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Hellmann-Feynman Theorem in Thomas-Fermi and Related Theories

Jerry Goodisman
Departmelt of Chemistry, Syracuse University, Syracuse, Peso Fork 13210

(Beceived 21 November 1969)

The general Hellaann-Feynaan theo&'em. (derivative of energy eiQ respect to a pars, meter
= expectation value of derivstive of Hamiltonian) is proved fox theoeies in vrMch the electron
density is determined by making the energy functional stationary. Some simple applications
are given.

Recently, Teller' and Balazs~ have given argu-
ments showing that the various quantum-statistical
theories' [Thomas- Fer mi (TF), Thomas- Fermi-
Dirac (TFD), Thomas-Fermi-Dirac-Gombas] can-
not give a stable molecule. [Sheldon's TFD cal-
culations on g (the only true molecular calcula-
tions using the exact theory) had previously led to
instability. ) Teller' showed that the energy of a
molecular system in these theories will never be
lower than the energy of the separated atoms;
Balazs' showed that the forces on the nuclei al-
ways tend to dissociate the molecule. The equiva-
lence of these two points of view is part of the con-
tent of the Hellmann-Feynman theorem. ' '

The theorem in its general form states that the
change in the energy with a parameter appearing
in the Hamiltonian can be obtained from the expec-
tation value of the derivative of the Hamiltonian
with respect to this parameter. For the usual
quantum-mechanical situation, the exact energy
is the eigenvalue of a many-electron Hamiltonian,
and expectation values are over a many-electron
wave function; in the quantum-statistical theories,
the electron density is obtained from a nonlinear
equation, and there is no wave function. However,
we note that a proof of the theorem can be based
on the variational principle. This suggests, for
the statistical theories, a related proof of the
theorem.

We give a proof here for the general Hellmann-
Feynman theorem which applies to a class of the-
ories including the quantum-statistical ones. We
then mention some of the implications. We as-

sume that the energy is given as a functional E of
the electron density p. E may also depend on a
parameter I'. The density is determined by mak-
ing the functional stationary to variations of p,
with any auxiliary condition on p being taken into
account by a Lagrange multiplier X:

6[E(p, P)+RA(p)] =0.

The density thus determined for a given P is de-
noted by p~ and the corresponding energy by
Ez = E(pz, P). The energy derivative de /dP has
two parts, due to the explicit occurrence of P in
E and due to the dependence of p~ on P. If, as is
usually the case, I' appears in an expectation val-
ue as fF(P)f (p) d r, the first part of dEJ, /dP will
be the expectation value of the derivative,
fF'(P)f(p)dr. The second part of dE~/dP can
be written lim(5P- 0) [E(pp, ,p, P) —E(p~, P)]/
bP. But E(p~, P) is stationary to any variation in
p which leaves A(p) invariant, so this second term
vanishes. This proves our theorem. We now give
several illustrations of it.

If P is a nuclear charge, it appears as Pe2fr ~

x p(r )d7, where r is the distance from the nucle-
us. Then dE/dP is givenby e fr 'p(r)dr, as may
be shown by direct (but more complicated) manipu-
lation' of the energy functional. If I' is a nuclear
coordinate, the theorem states that dE/dP is given
by f(8 V,„,/8P)pdr, where the derivative of the
electron-nuclear potential energy operator is tak-
en with electronic coordinates held fixed. The
equivalence of energy derivative and expectation
value of electrostatic force, referred to above,
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follows when the electrons are fixed in a space-
fixed coordinate system. For a diatomic, one may
use confocal. ellipsodial coordinates, in which in-
terparticle distances are proportional to the inter-
nuclear distance A for fixed values of these coor-
dinates. The volume element is exPlicitly propor-
tional to R', p to R ', the potential-energy opera-
tors to 8 '. Taking I' =R, we note that the poten-
tial-energy terms V are explicitly proportional to
E ' and the kinetic energy T (proportional to
fp' 'd7 ) to 8 '. Then our theorem gives

which is the virial theorem, This proof is well
known for the quantum mechanical case. The at™
om is the special case where one nuclear charge
is zero; E then does not depend on R.

As a final example, the change in energy in go-
ing from the TF to the TFD theory is due to the

additional term -It, fp d7 in the energy function-
al, with ~, - 0. '74 e~. The energy change could be
estimated from the TF function without computing
the TFD function by considering E as a function of
g, , with w, = 0 corresponding to TF and x, -0, V4e

to TFD. Imagine E(It, ) to be expanded in a power
series about v, =0. If the linear term suffices,
the energy change is n, dE/dIt, = -n, f p dv,
where p is the TF density. W'e obtain then

E E = 0 SSSZ't'f y'dxe'/a, , (S)

where q is the solution to the TF equation. s Eval-
uating the integral numerically for the tabulated p
gives 0. 640, and the energy difference is -0.232
x Z"' e/a ,0as compared to -0. 2S Z"' e'/a„as
calculated directly by Gombas' [lf the expansion of
E(II, ) were made around n, =0. 'l4ee instead of 0,
the same reasoning would show the energy differ-
ence could be calculated from tt, f p tsd7 where p
is the TFD density. ]
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Pade Approximants and Inner Projections in the Brillouin-signer
Perturbation Scheme for He-hke Ions*

G. L. Bendazzo11, $ 0, Goscinskl, and G. Orlandif.
Dept talent of Quantum Chemistry, University of Uppsal~, Upps+la, Sr@eden
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The continued-fraction expansions in terms of Brillouin-Vhgner perturbation energies are
evaluated for the He-like series. They show remarkable convergence and stability proper-
ties. Both Pads approximants and perturbation energies are computed with formulas derived
by the inner-projection technique.

lmRODUnlOW
The Brillouin-Wigner (BW) perturbation series

suffers from convergence problems which, in ad-
dition to computational difficulties, made its use
relatively infrequent. Modifications of the
scheme, which cast it into a continued fraction
expansion were made by Feenberg and others.
Et is possible to derive the bounding properties of
the alternate energy approximants of Young et aE.

by showing that they can be obtained by inner pro-
jections of the reaction operator in the way suggest-
ed by I owdin, ' provided one chooses the linear
manifold considered in a specific way. It can be
seen that the upper- and lower-bound approxi-
mants can be identified as Pade approximants to
the BW series. ' In the Rayleigh-Schrodinger (RS)
case, the analogous Pade approximants showed
remarkable convergence even though one could


	Hellmann-Feynman Theorem in Thomas-Fermi and Related Theories
	Recommended Citation

	Hellmann-Feynman Theorem in Thomas-Fermi and Related Theories

