presented all at once, creating a display
with internal pairwise inconsistency. How does stereo processing
of such displays differ from those in which A, B and C have consis-
tent pairwise disparities? Are there alternatives to pairwise depth
comparisons that can resolve the incompatible disparities? Or are
the incompatibilities not resolved but seen?

Our interest here is in characterizing how the depth seen in dis-
plays made up of pairwise inconsistent stimuli differs from the
depth seen in displays whose stimulus pairs have consistent rela-
tive depths. We describe three experiments, with a grating and
two plaids playing the roles of stimuli A, B, and C. The first exper-
iment assessed the perceived depth order of the three stimuli
directly. The second and third experiments examined depth-order
judgments to a relevant subset of stimuli within the displays. The
data show a stimulus-dependent recalibration of the effective dis-
parity direction. The disparities of all the stimuli in the display,
whether relevant to the task or not, contribute to the resulting
depth judgments. This resolves the perceptual inconsistencies
between the stimuli within the display and reveals a global dispar-
ity computation of depth judgments of 1-D stimuli.
grating’s disparity predict that a grating with the disparity depicted here will
appear farther in depth than one plaid, nearer than another, and at the same depth
as the third, despite two of the plaids having equal horizontal disparities and
therefore appearing in the same depth plane.
2. General methods

The displays contained three stimuli in Experiment 1 and five
(two of which were redundant) in Experiments 2 and 3. One stim-
ulus was a sinusoidal grating patch and the others were plaid
patches formed by summing two orthogonal gratings. Gaussian
contrast envelopes (with zero disparity) defined the location of
these stimuli. Individual stimuli were characterized by three
parameters: Dimensionality (1-D or 2-D), disparity magnitude
(fixed for plaids, varying in magnitude across trials for gratings),
and disparity direction (between +45� and �45�, plus one case of
135� and �135�, where the positive and negative horizontal direc-
tions are 0� and ±180�, respectively). The orientation of the grating
was either 45� or 135� in all three experiments. Because a grating’s
disparity direction can be regarded as normal to its orientation, a
grating with a 45� orientation has an associated disparity axis run-
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Fig. 2. Two examples of non-transitive depth, with stimuli A, B, and C. (A) The
standard example of non-transitivity: B > A, C > B, A > C. (B) Alternative arrange-
ment: A = B, B = C, A – C.
ning along the +135�/�45� direction, and a grating with a 135� ori-
entation has one running along the +45�/�135� direction.

The plaids had two sinusoidal components, one oriented at 45�
and the other at 135�. In the case of a plaid with a disparity in the
+45� direction, the right retinal image differed from the left solely
by a phase shift of the 1-D component with the 135� orientation.
The component oriented at 45� had the same phase in the two ret-
inal images, a disparity of zero. When superimposed, these sinusoi-
dal components perceptually cohere in depth, resulting in a unified
2-D stimulus seen in a single depth plane—a plaid rather than two
distinct gratings (Adelson & Movshon, 1984; Calabro & Vaina,
2006; Delicato & Qian, 2005; Farell, 1998; Farell & Li, 2004). With
the component disparities just described, the 2-D pattern features
(for example, the ‘blobs’ formed at the intersections of the compo-
nent gratings) have a disparity that is oblique, in the +45� direction.
The horizontal component of this disparity is positive, correspond-
ing to the ‘far’ depth at which the plaid is seen relative to a stimu-
lus with zero disparity.1

All procedures carried out in the studies reported here followed
the tenets of the World Medical Association Declaration of Helsinki
and were approved by the Institutional Review Board of Syracuse
University. All participants in the experiments participated with
their informed consent.
1 Direction is defined here by a vector from a location of a 2-D feature in the retinal
image of the left eye to the nearest identical feature in the retinal image of the right
eye after the two retinas have been overlaid in anatomical correspondence (where
‘identical’ discounts differences in contrast due to the Gaussian envelope).
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3. Experiment 1. Perceived depth order

Previous work has shown that a grating and a plaid appear at
the same depth when their disparity magnitudes are approxi-
mately the same, provided their disparity directions are parallel.
If their disparity directions are perpendicular, however, they
appear at the same depth when the grating’s disparity magnitude
is the smaller of the two and approaching zero, regardless of the
magnitude of the plaid’s disparity within the range tested (Chai
& Farell, 2009; see Fig. 1). In the case of a pair of 2-D stimuli, a dif-
ferent rule applies. A depth match between two plaids occurs when
the horizontal components of the stimulus disparities are equal, a
result holding over a considerable range of vertical carrier disparity
differences (Farell, Chai, & Fernandez, 2010). In all these cases, the
disparity in question was that of the grating or plaid carrier. The
contrast envelope had a disparity of zero.

In Experiment 1, the grating and pair of plaids making up a dis-
play had disparity directions drawn from the set {+45�, �45�}.
Thus, any two stimuli selected from a display had disparities that
had either parallel or orthogonal directions. Suppose the plaids
had disparities with equal magnitudes and orthogonal directions,
+45� and �45�. They would then have equal horizontal disparities
and should appear at the same depth (Farell, Chai, & Fernandez,
2010). But if the grating (oriented at, say, 135�) had a disparity that
gave it the same apparent depth as one of the plaids, it should
appear at different a depth from the other plaid. This is because
one grating-plaid pair has parallel disparity directions and the
other pair has orthogonal disparity directions. Thus, when the
plaids have orthogonal disparity directions, the perceived depths
of the three component stimulus pairs—two plaids; the grating
and one plaid; and the grating and the other plaid—are non-transi-
tive. Note that this non-transitivity is based on a pairwise analysis
of the perceived depths of component stimuli. It does not consider
the influence on perceived depth arising from a more global calcu-
lation. An example of this display type appears in Fig. 3.

Experiment 1 used a direct method to answer the questions:
Does the visual system resolve the contradictory depth informa-
tion contained in non-transitive stimulus pairs when the three
stimuli making up the pairs are presented at once? And if so,
how does it do it? We compare these Non-Transitive displays with
Transitive displays whose plaids had parallel disparity directions
and no contradictory component depth signals.

3.1. Method

3.1.1. Stimuli
A grating and two plaids were arranged to form an isosceles tri-

angle, with the grating occupying the top vertex (Fig. 3). All three
stimuli were equidistant (2.25�) from the nominal point of fixation
located at the middle of the lower edge of the triangle defined by
Fig. 3. A binocular Non-Transitive display. Under the conditions of the experiment, the st
extend well beyond the boundaries shown here. The display would be preceded by noniu
coinciding with the visible borders of one of the three test stimuli. The images are mea
the stimulus mid-points. The mid-point of the grating was sepa-
rated from the mid-point of each plaid by a visual angle of 3.18�.
The grating, like the components of the plaid, was sinusoidal with
a spatial frequency of 2.0 c/d. The contrast of the grating was 0.2;
the contrast of the each of the plaids’ sinusoidal components was
0.1. The standard deviation of the Gaussian envelopes of both the
gratings and the plaids was 0.53� of visual angle in both the hori-
zontal and vertical directions.

Within a block of trials the plaid’s disparities were fixed, while
the magnitude of the grating’s disparity varied from trial to trial.
The plaids had a disparity magnitude of 1.67 arcmin, which is
equivalent to a 20� phase disparity for the grating and a 1-D com-
ponent of the plaid. There were four possible disparity direction
combinations for the plaids on the left/right sides of the display:
+45�/�45�, �45�/+45�, +45�/+45�, and �45�/�45�. The first two
pairs, with orthogonal disparity directions, appeared in Non-Tran-
sitive displays. The second two, with parallel disparity directions,
appeared in Transitive displays. The horizontal disparities of all
the plaids were the same and were positive, which would place
the plaids on the far side of a zero-disparity reference stimulus.
The disparity direction of the grating was either parallel or orthog-
onal to the disparity directions of the two plaids in Transitive dis-
plays; it was parallel to the disparity direction of one plaid and
orthogonal to that of the other in Non-Transitive displays. These
relative disparity directions define the three conditions of the
experiment: Parallel Transitive (shown schematically in Fig. 4, left),
Orthogonal Transitive (Fig. 4, center), and Non-Transitive (Fig. 4,
right).

Each plaid disparity direction (+45� and �45�) appeared equally
often in the left and right plaid positions across blocks of trials. The
duration of stimulus presentations was 174 ms (13 frames), with
abrupt onsets and offsets. These presentations were observer-initi-
ated. The stimuli were centered on CRT monitors with visible
screen diagonals measuring 49 cm, one monitor for each eye.
Viewing was at an optical distance of 1.25 m through a front-sil-
vered mirror stereoscope. Observers’ eyes were on or very nearly
on the same horizontal plane as the centers of the monitors; their
heads were perched on a chin-rest in upright posture. The appara-
tus gave observer’s vergence angle the value appropriate for this
viewing distance. Black nonius lines (191.3 � 1.8 arcmin) centered
horizontally on each screen preceded stimulus presentation. The
mean luminance of the monitors was 21 cd/m2 during the trial
except during presentation of the response screen (described
below), when 21 cd/m2 was the background luminance. A look-
up table linearized luminance of the monitors, which were driven
through their green guns after the R, G, and B signals were com-
bined via attenuators to increase luminance resolution (Pelli &
Zhang, 1991). The testing room was illuminated indirectly with
an incandescent bulb and had an average luminance of approxi-
mately 6 cd/m2.
imulus contrasts would be lower than in this figure and the gray background would
s lines and followed by a response screen showing a display of three circles, each one
nt to be fused convergently.



Parallel Transitive Orthogonal Transitive Non-Transitive

Fig. 4. Sketches of the disparity directions found in the displays of Experiment 1. The maroon arrows show the direction of plaid disparity. All are oblique (+45� or �45�) and
have the same magnitude. The dashed black arrows designate variable-magnitude grating disparities (here for gratings oriented at 45�), which were either parallel or
orthogonal to the plaid disparities.
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Our intention was to make observers’ judgments depend
directly on the relative disparities of the grating and plaids that
were the focus of the study. We attempted to avoid judgments
mediated by the relative disparity of each of these stimuli with
other, task-irrelevant, stimuli with disparity parameters of their
own. Therefore, no fixation stimulus appeared along with the grat-
ing and plaids, the stimuli had soft-edged contrast envelopes, and
contours and terminators that might function as reference stimuli,
including the monitors’ vertical edges and the ends of their hori-
zontal edges, were excluded from binocular viewing by occluders
(Chai & Farell, 2009).
3.1.2. Procedure
The task was to specify the depth order of the three stimuli.

Observers did this by clicking with a mouse twice on a response
screen. The first click indicated the stimulus that was seen as near-
est and the second indicated the stimulus that was seen as farthest.
These clicks were made on a screen that showed three circles that
were approximately coincident with the visible boundaries of the
three test stimuli, forming a triangle. This response screen
appeared 250 ms after the offset of the test display and remained
in view until the observer concluded her second response, ending
the trial. The nonius lines then reappeared and remained until a
subsequent click initiated the presentation of the next test display.

Seventy test trials appeared in a block. Two parameters changed
across these trials: The grating disparity magnitude and the abso-
lute phases of the grating and the 1-D components of the plaids.
The grating disparity on each trial was chosen from a set of seven
values selected in light of pilot data to span the perceptual range
from ‘grating nearest’ to ‘grating farthest’. The selection of dispar-
ities across trials was random, subject to the constraint that the
seven disparities were presented an equal number of times per
block. Treatment combinations, which were defined by grating ori-
entation, plaid disparity direction, and (for Non-Transitive dis-
plays) plaid position, appeared in separate blocks of trials. Their
presentation order was randomized within the constraint that
the observer complete N � 1 trial blocks for each combination
before encountering any combination for the Nth time. Observer
T1 completed 24 blocks of Transitive displays, half of them Parallel
and half Orthogonal, and 24 blocks of Non-Transitive displays;
observer T2 completed one-third as many blocks in the same pro-
portion. In each block, experimental trials were preceded by 5
warm-up trials.
3.1.3. Observers
Two female undergraduate students served as observers. Their

previous experience in psychophysical experiments was moderate
and restricted to stereo studies in this laboratory. Neither observer
was informed about the purpose of the experiment until her partic-
ipation in it had ended. Both had normal acuity with spectacle cor-
rection; observer T2 was strongly myopic without corrective lenses.
3.2. Results

The purpose of Experiment 1 was to find out whether observers
could perceive depth reliably among the pairwise inconsistent ele-
ments of Non-Transitive displays and to characterize differences
between the depth order seen in Transitive and Non-Transitive dis-
plays. Of primary interest was how the grating’s perceived depth
changed with its disparity and how this differs across the three dis-
play types depicted in Fig. 4. After a look at raw probabilities for the
Non-Transitive displays, we will examine psychometric functions.
3.2.1. Non-Transitive response probabilities
Fig. 5 shows the probabilities of ‘Nearest’ and ‘Farthest’

responses for Non-Transitive displays and reveals a surprising out-
come of Experiment 1. The plotting convention, shown in Fig. 5A,
mirrors the triangular arrangement of stimuli in the experimental
displays, with the grating represented at the top vertex and the
plaids represented on the left and right vertices. Data for the two
observers appear in separate columns of panels b and c of Fig. 5.
(The response probabilities for the remaining [Transitive] displays
appear in Fig. S1; see Supplementary Material.) The position of a
particular point gives the probability of judging each of the three
stimuli as ‘Nearest’ (red disks) and ‘Farthest’ (blue disks) when
the grating disparity has a particular value, coded by color satura-
tion. The probability values are given by the proximity of each data
point to the vertices of the triangle. For example, consistently
selecting the grating as ‘Nearest’ when it had a particular disparity
value would result in a data point at the upper vertex. A lower
probability would make the point fall below this vertex.

Our interest here is in the relative probabilities of judging the
two plaids as ‘‘Nearest’’ and ‘‘Farthest’’ as a function of the dispar-
ity of the grating. These probabilities vary along the left–right
direction in the plots of Figs. 5 and S1. (The psychometric functions
considered in the next section examine variation along the up-
down direction.) Data for Non-Transitive displays can be plotted
in two ways. Fig. 5B plots response probabilities according to plaid
position. The left and right vertices represent a probability of 1.0
for selecting the left- and right-side plaid, respectively. ‘‘Nearest’’
and ‘‘Farthest’’ probabilities in Fig. 5B do not fall in the center of
the plot. They fall on opposite sides of the midline, indicating that
the plaid on one side is more often than the other to be selected as
‘Nearest’ or as ‘Farthest’, even though the left- and right-side plaids
differ only in position. The same spatial response bias appears also
in the data for Transitive displays (Fig. S1). (A third observer, an
author who judged Non-Transitive displays only, produced results
[not shown] very similar to those in Fig. 5, but with a response bias
for left- and right-side plaids in the opposite direction from those
appearing in Fig. 5B.)

Fig. 5C plots the same probabilities, but now with respect to the
plaids’ disparity direction, parallel versus orthogonal relative to the
grating’s disparity direction. The left vertex represents a probability
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Fig. 5. ‘Nearest’ and ‘Farthest’ response probabilities for Non-Transitive displays in Experiment 1. (A) Plotting conventions. Probabilities of ‘Nearest’ and ‘Farthest’ judgments
(red and blue disks, respectively) are given by the reciprocal distance from the triangle’s vertices. Each vertex represents the grating or a plaid type. Disk saturation indicates
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and right vertices correspond here to plaid position. Plaids with disparities parallel and orthogonal to the grating’s disparity appeared equally often in these two display
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direction.
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of 1.0 for ‘Nearest’ or ‘Farthest’ judgments of the plaid with a dispar-
ity direction parallel to that of the grating and the right vertex rep-
resents the same for the plaid with a disparity direction orthogonal
to that of the grating. Here, the ‘Nearest’ and ‘Farthest’ functions fall
very near the vertical mid-line of the plots. That is, the grating is
equally likely to be seen as ‘Nearest’ or ‘Farthest’ relative to either
plaid. There is scant difference between the response probabilities
for parallel and orthogonal Non-Transitive plaids. The ‘Nearest’
and ‘Farthest’ probabilities are well described by linear functions
(red and blue lines, respectively) constrained to pass through the
upper vertex, keeping the relative probabilities between the two
plaids constant. These functions do not differ significantly in slope
(t(10) = 1.95, p = 0.08 and t(10) = 1.20, p = 0.26, for T1 and T2,
respectively); both are very close to vertical and hence the same
for parallel and orthogonal plaids. This surprising indifference of
observers’ judgments to the relative disparity directions of grating
and plaid in Non-Transitive displays contrasts with the difference
between Parallel and Orthogonal Transitive displays described in
the next section and provides the impetus for Experiment 2.

3.2.2. Psychometric functions
Measures of horizontal disparity and measures of projected dis-

parity lead to quite different expectations about psychometric
functions for depth judgments of the grating. The horizontal dis-
parity, which is the same for all of the plaids appearing in the
experiment, provides no basis for explaining differences in per-
ceived depth between the three display types. However, if pro-
jected disparities formed the effective metric, then the
psychometric functions for Parallel and Orthogonal Transitive dis-
plays should be laterally displaced but otherwise similar (Chai &
Farell, 2009; Farell, Chai, & Fernandez, 2009). The psychometric
function for Non-Transitive displays, by contrast, might be
expected to have a distinctive shape. To be judged as ‘Nearest’,
the grating would have to appear nearer than the plaid with an
orthogonal disparity direction. To be judged as ‘Farthest’, it would
have to appear farther than the plaid with a parallel disparity
direction. In the former case, depth matches for grating-plaid pairs
occur when the grating’s disparity is near zero and in the latter
case when the grating’s disparity magnitude equals the plaid’s
(Chai & Farell, 2009). Thus, Non-Transitive psychometric functions
might be expected to be distinctively shallow, reflecting a paucity
of both ‘Grating Nearest’ and ‘Grating Farthest’ judgments for grat-
ing disparities between 0� and 20�.

It is conceivable, too, that depth judgments for Non-Transitive
displays might be distinctive by being mediated by horizontal dis-
parities, as a means of resolving the disparity inconsistency. This
would account for the similarity of ‘Nearest’ and ‘Farthest’ proba-
bilities in Fig. 5C. The resulting Non-Transitive psychometric func-
tion would then be expected to fall between the two Transitive
functions.



142 B. Farell, C. Ng / Vision Research 105 (2014) 137–150
The probabilities of the grating receiving a ‘‘Nearest’’ and ‘‘Far-
thest’’ judgment as a function of the grating’s disparity appear in
Fig. 6. These probabilities, shown separately for the three display
types, correspond to the vertical height of the points in the
three-variable plots of Figs. 5 and S1. They ignore variation among
the points in the horizontal direction, which reflects differences
between the plaids. The fits through the points are maximum-like-
lihood cumulative Gaussian functions.

By inspection, the psychometric functions for Non-Transitive
displays are similar to those for the two Transitive display types,
having similar slopes and intermediate lateral positions. Thus,
the inconsistent pairwise depth relations in Non-Transitive dis-
plays do not appear to impede observers’ judgments of the grat-
ing’s depth relative to the plaids or to diminish sensitivity to
disparity modulations. In fact, significant violations of monotonic-
ity (Kendall’s Tau) in the psychometric functions for ‘‘Nearest’’ and
Orthogon
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Fig. 6. Psychometric functions for the three conditions of Experiment 1. The probabilitie
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‘‘Farthest’’ judgments of the grating within individual runs were
more frequent in Transitive than in Non-Transitive displays
(p < 0.05).

‘‘Nearest’’ and ‘‘Farthest’’ psychometric functions were com-
bined (after inverting the former) to find the points of subjective
equality (PSEs). The PSE, estimated by the 50% point on the psycho-
metric function, is the disparity at which the grating has the same
apparent depth as the plaids. The disparity at which the ‘‘Nearest’’
and ‘‘Farthest’’ curves cross within each plot of Fig. 5 gives a close
visual approximation. The PSE is greater for Parallel Transitive dis-
plays (phase disparity of 20.6�, averaged across observers) than for
Orthogonal Transitive displays (8.4�). For Non-Transitive displays it
has an intermediate value (17.1�).

We compared the psychometric functions from the three condi-
tions using 5000-iteration Monte Carlo simulations (Wichmann &
Hill, 2001) on combined ‘Nearest’ and ‘Farthest’ data. These
al Transitive
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2 We nonetheless used 3-stimulus versions of the displays to replicate Experiment
2 with three of the four observers, obtaining data that were the same in all important
respects to those reported here.
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showed that PSEs for the Parallel and Orthogonal Transitive condi-
tions differed significantly, with the former being larger for both
observers. For T1 the difference was 12.6� where the 95% CI around
an expected difference of zero was approximately ±4.3�; for T2 the
corresponding value was 11.8� (CI: ±8.7�). The PSEs for Parallel
Transitive and the Non-Transitive functions also differed signifi-
cantly for observer T1 (5.7�, CI: ±3.5�) though not for observer T2
(1�, CI: ±8.9�), with the Transitive PSE being larger in each case.
For Orthogonal Transitive and the Non-Transitive functions the
PSEs differed significantly for both observers (6.9�, CI: ±3.5� for
T1, and 10.8�, CI: ±8.3� for T2), the Non-Transitive PSE being larger.
None of the slopes of the three pairs of psychometric functions dif-
fered significantly for either observer.

3.3. Discussion

The disparity directions within a Transitive display affected
the grating’s apparent depth relative to the plaids. When the
grating and the plaids had the same disparity direction, the grat-
ing required a relatively large disparity to appear at the same
depth as the plaids. When they had orthogonal disparity direc-
tions, a smaller grating disparity produced a depth match.
Non-Transitive displays, however, did not produce the differing
depth functions found between Parallel and Orthogonal Transi-
tive displays. The perceived depth between the grating and a
plaid in Non-Transitive displays was similar whether their dis-
parity directions were parallel or orthogonal, with the PSE falling
between the Parallel and Orthogonal Transitive PSEs. Thus, depth
judgments of Non-Transitive displays appear quantitatively sim-
ilar to those of the two types of Transitive displays and interme-
diate between them.

Despite being quantitatively intermediate, the Non-Transitive
depth function is not an average of the Parallel and Orthogonal
Transitive functions. Plaids with parallel and orthogonal disparity
directions individually produce very similar depth functions when
judged relative to the grating in Non-Transitive displays (Fig. 5C).
The grating, whatever its disparity, appeared at approximately
the same depth relative to each plaid. Thus, observers have
resolved the inconsistent depth of the component stimulus pairs
contained within Non-Transitive displays. The price of this resolu-
tion is an inconsistency between the results for Transitive and
Non-Transitive displays: In the former, parallel and orthogonal dis-
parities produce substantial differences in perceived depth; in the
latter, their perceived depths are indistinguishable.

Parallel and orthogonal plaids have very different projected dis-
parity values, but their perceived depths differ only in Transitive
displays. In Non-Transitive displays, where their perceived depths
are equivalent, projected disparities seem unable to account for the
data. And while horizontal disparity components were equal for
the two Non-Transitive plaids, they were equal as well for the
two types of Transitive displays. Hence, horizontal disparity cannot
explain differences in perceived depth between Transitive and
Non-Transitive displays or between Parallel and Orthogonal Tran-
sitive displays. The results of Experiment 1 seem beyond explana-
tions in which each stimulus contributes an independent disparity
value to the calculation of depth. In order to preserve the indepen-
dence of stimulus disparity contributions, it would be necessary to
default to unparsimonious notions, in particular the possibility
that different disparity components were used for judging different
display types (for example, projected disparities for Transitive dis-
plays and horizontal disparities for Non-Transitive displays). The
following two experiments tested such explanations. Experiment
2 used selective attention to a subset of display stimuli in order
to isolate the contributions of individual relative disparities, and
Experiment 3 assessed the contributions of horizontal disparity
components.
4. Experiment 2

In Experiment 1 disparity direction affected perceived depth
differently in Transitive and Non-Transitive displays. Experiment
2 attempted to determine how pairwise disparity relations contrib-
uted to this result. We instructed observers to judge the depth of a
relevant subset of stimuli and to ignore the irrelevant stimuli. This
allowed us to compare depth judgments across Transitive and
Non-Transitive displays that differed only by the disparity direc-
tion of their irrelevant stimuli. If irrelevant stimuli do not affect
observers’ judgments of the depth of relevant stimuli, we would
conclude that the disparity values of individual stimuli within
the display are represented and available for perceptual processing
independently of other disparity values present in the display. This
result would suggest that the inconsistency between the data for
Transitive and Non-Transitive displays in Experiment 1 had its
source in a decision-level resolution of conflicting non-transitive
depth relations, rather than a representational-level interference
between individual disparity values. To preview, the results turned
out quite differently.
4.1. Methods

4.1.1. Stimuli
Displays were composed of a central grating and four surround-

ing plaids configured in an ‘X’ pattern (Fig. 7). The relevant stimu-
lus subset consisted of a grating and one of the diagonally-
arranged pairs of plaids. Observers were instructed to attend to
and judge the grating and the relevant plaids and to ignore the
irrelevant plaids. In the 5-stimulus displays, the relevant stimuli
formed a symmetrical region centered on the intended point of fix-
ation. In light of the observer’s task in this experiment, this config-
uration has an advantage over the 3-stimulus displays used in
Experiment 1, for it eased concerns about adherence to the atten-
tional instructions. The 3-stimulus displays would have required
attending to a region lateral to fixation, which is more difficult sub-
jectively and might lead to fixation compromises.2

The displays fell into the two main categories: Transitive and
Non-Transitive. All four plaids of the Transitive displays had iden-
tical disparities. Non-Transitive displays contained plaids on one
diagonal that had a disparity direction orthogonal to those on the
other diagonal; the disparities were the same within a diagonal.

Both Transitive and Non-Transitive displays could be further
classified into Parallel and Orthogonal sub-classes. All the plaids
in Parallel Transitive displays had the same disparity direction as
the grating. All the plaids in Orthogonal Transitive displays had
the same direction, which was orthogonal to the disparity of the
grating. Stimulus relevance distinguished the two Non-Transitive
conditions: In Parallel Non-Transitive displays, the grating and
the relevant plaids had the same disparity direction, while in
Orthogonal Non-Transitive displays the grating and the relevant
plaids had perpendicular disparity directions. There were, in addi-
tion, two control conditions with just three stimuli, one grating
and two plaids. Their purpose was to measure the effect of the
presence of irrelevant plaids. The two plaids were identical to the
relevant plaids in 5-stimulus displays, with directions either paral-
lel or orthogonal to that of the grating. All disparity directions
appeared equally often at each display position, balancing vertical
disparities across retinal locations and canceling depth signals that
might arise from interactions between disparities and locations
(Matthews et al., 2003).



Fig. 7. Monocular view of a typical display in Experiment 2. The central grating was oriented at +45� or �45� and had variable disparity. The two plaids along each diagonal
had identical disparities. The grating and two identical plaids were designated as task-relevant for the duration of a block of trials, to be attended and their depth order
judged. The remaining plaids were irrelevant and to be ignored.
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For three of the observers, the disparity of the plaids, whether
relevant or irrelevant, had a direction of either +45� or �45� and
a magnitude of 1.67 arcmin (equivalent to a phase disparity of
20� for the grating and the components of plaid). For the remaining
observer, the plaids had a disparity direction of either +135� or
�135� and a magnitude of 1.25 arcmin (equivalent to a phase dis-
parity of �15�—negative to match the polarity of the central grat-
ing with an identical disparity vector). Plaid disparity values were
constant within blocks of trials. The grating had an orientation of
45� or 135� and a disparity magnitude that varied across trials.

The center-to-center distance between the grating and a plaid
was 2.5� of visual angle and the horizontal and vertical inter-plaid
spacing was just over 3.5�. Unlike Experiment 1, the contrast of the
grating, 0.1, equalled the contrast of each 1-D component of the
plaids, giving the plaid double the contrast of the grating. The grat-
ing was centered on the fovea in this experiment; its salience was
approximately matched to that of the more peripheral plaids at
this new contrast ratio.
4.1.2. Procedure
Observers were instructed to judge the central grating as ‘‘Near’’

or ‘‘Far’’ relative to the pair of relevant plaids flanking it. They were
informed at the start of each block of trials which diagonal pair of
plaids was relevant; this pair remained relevant throughout the
block of trials, in order to discourage switching errors and hyster-
esis effects that might accompany trial-to-trial selection of rele-
vant stimuli. Each diagonal pair was relevant equally often.
Observers were made aware that the relevant plaids had the same
disparity and, though non-contiguous, could be judged as a percep-
tual unit. As in Experiment 1, only the disparity of the grating and
the absolute phases of the stimuli varied across trials within a trial
block. The grating disparity was controlled by a constant-stimulus
procedure that selected among five disparity values.

After attaining nonius alignment, the observer initiated the
experimental trial with a click of a mouse. Stimuli were presented
for 174 ms. Responses were made by clicking one of two on-screen
buttons labeled ‘‘Near’’ and ‘‘Far’’ that appeared shortly after offset
of the stimulus display. The response designated the perceived
depth of the grating relative to the relevant plaids. No feedback
was given about individual responses.

For each of the four display types, each observer’s data came
from 8 to 12 runs of 50 experimental trials, each of which was pre-
ceded by a handful of warm-up trials. These runs were divided
evenly between displays having gratings with orientations of 45�
and 135� and relevant plaids arranged along the major and minor
diagonals. The remaining procedural details followed those of
Experiment 1.

4.1.3. Plaid-plaid depth judgments
An assumption behind the construction of Non-Transitive dis-

plays is that plaids with equal horizontal disparities will appear
at equal depths within displays containing 1-D stimuli. To verify
this assumption, depth judgments for a pair of plaids were col-
lected using a modified version of the 3-stimulus control display.
Methods and results appear in the Supplementary Material (Sec-
tion S2).

4.1.4. Observers
Of the four observers in this experiment, three were naive as to

the purposes of the study. One of these (T1) had run in Experiment
1. The remaining observer was one of the authors.

4.2. Results

Fig. 8 shows PSEs for the 5-stimulus displays of Experiment 2.
The plotted values are the grating disparities required to obtain
perceptual depth matches between the grating and the relevant
plaids. Each panel shows PSEs for the four display conditions
defined by display type (Transitive or Non-Transitive) and the rel-
ative disparity directions of the grating and the relevant plaids
(Parallel or Orthogonal). The plaids against which the grating was
judged had a fixed disparity magnitude that was equivalent to that
of a grating with a phase disparity of +20�, except in the case of
observer T1, for whom the corresponding value was �15�. Data
for each of the four observers are shown in a separate panel.

PSEs for Parallel Transitive displays were greater than those for
Orthogonal Transitive displays, with PSEs for Non-Transitive dis-
plays falling between the two Transitive cases. PSEs for Parallel
and Orthogonal Transitive displays differed significantly for all four
observers (p < 0.01 for T3, T4, and T5; p < 0.03 for T1, by Monte Car-
lo simulations, with similar results by t-tests). The four-plaid Tran-
sitive displays were similar to those for the respective two-plaid
displays, as seen in Fig. 9. Thus, the presence of irrelevant stimuli
had no systematic effect on judgments of relevant Transitive
stimuli.

However, the presence of irrelevant stimuli did affect judg-
ments of Non-Transitive displays. Fig. 8 shows that PSEs for the
Parallel Non-Transitive displays were smaller than those for Paral-
lel Transitive displays and the reverse was the case for Orthogonal
displays (p < 0.05 in all cases with the exception of Orthogonal
PSEs for observer T1, which were not significantly different,



Fig. 8. PSEs for the Transitive and Non-Transitive conditions of Experiment 2. Grating phase disparities that resulted in a perceived depth match between the grating and the
relevant plaids are shown for each of the 4 observers. The disparity direction of relevant plaids was either parallel or orthogonal to the grating disparity. Plaids’ phase
disparities were +20� for observers T3, T4, and T5, and �15� for observer T1. Error bars show ±1 s.e.m.
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p = 0.058). PSEs for Parallel and Orthogonal Non-Transitive dis-
plays were essentially identical for each observer. Thus, the dispar-
ity direction of the relevant plaids did not affect depth perception
of Non-Transitive displays; swapping parallel and orthogonal
plaids as the relevant stimuli conserved observers’ depth judg-
ments. This means that attentional selection had no effect. Irrele-
vant plaids contributed to these judgments as much as relevant
plaids did.

Projected disparity predicts PSEs of +20� (or �15�) for Parallel
Transitive displays and 0� for Orthogonal Transitive displays. The
Orthogonal Transitive data of observers T4 and T5 deviate consid-
erably from zero (Fig. 8). The difference was in the direction of see-
ing the grating as nearer than expected from its disparity,
mirroring results of Experiment 1 and apparent to some extent
in most observers’ data in all experiments (it is also opposite in
direction from the bias we observed in earlier experiments (Chai
& Farell, 2009; Farell, Chai, & Fernandez, 2009), where gratings
and plaids had a center-surround configuration.) On the other
hand, all the observers show a significant difference between PSEs
for Parallel and Orthogonal Transitive displays and no difference
between the Parallel and Orthogonal conditions of Non-Transitive
displays. PSEs for the two Non-Transitive conditions consistently
fell between those of the two Transitive conditions. It thus appears
that all the plaids, whether attended or unattended, contributed to
depth judgments of subsets of Non-Transitive stimuli. As in Exper-
iment 1, the disparities of individual stimuli do not appear to con-
tribute as discrete variables to the decision process.

Given that attention had no effect, a horizontal disparity calcu-
lation of depth is consistent with the equality of PSEs for the Par-
allel and Orthogonal conditions within Non-Transitive displays.
This is because the horizontal disparities of all Non-Transitive
plaids were the same. However, horizontal disparities were the
same in all conditions of the experiment, so they cannot explain
the difference in PSEs between Parallel and Orthogonal Transitive
displays or between Transitive and Non-Transitive displays. An
alternative is that the observed PSEs may reflect the pooling of
the individual projected disparities from all plaids in the display.
Experiment 3 tested this idea under conditions in which horizontal
disparities produce contrasting expectations.

5. Experiment 3

Experiment 3 manipulated the disparity directions of the plaids
in 5-stimulus displays. This freed the displays from the constraint
operating in the first two experiments whereby all the plaids had
the same horizontal disparity. As a result, the PSEs expected if hor-
izontal disparities were the effective signal for depth were distinct
from those expected if projections onto a stimulus disparity axis
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were the signal instead. The observer’s task was the same as in
Experiment 2.

5.1. Methods

The pair of plaids along one diagonal of the 5-stimulus displays
had disparity directions of either +45� or �45�, as in the previous
experiment. The other pair had a disparity direction drawn from
the set {0�, �15�, +15�, �45�, +45�}, with the latter two values
selected to complement the sign of the disparity of the first-men-
tioned pair. Thus, the two pairs of plaids differed in disparity direc-
tion from a minimum of 30� to a maximum of 90�. They shared the
same disparity magnitude, 1.67 arcmin (equivalent to 20� phase
disparity). The grating was oriented either at 45� or at 135� and
had a disparity that varied from trial to trial. In separate blocks
of trials each of the diagonal grating-plaid subsets within each dis-
play was designated as relevant to the task. This yielded eight pairs
(relevant and irrelevant) of plaid disparity directions, two of which
were identical to the Non-Transitive displays of Experiment 2. For
each of these eight pairs, observers carried out 6 or 8 blocks of 50
trials, plus practice trials, divided among 5 constant stimulus val-
ues. The procedure followed that of Experiment 2. Two observers
from that experiment, T3 and T5, served in this one.

5.2. Results

Fig. 10 plots the PSEs observed in Experiment 3 against three
measures of plaid disparity: (1) the disparities of relevant plaids
(top row); (2) the disparities of the irrelevant plaids (middle
row); and (3) the pooled disparities of all plaids, with equal weight
given to each (bottom row). Each of these disparities was mea-
sured after being projected onto two axes, the grating-disparity
axis (left column) and the horizontal disparity axis (right column).
Each data point gives the mean of PSEs from all displays yielding
the corresponding plaid disparity value plotted on the abscissa.
Linear functions have been fit through the data points.

The top row of Fig. 10 shows PSEs as a function of the disparities
of relevant plaids. The grating-axis projections of relevant plaids
(Fig. 10A) produced functions whose slopes are 0.25 and 0.26 for
observers T3 and T5, respectively. Only the latter is significantly
different from zero (t(3) = 2.58 and 4.86, respectively, p < 0.05).
The slopes for the horizontal-axis components of the relevant plaid
disparities (Fig. 10B) were similar, 0.30 and 0.17 for T3 and T5, and
not significantly different from zero.

The projected disparities of irrelevant plaids (Fig. 10C) produced
functions with slopes of 0.29 and 0.23 for observers T3 and T5,
respectively. Neither value differs significantly from zero
(t(3) = 1.21 and 2.79, p > 0.05). Thus, the projected disparities of rel-
evant and irrelevant plaids had practically identical effects on
observers’ depth judgments. Horizontal-axis components of the
irrelevant plaid disparities (Fig. 10D) produced slopes of �0.26
and �0.06 for T3 and T5, respectively, neither of which differs sig-
nificantly from zero. The differences in slope polarity between rel-
evant and irrelevant horizontal disparities seem attributable to the
difference in sign between their correlations (+0.24 and �0.16,
respectively) with the pooled projected disparities, which are dis-
cussed next.

The abscissa values of the data of the lower left panel of Fig. 10
come from averaging the grating-axis projections of relevant and
irrelevant plaid disparities. PSEs are well described as a linear func-
tion of these values (r2 = 0.96 for each observer), the slopes of which
(0.66 and 0.72) are considerably nearer 1.0 than those derived from
relevant or irrelevant plaid disparities separately. Slopes for the
combined function are steeper by a factor of about 2.8 than the
slope for relevant plaids alone, a difference that is significant for
both observers (t(3) = 3.90 and 5.22 for T3 and T5, respectively,
p < 0.005). By contrast, the horizontal disparity of the relevant
and irrelevant plaids combined (Fig. 10F) yielded slopes of �0.08
and 0.20, neither of which differs significantly from zero.

To summarize, relevant plaid disparities had only a weak corre-
spondence with observed PSEs, no more strongly predictive of
observers’ depth judgments than irrelevant plaid disparities. This
matches the results of the previous experiment. Pooling relevant
and irrelevant plaid disparities was considerably more predictive
of PSEs. This pooling gave equal weighting to relevant and irrele-
vant plaid disparities, consistent with their equivalent individual
effects on observers’ judgments. The combined projected dispari-
ties from relevant and irrelevant plaids underestimated the abso-
lute value and overestimated the gain of the grating disparity
required for a depth match. Nevertheless, these matches show that
the underlying computation is sensitive to two-dimensional dis-
parity vectors rather than only to their horizontal components
and that this sensitivity is global, responding to a pooled disparity
measure from all 2-D stimuli in the display, regardless of their task
relevance. Thus, the depth perceived between a constituent pair of
stimuli, one 1-D and the other 2-D, cannot be predicted from their
disparities, for it depends also on the disparities of the other stim-
uli present in the display.

6. General discussion

We expect transitivity to apply to stereoscopic depth, as we
expect it to apply generally. If each of the several stimuli appearing
in a stereoscopic display has a known disparity, then we expect
that we could rank these disparities to correspond with their depth
order as given by perception and that this ranking will be pairwise
transitive. Such a correspondence requires parameters linked by a
common metric. Horizontal disparity supplies the common metric
for perceived depth in most laboratory studies and theories of ste-
reopsis. However, two 1-D stimuli, if they have different orienta-
tions and identical horizontal disparities, will have different
effective disparities: The two stimuli can appear at different depths
relative to the same reference stimulus (Chai & Farell, 2009; Farell,
2006; Farell, Chai, & Fernandez, 2009; Ito, 2005). By dissociating
perceived depth from horizontal disparity, 1-D stimuli allow us
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to create a set of stimulus pairs whose depth relations, taken
together, violate transitivity, despite the normal appearance of
each pair when viewed individually. We asked here what depth
is seen when the non-transitive pairs are displayed at the same
time. Is the depth inconsistency resolved perceptually? If so, how
is it resolved, and what depths are seen?

Experiment 1 used displays containing a grating and two plaids,
each with an oblique disparity direction, to investigate these ques-
tions. In Transitive displays the two plaids had identical disparities
and in Non-Transitive displays their disparities were identical in
magnitude but directed perpendicularly, each deviating equally
from horizontal. If horizontal disparities alone mediated the depth
appearance, all the displays of Experiment 1 (and Experiment 2)
would have appeared identical in depth, for all the plaids had the
same horizontal disparity. If the various display types appeared
to differ in depth, then the depth-from-disparity calculation must
have been sensitive to disparity direction in two dimensions. But
then the violation of transitivity would have to be resolved in novel
ways or else be expressed as perceptual ambiguities.

With the plaids’ disparities held constant, we measured how
perceived depth changed with the grating’s disparity magnitude.
In Experiment 1 we found that perceived depth changed at the
same rate in Non-Transitive displays as in Transitive displays, but
psychometric functions were displaced laterally, giving each of the
three display types a different PSE. PSEs for Parallel Transitive dis-
plays were significantly larger than those for Orthogonal Transitive
displays, PSEs for Non-Transitive displays being intermediate.
However, data for Non-Transitive displays showed no difference
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between parallel and orthogonal disparity directions. Thus, these
displays showed no evidence of the inconsistent depth relations
among their constituent pairs. These same effects were observed
in Experiment 2, where only stimulus pairs of one type, parallel
or orthogonal, were relevant to the judgment. In fact, the disparity
of irrelevant plaids contributed to the judgment of the relevant
grating-plaid pair as much as the disparity of the relevant plaids
did. Thus, selective attention to stimulus subsets failed to affect
judgments of depth. Experiment 3 showed that this result held
regardless of the disparity direction difference of the plaids.

While observers resolved the pairwise inconsistencies within
Non-Transitive display, their judgments across Transitive and
Non-Transitive displays remained inconsistent. In Transitive dis-
plays the judged depth between gratings and plaids depended on
their relative disparity directions; in Non-Transitive displays, dis-
parity direction had no effect. Thus, the perceived depth of relevant
stimuli varied with the context provided by irrelevant stimuli. For
instance, one can take a grating that appears in the same depth
plane as several plaids and move it, without changing its disparity
or orientation, to another display containing plaids with different
disparity directions but the same disparity magnitudes and the
same horizontal disparity components as in the first display, and
the grating will now appear in a different depth plane from the
plaids. But if one moves it to a third display in which half the plaids
were taken from the first display and half from the second, one can
adjust the grating’s disparity magnitude so that all the stimuli
appear in the same depth plane.

6.1. The effective disparity axis

We favor an account in which the between-display inconsis-
tency in depth judgments arises because the disparity axis used
under the conditions of the experiments is not horizontal, but
instead is determined by the disparities of the stimuli themselves.
This effective disparity axis is used for calculating depth; it is not
necessarily the same as or defined by the axis along which binoc-
ular correspondences are made. (An analogous case arises when
horizontal disparity determines the perceived depth of a stimulus
with an oblique disparity direction.) This stimulus-dependent dis-
parity axis varies across the display types used here.

Observers’ depth judgments of a grating and a plaid can be
approximated by the relative magnitude of disparity components
along the disparity axis of either stimulus. One case calculates
the orthogonal projection of the plaid’s disparity onto the grating’s
disparity axis, a common axis for comparing the two disparities
(Fig. 1). The other case calculates the disparity components in
the direction of the plaid’s disparity, again allowing the two dispar-
ities to be compared along a common axis and yielding the same
disparity ratio. Here, the grating’s disparity is expressed by the
intersection of its constraint line and the plaid’s disparity axis.
The two calculations are equally consistent with the data of the
present experiments and those of previous studies of grating-plaid
pairs (Chai & Farell, 2009; Farell, Chai, & Fernandez, 2009).

By bringing a second plaid into the display, Experiment 1 raised
the question of the role of pairwise comparisons in multi-stimulus
depth judgments. Non-Transitive displays have a crucial role in
exploring this issue. Surprising evidence came in Experiments 2
and 3 from the failure of attention to select between relevant
and irrelevant plaid disparities, even those with orthogonal direc-
tions. This shows that the task of comparing the depths of a grating
and a plaid may engage more disparities than those of two stimuli.
The disparities of all the plaids present in the display appear to be
pooled. These plaids were iso-eccentric and identical except for
position, phase, and disparity direction in our experiments, leaving
unanswered questions about the generality of the pooling and the
possibility of attentional selection among less similar stimuli.
Judging relative depth along a stimulus disparity axis is related
by a simple rotation to the standard depth calculation from hori-
zontal disparities. If observers in our experiments compared dis-
parities projected onto the grating’s disparities axis, then a global
rotation of the display that brings the grating to vertical makes
its disparity axis horizontal and allows the disparity comparisons
to be expressed in terms of horizontal disparity components. Thus,
the grating disparity axis in the unrotated display takes on the role
usually assigned to the horizontal. The same applies to a single-
plaid disparity axis or to the average of the plaid disparity axes,
if either of these were used instead of the grating’s axis as the ref-
erence disparity direction. We can use the term relative disparity
axis (RDA) to refer to the axis on which disparity components are
compared to yield relative depth judgments.

The RDA can be horizontal and usually is. A shift from the hor-
izontal direction to a different, stimulus-defined direction in the
presence of 1-D stimuli has an analog in spatial-domain reference
stimuli. Contextual stimuli, even if irrelevant, can shift the direc-
tion of maximum stereo sensitivity away the fixation plane and
toward a local stimulus-defined reference plane (Glennerster &
McKee, 1999; Glennerster, McKee, & Birch, 2002; Mitchison &
Westheimer, 1984; Petrov & Glennerster, 2006; Westheimer,
1979). But while it is easy to imagine benefits in calculating stereo
depth with respect to a local reference plane, the advantages of cal-
culating depth from non-horizontal disparities appear elusive. Bin-
ocular matching must have some tolerance for vertical disparities
to accommodate their occurrence in the viewing environment,
but this does not imply a role for them in the depth-from-disparity
computation. So, why does the visual system not use horizontal
disparities when judging the depth of 1-D stimuli? The lack of par-
simony and especially the lack of veridicality of the resulting depth
estimates argue against specialized mechanisms dedicated to the
analysis of disparities along 1-D-stimulus-defined directions rather
than horizontal disparities. One alternative is that our data might
be an artifact of presenting conventional mechanisms with artifi-
cial stimulus parameters that have no, or highly improbable,
real-world correlates. Another possibility is that the stimulus-
defined RDA might be the general case. The veridicality of stereo
depth estimates would then be an index of how closely the RDA
approximates the horizontal. The approximation would depend
on how close the typical or average disparity in the viewed scene
is to the horizontal, with 1-D and 2-D stimuli and possibly other
factors contributing different weightings to the average.

6.2. Salience, vertical disparities, and attention

Mitchison and Westheimer (1984) defined salience as the rela-
tive disparity between a stimulus and its neighbors with respect to
a common reference (the fixation plane, in their calculations).
Stimulus separation contributes via a weighting factor. The sal-
ience metric makes perceived depth context dependent, with
neighboring stimuli contributing a disparity-contrast signal. This
contrast signal depends on disparity and position alone, so salience
discounts modulation by other factors—by attention, for example—
and gives all nearby stimuli a role in any particular depth judg-
ment. The equivalence of relevant and irrelevant stimuli in our
studies fits this description well. For our displays, however, it is
clear that disparity calculations do not use such a context-indepen-
dent reference as the fixation plane. In addition to contributing rel-
ative disparity signals, contextual stimuli have effects equivalent to
changing the direction along which disparities are compared.

The disparity axes used for calculating the depth between 1-D
and 2-D stimuli are stimulus disparity axes. Horizontal axis values
make no independent contribution. By contrast, disparity compo-
nents along both cardinal directions contribute to depth calcula-
tions of 2-D stimuli, with vertical disparities taking a modulatory
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role. For instance, vertical disparities can calibrate horizontal dis-
parities by providing an estimate of ocular viewing parameters
(Gillam, Chambers, & Lawergren, 1988; Mayhew & Longuet-
Higgins, 1982). Measurable effects of calibration require stimuli
much larger than those presented here, and even then only par-
tially compensate for effects of ocular posture (Rogers &
Bradshaw, 1993). However, calibration implies that vertical dispar-
ities should be pooled to arrive at a global value (Bradshaw,
Glennerster, & Rogers, 1996; Garding et al., 1995; Kaneko &
Howard, 1997; Rogers & Bradshaw, 1993; Stenton, Frisby, &
Mayhew, 1984; but see Rogers & Koenderink, 1986) and this has
potential importance for interpreting the inability of observers to
selectively process relevant stimuli. Perhaps the presence of verti-
cal disparities triggered a pooling of disparity signals that overrides
attentional partitioning. But a pooling of vertical disparities would
still leave horizontal disparities, whether calibrated or not, as the
principle factor contributing to, if not determining, perceived
depth. Yet horizontal disparities did not make a significant contri-
bution, so there is little reason to attribute the failure to selectively
process relevant stimuli to the presence of vertical disparities in
the display.

Stimulus position is a prime cue for attentional selection (e.g.,
Posner, 1980), yet selection failed in our experiments despite the
static segregation of relevant and irrelevant positions throughout
trial blocks. Attentional selection in our displays was not limited
by the particular parameters of the plaids, for a single crucial
change in a different parameter enables selective processing:
When a plaid is substituted for the grating, the disparity of the
irrelevant plaids has no effect on PSEs (Farell & Ng, 2014; see
Supplement Section S3). Thus, the failure to select among the
plaids in the present experiments is not due to an inherent prop-
erty of plaid processing (e.g., coherence of plaid disparities) or of
attention (e.g., a resolution too coarse to resolve individual plaid
disparities). Instead, the failure of selection seems specific to the
computation of depth between 1-D and 2-D stimuli.
6.3. Offset and gain

Horizontal-axis disparity projections do not accurately predict
depth judgments in our experiments. Projected disparities do bet-
ter, giving us a metric that is responsive to the sign of vertical dis-
parity and linearly related to PSEs (Fig. 10E). However, PSEs
differed systematically from the values expected from stimulus-
axis components. They showed an overall displacement toward
higher-than-predicted grating disparity values and a less-than-
unity slope, with a value of only about 0.7 (Fig. 10E). A bias to
see gratings as near relative to plaids, other things being equal,
might have arisen because of a difference in retinal eccentricity
or in effective contrast.

We had attempted to remove extraneous reference stimuli in
order to require observers to judge the stimuli by comparing them
directly with each other rather than indirectly via extraneous ref-
erence stimulus (see Exp. 1 Methods, Section 3.1.1). Yet there are
remaining factors that could make projected disparities inexact
proxies for the disparity metric that actually supports task perfor-
mance. For example, the disparity-gradient limit (Burt & Julesz,
1980) might show directional selectivity. That is, the separation
of stimuli within a display, in terms either of visual angle or carrier
wavelengths, might have been sub-optimal for accurate coding of
disparities with strongly divergent directions. However, the per-
ceived depth separation between plaids, whether these are laterally
adjacent (Farell, Chai, & Fernandez, 2010) or separated by another
stimuli (Supplement Fig. S2), is consistent with a horizontal dispar-
ity metric despite a considerable difference in two-dimensional
disparity direction. This does not suggest a disparity gradient limit.
Another approach to understanding the discrepancy between
data and prediction is to consider a more nuanced specification of
the grating disparity axis, one less rigidly tied to the nominal orien-
tation of the stimulus. The nominal orientation is just the center of
the grating’s orientation band. Thus, there is an orthogonal dispar-
ity-axis band with a comparable width. Merging this line of thought
with a loosening of assumptions, we can entertain hypotheses
about which of the disparity directions within this band are used
when an observer compares the depths of a pair of stimuli. One
hypothesis is that stimulus disparity components are compared
preferentially along an axis that minimizes the difference in dispar-
ity directions of the two stimuli. This inverts the logic of off-fre-
quency listening in auditory detection and off-frequency looking
in visual detection, and applies it in the disparity domain for the
purpose of facilitating comparisons rather than escaping masking.
Thus, for this purpose of comparing disparities, nominal and effec-
tive disparity directions might differ, with the effective directions
being more similar across stimuli than the nominal directions.
The size of the difference would vary with bandwidth and the dif-
ference in nominal values, following a sine function. It would be
largest when the nominal difference was greatest (90�) and would
contribute, possibly, to the less-than-expected gain in grating depth
observed here. Both the disparity gradient and the direction band
hypotheses are readily testable by direct measurement.
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