
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science - 
Technical Reports College of Engineering and Computer Science 

1-14-2011 

Polarity-Coincidence-Array based spectrum sensing for multiple Polarity-Coincidence-Array based spectrum sensing for multiple 

antenna cognitive radios in the presence of non-gaussian noise antenna cognitive radios in the presence of non-gaussian noise 

Thakshila Wimalajeewa 
twwewelw@syr.edu 

Pramod Varshney 
Syracuse University, varshney@syr.edu 

Follow this and additional works at: https://surface.syr.edu/eecs_techreports 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Wimalajeewa, Thakshila and Varshney, Pramod, "Polarity-Coincidence-Array based spectrum sensing for 
multiple antenna cognitive radios in the presence of non-gaussian noise" (2011). Electrical Engineering 
and Computer Science - Technical Reports. 24. 
https://surface.syr.edu/eecs_techreports/24 

This Report is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by 
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/24?utm_source=surface.syr.edu%2Feecs_techreports%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


  

SYR-EECS-2011-01 Jan. 14, 2011 

 
 Polarity-Coincidence-Array Based Spectrum Sensing for Multiple Antenna 

Cognitive Radios in the Presence of Non-Gaussian Noise 
  
 

 
Thakshila Wimalajeewa, Member, IEEE 

Pramod K. Varshney, Fellow, IEEE 
 
 
   

 

 
 

 
 twwewelw@syr.edu 
 varshney@syr.edu 
  

ABSTRACT:    One of the main requirements of the cognitive radio (CR) systems is the ability to perform 
spectrum sensing in a reliable manner in challenging environments that arise due to propagation channels which 
undergo multipath fading and non-Gaussian noise. While most existing literature on spectrum sensing has focused 
on impairments introduced by additive white Gaussian noise (AWGN), this assumption fails to model the behavior 
of certain types of noise in practice. In this paper, the use of a non-parametric and easily implementable detection 
device, namely polarity-coincidence-array (PCA) detector, is proposed for the detection of weak primary signals 
with a cognitive radio equipped with multiple antennas. Its performance is evaluated in the presence of heavy-tailed 
noise. The detector performance in terms of the probabilities of detection and false alarm is derived when the 
communication channels between the primary user transmitter and the multiple antennas at the cognitive radio are 
AWGN as well as when they undergo Rayleigh fading. From the numerical results, it is observed that a significant 
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Abstract

One of the main requirements of the cognitive radio (CR) systems is the ability to perform spectrum sensing

in a reliable manner in challenging environments that arise due to propagation channels which undergo multipath

fading and non-Gaussian noise. While most existing literature on spectrum sensing has focused on impairments

introduced by additive white Gaussian noise (AWGN), this assumption fails to model the behavior of certain types

of noise in practice. In this paper, the use of a non-parametric and easily implementable detection device, namely

polarity-coincidence-array (PCA) detector, is proposed for the detection of weak primary signals with a cognitive

radio equipped with multiple antennas. Its performance is evaluated in the presence of heavy-tailed noise. The

detector performance in terms of the probabilities of detection and false alarm is derived when the communication

channels between the primary user transmitter and the multiple antennas at the cognitive radio are AWGN as well

as when they undergo Rayleigh fading. From the numerical results, it is observed that a significant performance

enhancement is achieved by the PCA detector compared to that of the energy detector with AWGN as well as

fading channels as the heaviness of the tail of the non-Gaussian noise increases.

Index Terms

Cognitive radio, spectrum sensing, non-Gaussian noise, Rayleigh fading, polarity-coincidence-array detectors
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I. INTRODUCTION

A recent survey of spectrum utilization has revealed that the actual licensed spectrum is largely under-

utilized in both temporal and geographic dimensions [1]. Cognitive radio (CR) systems were first proposed

in [2] as a possible solution to the under-utilization of the frequency spectrum. CR systems exploit the

under-utilized frequency spectrum efficiently by identifying the existence of spectrum holes. There has

been extensive research focusing on signal processing challenges faced in designing and implementing

cognitive radios in an efficient manner [3], [4]. Spectrum sensing in challenging environments is one of

the most important components of the cognitive radio concept [3], [4]. Spectrum sensing is solely carried

out by the secondary system, or the cognitive radio to detect the presence of primary users who use the

licensed spectrum. While the secondary users are using the licensed spectrum, they should be able to

detect the presence of the primary users when they become active with a high probability and vacate the

channel within a certain amount of time. For example, in the IEEE 802.22 standard, the secondary users

should detect the primary users such as TV and wireless microphone signals and vacate the channel whin

two seconds once they become active [5]. Moreover, it is required that the secondary users detect the

primary signals with 0.9 probability of detection and 0.1 probability of false alarm in very low signal-

to-noise ratio (SNR) regions such as at −20 dB [5]. Thus, accurate spectrum sensing in the presence of

multipath fading channels and in non-Gaussian noise environments is necessary to enable the effective

use of cognitive radio networks.

Most common approaches proposed for spectrum sensing in the current literature include, matched

filtering, energy detector based sensing, feature based sensing, statistical methods based sensing [5]–[9] to

name a few. Matched filtering is the optimal detection scheme when the transmitted signal of the primary

user is known to the cognitive radio (secondary user). However, since more and more primary bands

are being made available for opportunistic access, a cognitive radio needs receivers for all signal types

if matched filtering is used for spectrum sensing. Thus, the implementation complexity of the sensing

unit can become very large. A simple technique widely used in spectrum sensing is the energy detector

[4]. The main drawback of the energy detector is its susceptibility to uncertainties in the background

noise. If certain features of the primary signals can be identified, more accurate and robust detectors

can be implemented at the cost of increased complexity. One of the most commonly used detectors in
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this category is the cyclostationary detector [7]. However, none of these detectors work well when the

cognitive radios operate in the presence of non-Gaussian noise. Although the noise distribution is often

assumed to be Gaussian which results in more mathematical tractability, not all noise in practice can

be modeled as Gaussian. Non-Gaussian noise impairments may include man-made impulsive noise, co-

channel interference from other cognitive radios, interference from ultra-wideband systems, to name a

few [10], [11].

Spectrum sensing for cognitive radio networks in the presence of non-Gaussian noise has been addressed

by several researchers recently [10], [12], [13]. In [10], a suboptimal Lp norm detector for primary signal

detection in the presence of non-Gaussian noise was proposed in which a tunable parameter has to be

optimized for the underlying type of noise. The decision statistic of the proposed detector also requires

the knowledge of the power of the fading channel gains. In [12], cyclostationarity based detectors, which

require statistical information about the primary user signal, were optimized for non-Gaussian noise.

In [13], a generalized likelihood ratio test (GLRT) based scheme was presented for detecting primary

user signals when the non-Gaussian noise variance is unknown. Implementation of all the detectors for

non-Gaussian noise presented in [10], [12], [13] is more complex compared to implementing an energy

detector.

Use of multiple antennas is a common technology in current wireless communications systems, and its

effectiveness in different aspects is discussed in [14]. Exploiting the spatial diversity via multiple antennas

for improving the performance of spectrum sensing has been considered by several authors in the recent

literature. In [15], the performance of the energy detector with multiple antennas at the cognitive radios is

analyzed in the presence of Gaussian noise. In [16], a multiple antenna OFDM based CR scheme is shown

to perform well compared to that with single antenna scheme when using the square law combining energy

detector. Generalized likelihood based detectors with multiple antennas when some or all the parameters

(of noise and signal) are unknown were derived in [17] where the authors have assumed that the noise

and the primary user signals are Gaussian. However, the efficient use of multiple antenna systems for

primary signal detection in the presence of non-Gaussian noise has not received much attention in the

recent CR literature.

In this paper, we consider the application of a non-parametric detection device named polarity-coincidence-
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array (PCA) detectors to detect the presence of the primary signal in the presence of non-Gaussian (heavy-

tailed) noise when a secondary user (cognitive radio) is equipped with multiple antennas. PCA detector is

non-parametric in the sense that the decision statistic and the threshold do not depend on the primary user

signal and noise characteristics. Also, the PCA detector is easily implementable. The 2-channel version

of the PCA detector, called polarity coincidence correlator (PCC), was considered in [18] assuming equal

channel gains. PCA detectors to detect a common random signal received at an array of sensors (with

equal channel gains) have been addressed in [19] where the author has proposed several decision statistics.

The performance based on the output SNR is derived in the region of low SNR. In [20], analysis on array

detectors was presented in which the performance is given in terms of asymptotic relative efficiency (ARE)

where ARE is defined in terms of the efficacy. However, a comprehensive analysis on the performance

of the PCA detector in terms of probability of detection error, the comparison with energy detectors, the

behavior of the detector as the heaviness of the tail of non-Gaussian noise varies, and the performance

analysis when the communication channels undergo fading have not been considered in the literature.

The use of PCA detector in multi-antenna cognitive radios used for weak primary signal detection in the

presence of non-Gaussian (heavy-tailed) noise is considered in this work.

Our major contributions are: (i). Derive the performance measures in terms of probabilities of false

alarm and detection for general non-Gaussian noise models and signal distributions which satisfy the

assumptions given in section II-C when the communication channels between the primary user transmitter

and the multiple antennas at the secondary user are AWGN as well as when they undergo multipath

fading. (ii). Derive the asymptotic relative efficiency of the PCA detector relative to the energy detector

with equal gain combining, (which is the optimal detector with AWGN channels) for weak signal detection

and analyze the behavior of ARE analytically when the number of antennas and the heaviness of the tail

of the non-Gaussian noise vary when the communication channels are AWGN. In particular, we show

that the ARE is not monotonically increasing with the number of antennas as the heaviness of the tail of

the non-Gaussian noise increases and derive the optimal number of antennas to be used to achieve the

maximum ARE in such scenarios. (iii). In the presence of fading channels, the performance of the PCA

detector is evaluated in closed-form in terms of the probabilities of the false alarm and detection. The

performance of the PCA detector is compared to that with the energy detector with equal gain combining.
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We show that the performance of the PCA detector is much superior to that of the energy detector as the

heaviness of the tail of the non-Gaussian noise increases for AWGN as well as fading channels.

The remainder of the paper is organized as follows. Section II presents the observation, primary user

signal and noise models, and the assumptions. In section III, the performance of the PCA detector is

derived in terms of the probabilities of detection and false alarm when the communication channels are

AWGN. Further, the performance of the PCA detector is compared to that of the energy detector in terms

of the asymptotic relative efficiency. In section IV, the performance of the PCA detector is investigated

when the communication channels between the primary user and the multiple antennas at the CR undergo

fading. Performance results are shown in section V and concluding remarks are given in section VI.

II. OBSERVATION, PRIMARY USER SIGNAL AND NOISE MODELS AND ASSUMPTIONS

A. Observation model

Assume that the cognitive radio (secondary user) has M antennas. The received observation vector at

the multi-antenna cognitive radio (CR) from the primary user at time n under each hypothesis (primary

user absent/present) is given by

H0 : x[n] = v[n], n = 0, 1, · · · , N − 1

H1 : x[n] = s[n]h + v[n], n = 0, 1, · · · , N − 1 (1)

where x[n] = [x1[n], x2[n], · · · , xM [n]]T is the received signal vector, h = [h1, h2, · · · , hM ]T is the vector

that corresponds to channel fading coefficients, s[n] is the primary user signal and v[n] = [v1[n], v2[n], · · · , vM [n]]T

is the noise vector at time n, respectively. The primary user signal s[n] is assumed to be random,

independent and identically distributed (iid) over n. The elements of the noise vector v[n] are assumed

to be iid across channels and time n. Denote σ2
v and σ2

s to be the variances, µ4
v and µ4

s to be the fourth

moments of noise and signal, respectively. We also let C0 = µ4
v

σ4
v

and C1 = µ4
s

σ4
s

be the ratios between fourth

moment and the square of the second moment of the noise and signal, respectively.

B. Noise model

Although the additive noise is often assumed to be Gaussian, there are many situations for which

the Gaussian noise model does not fit well. For example, in modeling urban and man-made RF noise,
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low frequency atmospheric noise, certain types of ultra-wideband (UWB) interference, the Gaussian noise

assumption is not appropriate [11]. In this paper, we consider the noise is non-Gaussian; i.e. the probability

density function of v[n] is given by fv[n](v[n]) =
∏M

k=1 fvk[n](vk[n]) where fvk[n](vk[n]) is a non-Gaussian

pdf for k = 1, 2, · · · ,M . Specific non-Gaussian models used for performance analysis which are relevant

for CRs, are discussed in the following.

1) Generalized Gaussian (GG) noise model: GG noise model is widely used to characterize non-

Gaussian noise such as, atmospheric and impulsive noise [21], [22]. A random variable X is said

to be distributed as GG, if it has the following pdf.

fX(x) =
1

2Γ
(
1 + 1

β

)
A(β, σ)

e−|
x

A(β,σ)
|β (2)

where β, σ > 0, A(β, σ) =

[
σ2Γ( 1

β
)

Γ( 3
β

)

]1/2

is a scaling factor that allows var(X) = σ2, β is the shaping

parameter which is used to model heavy-tailed (0 < β < 2) and short-tailed (β > 2) noise, and

Γ(x) =
∫∞

0
tx−1e−tdt is the Gamma function. Laplacian noise and Gaussian noise are contained in

GG noise as special cases when β = 1 and β = 2, respectively. In [11], it is stated that the GG

noise with β ≈ 0.5, can be used to model certain impulsive atmospheric noise. Since the pdf in (2)

is symmetric around zero, the odd moments of X are zeros and FX(0) = 1
2
. The even moments are

given by E{Xr} = µr
x =

[
σ2Γ( 1

β
)

Γ( 3
β

)

]r/2
Γ( r+1

β
)

Γ( 1
β

)
for r = 2, 4, · · · , where E{.} denotes the mathematical

expectation. For the GG noise model, we have C0 = µ4
v

σ4
v

=

[
Γ( 1

β
)

Γ( 3
β

)

]2
Γ( 5

β
)

Γ( 1
β

)
.

2) Gaussian mixture (GM) noise: GM noise is used in modeling man-made noise, impulsive noise,

and certain types of UWB interference [10], [23]. A random variable X has a GM distribution if

the pdf of X is,

fX(x) =
L∑

l=1

cl√
2πσ2

l

e
− x2

2σ2
l (3)

where we assume the mean is zero, 0 < cl < 1,
∑L

l=1 cl = 1. Since the pdf given in (3) is symmetric

around zero, it satisfies the assumptions in II-C. For the GM noise model, we consider an important

special case in this paper, ε− mixture model, where c1 = 1 − ε, c2 = ε, L = 2, and σ2
2 = κσ2

1 for

κ > 1 and 0 < ε < 1 with the resulting pdf

fX(x) = (1− ε)N (x; 0, σ2
1) + εN (x; 0, κσ2

1), (4)
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where N (x; µ, σ2) denotes the random variable x is distributed as Gaussian with mean zero and

the variance σ2. ε- mixture noise model is a popular model used to characterize the behavior of

heavy-tailed noise and well approximates the Middleton’s Class A noise model [24]. The latter term

in (4) models the impulsive noise where impulsive noise occurs with a probability of ε and has

a variance κ times greater than the Gaussian noise with variance σ2
1 (first component in (4)). It

was shown that the typical values of parameters of the ε-mixture model which approximates the

Middleton’s Class A noise model are in the range of ε ∈ [0.01, 0.33] and κ ∈ [20, 10000] [11], [12],

[25]. For ε- mixture noise model, C0 = µ4
v

σ4
v

= 3((1−ε)+κ2ε)
((1−ε)+κε)2

.

C. Assumptions

Throughout the paper, we make the following assumptions on the signal and noise models. (i). The

probability distribution functions of the noise and the signal, Fv and Fs have zero median (the pdfs of

signal and noise are symmetric around zero); i.e. Fv(0) = 1
2

and Fs(0) = 1
2
. Thus the odd moments of

the signal and noise are zero. (ii). Fv(x) = 1− Fv(−x). (iii).
∫

x2dFv(x) < ∞, and
∫

x2dFs(x) < ∞.

III. PRIMARY SIGNAL DETECTION WITH AWGN CHANNELS

In this section, we consider the problem of primary signal detection when the communication channels

between the primary user transmitter and multiple antennas at cognitive radio are AWGN.

A. Optimal detector with Gaussian inputs

In the absence of fading, we have h = [1, 1, · · · , 1]T . If the signal and noise are assumed to be

Gaussian such that {s[n]}N−1
n=0 is an iid Gaussian sequence with mean zero and the variance σ2

s , v[n] ∼
N (0, σ2

vIM) where IM is the M ×M identity matrix, it can be shown [17] that the optimum Neyman-

Pearson (NP) detector has the following test statistic (which has the form of an energy detector after equal

gain combining):

TED =
N−1∑
n=0

(
M∑

k=1

xk[n]

)2

. (5)
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B. Performance of the energy detector of the form (5)

Exact closed-form expressions for the probabilities of detection and false alarm exist for the energy

detector (5) when the noise and signal are Gaussian [17]. However, in the following, we consider the perfor-

mance of the energy detector (5) for arbitrary signal and noise distributions which satisfy the assumptions

in subsection II-C, using central limit theorem (CLT) when the number of samples is sufficiently large since

it is easy to compare with the rest of the results presented in the paper. Let ỹ[n] =
(∑M

k=1 xk[n]
)2

. Then it

can be shown that (see Appendix A), E{ỹ[n]|H0} = Mσ2
v , E{ỹ[n]|H1} = M(σ2

v +Mσ2
s), var{ỹ[n]|H0} =

Mµ4
v + (2M2 − 3M)σ4

v , and var{ỹ[n]|H1} = Mµ4
v + M4µ4

s + (2M2 − 3M)σ4
v + 4M3σ2

vσ
2
s −M4σ4

s . For

sufficiently large N , CLT states that the random variable TED in (5) is Gaussian under two hypotheses,

where,

H0 : TED ∼ N (NE{ỹ[n]|H0}, Nvar{ỹ[n]|H0})

H1 : TED ∼ N (NE{ỹ[n]|H1}, Nvar{ỹ[n]|H1}). (6)

The probability of false alarm of the NP detector is then given by

pf = Q

(
τe −NE{ỹ[n]|H0}√

Nvar{ỹ[n]|H0}

)
(7)

where τe is the threshold of the detector and Q(x) = 1√
2π

∫∞
x

e
−t2

2 dt. To keep the probability of false alarm

under a value α, the threshold of the detector is chosen as τe = Q−1(α)
√

Nvar{ỹ[n]|H0}+NE{ỹ[n]|H0}
= Q−1(α)

√
NM(µ4

v + (2M − 3)σ4
v) + NMσ2

v . Then the probability of detection of the α− level NP

detector is given by

pd = Q

(
Q−1(α)

√
V0 −

√
NM2σ2

s√
V1

)
, (8)

where V0 = var{ỹ[n]|H0}, and V1 = var{ỹ[n]|H1}. It is noted that, the implementation of this detector

requires the knowledge of the second and fourth moments of noise since the false alarm probability

depends on these parameters. When the noise and signal are Gaussian as considered in subsection III-A,

the probability of detection of the α-level NP detector reduces to,

pd = Q


Q−1(α)−

√
N
2
Mγ2

0

1 + Mγ2
0


 (9)

where γ2
0 = σ2

s

σ2
v
.
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As stated in subsection III-A, the energy detector of the form (5) is the optimal detector when the

signal and noise are Gaussian. When the noise is non-Gaussian, the energy detector would not give the

best performance. As discussed later in detail in the simulation results section and can be seen from

the Fig. 5, the probability of detection of the energy detector degrades as the noise becomes more and

more impulsive. To find the test statistic which yields the optimal performance when the noise is non-

Gaussian, the knowledge of the signal and noise distributions may be required. Implementation of the

energy detector may require certain parameters related to the noise and the primary user signal. Further,

as discussed in [26], a poor performance is achieved by the energy detector at very low SNR regions.

Thus, in the following we consider a non-parametric approach for the primary signal detection by CRs

in the presence of non-Gaussian noise.

C. Polarity coincidence array (PCA) detector

Polarity coincidence correlator (PCC) is a non-parametric two input detection device which outperforms

the energy detector in certain situations when the inputs are non-Gaussian [18]. PCC detector is attractive

due to its simplicity of implementation and efficiency compared to the energy detector especially in the

presence of heavy-tailed noise. The 2-channel PCC detector computes the following test statistic:

TPCC =
N−1∑
n=0

u(x1[n]x2[n]) (10)

where u(.) is the unit step function. An extension of 2-channel PCC for an array of sensors, is the Polarity

coincidence array (PCA) detector [19].

Let ζ[n] be the difference between the number of channels having the most prevalent sign (positive or

negative) at time n and half the number of channels, which will result in, ζ[n] =
∣∣∣1
2

∑M
k=1 sgn(xk[n])

∣∣∣
where sgn(x) is 1 if x ≥ 0 and −1 if x < 0. The test statistic of the PCA detector has the form of,

TPCA =
∑N−1

n=0 g(ζ[n]) where g(.) is a monotonic function of ζ[n].

In this paper, we consider the PCA detector which computes the test statistic [19],

TPCA =
N−1∑
n=0

(ζ[n])2 (11)

When M = 2, it can be seen that the test statistic in (11) and the test statistic for PCC in (10) are

equivalent.
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D. Performance of the PCA detector

Let y[n] = (ζ[n])2 = 1
4

(∑M
k=1 sgn(xk[n])

)2

. Since {s[n]} for n = 0, 1, · · · , N − 1 are assumed to be

iid, it can be seen that the test statistic TPCA in (11) is a sum of N iid random variables and thus can be

approximated as a Gaussian random variable when the number of samples N is large enough.

Mean and the variance of the random variable y[n] under the two hypotheses are given by (see Appendix

B for the derivation): E{y[n]|H0} = M
4

, E{y[n]|H1} = M
4

(1 + (M − 1)(2p1 − 1)), var{y[n]|H0} =

M
8

(M − 1), and

var{y[n]|H1} =
M

16
[2(M − 1) + 4(M − 1)(M − 2)(2p1 − 1) −M(M − 1)2(2p1 − 1)2

+(M − 1)(M − 2)(M − 3)(2p2 − 1)] (12)

where p1 =
∫

(1− 2Fv(s) + 2F 2
v (s))dFs(s) and

p2 =

∫ (
1− 4Fv(s) + 12Fv(s)

2 −16Fv(s)
3 + 8Fv(s)

4
)
dFs(s). (13)

Thus, it can be seen that the decision statistic (11) is distributed as, TPCA|Hj ∼ N (µj, σ
2
tj
) where

µj = NE{y[n]|Hj} and σ2
tj

= Nvar{y[n]|Hj} for j = 0, 1.

The probabilities of false alarm and detection are given by pfa = Pr(TPCA > τp|H0) = Q

(
τp−NM

4√
NM(M−1)/8

)

and pd = Pr(TPCA > τp|H1) = Q

(
τp−NM

4
(1+(M−1)(2p1−1))√
Nvar{y[n]|H1}

)
where var{y[n]|H1} is given in (12) and

τp is the threshold of the detector. If the false alarm probability is constrained to be less than α, the

probability of detection of the PCA detector is given by

pd = Q


Q−1(α)

√
M(M−1)

8
−√N M

4
(M − 1)(2p1 − 1)

√
var{y[n]|H1}


 .

It is worth mentioning that the test statistic of the PCA detector (11) is easily computable since it requires

to compute the sign of the received signal at each channel followed by simple arithmetic operations.

Further, to compute the threshold to keep the probability of false alarm under a desired value of the PCA

detector it only requires the knowledge of the number of antennas and time samples. These factors make

the PCA detector exceedingly simple to implement.
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E. Weak signal detection and asymptotic relative efficiency

We further analyze the performance of the PCA detector for the two noise models considered in the

low SNR region: That is when σ2
s

σ2
v

<< 1. With the assumptions on signal and noise as in subsection II-C,

it can be shown [18] that p1 is approximated by p1 ≈ 1
2

+ 2F ′2
v (0)σ2

s and p2 can be approximated by

(expanding Fv(s) and its powers in a Maclaurin series), p2 ≈ 1
2

+ 8F ′4
v (0)µ4

s, when the SNR is small,

where F ′
v(s) is the first order derivative of Fv(s) with respect to s. Then the probability of detection of

the PCA detector as σ2
s

σ2
v

<< 1 is given by

Q


Q−1(α)

√
M(M−1)

8
−√N M

4
(M − 1)4F ′2

v (0)σ2
s√

Ṽ1


 , (14)

where Ṽ1 = M
16

(2(M −1)+8(M −1)(M −2)F ′2
v (0)σ2

s +16(M −1)(M −2)(M −3)F ′4
v (0)µ4

s−16M(M −
1)2F ′4

v (0)σ4
s).

In the weak signal detection problem, it can be seen that the asymptotic probability of detection of the

PCA detector converges to the following as the number of antennas increases:

lim
M→∞

pd → Q

(
−

√
N

C1 − 1

)
(15)

where C1 = µ4
s

σ4
s

as defined before. It is interesting to note that, when the signal is Gaussian such that

C1 = 3, the asymptotic performance (as M increases) of the optimal detector with Gaussian noise given

in (9) also converges to the same limit as given in (15). This implies that, as observed in the optimal

detector with Gaussian signal and Gaussian noise, the asymptotic (in terms of M ) performance of the

PCA detector with non-Gaussian noise is ultimately limited by the number of time samples N .

For the weak signal detection problem, the performance of the PCA detector with non-Gaussian noise

for multiple antenna cognitive radio is compared with the energy detector of the form (5) in terms of the

asymptotic relative efficiency (ARE). When two statistical tests Ta and Tb require sample sizes Na and

Nb to achieve the same probability of detection given the same probability of false alarm, the ARE of

the test Ta with respect to the test Tb, ARETa,Tb
, is defined as , ARETa,Tb

, lim
Na,Nb→∞

Nb

Na
.

Lemma 1: When SNR is small, the asymptotic relative efficiency of the PCA detector with respect to

the energy detector (5) is given by

AREPCA,ED =
M − 1

M2
(C0 + (2M − 3))8F ′4

v (0)σ4
v (16)
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where C0 = µ4
v

σ4
v

as defined before.

Proof: See Appendix C.

It is noted that the ARE in (16) is not a monotonically non-decreasing function of M in general. In fact

it can be shown that, when C0 < 5, (16) is monotonically non-decreasing with M but not when C0 > 5

(see Appendix D). When C0 > 5, it can be shown that (letting first derivative of (16) equals to zero) the

optimal number of antennas M which results in the maximum AREPCA,ED is given by

Mo = 2

[
C0 − 3

C0 − 5

]
, for C0 > 5 (17)

where [x] denotes the nearest integer to the real number x. For example when the noise is Gaussian

(β = 2 in (2)), C0 = 3, and AREPCA,ED in (16) becomes, AREG
PCA,ED = M−1

M
16F ′4

v (0)σ4
v which is a

monotonically non decreasing function of M . Thus, the maximum achievable AREPCA,ED with multiple

antennas when the noise is Gaussian is AREG,max
PCA,ED = lim

M→∞
AREG

PCA,ED = 16F ′4
v (0)σ4

v = 0.4053. On

the other hand, when the noise is double exponential such that β = 1 in (2) and C0 = 6, AREPCA,ED

does not increase monotonically as the number of antennas increases, and the maximum AREPCA,ED over

M is achieved when Mo = 6 which is given by AREmax
PCA,ED = 4.1667. The behavior of the maximum

achievable AREPCA,ED as the tail of the non-Gaussian noise varies is further discussed in the numerical

results section.

The following lemma states the maximum achievable AREPCA,ED for weak signal detection using

multiple antennas at CR.

Lemma 2: The maximum achievable AREPCA,ED at the CR with multiple antennas is given by

AREmax
PCA,ED =





16F ′4
v (0)σ4

v if C0 < 5

Mo−1
M2

o
(C0 + (2Mo − 3))8F ′4

v (0)σ4
v if C0 > 5

(18)

where M0 is as given in (17).

Proof: When C0 < 5, since AREPCA,ED is monotonically non-decreasing with M , the maximum

achievable AREPCA,ED is obtained when M →∞. Thus for C0 < 5, AREmax
PCA,ED = lim

M→∞
AREPCA,ED =

16F ′4
v (0)σ4

v . For C0 > 5, the maximum AREPCA,ED is achieved when M = M0 where M0 is as given in

(17), resulting (18).

Irrespective of the value of C0, the AREPCA,ED converges to a constant value as the number of antennas
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M increases and this value is the maximum possible AREPCA,ED if C0 < 5 but not the maximum when

C0 > 5 (for heavy-tailed noise).

Remark 1: From (17), it can be seen that the optimal number of antennas which yields the maximum

possible AREPCA,ED approaches 2 as C0 gets larger. Large C0 for both considered noise models implies

heavy-tailed noise. Thus, it can be seen that as the heaviness of the tail of the noise increases, the best

possible performance gain of the PCA detector compared to that with the energy detector in terms of

AREPCA,ED over M is achieved when M = 2.

IV. PRIMARY SIGNAL DETECTION WITH RAYLEIGH FADING CHANNELS

In this section, we consider the performance of the PCA detector when the communication channels

between the primary user and the multiple antennas at CRs undergo Rayleigh fading.

A. Performance of the PCA detector with fading channels

Let y[n] = 1
4

(∑M
k=1 zk[n]

)2

as before where now, H0 : xk[n] = vk[n], and H1 : xk[n] = hks[n]+vk[n]

for k = 1, 2, · · · ,M and zk[n] = sign(xk[n]). Then it can be shown that, E{y[n]|H0} = M
4

, E{y[n]|H1} =

1
4

(
M +

∑
i6=j

(2pij
1 − 1)

)
, var{y[n]|H0} = M

8
(M − 1), and

var{y[n]|H1} =
1
16


2M(M − 1) + 4(M − 2)

∑

i 6=j

(2pij
1 − 1) +

∑

i 6=j 6=l 6=m

(2pijlm
2 − 1) −


∑

i 6=j

(2pij
1 − 1)




2

 (19)

where pij
1 =

∫
1− Fv(his)− Fv(hjs) + 2Fv(his)Fv(hjs)dFS(s), and

pijlm
2 =

∫
[1− (Fv(his) + Fv(hjs) + Fv(hls) + Fv(hms))

+ 2(Fv(his)Fv(hjs) + Fv(his)Fv(hls) + Fv(his)Fv(hms) + Fv(hjs)Fv(hls)

+ Fv(hjs)Fv(hms) + Fv(hls)Fv(hms)) + 4(Fv(his)Fv(hjs)Fv(hls) + Fv(his)Fv(hjs)Fv(hms)

+ Fv(his)Fv(hls)Fv(hms) + Fv(hjs)Fv(hls)Fv(hms)) + 8Fv(his)Fv(hjs)Fv(hls)Fv(hms)]dFS(s)

Conditioned on h, the test statistic TPCA in (11) is a sum of iid random variables under each hypothesis.

Thus, the probability of detection while maintaining probability of false alarm under α conditioned on h

is given by

pd|h = Q




Q−1(α)
√

M(M−1)
8 −√N 1

4

∑
i 6=j

(2pij
1 − 1)

√
var{y[n]|H1}


 (20)
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where var{y[n]|H1} is as given in (19). Computing the average probability of detection over h requires

M - fold integration of pd|h in (20). Thus, in the following we consider several special cases for weak

signal detection; i.e. hihjhkhlσ
2
s

σ2
v

¿ 1 for i 6= j 6= k 6= l so that the higher order terms can be neglected.

Then, pij
1 can be approximated as, pij

1 ≈ 1
2

+ 2hihjF
′2
v (0)σ2

s .

1) Weak signal detection when M = 2: Under the assumption of weak signal detection, the probability

of detection for M = 2 given h, is given by

pd = Eh̃



Q




1
2
Q−1(α)−√N2h̃F ′2

v (0)σ2
s√

1
4
− 4h̃2F ′4

v (0)σ4
s








where h̃ = h1h2. When hj’s are iid Rayleigh random variables with the pdf, fhj
(h) = h

σ2
R
e
− h2

2σ2
R , it can be

shown that the distribution of h̃ is given by [27], fh̃(h̃) = h̃
σ2

R
K0

(
h̃

σR

)
where K0 is the modified Bessel

function of the second kind. Then the average probability of detection for M = 2 is given by

p̄d =

∫ ∞

0

Q




1
2
Q−1(α)−√N2h̃F ′2

v (0)σ2
s√

1
4
− 4h̃2F ′4

v (0)σ4
s


 h̃

σ2
R

K0

(
h̃

σR

)
dh̃ (21)

which requires only a single integration.

2) Weak signal detection when M is large: Note that when the SNR is small, the probability of

detection of PCA detector given in (20) can be approximated as,

pd ≈ Eh





Q




Q−1(α)
√

M(M−1)
8 −√NF ′2v (0)σ2

s

∑
i6=j

hihj

√
M(M−1)

8 + (M − 2)F ′2v (0)σ2
s

∑
i 6=j

hihj








(22)

The argument of the Q-function in (22) depends on h via the sum Th =
∑
i6=j

hihj . Let T̃h =
∑

i6=j,i<j

hihj .

Then Th = 2T̃h. It can be seen that, T̃h is in general a sum of dependent random variables having

M̃ = M(M − 1)/2 elements. The central limit theorem exists for dependent random variables under

certain conditions. In [28], it is stated that the sum of m-dependent sequence of random variables with

finite third absolute moment converges to a normal random variable if the number of elements in the

sequence is large enough. It is noted that for moderate values of M , we have large enough M̃ such that

the central limit theorem can be applied. For sufficiently large M̃ (M̃ →∞)we have the following results:

Lemma 3: The sequence in the sum T̃h is m-dependent with m = M2−3M+4
2

. When M̃ is large, T̃h

has a limiting normal distribution with mean, µh = πM(M−1)
4

σ2
R and the variance, σ2

h = M(M −
1)

(
1− π

4

) (
2 + π(M − 3

2
)
)
σ4

R.
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Proof: See Appendix E.

Then the average probability of detection (22) when M̃ is large enough, can be approximated as

pd ≈
∫

Q


Q−1(α)

√
M(M−1)

8
−√NF ′2

v (0)σ2
s2T̃h√

M(M−1)
8

+ (M − 2)F ′2
v (0)σ2

s2T̃h


 1√

2πσ2
h

e
− (T̃h−µh)2

2σ2
h dT̃h (23)

which requires only a single integration. It is verified in subsection V-B that this approximation closely

matches with the simulation results with finite values of M used in practice (which result relatively large

M̃ ).

To compare the performance of the PCA detector in the presence of fading, we consider the following

energy based detector schemes which are commonly used when communication channels undergo fading.

Energy detection with maximal ratio combining (MRC) is the optimal scheme for the problem given

in (1) for detecting Gaussian signals in the presence of Gaussian noise [17] when the communication

channels between the primary user transmitter and the multiple antennas at CRs undergo fading. When

the signal and noise are Gaussian, the threshold of this detector can be found numerically involving only

a single integration. However, when the noise is non-Gaussian it can be shown that the computation of

the threshold requires M -fold integration which might be difficult when M is large (Details are omitted

due to space limitation).

B. Energy detection with equal gain combining

Implementing the energy detector with MRC requires the channel state information at the cognitive

radio, and computationally difficult integrations when the noise is non-Gaussian. Equal gain combining

(EGC) is a simpler technique which equally weights the signals on each channel. With equal gain

combining, the decision statistic has the form, TEGC =
∑N−1

n=0 ỹ[n] where ỹ[n] =
(∑M

k=1 xk[n]
)2

. Then

we have, E{ỹ[n]|H0} = Mσ2
v , E{ỹ[n]|H1} = Mσ2

v + h̄2σ2
s , var{ỹ[n]|H0} = Mµ4

v + M(2M − 3)σ4
v ,

var{ỹ[n]|H1} = M(C0 + (2M − 3))σ4
v + (C1 − 1)h̄4σ4

s + 4Mh̄2σ2
vσ

2
s where h̄ =

∑M
k=1 hk.

Then the probability of detection of the α-level NP detector is given by

p̄d = Eh̄

{
Q

(
Q−1(α)

√
M(C0 + (2M − 3))−√Nh̄2γ2

0√
M(C0 + (2M − 3)) + (C1 − 1)γ4

0 h̄
4 + 4Mγ2

0 h̄
2

)}
(24)

where γ2
0 = σ2

s

σ2
v

as before. Finding a closed-form expression for the pdf of h̄ in general is difficult. Thus,

we consider the following special cases and approximations to evaluate the integral in (24).
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1) M=2: When M = 2, pdf of h̄ is available in closed-form [29] which is given by f(t) = t
2
e−t2/2 +

√
π

(
1
2
−Q(t/

√
2)

)
(t2/2− 1)e−t2/4 where t = h̄

σR
. Thus, the expectation in (24) can be evaluated with a

single integration when M = 2.

2) M > 2: For general M , a widely used approximation for the pdf of h̄ is given in [30], f˜̄h
(˜̄h) =

t2M−1e−
t2

2b

2M−1bM (M−1)!
where ˜̄h = h̄/σR, t =

˜̄h√
M

, b =
σ2

R

M
[(2M − 1)!!]1/M , (2M − 1)!! = (2M − 1)(2M − 3)...3.1.

Then the average probability of detection (24) can be approximated as,

p̄d ≈
∫

Q


 Q−1(α)

√
M(C0 + (2M − 3))−√Nσ2

R
˜̄h2γ2

0√
M(C0 + (2M − 3)) + (C1 − 1)γ4

0σ
4
R
˜̄h4 + 4Mγ2

0σ
2
R
˜̄h2


 .f˜̄h

(˜̄h)d˜̄h.

V. PERFORMANCE ANALYSIS

In this section, we display the performance of the PCA detector and the energy detector for the two

types of non-Gaussian noise models considered in the paper.

A. Asymptotic relative efficiency of PCA detector compared to ED with AWGN channels

In this subsection, we evaluate the performance gain achieved by the PCA detector over the energy

detector for weak signal detection in terms of AREPCA,ED when the communication channels between

the primary user transmitter and the multiple antennas at the CR are AWGN. Figure 1 shows AREPCA,ED

for the GG noise model when the number of antennas varies for different values of β (and corresponding

value of C0 is also shown in Figures). In Fig. 1, β varies in the range .6−2. When β decreases beyond 0.6,

the behavior of AREPCA,ED with M is similar to that with β = 0.6 (where the maximum AREPCA,ED

is achieved when M → 2) and not shown in the figure for clarity. As mentioned earlier, when β < 2,

the GG noise model represents heavy-tailed noise (impulsive noise). It can be seen that for small values

of β (in the region β < 2), performance of the PCA detector compared to that of the energy detector

has a significant performance improvement over a wide range of M (number of antennas) in terms of

AREPCA,ED. In particular, from the Lemma 1, it can be easily shown that the maximum achievable

AREPCA,ED with multiple antennas for GG noise model is always greater than 1 when β <≈ 1.4. Thus

for a wide classes of non-Gaussian impulsive noise (e.g. Laplace noise when β = 1, certain impulsive

atmospheric noise β ≈ 0.5 [11]), the PCA detector with multiple antennas outperforms the energy detector

in a large scale. Thus it is seen that the decision statistic based on a function of sign information of the
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received signal in multiple channels seem to be a better choice in detecting primary signal when the noise

becomes more impulsive compared to detecting the primary signal detection based on the total energy

collected during a given time interval.

Moreover, it can be observed that when β decreases, the optimal number of antennas which yields the

maximum achievable AREPCA,ED approaches 2 (Fig. 2 (a)). This implies that when β is small, (i.e. the

heaviness of the noise tail is large) the maximum performance gain in terms of AREPCA,ED achieved by

multiple antenna PCA detector approaches the value achieved with the 2-channel PCC detector. However,

for moderate values of β (but still less than 2), by increasing the number of antennas, the performance

of the PCA detector has a considerable performance gain over the PCC (M = 2) detector in terms of

the AREPCA,ED; i.e., the maximum achievable AREPCA,ED is achieved with more than 2 antennas. For

example, when β = 1, AREPCA,ED = 3.5 for M = 2 and the maximum achievable AREPCA,ED with

Mo = 6 antennas is 4.1667.

It can also be observed that for light-tailed noise (β > 2), the PCA detector does not show a better

performance compared to that with the energy detector irrespective of the number of antennas are employed

(Fig. 2 (b)). More specifically, it can be shown analytically that when β >≈ 1.4, the maximum achievable

AREPCA,ED for GG noise model with multiple antennas is always less than 1; that is in this region of β,

energy detector is more effective compared to that with the PCA detector. This implies that, use of sign

information of the observed signal in different channels of the multiple antenna system does not provide

sufficient information to better detect the presence of a primary signal when the noise is light-tailed. It is

worth adding a comment for Gaussian noise (β = 2). As mentioned earlier, the energy detector is optimal

for Gaussian noise but the implementation of that detector requires the knowledge of the noise variance.

It can be seen from the Lemma 1 that the ARE with M = 2 is 0.2026 while the maximum achievable

ARE with multiple antennas is AREG,max
PCA,ED = 0.4053 for Gaussian noise. Thus the AREPCA,ED can be

improved at most by a factor of approximately 2 by employing multiple antennas more than two at the

CR receiver compared to M = 2 when the noise is Gaussian. Even though this maximum value is still

less than 1, PCA detector with multiple antennas would be a good choice for even Gaussian noise since

that is the price to pay for the non-parametric property of the PCA detector.

In Fig. 3, the maximum achievable AREPCA,ED with different parameter values of ε- mixture noise
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model in (4) is depicted. As explained in subsection II-B, with ε- mixture model, in the region of small

values of ε and as κ increases, it represents the heavy-tailed impulsive noise. From Fig. 3, it can be seen

that in this region of ε and κ the maximum achievable AREPCA,ED with multiple antenna PCA detector

coincides with the one achieved by the 2-channel PCC detector.

B. Performance of the PCA detector with GG noise model with Rayleigh fading

In this subsection, the performance of the PCA detector is investigated when the communication

channels undergo Rayleigh fading.

In Fig. 4, the probability of detection of the PCA and energy detectors versus average SNR for different

number of antennas is shown for the GG noise model for β = 1 (i.e. double exponential/Laplacian noise)

when the communication channels undergo Rayleigh fading. The average SNR is given by SNR =
2σ2

Rσ2
s

σ2
v

.

Unless specified otherwise, for all the figures we assume that the signal is Gaussian with mean zero and

variance σ2
s . We compare the analytical results derived in (23) for large M̃ = M(M − 1)/2 and in (21)

for M = 2 for the PCA detector in weak signal detection to that is obtained via simulations for Laplacian

noise. For the simulations, in each iteration we consider 104 sets of M -length vectors of iid Rayleigh

random variables, and 104 sets of M×N matrices consisting of iid Laplace random variables, for assumed

M and N values. The results are averaged over 50 iterations. In Fig. 4, the sample size N = 1024, the

probability of false alarm α = 0.1, and plots correspond to three different values of M . From Fig. 4,

it can be seen that the analytical approximations derived under the assumption of weak signal detection

closely match with the simulation results for M = 2 and relatively large M̃ , in the low SNR region. This

further validates the applicability of the central limit theorem (CLT) for dependent random variables as

used in subsection IV-A2. From Fig. 4, it can be seen that as the average SNR increases, the performance

gain achieved by using multiple antennas compared to that with M = 2 also increases. Also, it can be

seen that by increasing the number of antennas (e.g. M = 10 in the Figure) it is possible to have the

probability of detection approach 1 at relatively low SNR values. Further, the performance gain achieved

by the PCA detector compared to the energy detector is also depicted in Fig. 4.

In Fig. 5, the performance of the PCA detector is shown as the heaviness of the noise tail in the GG

noise model varies for different numbers of antennas. In Fig. 5, the results are based on the numerical
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integrations of (21) and (23) for M = 2, and M = 10, respectively for PCA detector. For the energy

detector with EGC, the results are based on numerical integrations as discussed in subsections IV-B1

for M = 2 and IV-B2 for M = 10, respectively. Further in Fig. 5, we let N = 1024, α = 0.1, and

SNR = −20 dB. It can be seen from Fig. 5 that as the heaviness of the tail of the GG noise increases (β

decreases), the performance of the energy detector decreases while the performance of the PCA detector

is greatly improved. Thus, the performance gain of the PCA detector over the energy detector increases

significantly as β decreases. It is interesting to see that for relatively large antenna sizes the probability

of detection of the PCA detector is significantly outperforms the energy detector when β <≈ 1.4 with

fading channels, as observed with AWGN channels in terms of asymptotic relative efficiency. It should

be noted that the PCA detector basically computes the number of channels having the most prevalent

sign. Under hypothesis H0 (signal is absent), approximately half of the channels will have the same sign

since the noise pdf is assumed to be symmetric around zero. When a common random signal is present

in each channel under H1, the number of channels with the same sign as the signal increases. This

distinguishability between two hypotheses seems to be more significant as the heaviness of the tail of the

non-Gaussian noise increases as well as the number of channels increases, resulting in better detectability

of the signal. On the other hand, the energy detector is the optimal detector in detecting Gaussian signals

corrupted by Gaussian noise (i.e. β = 2 in the GG noise model) and as the non-Gaussianity of the noise

increases, poor detection performance is achieved by the energy detector. Fig. 5 clearly illustrates the

effectiveness of the use of the PCA detector in heavy-tailed GG noise compared to the energy detector.

In Fig. 6, the receiver operating characteristics (ROC) curves for the PCA detector and the energy

detector for different values of β are shown for N = 1024, M = 2 and two different values of SNR

(−20 dB and −10 dB). It further shows that at small β values (i.e. with more heavy-tailed noise), PCA

detector’s performance is much better even in very small SNR regions compared to the energy detector.

In the above analysis, it was assumed that the number of samples is large but fixed at N = 1024. In the

next experiment, we investigate the performance of the PCA detector as the number of samples varies.

In Fig. 7, the performance of the PCA and energy detectors is shown as the number of samples varies

for α = 0.1, SNR = −15dB and β = 0.8. It can be seen that, for the assumed parameters, the gain in

terms of the number of samples required to achieve the same probability of detection is higher for fewer
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number of antennas compared to that with larger number of antennas. This was analyzed in the latter part

of section III-E for AWGN channels, where it was shown that as the heaviness of the tail of the noise

increases, the maximum achievable AREPCA,ED is obtained when M = 2. This phenomenon was further

illustrated in subsection V-A for AWGN channels in terms of AREPCA,ED.

In Fig. 8, we analyze the performance of energy detectors with EGC and maximal ratio combining

(MRC) for non-Gaussian noise at low SNR region. With MRC, the decision statistic is given by TMRC =

∑N−1
n=0

(∑M
k=1 hkxk[n]

)2

. In Fig. 8, we let N = 1024 and numerical results are obtained for Laplacian

noise (with β = 1). Fig. 8(a) corresponds to ROC curves for M = 2 while Fig. 8(b) corresponds to

M = 10. It can be observed that, the energy detector with MRC is not a good candidate for the primary

signal detection at low SNR region in the presence of non-Gaussian noise compared to that with energy

detector with EGC.

C. Performance of PCA detector with GM noise model with Rayleigh fading

In this subsection, we investigate the performance of the PCA detector when the noise is modeled

using the ε- mixture model as described in (4). In Figures 9 and 10, the probability of detection of PCA

and energy detectors versus ε is shown for M = 2 and for M = 10, respectively when SNR = −20dB

and α = 0.1 as κ varies. It can be seen that as the parameter κ increases (≥ 20) the performance of

the PCA detector is improved significantly compared to the energy detector in the range of ε in which

the ε- mixture model characterizes the heavy-tailed noise, except a very small region closer to 0.01. As

ε increases from 0.01 towards 0.33, i.e., as the probability that the impulsive event occurs increases as

explained in subsection 4, the performance gain achieved by the PCA detector over the energy detector

becomes more significant. On the other hand, the performance of the energy detector degrades as the

heaviness of the tail of ε- mixture model increases. Figs. 9 and 10 clearly exhibit that the PCA detector

performs significantly better compared to the energy detector when the additive noise at CR is modeled

as heavy-tailed ε- mixture noise.

VI. SUMMARY

In this paper, we investigated the potential use of polarity-coincidence array (PCA) detectors for

spectrum sensing by multiple antenna cognitive radios in the presence of non-Gaussian, heavy-tailed
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noise. Closed-form expressions for the performance measures in terms of the probabilities of detection

and false alarm were derived when the communication channels between the primary user and the multiple

antennas at the cognitive radio are AWGN as well as undergo Rayleigh fading.

With AWGN channels, the performance gain of the PCA detector over that of the widely used energy

detector is evaluated analytically in terms of the asymptotic relative efficiency, AREPCA,ED. It was shown

that for impulsive noise, there is an optimal number of antennas (≥ 2) which yields the maximum

achievable AREPCA,ED. Moreover, it was observed that as the noise becomes more and more impulsive,

the number of antennas which results the maximum achievable AREPCA,ED reaches two. Thus depending

on the specific parameters of the non-Gaussian noise model, the CR designer will be able to select the

number of antennas to be used at the CR receivers to achieve the maximum performance gain over energy

detectors in terms of ARE when the communication channels are AWGN.

In the presence of fading channels, the performance of the PCA detector is compared to that with

the energy detector after equal gain combining, in terms of the probability of detection (keeping the

probability of false alarm under a certain threshold). With fading channels, it was shown that the PCA

detector performs significantly better compared to the energy detector in low SNR regions when the

heaviness of the tail of the non-Gaussian noise exceeds a certain value and the performance gain becomes

more significant as the heaviness increases. From the results presented in the paper it can be seen that the

use of multiple antennas at cognitive radios, together with the large performance gain achieved compared

to the energy detector and the ease of implementation make the PCA detectors a useful approach for

spectrum sensing when the CRs operate in the presence of impulsive/heavy-tailed noise and when the

communication channels are AWGN as well as undergo fading.

APPENDIX A

We have ỹ[n] =
(∑M

k=1 xk[n]
)2

=
∑M

k=1 x2
k[n] + 2

∑
k 6=j,k<j

xk[n]xj[n]. Based on the observation vector

in (1) under two hypothesis, when h = [1, 1, · · · , 1]T , we have

E{ỹ[n]|H0} =
M∑

k=1

E{v2
k[n]}+ 2

∑

k 6=j,k<j

E{vk[n]vj[n]}︸ ︷︷ ︸
=0

= Mσ2
v (25)
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E{ỹ[n]|H1} =
M∑

k=1

E{(s[n] + vk[n])2}+ 2
∑

k 6=j,k<j

E{(s[n] + vk[n])(s[n] + vj[n])}

= M(σ2
v + σ2

s) + M(M − 1)σ2
s = M(Mσ2

s + σ2
v) (26)

To find the variance var{ỹ[n]|Hj}, we need to find E{ỹ[n]2|Hj} for j = 0, 1. Note that we can write,

(ỹ[n])2 =
∑M

k=1 x4
k[n] + 2

∑
i6=j

x2
i [n]x2

j [n] +
∑

(k 6=l) 6=i6=j

xk[n]xl[n]xi[n]xj[n] + 2
∑M

k=1 x2
k[n]

∑
l 6=j

xl[n]xj[n]. Thus

we have

E{ỹ[n]2|H0} = Mµ4
v + 2M(M − 1)σ4

v + M(M − 1)σ4
v = Mµ4

v + 3M(M − 1)σ4
v . (27)

To find E{ỹ[n]2|H1}, we need to find following quantities:

1) E{x4
k[n]|H1} = E{(s[n] + vk[n])4} = µ4

s + 6σ2
sσ

2
v + µ4

v,

2) E{x2
k[n]x2

j [n]|H1} = E{(s[n] + vk[n])2(s[n] + vj[n])2} = µ2
s + 2σ2

vσ
2
s + σ4

v for k 6= j,

3) E{x3
k[n]xj[n]|H1} = E{(s[n] + vk[n])3(s[n] + vj[n])} = µ4

s + 3σ2
vσ

2
s for k 6= j 6= l,

4) E{x2
k[n]xj[n]xl[n]|H1} = E{(s[n] + vk[n])2(s[n] + vj[n])(s[n] + vl[n])} = µ4

s + σ2
vσ

2
s for k 6= j 6= l,

5) E{xkxj[n]xl[n]xm[n]|H1} = E{(s[n] + vk[n])(s[n] + vj[n])(s[n] + vl[n])(s[n] + vm[n])} = µ4
s for

k 6= j 6= l 6= m.

Then we have

E{ỹ[n]2|H1} = M(µ4
s + 6σ2

sσ
2
v + µ4

v) + 3M(M − 1)(mu2
s + 2σ2

vσ
2
s + σ4

v) + 4M(M − 1)(µ4
s + 3σ2

vσ
2
s)

+ 6M(M − 1)(M − 2)(µ4
s + σ2

vσ
2
s) + M(M − 1)(M − 2)(M − 3)µ4

s

= M4µ4
s + Mµ4

v + 3M(M − 1)σ4
v + 6M3σ2

vσ
2
s . (28)

APPENDIX B

Let zk[n] = sgn(xk[n]). Then y[n] = 1
4
(
∑M

k=1 zk[n])2 = 1
4
[
∑M

k=1 zk[n]2 +
∑
k 6=l

zk[n]zl[n]] and

(y[n])2 =
1

16

(
M∑

k=1

zk[n]

)4

=
1

16




M∑

k=1

z4
k + 2

∑

k 6=l

z2
kz

2
l +

∑

(k 6=l)6=(i6=j)

zkzlzizj +2
M∑

k=1

z2
k

∑

l 6=j

zlzj

]
. (29)

It was shown in [19] that underH0, E{y[n]|H0} = M
4

and E{y[n]2|H0} = 1
16

(M + 2(M2 −M) + M(M − 1)) =

1
16

(3M2 − 2M) resulting in var{y[n]|H0} = M
8

(M − 1). In the following, we compute the mean and the
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variance of y[n] under H1. We have, E{y[n]|H1} = 1
4

[
∑M

k=1 E{zk[n]2|H1}+
∑
k 6=l

E{zk[n]zl[n]|H1}
]

. It

can be shown that, E{zk[n]2|H1} = 1 and E{zkzl|H1} = 2p1 − 1 where p1 = pr(xk[n] > 0, xl[n] >

0|H1 or xk[n] < 0, xl[n] < 0|H1) which can be found as,

p1 =

∫
((1− Fv(−s))2 + (Fs(−s))2)dF (s) =

∫
(1− 2Fv(s) + 2F 2

v (s))dFs(s) (30)

where Fx(.) is the probability distribution function of the random variable x. (30) can be computed if

the signal and noise distributions are known. Then we have, E{y[n]|H1} = M
4

[1 + (M − 1)(2p1 − 1)].

To find the variance of y[n] under H1, it is required to compute the expectations of all the terms in

(29). We have, E{z4
k|H1} = 1, E{z2

kz
2
l |H1} = 1, E{zkz

3
l |H1} = 2p1 − 1, E{z2

kzlzi|H1} = 2p1 − 1,

E{zkzlzizj|H1} = 2p2 − 1 for k, l, i, j = 1, 2, · · · ,M , where

p2 = Pr(xk > 0, xl > 0, xi > 0, xj > 0|H1 or xk < 0, xl < 0, xi < 0, xj < 0|H1 or

xk > 0, xl > 0, xi < 0, xj < 0|H1 or xk > 0, xl < 0, xi < 0, xj > 0|H1 or

xk > 0, xl < 0, xi > 0, xj < 0|H1 or xk < 0, xl < 0, xi > 0, xj > 0|H1 or

xk < 0, xl > 0, xi > 0, xj < 0|H1 or xk < 0, xl > 0, xi < 0, xj > 0|H1)

and reduces to the following after a simple manipulation:

p2 =

∫ (
1− 4Fv(s) + 12Fv(s)

2 −16Fv(s)
3 + 8Fv(s)

4
)
dFs(s).

Thus, we have

var{y[n]|H1} =
1

16
[M + 3M(M − 1) +4M(M − 1)(2p1 − 1) + 6M(M − 1)(M − 2)(2p1 − 1)

+M(M − 1)(M − 2)(M − 3)(2p2 − 1) −M2(1 + (M − 1)(2p1 − 1))
]

which reduces to (12) after a simple manipulation.

APPENDIX C

Proof of Lemma 1: By equating the probabilities of detection of the PCA detector under the weak

signal assumption (14) and of the energy detector (8), we have
√

V1Q
−1(α)

√
M(M−1)

8√
Np

−
√

V1M(M − 1)F ′2
v (0)σ2

s =

√
Ṽ1Q

−1(α)
√

V0√
Np

−
√

Ne

Np

√
Ṽ1M

2σ2
s (31)
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where V0 and V1 are defined just after (8) while Ṽ1 is given after (14), and Np and Ne denotes the

number of time samples with PCA and energy detector, respectively which are required to yield the same

probability of detection. When Np → ∞, we have, Ne

Np
= V1(M−1)2F ′4v (0)

Ṽ1M2
. Substituting for V1 and Ṽ1 and

letting σ2
s

σ2
v
→ 0, and letting

(
Ne

Np

)
Np,Ne→∞

= AREPCA,ED we get the result in (16).

APPENDIX D

We prove that AREPCA,ED given in (16) is monotonically non-decreasing function of M if C0 < 5 by

proving that the derivative of AREPCA,ED with respect to M is always positive if C0 < 5. The ARE of

PCA detector with respect to the energy detector is given in (16). Differentiating (16) with respect to M

results in, d(ARE)
dM

= 8F ′4v (0)σ4
v

M2

((
5− 6

M

)− C0

(
1− 2

M

))
. dARE

dM
is positive when M = 2. For M > 2, for

dARE
dM

to be positive, the following condition should be satisfied: C0 <
5− 6

M

1− 2
M

. It can be easily seen that the

quantity 5− 6
M

1− 2
M

is monotonically decreasing with M for M > 2. Thus, for dARE
dM

to be always positive, C0

should be less than the minimum value of 5− 6
M

1− 2
M

which equals to 5.

APPENDIX E

A sequence of random variables X1, X2, · · · , is m-dependent if (X1, · · · , Xr) is always independent

of (Xs, Xs+1, · · · ) for s − r > m [28]. In such a sequence if m or more consecutive X’s are removed,

the remaining two portions of the sequence are independent. Consider the elements in the sequence

of the sum T̃h, are arranged such that (h1h2, h1h3, · · · , h1hM−1, h1hM , h2h3, · · · , h2hm, · · · , hM−1hM).

Note that there are M̃ = M(M−1)
2

elements in the sequence. Then at a maximum of M(M−1)
2

− (M − 2)

elements are removed from the sequence at any point, the remaining two portions of the sequence are

independent (since hj’s are independent random variables for j = 1, 2, · · · ,M). Thus the sequence in T̃h

is m-dependent with m = M(M−1)
2

− (M − 2) = M2−3M+4
2

.

Computing mean and variance of T̃h: Since hj’s are iid Rayleigh random variables for j = 1, 2, · · · ,M ,

E{hkhj} = E{hk}E{hj} = σR

√
π
2
.σR

√
π
2

= σ2
R

π
2

for any j 6= k. Thus, E{T̃h} = M(M−1)
2

.σ2
R

π
2

=

πM(M−1)
4

σ2
R. Based on the covariance matrix of the elements of the sequence in T̃h,

var(T̃h) =
M(M − 1)

2
var(hkhj) + M(M − 1)(M − 2)cov(hkhj, hkhi), k 6= i 6= j. (32)
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We have, var(hkhj) = E{h2
k}E{h2

j} − (E{hk}E{hj})2 = 4σ4
R −

(
π
2
σ2

R

)2
=

(
4− π2

4

)
σ4

R. cov(hkhj, hkhi)

for k 6= i 6= j can be computed as,

cov(hkhj, hkhi) = E{h2
khjhi} − E{hkhj}E{hkhi} = E{h2

k}E{hj}E{hi} − (E{hk})2E{hj}E{hi}

= 2σ2
R

(√
π

2
σR

)2

−
(√

π

2
σR

)4

=
(
1− π

4

)
πσ4

R. (33)
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Fig. 10. Probability of Detection Vs. ε for the GM noise model,

M = 10 SNR = −20dB, α = 0.1
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