
Syracuse University Syracuse University 

SURFACE SURFACE 

Northeast Parallel Architecture Center College of Engineering and Computer Science 

1999 

Building Distributed Systems for the Pragmatic Object Web Building Distributed Systems for the Pragmatic Object Web 

Geoffrey C. Fox 
Syracuse University, Northeast Parallel Architectures Center 

Wojtek Furmanski 
Syracuse University, Northeast Parallel Architectures Center 

Tomasz Haupt 
Syracuse University, Northeast Parallel Architectures Center 

Follow this and additional works at: https://surface.syr.edu/npac 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Fox, Geoffrey C.; Furmanski, Wojtek; and Haupt, Tomasz, "Building Distributed Systems for the Pragmatic 
Object Web" (1999). Northeast Parallel Architecture Center. 42. 
https://surface.syr.edu/npac/42 

This Working Paper is brought to you for free and open access by the College of Engineering and Computer 
Science at SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized 
administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/42?utm_source=surface.syr.edu%2Fnpac%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Distributed Systems on the Pragmatic Object Web -

Computing with Java and CORBA

G.C. Fox, W. Furmanski and T. Haupt

Northeast Parallel Architectures Center, Syracuse University, Syracuse NY, USA
gcf@npac.syr.edu, furm@npac.syr.edu and haupt@npac.syr.edu

http://www.npac.syr.edu

Abstract

We review the growing power and capability of commod-

ity computing and communication technologies largely

driven by commercial distributed information systems.

These systems are built from CORBA, Microsoft's

COM, JavaBeans, and rapidly advancing Web ap-

proaches. One can abstract these to a three-tier model

with largely independent clients connected to a dis-

tributed network of servers. The latter host various

services including object and relational databases and

of course parallel and sequential computing. High per-

formance can be obtained by combining concurrency at

the middle server tier with optimized parallel back end

services. The resultant system combines the needed per-

formance for large-scale HPCC applications with the

rich functionality of commodity systems. Further the

architecture with distinct interface, server and special-

ized service implementation layers, naturally allows ad-

vances in each area to be easily incorporated. We illus-

trate how performance can be obtained within a com-

modity architecture and we propose a middleware inte-

gration approach based on JWORB (Java Web Object

Broker) multi-protocol server technology. We illsutrate

our approach on a set of prototype applications in ar-

eas such as collaborative systems, support of multidis-

ciplinary interactions, WebFlow based visual metacom-

puting, WebFlow over Globus, Quantum Monte Carlo

and distributed interactive simulations.

1 Introduction

We believe that industry and the loosely organized

worldwide collection of (freeware) programmers is

developing a remarkable new software environment

of unprecedented quality and functionality. We call

this DcciS - Distributed commodity computing and

information System. We believe that this can ben-

e�t HPCC in several ways and allow the develop-

ment of both more powerful parallel programming

environments and new distributed metacomputing

systems. In the second section, we de�ne what we

mean by commodity technologies and explain the

di�erent ways that they can be used in HPCC. In

the third and critical section, we de�ne an emerg-

ing architecture of DcciS in terms of a conventional

3 tier commercial computing model, augmented by

distributed object and component technologies of

Java, CORBA, COM and the Web. This is fol-

lowed in sections four and �ve by more detailed

discussion of the HPcc core technologies and high-

level services.

In this and related papers [5], we discuss several

examples to address the following critical research

issue: can high performance systems - called HPcc

or High Performance Commodity Computing - be

built on top of DcciS. Examples include integration

of collaboration into HPcc; the natural synergy of

distribution simulation and the HLA standard with

our architecture; and the step from object to vi-

sual component based programming in high per-

formance distributed computing. Our claim, based

on early experiments and prototypes is that HPcc

is feasible but we need to exploit fully the syn-

ergies between several currently competing com-

modity technologies. We refer to our approach

towards HPcc, based on integrating several pop-

ular distributed object frameworks as Pragmatic

Object Web and we describe a speci�c integra-

tion metodology based on multi-protocol middle-

ware server, JWORB (Java Web Object Request

Broker).

2 Commodity Technologies

and their use in HPCC

The last three years have seen an unprecedented

level of innovation and progress in commodity tech-



nologies driven largely by the new capabilities and

business opportunities of the evolving worldwide

network. The web is not just a document access

system supported by the somewhat limited HTTP

protocol. Rather it is the distributed object tech-

nology which can build general multi-tiered enter-

prise intranet and internet applications. CORBA

is turning from a sleepy heavyweight standards ini-

tiative to a major competitive development activity

that battles with COM, JavaBeans and new W3C

object initiatives to be the core distributed object

technology.

There are many driving forces and many aspects

to DcciS but we suggest that the three critical

technology areas are the web, distributed objects

and databases. These are being linked and we see

them subsumed in the next generation of "object-

web" [1] technologies, which is illustrated by the

recent Netscape and Microsoft version 4 browsers.

Databases are older technologies but their linkage

to the web and distributed objects, is transforming

their use and making them more widely applicable.

In each commodity technology area, we have im-

pressive and rapidly improving software artifacts.

As examples, we have at the lower level the collec-

tion of standards and tools such as HTML, HTTP,

MIME, IIOP, CGI, Java, JavaScript, Javabeans,

CORBA, COM, ActiveX, VRML, new powerful ob-

ject brokers (ORB's), dynamic Java clients and

servers including applets and servlets, and new

W3C technologies towards the Web Object Model

(WOM) such as XML, DOM and RDF.

At a higher level collaboration, security, com-

merce, multimedia and other applications/services

are rapidly developing using standard interfaces or

frameworks and facilities. This emphasizes that

equally and perhaps more importantly than raw

technologies, we have a set of open interfaces en-

abling distributed modular software development.

These interfaces are at both low and high levels and

the latter generate a very powerful software envi-

ronment in which large preexisting components can

be quickly integrated into new applications. We

believe that there are signi�cant incentives to build

HPCC environments in a way that naturally inher-

its all the commodity capabilities so that HPCC

applications can also bene�t from the impressive

productivity of commodity systems. NPAC's HPcc

activity is designed to demonstrate that this is pos-

sible and useful so that one can achieve simultane-

ously both high performance and the functionality

of commodity systems.

Note that commodity technologies can be used in

several ways. This article concentrates on exploit-

ing the natural architecture of commodity systems

but more simply, one could just use a few of them

as "point solutions". This we can term a "tactical

implication" of the set of the emerging commodity

technologies and illustrate below with some exam-

ples:

� Perhaps VRML,Java3D or DirectX are impor-

tant for scienti�c visualization;

� Web (including Java applets and ActiveX con-

trols) front-ends provide convenient customiz-

able interoperable user interfaces to HPCC fa-

cilities;

� Perhaps the public key security and digital sig-

nature infrastructure being developed for elec-

tronic commerce, could enable more powerful

approaches to secure HPCC systems;

� Perhaps Java will become a common scienti�c

programming language and so e�ort now de-

voted to Fortran and C++ tools needs to be

extended or shifted to Java;

� The universal adoption of JDBC (Java

Database Connectivity), rapid advances in the

Microsoft's OLEDB/ADO transparent persis-

tence standards and the growing convenience

of web-linked databases could imply a grow-

ing importance of systems that link large scale

commercial databases with HPCC computing

resources;

� JavaBeans, COM, CORBA and WOM form

the basis of the emerging "object web" which

analogously to the previous bullet could en-

courage a growing use of modern object tech-

nology;

� Emerging collaboration and other distributed

information systems could allow new dis-

tributed work paradigms which could change

the traditional teaming models in favor of

those for instance implied by the new NSF

Partnerships in Advanced Computation.

However probably more important is the strate-

gic implication of DcciS which implies certain crit-

ical characteristics of the overall architecture for

a high performance parallel or distributed com-

puting system. First we note that we have seen

over the last 30 years many other major broad-

based hardware and software developments { such

as IBM business systems, UNIX, Macintosh/PC

desktops, video games { but these have not had

profound impact on HPCC software. However we



suggest the DcciS is di�erent for it gives us a world-

wide/enterprise-wide distributing computing envi-

ronment. Previous software revolutions could help

individual components of a HPCC software system

but DcciS can in principle be the backbone of a

complete HPCC software system { whether it be

for some global distributed application, an enter-

prise cluster or a tightly coupled large scale parallel

computer.

In a nutshell, we suggest that "all we need to

do" is to add "high performance" (as measured by

bandwidth and latency) to the emerging commer-

cial concurrent DcciS systems. This "all we need to

do" may be very hard but by using DcciS as a ba-

sis we inherit a multi-billion dollar investment and

what in many respects is the most powerful pro-

ductive software environment ever built. Thus we

should look carefully into the design of any HPCC

system to see how it can leverage this commercial

environment.

3 Three Tier High Perfor-

mance Commodity Com-

puting

Figure 1: Industry 3-tier view of enterprise Com-

puting

We start with a common modern industry view of

commodity computing with the three tiers shown

in �g 1. Here we have customizable client and mid-

dle tier systems accessing "traditional" back end

services such as relational and object databases. A

set of standard interfaces allows a rich set of cus-

tom applications to be built with appropriate client

and middleware software. As indicated on �gure,

both these two layers can use web technology such

as Java and Javabeans, distributed objects with

CORBA and standard interfaces such as JDBC

(Java Database Connectivity). There are of course

no rigid solutions and one can get "traditional"

client server solutions by collapsing two of the lay-

ers together. For instance with database access,

one gets a two tier solution by either incorporat-

ing custom code into the "thick" client or in anal-

ogy to Oracle's PL/SQL, compile the customized

database access code for better performance and

incorporate the compiled code with the back end

server. The latter like the general 3-tier solution,

supports "thin" clients such as the currently popu-

lar network computer. Actually the "thin client" is

favored in consumer markets bue to cost and in cor-

porations due to the greater ease of managing (cen-

tralized) server compared to (chaotic distributed)

client systems.

The commercial architecture is evolving rapidly

and is exploring several approaches which co-exist

in today's (and any realistic future) distributed in-

formation system. The most powerful solutions in-

volve distributed objects. Currently, we are ob-

serving three important commercial object systems

- CORBA, COM and JavaBeans, as well as the

ongoing e�orts by the W3C, referred by some as

WOM (Web Object Model), to de�ne pure Web

object/component standards. These have similar

approaches and it is not clear if the future holds a

single such approach or a set of interoperable stan-

dards.

CORBA is a distributed object standard man-

aged by the OMG (Object Management Group)

comprised of 700 companies. COM is Microsoft's

distributed object technology initially aimed at

Window machines. JavaBeans (augmented with

RMI and other Java 1.1 features) is the "pure Java"

solution - cross platform but unlike CORBA, not

cross-language! Finally, WOM is an emergent Web

model that uses new standards such as XML, RDF

and DOM to specify respectively the dynamic Web

object instances, classes and methods.

Legion is an example of a major HPCC focused

distributed object approach; currently it is not built

on top of one of the four major commercial stan-

dards discussed above. The HLA/RTI [2] standard

for distributed simulations in the forces modeling

community is another important domain speci�c

distributed object system. It appears to be moving

to integration with CORBA standards.

Although a distributed object approach is at-

tractive, most network services today are pro-

vided in a more ad-hoc fashion. In particular to-

day's web uses a "distributed service" architecture



with HTTP middle tier servers invoking via the

CGI mechanism, C and Perl programs linking to

databases, simulations or other custom services.

There is a trend toward the use of Java servers

with the servlet mechanism for the services. This is

certainly object based but does not necessarily im-

plement the standards implied by CORBA, COM

or Javabeans. However, this illustrates an impor-

tant evolution as the web absorbs object technology

with the evolution from low- to high-level network

standards:

� from HTTP to Java Sockets to IIOP or RMI

� from Perl CGI Script to Java Program to Jav-

aBean distributed objects as in the new JINI

architecture from Sun Microsystems.

As an example consider the evolution of net-

worked databases. Originally these were client-

server with a proprietary network access protocol.

In the next step, Web linked databases produced a

three tier distributed service model with an HTTP

server using a CGI program (running Perl for in-

stance) to access the database at the backend. To-

day we can build databases as distributed objects

with a middle tier JavaBean using JDBC to ac-

cess the backend database. Thus a conventional

database is naturally evolving to the concept of

managed persistent objects.

Today as shown in �g. 2, we see a mixture of

distributed service and distributed object architec-

tures. CORBA, COM, Javabean, HTTP Server

+ CGI, Java Server and servlets, databases with

specialized network accesses, and other services co-

exist in the heterogeneous environment with com-

mon themes but disparate implementations. We

believe that there will be signi�cant convergence as

a more uniform architecture is in everyone's best

interest.

We also believe that the resultant architecture

will be integrated with the web so that the latter

will exhibit distributed object architecture shown

in �g. 3.

More generally the emergence of IIOP (Internet

Inter-ORB Protocol), CORBA2->CORBA3, rapid

advances with the Microsoft's COM, DCOM, and

COM+, and the realization that both CORBA and

COM are naturally synergistic with Java is start-

ing a new wave of "Object Web" developments

that could have profound importance. Java is not

only a good language to build brokers but also

Java objects are the natural inhabitants of object

databases. The resultant architecture in �g. 3

shows a small object broker (a so-called ORBlet) in

Figure 2: Today's Heterogeneous Interoperating

Hybrid Server Architecture. HPcc involves adding

to this system, high performance in the third tier.

each browser as in Netscape's current plans. Most

of our remarks are valid for all these approaches to

a distributed set of services. Our ideas are however

easiest to understand if one assumes an underlying

architecture which is a CORBA or JavaBean/JINI

distributed object model integrated with the web.

Figure 3: Integration of Object Technologies

(CORBA) and the Web

We wish to use this service/object evolving 3-tier

commodity architecture as the basis of our HPcc

environment. We need to naturally incorporate (es-

sentially) all services of the commodity web and to

use its protocols and standards wherever possible.

We insist on adopting the architecture of commod-

ity distribution systems as complex HPCC prob-

lems require the rich range of services o�ered by

the broader community systems. Perhaps we could



"port" commodity services to a custom HPCC sys-

tem but this would require continued upkeep with

each new upgrade of the commodity service.

By adopting the architecture of the commod-

ity systems, we make it easier to track their rapid

evolution and expect it will give high functional-

ity HPCC systems, which will naturally track the

evolving Web/distributed object worlds. This re-

quires us to enhance certain services to get higher

performance and to incorporate new capabilities

such as high-end visualization (e.g. CAVE's) or

massively parallel systems where needed. This is

the essential research challenge for HPcc for we

must not only enhance performance where needed

but do it in a way that is preserved as we evolve

the basic commodity systems.

Thus we exploit the three-tier structure and

keep HPCC enhancements in the third tier, which

is inevitably the home of specialized services in

the object-web architecture. This strategy isolates

HPCC issues from the control or interface issues

in the middle layer. If successful we will build an

HPcc environment that o�ers the evolving function-

ality of commodity systems without signi�cant re-

engineering as advances in hardware and software

lead to new and better commodity products.

Returning to �g. 2, we see that it elaborates

�g. 1 in two natural ways. Firstly the middle

tier is promoted to a distributed network of servers;

in the "purest" model these are CORBA/ COM/

Javabean object-web servers as in �g. 3, but ob-

viously any protocol compatible server is possible.

This middle tier layer includes not only networked

servers with many di�erent capabilities (increasing

functionality) but also multiple servers to increase

performance on an given service.

The use of high functionality but modest per-

formance communication protocols and interfaces

at the middle tier limits the performance levels

that can be reached in this fashion. However this

�rst step gives a modest performance scaling, par-

allel (implemented if necessary, in terms of multiple

servers) HPcc system which includes all commodity

services such as databases, object services, transac-

tion processing and collaboratories. The next step

is only applied to those services with insu�cient

performance. Naively we "just" replace an existing

back end (third tier) implementation of a commod-

ity service by its natural HPCC high performance

version. Sequential or socket based messaging dis-

tributed simulations are replaced by MPI (or equiv-

alent) implementations on low latency high band-

width dedicated parallel machines. These could be

specialized architectures or "just" clusters of work-

stations.

Note that with the right high performance soft-

ware and network connectivity, workstations can be

used at tier three just as the popular "LAN" con-

solidation" use of parallel machines like the IBM

SP-2, corresponds to using parallel computers in

the middle tier. Further a "middle tier" compute

or database server could of course deliver its ser-

vices using the same or di�erent machine from the

server. These caveats illustrate that as with many

concepts, there will be times when the relatively

clean architecture of �g 2 will become confused. In

particular the physical realization does not neces-

sarily reect the logical architecture shown in �g

2.

4 Core Technologies for High

Performance Commodity

Systems

4.1 Multidisciplinary Application

We can illustrate the commodity technology strat-

egy with a simple multidisciplinary application in-

volving the linkage of two modules A and B { say

CFD and structures applications respectively. Let

us assume both are individually parallel but we

need to link them. One could view the linkage se-

quentially as in �g. 4, but often one needs higher

performance and one would "escape" totally into

a layer which linked decomposed components of A

and B with high performance MPI (or PVMPI).

Here we view MPI as the "machine language" of

the higher-level commodity communication model

given by approaches such as WebFlow from NPAC.

There is the "pure" HPCC approach of �g. 5,

which replaces all commodity web communication

with HPCC technology. However there is a middle

ground between the implementations of �gs. 4 and

5 where one keeps control (initialization etc.) at

the server level and "only" invokes the high perfor-

mance back end for the actual data transmission.

This is shown in �g. 6 and appears to obtain the ad-

vantages of both commodity and HPCC approaches

for we have the functionality of the Web and where

necessary the performance of HPCC software. As

we wish to preserve the commodity architecture as

the baseline, this strategy implies that one can con-

�ne HPCC software development to providing high

performance data transmission with all of the com-

plex control and service provision capability inher-

ited naturally from the Web.



Figure 4: Simple sequential server approach to

Linking Two Modules

Figure 5: Full HPCC approach to Linking Two

Modules

Figure 6: Hybrid approach to Linking Two Modules

4.2 JavaBean Communication

Model

We note that JavaBeans (which are one natural ba-

sis of implementing program modules in the HPcc

approach) provide a rich communication mecha-

nism, which supports the separation of control

(handshake) and implementation. As shown below

in �g. 7, Javabeans use the JDK 1.1 AWT event

model with listener objects and a registration/call-

back mechanism.

Figure 7: JDK 1.1 Event Model used by (inter alia)

Javabeans

JavaBeans communicate indirectly with one or

more "listener objects" acting as a bridge between

the source and sink of data. In the model described

above, this allows a neat implementation of sepa-

rated control and explicit communication with lis-

teners (a.k.a. sink control) and source control ob-

jects residing in middle tier. These control objects

decide if high performance is necessary or possible

and invoke the specialized HPCC layer. This ap-

proach can be used to advantage in "run-time com-

pilation" and resource management with execution

schedules and control logic in the middle tier and

libraries such as MPI, PCRC and CHAOS imple-

menting the determined data movement in the high

performance (third) tier. Parallel I/O and "high-

performance" CORBA can also use this architec-

ture. In general, this listener model of communi-

cation provides a virtualization of communication

that allows a separation of control and data trans-

fer that is largely hidden from the user and the rest

of the system. Note that current Internet security

systems (such as SSL and SET) use high function-



ality public keys in the control level but the higher

performance secret key cryptography in bulk data

transfer. This is another illustration of the pro-

posed hybrid multi-tier communication mechanism.

4.3 JWORB based Middleware

Enterprise JavaBeans that control, mediate and

optimize HPcc communication as described above

need to be maintained and managed in a suit-

able middleware container. Within our integra-

tive approach of Pragmatic Object Web, a CORBA

based environonment for the middleware manage-

ment with IIOP based control protocol provides us

with the best encapsulation model for EJB compo-

nents. Such middleware ORBs need to be further

integrated with the Web server based middleware

to assure smooth Web browser interfaces and back-

ward compatibility with CGI and servlet models.

This leads us to the concept of JWORB (Java Web

Object Request Broker) [6] - a multi-protocol Java

network server that integrates several core services

within a single uniform middleware management

framework.

An early JWORB prototype has been recently

developed at NPAC. The base server has HTTP

and IIOP protocol support as illustrated in �g. 8.

It can serve documents as an HTTP Server and

it handles the IIOP connections as an Object Re-

quest Broker. As an HTTP server, JWORB sup-

ports base Web page services, Servlet (Java Servlet

API) and CGI 1.1 mechanisms. In its CORBA ca-

pacity, JWORB is currently o�ering the base re-

mote method invocation services via CDR (Com-

mon Data Representation) based IIOP and we are

now implementing higher level support such as the

Interface Repository, Portable Object Adapter and

selected Common Object Services.

During the startup/bootstrap phase, the core

JWORB server checks its con�guration �les to de-

tect which protocols are supported and it loads the

necessary protocol classes (De�nition, Tester, Me-

diator, Con�guration) for each protocol. De�nition

Interface provides the necessary Tester, Con�gura-

tion and Mediator objects. Tester object inpects

the current network package and it decides how to

interpret this particular message format. Con�g-

uration object is responsible for the con�guration

parameters of a particular protocol. Mediator ob-

ject serves the connection. New protocols can be

added simply by implementing the four classes de-

scribed above and by registering a new protocol

with the JWORB server.

After JWORB accepts a connection, it asks each

Figure 8: Overall architecture of the JWORB based

Pragmatic Object Web middleware

protocol handler object whether it can recognize

this protocol or not. If JWORB �nds a handler

which can serve the connection, is delegates fur-

ther processing of the connection stream to this

protocol handler. Current algorithm looks at each

protocol according to their order in the con�gura-

tion �le. This process can be optimized with ran-

domized or prediction based algorithm. At present,

only HTTP and IIOP messaging is supported and

the current protocol is simply detected based on

the magic anchor string value (GIOP for IIOP and

POST, GET, HEAD etc. for HTTP). We are cur-

rently working on further extending JWORB by

DCE RPC protocol and XML co-processor so that

it can also act as DCOM and WOM/WebBroker

server.

We tested the performance of the IIOP chan-

nel by echoing an array of integers and structures

that contains only one integer value. We performed

100 trials for each array size and we got an aver-

age of these measurements. In these tests, client

and server objects were running on two di�erent

machines. Since we only �nished the server side

support, we used JacORB on the client side to con-

duct the necessary tests for the current JWORB.

The timing results presented in Figs. 9-11 indi-

cate that that JWORB performance is reasonable

when compared with other ORBs even though we

haven't invested yet much time into optimizing the

IIOP communication channel. The ping value for

various ORBs is the range of 3-5 msecs which is

consistent with the timing values reported in the

Orfali and Harkey book [1]. However, more study is



Figure 9: IIOP communication performance for

variable size integer array transfer by four Java

ORBs: JacORB, JWORB, OrbixWeb and RMI. As

seen, initial JWORB performance is reasonable and

further optimizations are under way. RMI appears

to be faster here than all IIOP based models.

Figure 10: IIOP communication performance for

transferring a variable size array of structures

by four Java ORBs: JacORB, JWORB, Or-

bixWeb and RMI. Poor RMI performance is due

to the object serialization overhead, absent in the

IIOP/CDR protocol.

Figure 11: Initial performance comparison of a

C++ ORB (omniORB) with the fastest (for integer

arrays) Java ORB (RMI). As seen, C++ outper-

forms Java when passing data between distributed

objects by a factor of 20.

needed to understand detailed di�erences between

the slopes for various ORBs. One reason for the

di�erences is related to the use of Java object se-

rialization by RMI. In consequence, each structure

transfer is associated with creating a separate ob-

ject and RMI performs poorly for arrays of struc-

ture. JacORB uses object serialization also for ar-

rays of primitive types and hence its performance

is poor on both �gures.

We are currently doing a more detailed perfor-

mance analysis of various ORBs, including C/C++

ORBs such as omniORB2 or TAO that is perfor-

mance optimized for real time applications. We will

also compare the communication channels of vari-

ous ORBs with the true high performance chan-

nels of PVM, MPI and Nexus. It should be noted

that our WebFlow metacomputing is based on

Globus/Nexus [14] backend (see next Section) and

the associated high performance remote I/O com-

munication channels wrapped in terms of C/C++

ORBs (such as omniORB2). However the mid-

dleware Java based ORB channels will be used

mainly for control, steering, coordination, synchro-

nization, load balancing and other distributed sys-

tem services. This control layer does not require

high bandwidth and it will bene�t from the high

functionality and quality of service o�ered by the

CORBA model.

Initial performance comparison of a C++ ORB

(omniORB2) and a Java ORB (RMI) indicates that



C++ outperforms Java by a factor of 20 in the IIOP

protocol handling software. The important point

here is that both high functionality Java ORB such

as JWORB and high performance C++ ORB such

as omniORB2 conform to the common IIOP stan-

dard and they can naturally cooperate when build-

ing large scale 3-tier metacomputing applications.

So far, we have got the base IIOP engine of the

JWORB server operational and we are now work-

ing on implementing the client side support, Inter-

face Repository, Naming Service, Event Service and

Portable Object Adapter.

5 Commodity Services in

HPcc

We have already stressed that a key feature of HPcc

is its support of the natural inclusion into the envi-

ronment of commodity services such as databases,

web servers and object brokers. Here we give some

further examples of commodity services that illus-

trate the power of the HPcc approach.

5.1 Distributed Collaboration

Mechanisms

The current Java Server model for the middle tier

naturally allows one to integrate collaboration into

the computing model and our approach allow one

to "re-use" collaboration systems built for the gen-

eral Web market. Thus one can without any spe-

cial HPCC development, address areas such as com-

putational steering and collaborative design, which

require people to be integrated with the computa-

tional infrastructure. In �g. 9, we de�ne collab-

orative systems as integrating client side capabil-

ities together. In steering, these are people with

analysis and visualization software. In engineering

design, one would also link design (such as CATIA

or AutoCAD) and planning tools. In both cases,

one would need the base collaboration tools such

as white-boards, chat rooms and audio-video con-

ferencing.

If we are correct in viewing collaboration (see

Tango [10,11] and Habanero [12]) as sharing of

services between clients, the 3 tier model natu-

rally separates HPCC and collaboration and allows

us to integrate into the HPCC environment, the

very best commodity technology which is likely to

come from larger �elds such as business or (dis-

tance) education. Currently commodity collabora-

tion systems are built on top of the Web and al-

though emerging CORBA facilities such as Work

Figure 12: Collaboration in today's Java Web

Server implementation of the 3 tier computing

model. Typical clients (on top right) are indepen-

dent but Java collaboration systems link multiple

clients through object (service) sharing

Flow imply approaches to collaboration, they are

not yet de�ned from a general CORBA point of

view. We assume that collaboration is su�ciently

important that it will emerge as a CORBA capa-

bility to manage the sharing and replication of ob-

jects. Note CORBA is a server-server model and

"clients" are viewed as servers (i.e. run Orb's) by

outside systems. This makes the object-sharing

view of collaboration natural whether application

runs on "client" (e.g. shared Microsoft Word doc-

ument) or on back-end tier as in case of a shared

parallel computer simulation.

5.2 Object Web and Distributed

Simulation

The integration of HPCC with distributed objects

provides an opportunity to link the classic HPCC

ideas with those of DoD's distributed simulation

DIS or Forces Modeling FMS community. The lat-

ter do not make extensive use of the Web these days

but they have a commitment to CORBA with their

HLA (High Level Architecture) and RTI (Runtime

Infrastructure) initiatives. Distributed simulation

is traditionally built with distributed event driven

simulators managing C++ or equivalent objects.

We suggest that the Object Web (and parallel

and distributed ComponentWare described in sec.

5.3) is a natural convergence point for HPCC and

DIS/FMS. This would provide a common frame-



work for time stepped, real time and event driven

simulations. Further it will allow one to more eas-

ily build systems that integrate these concepts as

is needed in many major DoD projects { as exem-

pli�ed by the FMS and IMT DoD computational

activities which are part of the HPCC Moderniza-

tion program.

HLA is a distributed object technology with the

object model de�ned by the Object Model Tem-

plate (OMT) speci�cation and including the Feder-

ation Object Model (FOM) and the Simulation Ob-

ject Model (SOM) components. HLA FOM objects

interact by exchanging HLA interaction objects via

the common Run-Time Infrastructure (RTI) act-

ing as a software bus similar to CORBA. Cur-

rent HLA/RTI follows a custom object speci�cation

but DMSO's longer term plans include transferring

HLA to industry via OMG CORBA Facility for In-

teractive Modeling and Simulation.

Figure 13: Overall architecture of the Object Web

RTI - a JWORB based RTI prototype recently de-

veloped at NPAC

At NPAC, we are anticipating these develop-

ments and we are building a prototype RTI im-

plementation in terms of Java/CORBA objects us-

ing the JWORB middleware [7]. RTI is given

by some 150 communication and/or utility calls,

packaged as 6 main managment services: Federa-

tion Management, Object Management, Declara-

tion Managmeent, Ownership Management, Time

Management, Data Distribution Management, and

one general purpose utility service. Our design

shown in �g. 13 is based on 9 CORBA interfaces,

including 6 Managers, 2 Ambassadors and RTIKer-

nel. Since each Manager is mapped to an indepen-

dent CORBA object, we can easily provide support

for distributed management by simply placing in-

dividual managers on di�erent hosts.

The communication between simulation objects

and the RTI bus is done through the RTIambas-

sador interface. The communication between RTI

bus and the simulation objects is done by their

FederateAmbassador interfaces. Simulation devel-

oper writes/extends FederateAmbassador objects

and uses RTIambassador object obtained from the

RTI bus.

RTIKernel object knows handles of all manager

objects and it creates RTIambassador object upon

the federate request. Simulation obtains the RTI-

ambassador object from the RTIKernel and from

now on all interactions with the RTI bus are han-

dled through the RTIambassador object. RTI bus

calls back (asynchronously) the FederateAmbas-

sador object provided by the simulation and the

federate receives this way the interactions/attribute

updates coming from the RTI bus.

Federation Manager object is responsible for the

life cycle of the Federation Execution. Each exe-

cution creates a di�erent FederationExecutive and

this object keeps track of all federates that joined

this Federation.

Object Manager is responsible for creating and

registering objects/interactions related to simula-

tion. Federates register the simulated object in-

stances with the Object Manager. Whenever a

new registration/destroy occurs, the corresponding

event is broadcast to all federates in this federation

execution.

Declaration Manager is responsible for the sub-

scribe/publish services for each object and its at-

tributes. For each object class, a special object

class record is de�ned which keeps track of all

the instances of this class created by federates in

this federation execution. This object also keeps a

seperate broadcasting queue for each attribute of

the target object so that each federate can selec-

tively subscribe, publish and update suitable sub-

sets of the object attributes.

Each attribute is currently owned by only one

federate who is authorized for updating this at-

tribute value. All such value changes are reected

via RTI in all other federates. Ownership Manage-

ment o�ers services for transfering,maintaining and

querying the attribute ownership information.

Individual federatesa can follow di�erent time

management frameworks ranging from time-

stepped/real-time to event-driven/logical time

models. Time Management service o�ers mecha-

nisms for the federation-wide synchronization of the



local clocks, advanced and managed by the individ-

ual federates.

Data Distribution Management o�ers advanced

publish/subscribe based communication services

via routing spaces or multi-dimensional hypercube

regions in the attribute value space.

In parallel with the �rst pass prototoype im-

plementation, we are also addressing the issues of

more organized software engineering in terms of

Common CORBA Services. For example, we in-

tend to use the CORBA Naming Service to pro-

vide uniform mapping between the HLA object

names and handles, and we plan to use CORBA

Event and Noti�cation Services to support all RTI

broadcast/multicast mechanisms. This approach

will assure quality of service, scalability and fault-

tolerance in the RTI domain by simply inheriting

and reusing these features, already present in the

CORBA model.

5.3 Commodity Cluster Manage-

ment

Although coming from the DoD computing domain,

RTI follows generic design patterns and is applica-

ble to a much broader range of distributed applica-

tions, including modeling and simulation but also

collaboration, on-line gaming or visual authoring.

From the HPCC perspective, RTI can be viewed as

a high level object based extension of the low level

messaging libraries such as PVM or MPI. Since

it supports shared objects management and pub-

lish/subscribe based multicast channels, RTI can

also be viewed as an advanced collaboratory frame-

work, capable of handling both the multi-user and

the multi-agent/multi-module distributed systems

and providing advanced services such as time man-

agement or distributed event driven simulation ker-

nels.

From the Pragmatic Object Web, de�ned as a

merger of CORBA, Java, COM and WOM, we

need some uniform cohesive force that could com-

bine various competing commodity standards to-

wards a cooperative whole. At the core middleware

level, this is realized by our multi-protocol JWORB

server, but we also need some uniform framework to

integrate higher level services coming from various

commodity frameworks.

In our emergent WebHLA environment, we view

HLA/RTI as a potential candidate for such a uni-

form high level service framework. In fact, the

WebHLA application domains discussed in [15] can

be viewed as various attempts at extending RTI be-

yond the original Modeling and Simulation domain

towards collaborative training metacomputing re-

source management, or commodity cluster manage-

ment.

Figure 14: Distributed object based architecture of

DMSO RTI - originally constructed for the Mod-

eling and Simulation domain but naturally exten-

sible for other distributed computing management

services such as cluster, metacomputing or collabo-

ration management discussed in the text.

Indeed, as illustrated in Fig. 14, RTI can be

viewed as a high level abstraction of a distributed

operating system with machines / nodes repre-

sented as federates, clusters as federations, with

time management responsible for job scheduling,

ownership management linked with security and so

on. We are currently starting a project with San-

dia National Laboratories which will explore RTI as

such a high level operating and control framework

for the Sandia's new growable commodity cluster

technology called CPlant and developed within the

DoE ASCI Defense Program.

5.4 Visual HPCC ComponentWare

HPCC does not have a good reputation for the

quality and productivity of its programming envi-

ronments. Indeed one of the di�culties with adop-

tion of parallel systems, is the rapid improvement in

performance of workstations and recently PC's with

much better development environments. Parallel

machines do have a clear performance advantage

but this for many users, this is more than counter-

balanced by the greater programming di�culties.

We can give two reasons for the lower quality of

HPCC software. Firstly parallelism is intrinsically



hard to �nd and express. Secondly the PC and

workstation markets are substantially larger than

HPCC and so can support a greater investment in

attractive software tools such as the well-known PC

visual programming environments. The DcciS rev-

olution o�ers an opportunity for HPCC to produce

programming environments that are both more at-

tractive than current systems and further could

be much more competitive than previous HPCC

programming environments with those being devel-

oped by the PC and workstation world. Here we

can also give two reasons. Firstly the commodity

community must face some di�cult issues as they

move to a distributed environment, which has chal-

lenges where in some cases the HPCC community

has substantial expertise. Secondly as already de-

scribed, we claim that HPCC can leverage the huge

software investment of these larger markets.

Figure 15: System Complexity (vertical axis) versus

User Interface (horizontal axis) tracking of some

technologies

In �g. 15, we sketch the state of object tech-

nologies for three levels of system complexity { se-

quential, distributed and parallel and three levels

of user (programming) interface { language, compo-

nents and visual. Industry starts at the top left and

moves down and across the �rst two rows. Much

of the current commercial activity is in visual pro-

gramming for sequential machines (top right box)

and distributed components (middle box). Cross-

ware (from Netscape) represents an initial talking

point for distributed visual programming. Note

that HPCC already has experience in parallel and

distributed visual interfaces (CODE and HenCE as

well as AVS and Khoros). We suggest that one can

merge this experience with Industry's Object Web

deployment and develop attractive visual HPCC

programming environments as shown in �g. 12.

Currently NPAC's WebFlow system [9] uses a

Java graph editor to compose systems built out of

modules. This could become a prototype HPCC

ComponentWare system if it is extended with the

modules becoming JavaBeans and the integration

with CORBA. Note the linkage of modules would

incorporate the generalized communication model

of �g. 7, using a mesh of JWORB servers to man-

age a recourse pool of distributedHPcc components.

An early version of such JWORB based WebFlow

environment, illustrated in Fig. 17 is in fact oper-

ational at NPAC and we are currently building the

Object Web management layer including the Ent-

perprise JavaBeans based encapsulation and com-

munication support discussed in the previous sec-

tion.

Returning to �g. 1, we note that as indus-

try moves to distributed systems, they are implic-

itly taking the sequential client-side PC environ-

ments and using them in the much richer server

(middle-tier) environment which traditionally had

more closed proprietary systems.

Figure 16: Visual Authoring with Software Bus

Components

We then generate an environment such as �g.

16 including object broker services, and a set of

horizontal (generic) and vertical (specialized appli-

cation) frameworks. We do not have yet much ex-

perience with an environment such as �g. 16, but

suggest that HPCC could bene�t from its early de-

ployment without the usual multi-year lag behind

the larger industry e�orts for PC's. Further the



diagram implies a set of standardization activities

(establish frameworks) and new models for services

and libraries that could be explored in prototype

activities.

Figure 17: Top level view of the WebFlow environ-

ment with JWORB middleware over Globus meta-

computing or NT cluster backend

5.5 Current WebFlow Prototype

We describe here a speci�c high-level programming

environment developed by NPAC - WebFlow [9]

- that addresses the visual componentware pro-

gramming issues discussed above and o�ers a user

friendly visual graph authoring metaphor for seam-

less composition of world-wide distributed high per-

formance dataow applications from reusable com-

putational modules.

Design decisions of the current WebFlow were

made and the prototype development was started

in `96. Right now, the system is reaching some

initial stability and is associated with a suite of de-

mos or trial applications which illustrate the base

concepts and allow us to evaluate the whole ap-

proach and plan the next steps for the system evo-

lution. New technologies and concepts for Web

based distributed computing appeared or got con-

solidated during the last two years such as CORBA,

RMI, DCOM or WOM. In the previous Chapters,

we summarized our ongoing work on the integra-

tion of these competing new distributed object and

componentware technologies towards what we call

Pragmatic Object Web [16]. To the end of this

Chapter, we present the current WebFlow system,

its applications and the lessons learned in this ex-

periment. While the implementation layers of the

current (pure Java Web Server based) and the new

(JWORB based) WebFlow models are di�erent,

several generic features of the system are already

established and will stay intact while the imple-

mentation technologies are evolving. We present

here an overview of the system vision and goals

which exposes these stable generic characteristics

of WebFlow.

Our main goal in WebFlow design is to build

a seamless framework for publishing and reusing

computational modules on the Web so that the

end-users, capable of sur�ng the Web, could also

engage in composing distributed applications us-

ing WebFlow modules as visual components and

WebFlow editors as visual authoring tools. The

success and the growing installation base of the cur-

rent Web seems to suggest that a suitable compu-

tational extension of the Web model might result in

such a new promising pervasive framework for the

wide-area distributed computing and metacomput-

ing.

In WebFlow, we try to construct such an anal-

ogy between the informational and computational

aspects of the Web by comparing Web pages to

WebFlow modules and hyperlinks that connect

Web pages to inter-modular dataow channels.

WebFlow content developers build and publish

modules by attaching them to Web servers. Appli-

cation integrators use visual tools to link outputs

of the source modules with inputs of the destina-

tion modules, thereby forming distributed compu-

tational graphs (or compute-webs) and publishing

them as composite WebFlow modules. Finally, the

end-users simply activate such compute-webs by

clicking suitable hyperlinks, or customize the com-

putation either in terms of available parameters or

by employing some high-level commodity tools for

visual graph authoring.

New element of WebFlow as compared with the

current "vertical" instances of the computational

Web such as CGI scripts, Java applets or Ac-

tiveX controls is the "horizontal" multi-server inter-

modular connectivity (see Fig. 18), speci�ed by

the compute-web graph topology and enabling con-

current world-wide data transfers, either transpar-

ent to or customizable by the end-users depending

on their preferences. Some examples of WebFlow

computational topologies include: a) ring - post-

processing an image by passing it through a se-

quence of �ltering (e.g. beautifying) services lo-

cated at various Web locations; b) star - collect-

ing information by querying a set of distributed

databases and passing each output through a cus-

tom �lter before they are merged and sorted accord-

ing to the end-user preferences; c) (regular) grid - a



Figure 18: Top view of the WebFlow system: its 3-

tier design includes Java applet based visual graph

editors in tier 1, a mesh of Java servers in tier 2

and a set of computational (HPC, Database) mod-

ules in tier 3.

large scale environmental simulation which couples

atmosphere, soil and water simulation modules,

each of them represented by sub-meshes of simu-

lation modules running on high performance work-

station clusters; d) (irregular) mesh - a wargame

simulation with dynamic connectivity patterns be-

tween individual combats, vehicles, �ghters, forces,

environment elements such as terrain, weather etc.

When compared with the current Web and

the coming Mobile Agent technologies, WebFlow

can be viewed as an intermediate/transitional

technology - it supports a single-click automa-

tion/aggregation for a collection of tasks/modules

forming a compute-web (where the corresponding

current Web solution would require a sequence of

clicks), but the automation/aggregation patterns

are still deterministic, human designed and man-

ually edited (whereas agents are expected to form

goal driven and hence dynamic, adaptable and of-

ten stochastic compute-webs).

Current WebFlow is based on a coarse grain

dataow paradigm (similar to AVS or Khoros mod-

els) and it o�ers visual interactive Web browser

based interface for composing distributed comput-

ing (multi-server) or collaboratory (multi-client)

applications as networks (or compute-webs) of In-

ternet modules.

WebFlow front-end editor applet o�ers intuitive

click-and-drag metaphor for instantiating middle-

ware or backend modules, representing them as vi-

sual icons in the active editor area, and intercon-

necting them visually in the form of computational

Figure 19: Overall Architecture of the 3-tier

WebFlow model with the visual editor applet in tier-

1, a mesh of Java Web Servers in tier 2 (includ-

ing WebFlow Session Manager, Module Manager

and Connection Manager servlets), and (high per-

formance) computational modules in tier-3.

graphs, familiar for AVS or Khoros users.

WebFlow middleware is given by a mesh of Java

Web Servers, custom extended with servlet based

support for the WebFlow Session, Module and Con-

nection Management. WebFlow modules are speci-

�ed as Java interfaces to computational Java classes

in the middleware or wrappers (module proxies) to

backend services (Fig. 19).

To start a WebFlow session over a mesh of the

WebFlow enabled Java Web Server nodes, user

speci�es URL of the Session Manager servlet, re-

siding in one of the server nodes (Fig. 20). The

server returns the WebFlow editor applet to the

browser and registers the new session. After a con-

nection is established between the Editor and the

Session Manager, the user can initiate the compute-

web editing work. WebFlow GUI includes the fol-

lowing visual actions:

� Selecting a module from the palette and plac-

ing its icon in the active editor area. This re-

sults in passing this module tag to the Session

Manager that forwards it to the Module Man-

ager. Module Manager instantiates the mod-

ule and it passes its communication ports to

the Connection Manager.

� Linking two visual module icons by draw-

ing a connection line. This results in pass-

ing the connected modules tags to the Ses-



Figure 20: Architecture of the WebFlow server:

includes Java servlet based Session, Module and

Connection Managers responsible for interacting

with front-end users, backend modules and other

WebFlow servers in the middleware.

sion Manager, and from there to the Connec-

tion Managers in charge of these module ports.

WebFlow channels are formed dynamically by

Connection Managers who create the suitable

socket connections and exchange the port num-

bers. After all ports of a module receive their

required sockets, the module noti�es the Mod-

ule Manager and is ready to participate in the

dataow operations.

� Pressing the Run button to activate the

WebFlow computation

� Pressing the Destroy button to stop the

WebFlow computation and dismantle the cur-

rent compute-web.

WebFlow Module is a Java Object which imple-

ments webow.Module interface with three meth-

ods: init(), run() destroy(). The init() method re-

turns the list of input and output ports used to

establish inter-modular connectivity, and the run()

and destroy() methods are called in response to the

corresponding GUi actions described above.

5.6 Early User Communities

In parallel with re�ning the individual layers

towards production quality HPcc environment,

we start testing our existing prototypes such as

WebFlow, JWORB and WebHLA for the selected

application domains.

Within the NPAC participation in the NCSA

Alliance, we are working with Lubos Mitas in the

Condensed Matter Physics Laboratory at NCSA on

adapting WebFlow for Quantum Monte Carlo sim-

ulations [13]. This application is illustrated in �gs.

21 and 22 and it can be characterized as follows. A

chain of high performance applications (both com-

mercial packages such as GAUSSIAN or GAMESS

or custom developed) is run repeatedly for di�er-

ent data sets. Each application can be run on sev-

eral di�erent (multiprocessor) platforms, and con-

sequently, input and output �les must be moved be-

tween machines. Output �les are visually inspected

by the researcher; if necessary applications are re-

run with modi�ed input parameters. The output

�le of one application in the chain is the input of

the next one, after a suitable format conversion.

Figure 21: Screendump of an example WebFlow

session: running Quantum Simulations on a virtual

metacomputer. Module GAUSSIAN is executed on

Convex Exemplar at NCSA, module GAMESS is

executed on SGI Origin2000, data format conver-

sion module is executed on Sun SuperSparc work-

station at NPAC, Syracuse, and �le manipulation

modules (FileBrowser, EditFile, GetFile) are run

on the researcher's desktop

The high performance part of the backend tier

in implemented using the GLOBUS toolkit [14].

In particular, we use MDS (metacomputing direc-

tory services) to identify resources, GRAM (globus

resource allocation manager) to allocate resources

including mutual, SSL based authentication, and



GASS (global access to secondary storage) for a

high performance data transfer. The high per-

formance part of the backend is augmented with

a commodity DBMS (servicing Permanent Object

Manager) and LDAP-based custom directory ser-

vice to maintain geographically distributed data

�les generated by the Quantum Simulation project.

The diagram illustrating the WebFlow implemen-

tation of the Quantum Simulation is shown in Fig.

15.

Figure 22: WebFlow implementation of the Quan-

tum Simulations problem

Another large application domain we are cur-

rently adressing is DoD Modeling Simulation, ap-

proached from the perspective of FMS and IMT

thrusts within the DoD Modernization Program.

We already described the core e�ort on building

Object Web RTI on top of JWORB. This is associ-

ated with a set of more application- or component-

speci�c e�orts such as: a) building distance training

space for some mature FMS technologies such as

SPEEDES; b) parallelizing and CORBA-wrapping

some selected computationally intense simulation

modules such as CMS (Comprehensive Mine Simu-

lator at Ft. Belvoir, VA); c) adapting WebFlow to

support visual HLA simulation authoring. We re-

fer to such Pragmatic Object Web based interactive

simulation environment as WebHLA [15] and we

believe that it will soon o�er a powerful modeling

and simulation framework, capable to address the

new challenges of DoD computing in the areas of

Simulation Based Design, Testing, Evaluation and

Acquisition.

We illustrate here our WebHLA approach on the

example of using WebFlow for visual HLA author-

ing. DMSO has emphasized the need to develop au-

tomated tools with open architectures for creating,

executing and maintaining HLA simulations and

federations. The associated Federation Develop-

ment Process (FEDEP) guidelines enforce interop-

erability in the tool space by standardizing a set of

Data Interchange Formats (DIF) that are manda-

tory as input or output streams for the individ-

ual HLA tools. In consequence, one can envision a

high-level user friendly e.g. visual dataow author-

ing environment in which specialized tools can be

easily assembled interactively in terms of computa-

tional graphs with atomic tool components as graph

nodes and DIF-compliant communication channels

as graph links (Fig. 23)

Figure 23: WebFlow based representation of DMSO

FEDEP: individual FEDEP tools are mapped on

WebFlow modules and the DIF �les are mapped on

WebFlow communication channels.

Within our HPCMP FMS PET project at NPAC

we are building such visual HLA tool assembly

framework [17] on top of the NPAC WebFlow sys-

tem. We started this project by analyzing cur-

rently existing tools in this area. In particular,

we inspected the Object Model Development Tool

(OMDT) by Aegis Research Center, Huntsville,

AL as a representative current generation DMSO

FEDEP tool. OMDT is a Windows 95/NT-based

application that supports building HLA Object

Model Template (OMT) tables such as Class, Inter-

action or Attribute Tables using a spreadsheet-like

user. We found OMDT useful in the standalone

mode but not yet ready to act as a standardized

reusable component in larger toolkits. We therefore

decided to build an OMDT-like editing tool based



on Microsoft Component Object Model (COM) ar-

chitecture.

Figure 24: OMDT by Aegis Corporation (front win-

dow) compared with our OMBuilder (back window):

both tools have similar functionality and look-and-

feel but OMBuilder is constructed via VBA script-

ing on top of Microsoft Excel.

Rather than building our sample tool from

scratch, we construct it by customizing Microsoft

Excel Component using the Visual Basic for Appli-

cations and the OLE automation methodology. Us-

ing this approach, we were able to emulate the look-

and-feel of the OMDT tool, while at the same time

packaging our tool, called OMBuilder, as a reusable

COM or ActiveX component that can smoothly co-

operate with other visual authoring tools within the

WebFlow model (Fig. 24). We also extended the

OMDT functionality in OMBuilder by adding sup-

port for initializing and runtime steering the simu-

lation attributes and parameters.

Next, we constructed a proof-of-the-concept

demo that o�ers WebFlow and OMBuilder based

visual authoring toolkit for the Jager game (avail-

able as part of the DMSO RTI distribution). Each

Jager player (both human and robot) is represented

by a suitable visual icon in the WebFlow editor. A

particular game scenario is constructed by selecting

the required player set and registering / connecting

them as nodes of a suitable connected graph (e.g.

ring in the lower left corner in Fig 25). We also con-

structed a 3D viewer, operating in parallel with the

standard 2D Jager viewer and used for experiments

with parameter initialization via the extended OM-

Builder editor (Fig 26).

In parallel with prototyping core WebHLA tech-

Figure 25: Proof-of-the-concept visual authoring

tools for Jager: WebFlow editor (lower left cor-

ner) allows to specify the con�guration for the Jager

game players. Both the original 2D (upper left cor-

ner) and our trial 3D viewer s are displayed.

Figure 26: Proof-of-the-concept visual authoring

tools for Jager: a runtime extension of the OM-

Builder tool allows the user to initialize, monitor

and steer the simulation or rendering parameters.



nologies described above, we are also analyzing se-

lected large scale Modeling and Simulatin applica-

tions that could be used as high performance sim-

ulation modules in tier-3 of our framework. In par-

ticular, we were recently studying the CMS (Com-

prehensive Mine Simulator) system developed by

Steve Bishop's team at Ft. Belvoir, VA that sim-

ulates mines, mine �elds, mine�eld components,

standalone detection systems and countermine sys-

tems including ASTAMIDS, SMB and MMCM.

The system can be used to enable a virtual proto-

typing tool in the area of new countermine systems

and detection technologies of relevance both for the

Army and the Navy. We are currently analyzing the

CMS source code and planning the parallel port of

the system to Origin2000.

The CMS system, when viewed as an HLA feder-

ation, decomposes naturally into the mine�eld and

vehicle (tanks, contermines etc.) federates. Each

of these federates might require high �delity HPC

simulation support (e.g. for large mine�elds of mil-

lions mines, or for the engineering level countermine

simulation), whereas their interactions (vehicle mo-

tion, mine detonation) requires typically only a low-

to-medium bandwith. Hence, the system admits a

natural metacomputing implementation, with the

individual federates simulated on the HPC facilities

at the geographically distributed MSRCs and/or

DCs, glued together and time-synchronized using

the Object Web RTI discussed in Sect 2.1.

We are currently in the planning stage of such a

metacomputing FMS experiment, to be conducted

using ARL (Maryland) and CEWES (Mississippi)

MSRC and perhaps also NRaD / SPAWAR (Cali-

fornia) and NVLD (Virginia) facilities in '99.

We are also participating in the new FMS

project aimed at developing HPC RTI for Ori-

gin2000 that will provide useful HPC infrastructure

for the metacomputing level FMS simulations. Fig.

27 illustrates the natural relative interplay between

the DMSO RTI (most suitable for local networks),

HPC RTI (to run on dedicated HPC systems) and

Object Web RTI (useful for wide-area integration

and real-time control via the Web or CORBA chan-

nels).

Fig 28 illustrates our envisioned end product in

the WebHLA realm - a distributed, Web / Com-

modity based, high performance and HLA com-

pliant Virtual Prototyping Environment for Sim-

ulation Based Acquisition with Object Web RTI

based software bus, integrating a spectrum of Mod-

eling and Simulation tools and modules, wrapped

as commodity (CORBA or COM) components and

accessible via interactive Web browser front-ends.

Figure 27: Illustration of the interplay between

DMSO RTI (running on Intranets), Parallel RTI

(running on HPC facilities) and Commodity (such

as Object Web) RTI. The latter is running in the

Web / Internet Domain and connects geographi-

cally distributed MSRCs and DCs.

Figure 28: Overall architecture of a planned

WebHLA based Virtual Prototyping Environment

for Simulation Based Acquisition: Object Web RTI

acts as a universal software bus, managing a spec-

trum of resources for simulation, clustering, collab-

oration, training, data mining, data warehousing

etc.



Such environments, currently operated only by

large industry such as Bowing, become a�ordable

within the current technology convergence process

as envisioned in Fig. 1 and quanti�ed in our

WebHLA integration program

Indeed, the challenge of SBA is to successfully

integrate Modeling and Simulaton, Test and Eval-

uation, High Performance Computing, Metacom-

puting, Commodity software for Real-Time Multi-

media front-ends and Database back-ends, Collab-

oration, Resource Management and so on - these

capabilities represent individual WebHLA compo-

nents which are being now prototyped in a coordi-

nated, Pragmatic Object Web based development

and integration framework.

References

[1] Client/Server Programming with Java and

CORBA by Robert Orfali and Dan Harkey,

Wiley, Feb '97, ISBN: 0-471-16351-1

[2] High Level Architecture and Run-Time Infras-

tructure by DoD Modeling and Simulation Of-

�ce (DMSO), http://www.dmso.mil/hla"

[3] Geo�rey Fox and Wojtek Furmanski, "Petaops

and Exaops: Supercomputing on the Web",

IEEE Internet Computing, 1(2), 38-46 (1997);

http://www.npac.syr.edu/ users/gcf

petastu�/petaweb

[4] Geo�rey Fox and Wojtek Furmanski, "Java

for Parallel Computing and as a General Lan-

guage for Scienti�c and Engineering Simula-

tion and Modeling", Concurrency: Practice

and Experience 9(6), 4135-426(1997).

[5] Geo�rey Fox and Wojtek Furmanski, "Use of

Commodity Technologies in a Computational

Grid", chapter in book to be published by

Morgan-Kaufmann and edited by Carl Kessel-

man and Ian Foster.

[6] Geofrey C. Fox, Wojtek Furmanski and Hasan

T. Ozdemir, "JWORB - Java Web Object Re-

quest Broker for Commodity Software based

Visual Dataow Metacomputing Program-

ming Environment", NPAC Technical Report,

Feb 98,

http://tapetus.npac.syr.edu/

iwt98/pm/documents/

[7] G.C.Fox, W. Furmanski and H. T. Ozdemir,

"Java/CORBA based Real-Time Infrastruc-

ture to In-

tegrate Event-Driven Simulations, Collabora-

tion and Distributed Object/Componentware

Computing", In Proceedings of Parallel and

Distributed Processing Technologies and Ap-

plications PDPTA '98, Las Vegas, Nevada,

July 13-16, 1998,

http://tapetus.npac.syr.edu/

iwt98/pm/documents/

[8] David Bernholdt, Geo�rey Fox and Wojtek

Furmanski, B. Natarajan, H. T. Ozdemir, Z.

Odcikin Ozdemir and T. Pulikal, "WebHLA -

An Interactive Programming and Training En-

vironment for High Performance Modeling and

Simulation", In Proceedings of the DoD HPC

98 Users Group Conference, Rice University,

Houston, TX, June 1-5 1998,

http://tapetus.npac.syr.edu/

iwt98/pm/documents/

[9] D. Bhatia, V.Burzevski, M.Camuseva, G.Fox,

W.Furmanski, and G. Premchandran,

"WebFlow { A Visual Programming Paradigm

for Web/Java based coarse grain distributed

computing", Concurrency Practice and Expe-

rience 9,555-578 (1997),

http://tapetus.npac.syr.edu/

iwt98/pm/documents/

[10] L. Beca, G. Cheng, G. Fox, T. Jurga, K. Ol-

szewski, M. Podgorny, P. Sokolowski and K.

Walczak, "Java enabling collaborative educa-

tion, health care and computing", Concur-

rency Practice and Experience 9,521-534(97).

http://trurl.npac.syr.edu/tango

[11] Tango Collaboration System,

http://trurl.npac.syr.edu/tango

[12] Habanero Collaboration System,

http://www.ncsa.uiuc.edu/

SDG/Software/Habanero

[13] Erol Akarsu, Geo�rey Fox, Wojtek Furmanski,

Tomasz Haupt, "WebFlow - High-Level Pro-

gramming Environment and Visual Author-

ing Toolkit for High Performance Distributed

Computing", paper submitted for Supercom-

puting 98,

http://www.npac.syr.edu/

users/haupt/ALLIANCE/sc98.html

[14] Ian Foster and Carl Kessleman, Globus Meta-

computing Toolkit, http://www.globus.org

[15] G. C. Fox, W. Furmanski, S. Nair, H. T.

Ozdemir, Z. Odcikin Ozdemir and T. A. Pu-

likal, "WebHLA - An Interactive Programming



and Training Environment for High Perfor-

mance Modeling and Simulation", to be pub-

lished in Proceedings of the Simulation Inter-

operatiliby Workshop SIW Fall 1998, Orlango

FL, Sept 14-18, 1998.

[16] G. C. Fox, W. Furmanski, H. T. Ozdemir and

S. Pallickara, "Building Distributed Systems

on the Pragmatic Object Web", Wiley '99

book in progress.


	Building Distributed Systems for the Pragmatic Object Web
	Recommended Citation

	tmp.1285252205.pdf.GyxkK

