
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1997

An efficient k-means clustering algorithm An efficient k-means clustering algorithm

Khaled Alsabti
Syracuse University

Sanjay Ranka
University of Florida

Vineet Singh
Hitachi America, Ltd.

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Alsabti, Khaled; Ranka, Sanjay; and Singh, Vineet, "An efficient k-means clustering algorithm" (1997).
Electrical Engineering and Computer Science. 43.
https://surface.syr.edu/eecs/43

This Working Paper is brought to you for free and open access by the College of Engineering and Computer
Science at SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an
authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/43?utm_source=surface.syr.edu%2Feecs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

An Efficient K-Means Clustering Algorithm
�

Khaled Alsabti
Syracuse University

Sanjay Ranka
University of Florida

Vineet Singh
Hitachi America, Ltd.

Abstract

In this paper, we present a novel algorithm for perform-
ing k-means clustering. It organizes all the patterns in a k-d
tree structure such that one can find all the patterns which
are closest to a given prototype efficiently. The main intu-
ition behind our approach is as follows. All the prototypes
are potential candidates for the closest prototype at the root
level. However, for the children of the root node, we may be
able to prune the candidate set by using simple geometrical
constraints. This approach can be applied recursively until
the size of the candidate set is one for each node.

Our experimental results demonstrate that our scheme
can improve the computational speed of the direct k-means
algorithm by an order to two orders of magnitude in the
total number of distance calculations and the overall time
of computation.

1. Introduction

Clustering is the process of partitioning or grouping a
given set of patterns into disjoint clusters. This is done such
that patterns in the same cluster are alike and patterns be-
longing to two different clusters are different. Clustering
has been a widely studied problem in a variety of applica-
tion domains including neural networks, AI, and statistics.

Several algorithms have been proposed in the literature
for clustering: ISODATA [8, 3], CLARA [8], CLARANS
[10], Focusing Techniques [5] P-CLUSTER [7]. DBSCAN
[4], Ejcluster [6], BIRCH [14] and GRIDCLUS [12].

The k-means method has been shown to be effective in
producing good clustering results for many practical appli-
cations. However, a direct algorithm of k-means method
requires time proportional to the product of number of pat-
terns and number of clusters per iteration. This is computa-
tionally very expensive especially for large datasets.

We propose a novel algorithm for implementing the k-
means method. Our algorithm produces the same or com-�

This work was supported by the Information Technology Lab (ITL) of
Hitachi America, Ltd. while K. Alsabti and S. Ranka were visiting ITL.

parable (due to the round-off errors) clustering results to the
direct k-means algorithm. It has significantly superior per-
formance than the direct k-means algorithm in most cases.

The rest of this paper is organized as follows. We review
previously proposed approaches for improving the perfor-
mance of the k-means algorithms in Section 2. We present
our algorithm in Section 3. We describe the experimental
results in Section 4 and we conclude with Section 5.

2 k-means Clustering

In this section, we briefly describe the direct k-means
algorithm [9, 8, 3]. The number of clusters

�
is assumed

to be fixed in k-means clustering. Let the
�

prototypes�����	��
�
�
�������
be initialized to one of the � input patterns��������
�
�
��������

.1 Therefore,����������� �"!$#&%'��
�
�
�� �)(�+*,!-#�%'��
�
�
.� � (
Figure 1 shows a high level description of the direct k-
means clustering algorithm. / � is the

� th cluster whose
value is a disjoint subset of input patterns. The quality of
the clustering is determined by the following error function:

0 � �1�32 � 1
46587'9;:�< ���)=>��� < ?

The appropriate choice of
�

is problem and domain de-
pendent and generally a user tries several values of

�
. As-

suming that there are � patterns, each of dimension @ , the
computational cost of a direct k-means algorithm per itera-
tion (of the repeat loop) can be decomposed into three parts:

1. The time required for the first for loop in Figure 1 isA � � � @ � .
2. The time required for calculating the centroids (second

for loop in Figure 1) is
A � �B@ � .

3. The time required for calculating the error function isA � �B@ � .
1Our strategy is independent of this initialization.

The number of iterations required can vary in a wide
range from a few to several thousand depending on the
number of patterns, number of clusters, and the input data
distribution. Thus, a direct implementation of the k-means
method can be computationally very intensive. This is es-
pecially true for typical data mining applications with large
number of pattern vectors.

function Direct-k-means()

Initialize
�

prototypes �������	�	�
�	������ such that �������� �������������	�	�
� � � �"!#�$�������	�
�	�&% �
Each cluster '"� is associated with prototype �(�
Repeat

for each input vector
�)�

, where !*�+���������	�
�&% � ,
do

Assign
���

to the cluster ',� � with near-
est prototype �*� �
(i.e., - � �/. � � � -102- � � . � � - �3�4��������	�
�	� �/�)

for each cluster '"� , where �4���5�����
�	�	� �/� , do
Update the prototype �*� to be the
centroid of all samples currently
in '"� , so that �*�6�87:9 5<;5=�: ����> -
'"�?-

Compute the error function:

@ �
�1
�
AB�

1
9 5<;5=�: - ��� . ���C- D

Until
@

does not change significantly or cluster mem-
bership no longer changes

Figure 1. Direct k-means clustering algorithm

There are two main approaches described in the litera-
ture which can be used to reduce the overall computational
requirements of the k-means clustering method especially
for the distance calculations:

1. Use the information from the previous iteration to
reduce the number of distance calculations. P-
CLUSTER is a k-means-based clustering algorithm
which exploits the fact that the change of the assign-
ment of patterns to clusters are relatively few after the
first few iterations [7]. It uses a heuristic which deter-
mines if the closest prototype of a pattern E has been
changed or not by using a simple check. If the assign-
ment has not changed, no further distance calculations
are required. It also uses the fact that the movement of
the cluster centroids is small for consecutive iterations
(especially after a few iterations).

2. Organize the prototype vectors in a suitable data struc-
ture so that finding the closest prototype for a given

pattern becomes more efficient [11, 13]. This prob-
lem reduces to finding the nearest neighbor problem
for a given pattern in the prototype space. The number
of distance calculations using this approach is propor-
tional to �GFIH � � � @ � per iteration. For many applica-
tions such as vector quantization, the prototype vectors
are fixed. This allows for construction of optimal data
structures to find the closest vector for a given input
test pattern [11]. However, these optimizations are not
applicable to the k-means algorithm as the prototype
vectors will change dynamically. Further, it is not clear
how these optimizations can be used to reduce the time
for calculation of the error function (which becomes a
substantial component after reduction in the number of
distance calculations).

3 Our Algorithm

The main intuition behind our approach is as follows.
All the prototypes are potential candidates for the closest
prototype at the root level. However, for the children of the
root node, we may be able to prune the candidate set by
using simple geometrical constraints. Clearly, each child
node will potentially have different candidate sets. Further,
a given prototype may belong to the candidate set of several
child nodes. This approach can be applied recursively till
the size of the candidate set is one for each node. At this
stage, all the patterns in the subspace represented by the
subtree have the sole candidate as their closest prototype.
Using this approach, we expect that the number of distance
calculation for the first loop (in Figure 1) will be propor-
tional to �JFLK � � � @ � where K � � � @ � is much smaller than
H � � � @ � . This is because the distance calculation has to be
performed only with internal nodes (representing many pat-
terns) and not the patterns themselves in most cases. This
approach can also be used to significantly reduce the time
requirements for calculating the prototypes for the next it-
eration (second for loop in Figure 1). We also expect the
time requirement for the second for loop to be proportional
to �LFMK � � � @ � .

The improvements obtained using our approach are cru-
cially dependent on obtaining good pruning methods for ob-
taining candidate sets for the next level. We propose to use
the following strategy.

N For each candidate
� 4 , find the minimum and maxi-

mum distances to any point in the subspace

N Find the minimum of maximum distances, call itO � � OQP/R
N Prune out all candidates with minimum distance

greater than
O � � OQP/R

The above strategy guarantees that no candidate is pruned
if it can potentially be closer than any other candidate pro-
totype to a given subspace.

Our algorithm is based on organizing the pattern vectors
so that one can find all the patterns which are closest to a
given prototype efficiently. In the first phase of the algo-
rithm, we build a k-d tree to organize the pattern vectors.
The root of such a tree represents all the patterns, while the
children of the root represent subsets of the patterns com-
pletely contained in subspaces (Boxes). The nodes at the
lower levels represent smaller boxes. For each node of the
tree, we keep the following information:

1. The number of points (�)

2. The linear sum of the points (
���

), i.e. 7��4 2 � � 4
3. The square sum of the points (

���
), i.e. 7 �4 2 � � 4 ?

Let the number of dimensions be @ and the depth of the
k-d tree be � . The extra time and space requirements for
maintaining the above information at each node is propor-
tional to

A � �B@ � .2 Computing the medians at � levels takes
time

A � �	� �
[2]. These set of medians are needed in per-

forming the splitting of the internal nodes of the tree. There-
fore, the total time requirement for building this tree such
that each internal node at a given level represents the same
number of elements is

A � � � @�
�� ���
.3

For building the k-d tree, there are several competing
choices which affect the overall structure.

1. Choice of dimension used for performing the split:
One option is to choose a common dimension across
all the nodes at the same level of the tree. The dimen-
sions are chosen in a round-robin fashion for different
levels as we go down the tree. The second option is to
use the splitting dimension with the longest length.

2. Choice of splitting point along the chosen dimension:
We tried two approaches based on choosing the central
splitting point or median splitting point. The former di-
vides the splitting dimensions into two equal parts (by
width) while the latter divides the dimensions such that
there are equal number of patterns on either side. We
will refer to these approaches as midpoint-based and
median-based approaches respectively. Clearly, the
cost of the median-based approach is slightly higher
as it requires calculation of the median.

We have empirically investigated the effect of the two
choices on the overall performance of our algorithms.

2The same information (, ��� , ���) has also been used in [14] and is
called Clustering Feature (CF). However, as we will see later, we use CF
in a different way.

3For the rest of the paper, patterns and points are used interchangeably.

These results show that splitting along the longest dimen-
sion and choosing a midpoint-based approach for splitting
is preferable [1].

In the second phase of the k-means algorithm, the ini-
tial prototypes are derived. Just as in the direct k-means
algorithm, these initial prototypes are generated randomly
or drawn from the dataset randomly.4

function TraverseTree(%������ , � , ! , �)
� ! ��� � = Pruning(%������ , � , ! , �)

if - � ! ��� �?- �J� then

/* All the points in %������ belong to the alive
cluster */

Update the centroid’s statistics based on the in-
formation stored in the node

return

if %������ is a leaf then
for each point in %������

Find the nearest prototype � 9
Assign point to � 9
Update the centroid’s statistics

return

for each child node do

TraverseTree(� � � !!� ,
� ! ��� � , - � ! ��� � - , �)

Figure 2. Tree traversal algorithm

In the third phase, the algorithm performs a number of it-
erations (as in the direct algorithm) until a termination con-
dition is met. For each cluster

�
, we maintain the number of

points / 4� , the linear sum of the points / 4"�# and the square
sum of the points / 4#$# .

In each iteration, we traverse the k-d tree using a depth-
first strategy (Figure 2) as follows.5 We start from the root
node with all

�
candidate prototypes. At each node of the

tree, we apply a pruning function on the candidates proto-
types. A high level description of the pruning algorithm is
given in Figure 3. If the number of candidate prototypes is
equal to one, the traversal below that internal node is not
pursued. All the points belonging to this node have the sur-
viving candidate as the closest prototype. The cluster statis-
tics are updated based on the information about the number
of points, linear sum, and square sum stored for that inter-
nal node. A direct k-means algorithm is applied on the leaf
node if there is more than one candidate prototype. This di-
rect algorithm performs one iteration of the direct algorithm
on the candidate prototypes and the points of the leaf node.

An example of the pruning achieved by using our algo-
rithm is shown in Figure 4. Our approach is a conservative

4The k-d tree structure can potentially be used to derive better ap-
proaches for this choice. However, these have not been investigated in
this paper.

5Note that our approach is independent of the traversal strategy.

function Pruning(��������� � � , � , ! , �)
� ! � � � � �
for each prototype � 9 � � do

Compute the minimum (� % 9) and maximum
(�
� 9) distances for any point in the box
representing the ��������� � �

Find the minimum of 	�
� 9 ����� � 0 ! , call it� � % �
���� 9����
for each prototype � 9 � � do

if 	 � % 9�� � � % �
��� 9���� then
� ! � � � �� ! ��� � . � � 9 �

return(
� ! ��� �)

Figure 3. Pruning algorithm

approach and may miss some of the pruning opportunities.
For example, the candidate shown as an x with a square
around it could be pruned with a more complex pruning
strategy. However, our approach is relatively inexpensive
and can be shown to require time proportional to

�
. Choos-

ing a more expensive pruning algorithm may decrease the
overall number of distance calculations. This may, how-
ever, be at the expense of higher overall computation time
due to an offsetting increase in cost of pruning.

X

X
d

X

X

X

X

Figure 4. Example of pruning achieved by our
algorithm. X represents the candidate set. @
is the MinMax distance. All the candidates
which are circled get pruned. The candidate
with a square around it is not pruned by our
algorithm

At the end of each iteration, the new set of centroids is
derived and the error function is computed as follows.

1. The new centroid for cluster
�

is:
9����9 �

2. The error function is: 7
�4 2 � � / 4# # ="! 9#���%$'&9 � �

The leaf size is an important parameter for tuning the
overall performance of our algorithm. Small leaf size re-
sults in larger cost for constructing the tree, and increases
the overall cost of pruning as the pruning may have to be
continued to lower levels. However, a small leaf size de-
creases the overall cost for distance calculations for finding
the closest prototype.

Calculating the Minimum and Maximum Distances
The pruning algorithm requires calculation of the minimum
as well as maximum distance to any given box from a given
prototype. It can be easily shown that the maximum dis-
tance will be to one of the corners of the box. Let H)(+*-,/.+0-12, 4
be that corner for prototype

�
(
� 4). The coordinates of

H)(+*-,/.+0%13, 4 (H)()*-,/.40%12, 4 � � H)(+*-,/.+0-12, 4 ?
��
�
�
�� H)()*5,/.+0%12, 476) can

be computed as follows:

H)()*5,/.+0%12, 4 ���98;: ��=< < :
�� = � 4 � <?> < :�@� = � 4 � <:A@� < A ,/.405* ��� 150

(1)
where : �� and :�@� are the lower and upper coordinates of
the box along dimension

�
.

The maximum distance can be computed as follows:

@ � 12, ��B 7 6�32 � � � 4 � = H)(+*-,/.+0%13, 4 � � ?
A naive approach for calculating maximum and mini-

mum distances for each prototype will perform the above
calculations for each node (box) of the tree indpenedently;
which will require

A � @ � time. The coordinates of the box
of the child node is exactly the same as its parent except
for one dimension which has been used for splitting at the
parent node. This information can be exploited to reduce
the time to constant time. This requires the use of the max-
imum distance of the prototype to the parent node. This
can be used to express the maximum square distance for the
child node in terms of its parent. The computation cost of
the above approach is

A ��% �
for each candidate prototype.

The overall computational requirement for a node with
�

candidate prototypes is
A � � �

. The value of minimum dis-
tance can be obtained similarly. For more details the reader
is referred to a detailed version of this paper [1].

4 Experimental Results

We have evaluated our algorithm on several datasets. We
have compared our results with direct k-means algorithm in
terms of the number of performed distance calculations and
the total execution time. A direct comparison with other al-
gorithms (such as the P-Cluster [7] and [13]) is not feasible
due to unavailability of their datasets and software. How-
ever, we present some qualitative comparisons. All the ex-

perimental results reported are on a IBM RS/6000 running
AIX version 4. The clock speed of the processor is 66 MHz
and the memory size is 128 MByte.

For each dataset and the number of clusters, we com-
pute the factors K � � and K ��� of reduction in distance
calculations and overall execution time over the direct algo-
rithm respectively as well as the average number of distance
calculations per pattern � � / . The number of distance cal-
culations for the direct algorithm is

� �
 %�� � per iteration.6

All time measurements are in seconds.
Our main aim in this paper is to study the computational

aspects of the k-means method. We used several datasets all
of which have been generated synthetically. This was done
to study the scaling properties of our algorithm for different
values of � and

�
respectively. Table 1 gives a description

for all the datasets. The datasets used are as follows:

1. We used three datasets (DS1, DS2 and DS3). These
are described in [14].

2. For the datasets R1 through R12, we have generated
�

points randomly in a cube of appropriate dimensional-
ity. For the

�
th point we generate

� ?
�! ���+� $ � points around

it using uniform distribution. These result in clusters
with non-uniform number of points.

We experimented with leaf sizes of 4, 16, 64 and 256.
For most of our datasets, we found that choosing a leaf size
of 64 resulted in optimal or near optimal performance. Fur-
ther, the overall performance was not sensitive to the leaf
size except when the leaf size was very small.

Tables 2 and 3 present the performance of our algorithms
for different number of clusters and iterations assuming a
leaf size of 64. For each combination used, we present
the factor reduction in overall time (FRT) and the time of
the direct k-means algorithm. We also present the factor
reduction in distance calculations (FRD) and the average
number of distance calculations per pattern (ADC). These
results show that our algorithm can improve the overall per-
formance of k-means clustering by an order to two orders
of magnitude. The average number of distance calculations
required is very small and can vary anywhere from 0.17 to
11.17 depending on the dataset and the number of clusters
required.

The results presented in [7] show that their methods re-
sult in factor of 4 to 5 improvements in overall compu-
tational time. Our improvements are substantially better.
However, we note that the datasets used are different and a
direct comparison may not be accurate.

6This includes the �� distance calculations for finding the nearest pro-
totype and the equivalent of distance calculations for computing he new
set of centroids.

Dataset k Direct Alg Our Algorithm
Total Time FRT FRD ADC

DS1 16 6.140 1.510 4.06 26.69 0.64
DS2 16 6.080 1.400 4.34 34.47 0.49
DS3 16 6.010 1.370 4.38 35.68 0.48
R1 16 8.760 1.890 4.63 17.82 0.95
R2 16 17.420 3.130 5.56 27.38 0.62
R3 16 7.890 1.290 6.11 98.66 0.17
R4 16 16.090 2.750 5.85 53.02 0.32
R5 16 15.560 2.510 6.19 14.62 1.16
R6 16 31.200 4.480 6.96 17.77 0.96
R7 16 15.340 6.630 2.31 9.08 1.87
R8 16 22.200 6.800 3.26 9.08 1.87
R9 16 16.120 7.300 2.20 3.75 4.53
R10 16 33.330 11.340 2.93 4.96 3.43
R11 16 14.200 11.260 1.26 2.21 7.68
R12 16 28.410 22.110 1.28 2.21 7.68
DS1 64 23.020 2.240 10.27 54.72 1.19
DS2 64 22.880 2.330 9.81 43.25 1.50
DS3 64 23.180 2.340 9.90 52.90 1.23
R1 64 38.880 5.880 6.61 10.61 6.12
R2 64 141.149 11.770 11.99 10.64 6.11
R3 64 32.080 1.780 18.02 99.66 0.65
R4 64 64.730 3.090 20.94 139.80 0.46
R5 64 60.460 7.440 8.12 10.49 6.20
R6 64 121.200 14.670 8.26 10.65 6.10
R7 64 59.410 8.820 6.73 24.15 2.69
R8 64 89.750 8.810 10.18 24.15 2.69
R9 64 81.740 14.060 5.81 6.13 10.61
R10 64 164.490 28.640 5.74 5.82 11.17
R11 64 58.280 15.340 3.79 5.92 10.97
R12 64 117.060 29.180 4.01 5.85 11.10

Table 2. The overall results for 10 iterations

5 Conclusions

In this paper, we presented a novel algorithm for per-
forming k-means clustering. Our experimental results
demonstrated that our scheme can improve the direct k-
means algorithm by an order to two orders of magnitude
in the total number of distance calculations and the overall
time of computation.

There are several improvements possible to the basic
strategy presented in this paper. One approach will be to
restructure the tree every few iterations to further reduce the
value of K � � � @ � . The intuition here is that the earlier itera-
tions provide some partial clustering information. This in-
formation can potentially be used to construct the tree such
that the pruning is more effective. Another possibility is
to add the optimizations related to incremental approaches
presented in [7]. These optimizations seem to be orthogo-
nal and can be used to further reduce the number of distance
calculations.

Dataset Size Dimensi- No. of Characteristic Range
onality Clusters

DS1 100,000 2 100 Grid [-3,41]
DS2 100,000 2 100 Sine [2,632],[-29,29]
DS3 100,000 2 100 Random [-3,109],[-15,111]
R1 128k 2 16 Random [0,1]
R2 256k 2 16 Random [0,1]
R3 128k 2 128 Random [0,1]
R4 256k 2 128 Random [0,1]
R5 128k 4 16 Random [0,1]
R6 256k 4 16 Random [0,1]
R7 128k 4 128 Random [0,1]
R8 256k 4 128 Random [0,1]
R9 128k 6 16 Random [0,1]
R10 256k 6 16 Random [0,1]
R11 128k 6 128 Random [0,1]
R12 256k 6 128 Random [0,1]

Table 1. Description of the datasets. The range along each dimension is the same unless explicitly
stated

Dataset Direct Alg Our Algorithm
Total Time FRT FRD ADC

DS1 115.100 6.830 16.85 64.65 1.01
DS2 114.400 7.430 15.39 50.78 1.28
DS3 115.900 6.520 17.77 66.81 0.97
R1 194.400 24.920 7.80 10.81 6.01
R2 705.745 49.320 14.30 10.80 6.02
R3 160.400 3.730 43.00 133.27 0.49
R4 323.650 5.270 61.41 224.12 0.29
R5 302.300 32.430 9.32 10.72 6.06
R6 606.00 63.330 9.56 10.83 6.00
R7 297.050 32.100 9.25 26.66 2.44
R8 448.750 31.980 14.03 26.66 2.44
R9 408.700 63.920 6.39 6.25 10.41

R10 822.450 132.880 6.18 5.86 11.09
R11 291.400 67.850 4.29 6.30 10.32
R12 585.300 133.580 4.38 6.07 10.72

Table 3. The overall results for 50 iterations
and 64 clusters

References

[1] K. Alsabti, S. Ranka, and V. Singh. An Efficient K-Means
Clustering Algorithm. http://www.cise.ufl.edu/ � ranka/,
1997.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. McGraw-Hill Book Company, 1990.

[3] R. C. Dubes and A. K. Jain. Algorithms for Clustering Data.
Prentice Hall, 1988.

[4] M. Ester, H. Kriegel, J. Sander, and X. Xu. A Density-
Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise. Proc. of the 2nd Int’l Conf. on Knowl-
edge Discovery and Data Mining, August 1996.

[5] M. Ester, H. Kriegel, and X. Xu. Knowledge Discovery in
Large Spatial Databases: Focusing Techniques for Efficient

Class Identification. Proc. of the Fourth Int’l. Symposium on
Large Spatial Databases, 1995.

[6] J. Garcia, J. Fdez-Valdivia, F. Cortijo, and R. Molina. Dy-
namic Approach for Clustering Data. Signal Processing,
44:(2), 1994.

[7] D. Judd, P. McKinley, and A. Jain. Large-Scale Parallel Data
Clustering. Proc. Int’l Conference on Pattern Recognition,
August 1996.

[8] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data:
an Introduction to Cluster Analysis. John Wiley & Sons,
1990.

[9] K. Mehrotra, C. Mohan, and S. Ranka. Elements of Artificial
Neural Networks. MIT Press, 1996.

[10] R. T. Ng and J. Han. Efficient and Effective Clustering Meth-
ods for Spatial Data Mining. Proc. of the 20th Int’l Conf.
on Very Large Databases, Santiago, Chile, pages 144–155,
1994.

[11] V. Ramasubramanian and K. Paliwal. Fast K-Dimensional
Tree Algorithms for Nearest Neighbor Search with Applica-
tion to Vector Quantization Encoding. IEEE Transactions
on Signal Processing, 40:(3), March 1992.

[12] E. Schikuta. Grid Clustering: An Efficient Hierarchical
Clustering Method for Very Large Data Sets. Proc. 13th
Int’l. Conference on Pattern Recognition, 2, 1996.

[13] J. White, V. Faber, and J. Saltzman. United States Patent No.
5,467,110. Nov. 1995.

[14] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Ef-
ficient Data Clustering Method for Very Large Databases.
Proc. of the 1996 ACM SIGMOD Int’l Conf. on Management
of Data, Montreal, Canada, pages 103–114, June 1996.

	An efficient k-means clustering algorithm
	Recommended Citation

	tmp.1284992644.pdf.926qu

