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AbstractIn this paper we study the problem of mapping a large class of irregular and loosely synchronousdata-parallel applications in a nonuniform and adaptive computational environment. The compu-tational structure of these applications can be described in terms of a computational graph, wherenodes of the graph represent computational tasks and edges describe the communication betweentasks.Parallelization of these applications on nonuniform computational environments requires par-titioning the graph among the processors in such fashion that the computation load on each nodeis proportional to its computational power, while communication is minimized. We discuss theapplicability of current methods for graph partitioning for such environments. For an adaptivecomputational environment, the partitioning of the graph needs to be updated as the environmentadapts, hence most algorithms described in the literature are computationally prohibitive. Wediscuss novel strategies that allow for fast remapping.Keywords: Graph Partitioning, Nonuniform machines, Heterogeneous computing, IrregularProblems, Network of Workstations



1 IntroductionHeterogeneity has become commonplace in high-performance computing environments. In the fu-ture most computing environments will consist of a cluster of nodes connected by a high-speedinterconnection network. Node architectures will include high-performance SIMD and MIMD par-allel computers as well as numerous high-performance workstations. By pooling together as manyresources as possible, a heterogeneous environment represents the largest machine to which a re-searcher has access. This pool of resources may change over the lifetime of the computation due tomachine failures or di�ering usage patterns. It should be possible to add or remove computationalresources without signi�cantly a�ecting the other machines and without changing the existing soft-ware. In such an environment an individual machine could be either dedicated to a single user'scomputation or shared among users. The former has the advantage of having static computingcapability for each machine, while the latter has the advantage of a higher rate of utilization. Theresources available to the user could be classi�ed as:1. Static: Computational resources are �xed throughout the completion of all tasks.2. Dynamic: Computational resources vary dynamically throughout the computation becauseof sharing among users.3. Adaptive: Computational resources remain �xed for a reasonable interval of time followed bya change.In this paper we study the mapping requirements for the parallelization of a large class of irreg-ular and loosely synchronous data-parallel applications on a nonuniform and potentially adaptivecomputational environment. The computational structure for these irregular and loosely syn-chronous problems can be described in terms of a computational graph, where nodes of the graphrepresent computational tasks and edges describe the communication between tasks. Parallelizationof these applications requires partitioning the graph among the processors in such fashion that thecomputation load on each node is balanced, while communication is minimized. Optimal partition-ing would allow optimal parallelization of the computations with the load balanced over variousprocessors and with minimal communication time. Obtaining suboptimal solutions is possible andoften satisfactory.There are several algorithms available in the literature for partitioning and mapping this compu-tational graph. Important heuristics include simulated annealing [12], neural networks [10], geneticalgorithms [12], and spectral bisection [13]. For many applications, the computational graph is suchthat the vertices correspond to two- and three-dimensional coordinates, and the interaction betweencomputations is limited to physically proximate vertices. For these applications, partitioning canbe achieved by exploiting the above property. Essentially proximate points are clustered togetherto form a partition such that the numbers of vertices attached to every partition are equal. Manysuch algorithms are available in the literature, including coordinate bisection [17], inertial bisection[14], and index-based mapping schemes [2]. 1



All of the above methods have been studied for mapping graphs onto uniform parallel machines.In this paper we evaluate the performance of these methods for partitioning computational graphsfor a cluster of machines having a nonuniform and adaptive computational environment. The algo-rithms assume that all the processors are connected by an interconnection network in which the costof unit communication is the same between all the processors (e.g., a bus). A good decompositionshould minimize interprocessor communication while making sure that each processor is assignedwork proportional to its computational power. While the algorithms are speci�cally targeted to-wards a cluster of workstations connected by a network, the issues are similar for parallelizing suchapplications on a network of machines.For an adaptive environment, the partitioning of the graph needs to be updated as the compu-tational resources change over time. This could be due to a change in the computational load ofone or more machines and/or the addition or deletion of one or more machines. Ideally, a solutionof the previous graph-partitioning problem should be utilized to partition the graph for the newenvironment, and the time required for such repartitioning should be much less than the time re-quired to reapply a partitioning algorithm from scratch. If the graph is not repartitioned, it maylead to imbalance in the time required for computation on each node, which will cause considerabledeterioration in the overall performance. We develop simple strategies for such an environmentby mapping the vertices of a graph onto a one-dimensional space. This conversion allows us toprovide an extremely fast remapping when the computational environment changes. The quality ofpartitioning achieved by this simple remapping is an acceptable deterioration over mapping fromscratch.Let a1; a2; a3 : : : ; ap be the relative speed of nodes in a heterogeneous environment such thata1 + a2 + a3 : : : ap = 1. The problem can then be stated as follows:Decompose a graph into p partitions such that the weight of each partition is in theratio a1 : a2 : a3 : a4 : : : ap; and the total number of edges between the p partitions(cross edges) is minimized.Another important way to evaluate the quality of partitioning is by the number of edges gener-ated in the supergraph representing the connectivity of di�erent partitions produced. Each node ofthis graph represents a partition. An edge in the supergraph is present whenever there are any crossedges from a node of one partition to a node of another partition. The number of edges in the super-graph represents the number of communication messages generated. For current message-passingsoftware, a startup overhead (setup cost) is required for every message generated. Minimizing thisoverhead requires the minimization of the number of edges in the super graph. However, there ex-ists message-passing software for broadcast networks such as Ethernet which support multicast [3].In such cases the software overhead of sending multiple messages can be reduced by multicastingone message together with the combined data for all the destination processors.The rest of the paper is organized as follows. In Section 2 we describe di�erent graph-partitioning heuristics for a nonuniform but static environment and their performance on rep-resentative computational grids derived from real applications. Section 3 presents a new approach2



for mapping and remapping for an adaptive computational environment.2 Partitioning for nonuniformityIn this section we present several methods for mapping graphs into nonuniform machines. Thesemethods are of two distinct types:1. The �rst type uses coordinate information to partition a graph.2. The second type uses edge information to partition a graph.Many of these methods perform mapping by recursively partitioning a graph into two parts. Whenpartitioning a graph among a cluster of machines with nonuniform computational powers, theway in which the computational powers of the processors are grouped will a�ect the quality ofthe partitioning. We have evaluated two ways for grouping the weights of the processors, whichwe shall refer to as \Simple" and \Binpacking." The former partitions the graph at each levelaccording to the �rst y weights available such that the sum of the weights is approximately halfof the total. The latter divides the available weights into two groups such that the sum of thetwo groups is approximately equal and then partitions the graph according to the two groups. Forexample, consider the case of four weights with sizes 0.4, 0.4, 0.1, and 0.1. In this case Simple willpartition the graph into two parts with one partition having 80% of the total size, while Binpackingwill partition the graph into two equal parts.The following partitioners were used for partitioning the graphs:1. Recursive coordinate bisection (RCB): This method [17] uses only coordinate information andrecursively bisects along the longest dimension by �nding a hyperplane such that the the sizesof the two partitions are proportional to their weights (see Figures 5 (a) through (e)).
(a) (c)(b)Figure 1: (a) Z-curve for (a) 4, (b) 16, and (c) 64 squares2. Index-Based Algorithms: These methods map the vertices of the graph frommulti-dimensionalspace into a one-dimensional space such that the proximate vertices have proximate indices.One way to achieve such a mapping is by bit-interleaving [2, 6]. Consider a vertex withcoordinate (13,4) in two dimensions. The corresponding binary representation is (1101, 0100).The result of interleaving bits is 10110010. Thus (13,4) is mapped to 178 in a one-dimensional3



space. This approach produces a space-�lling curve which traverses the space recursively ina \Z" fashion (Figure 1). We shall refer to the above indexing algorithm as (ZCI). Anotherway to achieve indexing is based on Hilbert curves [11] (see Figure 2). Hilbert curves, unlikeZ-curves, do not have large \jumps." The algorithm for indexing using the Hilbert curve(HCI) is described in Figure 3. When mapping a computational graph using this approach,the co-ordinate information of the vertex is used to calculate its index (either based on theZ-curve or on the Hilbert curve). This list can then be sorted to rearrange the vertices [2],and can then be partitioned into appropriate sizes of contiguous sublists.
(a) (c)(b)Figure 2: Hilbert curve for (a) 4, (b) 16, and (c) 64 squaresInitial conditions:1. Rotation Table[4] := f3,0,0,1g.2. Sense Table[4] := f-1,1,1,-1g.3. Quad Table[4][2][2] := f ff0,1g,f3,2gg,ff1,2g,f0,3gg,ff2,3g,f1,0gg,ff3,0g,f2,1gg g;procedure HCI(x; y)Rotation := 0; Sense := 1; Num := 0;for (k := side=2; k > 0;k := k=2)Xbit := x=k;Y bit := y=k;x := x� k �Xbit;y := y � k � Y bit;Quad := Quad Table[Rotation][Xbit][Y bit];if (Sense == �1)Num := Num+ (k � k � (3� Quad));else Num := Num+ (k � k �Quad);Rotation := Rotation+Rotation Table[quad];Rotation := Rotation modulo 4;Sense := Sense � Sense Table[quad];end. Figure 3: Hilbert curve based indexing algorithm for two dimensions3. Recursive spectral bisection (RSB): These methods recursively partition the graph based onthe second eigenvector calculation of the Laplacian matrix of the given graph [13]. Thesemethods use edge information explicitly and have been empirically shown to perform very4



well for uniform computational environments. Recently several extensions have been proposedto improve on the quality and time requirements [15][4].2.1 Simulation results
Figure 4: Graph 1 (4720 vertices, 13722 edges), Graph 2 (1200 vertices, 3191 edges)In this section we present the performance of the algorithms described in the previous section.The quality of partitioning produced by the di�erent methods was measured for the followingparameters:1. Number of partitions (Par): We performed our simulation for 4, 5, 10, 15 and 20 partitions.We decided upon a limit of 20 partitions, because we believe that the use of such environmentsfor data-parallel computing will tend to be limited to this number.2. Ratio of Maximum Weight/Minimum Weight: We varied this ratio from 1 to 8 in order tostudy the e�ects of nonuniformity between computational units. We limited ourselves toa ratio of 8 because our experimental results (to be presented) suggest that this ratio haslimited impact on the relative performance of di�erent partitioning stratagies.3. Strategies used for grouping processors: We considered two di�erent ways for grouping parti-tion weights (Simple and Binpacking).4. Computational grids: We performed experiments on several irregular graphs. We decided topresent results for two representative graphs (Figure 4); the performance measures of othergraphs have similar behaviour. Graph 1 has 4720 vertices and 13722 edges. Graph 2 has 1200vertices and 3191 edges.For each value of the above parameters, 20 samples were generated randomly with di�erentcomputational powers. Based on our preliminary experiments, we concluded that ZCI and HCIhad comparable performances. In most cases HCI performed slightly better than ZCI, hence the5



results are presented for HCI only. Table 1 shows a comparison between HCI and ZCI for Graph 1and Graph 2 for the di�erent number of partitions when all the processors have equal computationalpower. It shows average total edges crossing the partitions (Edges) and average number of edgesproduced in the supergraph (Setups).Table 2 presents the performances of RSB, RCB, and HCI for the di�erent computational ratiosof 10 partitions. Each entry represents an average of the 20 randomly generated samples. Theseresults are typical of other partitions size and show that the relative values of cross edges andsetups do not have much variation or many patterns for the di�erent computational ratios of agiven partitioner. Graph 1 Graph 2Par HCI ZCI HCI ZCIEdges Setups Edges Setup Edges Setups Edges Setup4 620 5 687 5 170 5 164 55 604 9 748 9 198 7 235 810 868 23 1090 25 307 18 355 2215 1157 36 1479 40 427 31 471 3320 1346 50 1566 61 487 40 486 50Table 1: Performance of HCI and ZCI using Simple for grouping partitions (Ratio=1)Table 3 presents the performances of RSB, RCB, and HCI for a di�erent number of partitions.Each entry represents an average of the samples for di�erent computational ratios (i.e., it representsthe average over 100 samples). Table 4 shows the average time spent by the algorithms for Graph1 and Graph 2. The following observations can be made:1. RSB performs much better than the methods that use only coordinate information, but iscomputationally more expensive. This extends the corresponding empirical evidence in theliterature [17] for uniformly sized partitions.2. For methods that use only coordinate information, the performance of HCI is much betterthan RCB in most cases. The method based on HCI seems to be able to provide betterclustering of points because the indexing is based on using all the dimensions simultaneously.The computational cost of HCI is higher because it requires sorting. However, this cost isindependent of the number of partitions. The cost of RCB increases with the number ofpartitions but is cheaper, as at each stage it requires �nding only the median.3. The method of grouping processors does not play a major role in the quality of partitioning.This is not surprising, as none of the methods have a particular bias towards particularpartition sizes. 6



Graph 1Ratio RSB RCB HCIBinpacking Simple Binpacking Simple Binpacking SimpleEdges Setups Edges Setups Edges Setups Edges Setups Edges Setups Edges Setups1 514 19 514 19 1143 38 1143 38 868 23 868 232 560 18 564 18 1143 38 1143 38 994 22 1025 223 552 18 521 19 1143 38 1143 38 1003 22 1005 234 551 18 518 19 1143 38 1143 38 1001 22 947 238 543 18 534 19 1174 40 1143 38 977 22 964 22Graph 2Ratio RSB RCB HCIBinpacking Simple Binpacking Simple Binpacking SimpleEdges Setups Edges Setups Edges Setups Edges Setups Edges Setups Edges Setups1 86 9 87 9 429 28 429 28 307 18 307 182 93 9 88 9 429 28 429 28 317 18 321 183 89 9 84 9 429 28 429 28 316 18 322 184 90 9 87 9 429 28 429 28 315 19 325 188 92 9 88 9 445 30 429 28 312 19 321 18Table 2: Performance of RSB, RCB, and HCI (Partitions = 10)
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Graph 1Par RSB RCB HCIBinpacking Simple Binpacking Simple Binpacking SimpleEdges Setups Edges Setups Edges Setups Edges Setups Edges Setups Edges Setups4 269 5 269 5 423 6 413 5 590 5 569 55 313 8 343 7 736 16 736 16 664 8 661 810 544 18 530 19 1149 38 1143 38 969 22 962 2315 724 29 726 30 1662 73 1544 64 1227 39 1200 3720 880 40 861 40 1960 105 1876 96 1396 52 1395 51Graph 2Par RSB RCB HCIBinpacking Simple Binpacking Simple Binpacking SimpleEdges Setups Edges Setups Edges Setups Edges Setups Edges Setups Edges Setups4 30 3 30 3 145 5 143 5 173 5 165 55 43 4 40 4 231 12 231 12 188 7 196 710 90 9 87 9 432 28 429 28 313 18 319 1815 140 14 137 14 678 52 615 54 424 29 405 3020 186 19 187 19 865 80 823 72 480 40 484 40Table 3: Performance of RSB, RCB, and HCI for di�erent numbers of partitions
Graph 1 Graph 2Par RSB RCB HCI RSB RCB HCI4 22.73 0.08 0.94 5.66 0.04 0.0610 33.74 0.10 0.94 7.33 0.08 0.2420 37.93 0.13 0.94 7.79 0.10 0.25Table 4: Execution time of RSB, RCB, and HCI for Graph 1 and Graph 2 (in seconds)8



The above conclusions are true independent of the number of partitions or ratio of maximum/minimumweight of the partitions.3 Partitioning for adaptivityFor an adiabatic environment there is a need to remap the graph according to the changed com-putational power of the machines as available computational resources change. The graph couldbe remapped from scratch by using the best algorithm described above (RSB). However, the highcomputational cost may make it prohibitive if the computational graph adapts frequently. Index-based algorithms are an attractive partitioning method for adiabatic environments. They map thevertices of a graph into a one-dimensional space. After the initial mapping it is inexpensive topartition the one-dimensional list among the machines according to their computational powers,since partitioning is equivalent to assigning contiguous blocks of vertices to each partition. Thesize of each block is proportional to the weight of the partition. When the available computationalresources change, the graph can be remapped by repartitioning the one-dimensional list.RSB and RCB can be extended to map the vertices of a graph to one-dimensional space. Weshall refer to them as RSBI and RCBI, respectively. Let the number of vertices in the graph begiven by N . To obtain the appropriate indices for all the vertices, both algorithms bisect the graphinto two equal subgraphs. For the �rst stage, the index set assigned to the �rst partition is from1 to N=2, while for the second partition it is N=2 + 1 to N (assuming N is even). The numberof recursive steps is equal to blogNc. Figure 5 describes the application of recursive coordinatebisection for mapping to a one-dimensional space (from 1 to N).
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.Figure 5: (a) through (e) describe the steps for 32 partitions using recursive coordinate bisection;(f) describes the curve corresponding to RCBI3.1 Simulation results 9



Graph 1 Graph 2Par Binpacking Simple Binpacking SimpleEdges Setups Edges Setups Edges Setups Edges Setups4 364 5 388 5 61 3 70 35 485 7 489 7 91 4 96 410 764 22 798 21 177 11 175 1115 1017 37 1059 37 256 17 257 1720 1211 51 1244 51 323 25 334 24Table 5: Performance of RSBIPar Graph 1 Graph 2Binpacking Simple Binpacking Simple4 26 29 45 495 36 30 56 5510 27 34 51 4815 28 31 46 4720 27 31 42 44Table 6: Percentage gain of RSB (from scratch) over RSBIGraph TimeGraph 1 53.58Graph 2 9.68Table 7: The execution time of RSBI for Graph 1 and Graph 2 (in seconds)10



The quality of partitioning produced by the di�erent algorithms was measured for the param-eters described in Section 2.1. Our preliminary experiments showed that the quality of RCBI wasmuch lower than that of HCI. This was expected, as even the quality of RCB for a given set ofpartitions was generally worse than the quality of HCI.Tables 5 and 6 present the performance of RSBI. For achieving indexing using RSBI, the graphwas partitioned into 1024 partitions. The indices within each of the 1024 partitions were assignedrandomly.1 These results show that the quality of partitioning produced by RSBI is better thanthat of HCI and RCB (from scratch). The quality of partitioning produced by using Binpackingis better than that of Simple grouping, because RSBI maps the vertices of the graph to a one-dimensional space by recursively partitioning the graph into two equal parts at each level. Table 7shows the average time spent by RSBI for Graph 1 and Graph 2.Table 6 presents the percentage gain of using RSB from scratch over RSBI. This improvementvaries between 26%{56%. This is expected, because the former was speci�cally optimized for agiven set of partitions. RSBI is a reasonable algorithm to use when the environment is adaptiveand if the initial cost of mapping is not prohibitive. HCI produces slightly worse partitioning thanRSBI, but at a relatively much smaller initial cost.The above discussion shows that methods using coordinate or edge information can be employedto map a computational graph into a one-dimensional space such that good quality repartitioningscan be achieved at a negligible cost. The former methods are useful when the cost of initial mappingis not important, while the latter methods are useful when the cost of initial mapping cannot beignored.4 Conclusions Initial mapping Computational Environmentscost Adaptive StaticCritical HCI HCINot critical RSBI RSBTable 8: Comparison of the algorithms based on environments and initial mapping costWe have presented several algorithms for mapping computational graphs on adaptive andnonuniform computational environments. Table 8 gives the best algorithm, depending on whetherthe computational environment is adaptive and if the initial cost of partitioning is critical.The major contribution of the paper is that it shows that index-based algorithms (based oncoordinate information or on edge information) provide solutions of reasonable quality at a verylow cost (at the time of execution). We believe this strategy would be extremely important for the1This is due to the memory limitations of our current software. Also, further decompositions are not expected toprovide any signi�cant (if any) improvements. 11
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