
Syracuse University Syracuse University 

SURFACE SURFACE 

Mathematics - Faculty Scholarship Mathematics 

12-2-2010 

Burkholder Integrals, Morrey's Problem and Quasiconformal Burkholder Integrals, Morrey's Problem and Quasiconformal 

Mappings Mappings 

Kari Astala 
University of Helsinki 

Tadeusz Iwaniec 
Syracuse University and University of Helsinki 

Istvan Prause 
University of Helsinki 

Eero Saksman 
University of Helsinki 

Follow this and additional works at: https://surface.syr.edu/mat 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Astala, Kari; Iwaniec, Tadeusz; Prause, Istvan; and Saksman, Eero, "Burkholder Integrals, Morrey's Problem 
and Quasiconformal Mappings" (2010). Mathematics - Faculty Scholarship. 81. 
https://surface.syr.edu/mat/81 

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for 
inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, 
please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/mat
https://surface.syr.edu/math
https://surface.syr.edu/mat?utm_source=surface.syr.edu%2Fmat%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=surface.syr.edu%2Fmat%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/mat/81?utm_source=surface.syr.edu%2Fmat%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


BURKHOLDER INTEGRALS, MORREY’S PROBLEM

AND QUASICONFORMAL MAPPINGS

KARI ASTALA, TADEUSZ IWANIEC,

ISTVÁN PRAUSE, EERO SAKSMAN

Abstract. Inspired by Morrey’s Problem (on rank-one convex func-
tionals) and the Burkholder integrals (of his martingale theory) we find
that the Burkholder functionals Bp, p > 2, are quasiconcave, when tested
on deformations of identity f ∈ Id+C∞◦ (Ω) with Bp (Df(x)) > 0 point-
wise, or equivalently, deformations such that |Df |2 6 p

p−2
Jf . In partic-

ular, this holds in explicit neighbourhoods of the identity map. Among
the many immediate consequences, this gives the strongest possible L p-
estimates for the gradient of a principal solution to the Beltrami equa-
tion fz̄ = µ(z)fz , for any p in the critical interval 2 6 p 6 1+1/‖µf‖∞.
Examples of local maxima lacking symmetry manifest the intricate na-
ture of the problem.

1. Introduction

A continuous function E : Rn×n → R is said to be quasiconvex if for

every f ∈ A+ C∞◦ (Ω,Rn) we have

(1.1) E [f ] :=

∫
Ω

E(Df) dx >
∫

Ω
E(A) dx = E(A)|Ω|,

where A stands for an arbitrary linear mapping (or its matrix) and Ω ⊂ Rn

is any bounded domain. In other words, one requires that compactly sup-

ported perturbations of linear maps do not decrease the value of the integral.

This notion is of fundamental importance in the calculus of variations as it is

known to characterize lower semicontinuous integrals [37]. A weaker notion

is that of rank-one convexity, which requires just that t 7→ E(A + tX) is

convex for any fixed matrix A and for any rank one matrix X. Rank-one

convexity of an integrand is a local condition and thus much easier to verify

than quasiconvexity. That quasiconvexity implies rank-one convexity was
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known after Morrey’s fundamental work in 1950’s, but one had to wait until

Šverák’s paper [46] to find out that the converse is not true.

However, Šverák’s example works only in dimensions n > 3, [43]. This

leaves the possibility for different outcome in dimension 2, see [26], [40] for

evidence in this direction. Morrey himself was not quite definite in which

direction he thought things should be true, see [37], [38], and [11, Sect.

9]. We reveal our own thoughts on the matter by recalling the following

conjecture in the spirit of Morrey:

Conjecture 1.1. Continuous rank-one convex functions E : R2×2 → R are

quasiconvex.

One says that E is rank-one concave (resp. quasiconcave) if −E is rank-

one convex (resp. quasiconvex), and null-Lagrangian if both quasiconvex

and quasiconcave. In the sequel we will rather discuss concavity, as this

turns out to be natural for our methods. The most famous (and, arguably,

the most important) rank-one concave function in two dimension is the

Burkholder functional from [23], defined for any 2× 2 matrix A by

(1.2) Bp (A) =
( p

2
detA + (1− p

2
)
∣∣A∣∣2 ) · |A|p−2, p > 2.

Above, we have chosen the normalization Bp (Id ) = 1 with the identity

matrix and the absolute value notation is reserved for the operator norm. It

is well known that among the wealth of important results the quasiconcavity

of the Burkholder functional would imply e.g. the famous Iwaniec conjecture

on the p-norm of the Beurling-Ahlfors operator.

The purpose of the present paper is to validate Conjecture 1.1 in an

important special case, namely for the above Burkholder functional, in case

of non-negative integrands, and for perturbations of the identity map:

Theorem 1.2. Let Ω ⊂ R2 be a bounded domain and denote by Id : Ω→ R2

the identity map. Assume that f ∈ Id + C∞◦ (Ω) satisfies Bp

(
Df(x)

)
> 0

pointwise in Ω. Then∫
Ω
Bp (Df) dx 6

∫
Ω
Bp (Id ) dx = |Ω|, p > 2,

or, written explicitly

(1.3)

∫
Ω

( p
2
J(z, f) + (1− p

2
) |Df |2

)
· |Df |p−2 6 |Ω|.
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Our proof of the above result is based on holomorphic deformations and

quasiconformal methods, and we next explain some of the relations between

the Burkholder integrals and these maps. The reader is referred to Section

3 for the needed notation. One observes that the condition Bp (Df) > 0 is

equivalent to |Df |2 6 p
p−2Jf , which actually amounts to quasiconformality

of f . In this setting our result reads as follows:

Theorem 1.3. Let f : Ω−→Ω be a K-quasiconformal map of a bounded

open set Ω ⊂ C onto itself, extending continuously up to the boundary,

where it coincides with the identity map Id(z) ≡ z. Then∫
Ω
Bp (Df) dx 6

∫
Ω
Bp (Id ) dx = |Ω|, for all 2 6 p 6

2K

K − 1
.

Further, the equality occurs for a class of (expanding) piecewise radial map-

pings discussed in Section 5.

This result says, roughly, that the Burkholder functional is quasiconcave

within quasiconformal perturbations of the identity. It is quite interesting

that indeed there is an equality in the above theorem for a large class of

radial-like maps. When smooth and p < 2K/(K − 1) these are all local

maxima for the functional, see Corollary 5.3 for details. In particular, the

identity map is a local maximum of all the Burkholder functionals in (1.2).

From the point of view of the theory of nonlinear hyperelasticity of John

Ball [9, 13] and his collaborators [3, 24], for homogeneous materials the

elastic deformations f : Ω→ Rn are minimizers of a given energy integral

(1.4) E [f ] =

∫
Ω

E(Df) dx <∞

where the so-called stored energy function E : Rn×n → R carries the me-

chanical properties of the elastic material in Ω . By virtue of the principle

of non-interpenetration of matter the minimizers ought to be injective. It

is from these perspectives that our energy-estimates, although limited to

(quasiconformal) homeomorphisms, are certainly not short of applications.

Among the strong consequences of the theorem, one obtains (with the

same assumptions as in Theorem 1.3) that

(1.5)
1

|Ω|

∫
Ω

∣∣Df(z)
∣∣ p dz 6

2K

2K − p (K − 1)
, for 2 6 p <

2K

K − 1
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with equality for piecewise power mappings, such as f(z) = |z|1−1/Kz in the

unit disk, see Corollary 4.1 below. The W 1,p-regularity ofK−quasiconformal

mappings, for p < 2K/(K − 1), was established by the first author in [4],

as a corollary of his area distortion theorem. However, there the bounds

for integrals such as in (1.5) were described in terms of unspecified con-

stants depending on the distortion K. Here we have obtained the sharp

explicit bound for the L p-integrals of the derivatives of K-quasiconformal

mappings.

Similarly, for any K-quasiregular mapping f ∈ W 1,2
loc (Ω), injective or not,

we can improve the local W 1,p-regularity to weighted integral bounds at the

borderline exponent p = 2K/(K − 1),

(1.6)

(
1

K(x)
− 1

K

) ∣∣Df(x)
∣∣ 2K
K−1 ∈ L 1

loc(Ω).

We refer to Section 3 for a more thorough discussion and Section 5 for

elaborate examples of extremal mappings.

We next describe shortly the ideas behind the proofs of our main results

which are given in Section 3. In fact we will prove a slightly generalized form

of Theorems 1.2 – 1.3, where we relax the identity boundary conditions to

asymptotic normalization at infinity. This is done in Theorem 3.5 below,

where we will interpolate between the natural end-point cases p = 2 and

p =∞. The holomorphic interpolation method used is inspired by the vari-

ational principle of thermodynamical formalism and the underlying analytic

dependence coming from holomorphic motions. The latter tools already fig-

ured prominently in the proof of the area distortion theorem [4] by the first

author.

Here these are developed to a key ingredient of our argument, a new vari-

ant of the celebrated Riesz-Thorin interpolation theorem. We believe that

the usefulness of this result may go beyond our interests here. In order to

describe this result, let (Ω, σ) be a measure space and let M (Ω, σ) denote

the class of complex-valued σ-measurable functions on Ω. The Lebesgue

spaces L p(Ω, σ) are (quasi-)normed by

‖Φ‖p =

(∫
Ω
|Φ(z)|p dσ(z)

) 1
p

, 0 < p <∞ , and ‖Φ‖∞ = ess sup
z∈Ω

|Φ(z)|
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Let U ⊂ C be a domain. We shall consider analytic families fλ of measurable

functions in Ω, i.e. jointly measurable functions (x, λ) 7→ fλ(x) defined on

Ω × U such that for each fixed x ∈ Ω the map λ → f(x, λ) is analytic in

U . The family is said to be non-vanishing if there exists a set E ⊂ Ω of

σ-measure zero such

(1.7) f(x, λ) 6= 0 for all x ∈ Ω \ E and λ ∈ U.

We state our interpolation result first in the setting of the right half plane,

U = H+ := {λ : Reλ > 0}, in order to facilitate comparison with the

Riesz-Thorin theorem:

Lemma 1.4 (Interpolation Lemma). Let 0 < p0, p1 6∞ and let {Φλ ; λ ∈
H+} ⊂ M (Ω, σ) be an analytic and non-vanishing family, with complex pa-

rameter λ in the right half plane. Assume further that for some a > 0,

M1 := ‖Φ 1‖p1 < ∞ and M0 := sup
λ∈H+

e−aReλ‖Φλ‖p0 <∞.

Then, letting Mθ :=
∥∥Φθ

∥∥
pθ

with
1

pθ
= (1− θ) · 1

p0
+ θ · 1

p1
,

we have for every 0 < θ < 1 ,

(1.8) Mθ 6 M1−θ
0 ·M θ

1 < ∞

Remark 1.5. Compared to Riesz-Thorin, our result needs the bound for

the other end-point exponent only at one single point, when λ = 1 ! How-

ever, without the non-vanishing condition the conclusion of the interpolation

lemma breaks down drastically. A simple example (where a = 0) is obtained

by taking p0 = 1, p1 =∞, and considering the family f(x, λ) =
(

1−λ
1+λ

)
g(x)

for Reλ > 0 and x ∈ Ω, for a function g ∈ L 1(Ω, σ) \
(⋃

p>1 L p(Ω, σ)
)
.

In applications one often has rotational symmetry, thus requiring a unit

disk version of the interpolation. After a Möbius transform in the param-

eter plane the interpolation lemma runs as follows (observe that we have

interchanged the roles of the indices p0 and p1 only for aesthetic reasons):

Lemma 1.6 (Interpolation Lemma for the disk). Let 0 < p0, p1 6 ∞ and

{Φλ ; |λ| < 1} ⊂ M (Ω, σ) be an analytic and non-vanishing family with

complex parameter λ in the unit disc. Suppose

M0 := ‖Φ 0‖p0 <∞, M1 := sup
|λ|<1
‖Φλ‖p1 <∞ and Mr := sup

|λ|=r

∥∥Φλ

∥∥
pr
,



6 KARI ASTALA, TADEUSZ IWANIEC, ISTVÁN PRAUSE, EERO SAKSMAN

where
1

pr
=

1− r
1 + r

· 1

p0
+

2r

1 + r
· 1

p1

Then, for every 0 6 r < 1 , we have

(1.9) Mr 6 M
1−r
1+r

0 ·M
2 r

1+r

1 < ∞

As might be expected, passing to the limit in (1.3) as p→ 2 or as p→∞
will yield interesting sharp inequalities. The first mentioned limit leads to

Corollary 1.7. Given a bounded domain Ω ⊂ R2 and a homeomorphism

f : Ω
onto−→ Ω such that

f(z)− z ∈ W 1,2
0 (Ω),

we then have

(1.10)

∫
Ω

(
1 + log |Df(z)|2

)
J(z, f) dz 6

∫
Ω
|Df(z)|2 dz

Equality occurs for the identity map, as well as for a number of piece-wise

radial mappings discussed in Section 5.

Reflecting back on Conjecture 1.1, note that the functional

F (A) =
(
1 + log |A|2

)
det(A) − |A|2

is rank-one concave. However, with growth stronger than quadratic it is not

polyconcave [9], i.e. cannot be written as a concave function of the minors of

A. According to Corollary 1.7 this functional is nevertheless quasiconcave

with respect to homeomorphic perturbations of the identity. Going to the

inverse maps yields a quasiconcavity result for the functional

(1.11) H (A) :=
1

2

|A|2

detA
+ log

(
detA

)
− log |A|, detA > 0.

This can be interpreted as a sharp integrability of log J(z, f) for planar

maps of finite distortion, see Corollary 4.3 below.

It is of course classical [39, 28] that the nonlinear differential expression

J(z, f) log |Df(z)|2 belongs to L 1
loc(Ω) for every f ∈ W 1,2

loc (Ω) whose

Jacobian determinant J(z, f) = detDf(z) is nonnegative. The novelty in

(1.10) lies in the best constant C = 1 in the right hand side, and the proof

of L logL -integrability of the Jacobian is new.

In turn, the limit p→∞ yields the following sharp inequality.



BURKHOLDER INTEGRALS AND QUASICONFORMAL MAPPINGS 7

Corollary 1.8. Denote by S the Beurling-Ahlfors operator (defined in (3.6))

and assume that µ is a measurable function with |µ(z)| 6 χD(z) for every

z ∈ C. Then

(1.12)

∫
D

(
1− |µ(z)|

)
e|µ(z)| ∣∣exp(Sµ(z))

∣∣ dz 6 π.

Equality occurs for an extensive class of piece-wise radial mappings discussed

in Section 5.2.

Prior to the above result, it was known that the area distortion results

[4] yield the exponential integrability of Re Sµ under the strict inequality

‖µ‖∞ < 1, see [5, p. 387].

The proofs of the Corollaries are found in Section 4. Section 5 contains

further observations on the Burkholder functionals. For example, their local

maxima are discussed and new conjectures are posed also in the higher

dimensional setup. We finally mention that an extension of Burkholder

functionals to all real values of the exponent p is given in Section 3.

2. Proof of the Interpolation Lemma

Before embarking into the proof, let us remark that often analytic families

of functions are defined by considering analytic functions having values in

the Banach space L p(Ω, σ) for p > 1. In this case it is well-known (e.g.

[45, Thm. 3.31]) that one may define analyticity of the family by several

equivalent conditions, e.g. by testing elements from the dual. This notion

agrees with the definition given in the introduction, see [5, Lemma 5.7.1].

Proof of Lemma 1.4. We may, and do, assume that M0 = 1 and that a = 0;

the case a > 0 reduces to this by simply considering the analytic family

e−aλΦλ(x). Similarly by taking restrictions we may assume σ(Ω) <∞.

We first consider the case 0 < p0, p1 <∞, and establish the result in the

situation where for a fixed A ∈ (1,∞) there is the uniform bound

(2.1)
1

A
6 |Φλ(x)| 6 A for all λ ∈ H+ and x ∈ Ω.

This is to ensure that all of our integrals and computations below are mean-

ingful. At the end of the proof we get rid of this extra assumption.

Let θ ∈ (0, 1) be given as in the statement of the lemma. First, we will

find the support line to the convex function 1
p 7→ log ‖Φθ‖p at 1

pθ
. We are
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looking for a function up(θ) with the following properties,

(2.2) up(θ) =
1

p
I + u∞(θ) 6 log ‖Φθ‖p and upθ(θ) = log ‖Φθ‖pθ ,

where I and u∞(θ) are independent of p. Using the concavity of the loga-

rithm function we can write down these terms explicitly. Indeed, by concav-

ity, for any probability density ℘(x) on Ω and for any exponent 0 < p <∞,

1

p

∫
Ω
℘(x) log

(
|Φθ(x)|p

℘(z)

)
dσ 6 log ‖Φθ‖p,

where equality holds for p = pθ with the following choice of density

(2.3) ℘(x) :=

∣∣Φθ(x)
∣∣pθ∫

Ω

∣∣Φθ(y)
∣∣pθ dσ(y)

,

∫
Ω
℘(x) dσ(x) = 1.

It is useful to note that because of our assumptions (2.1), the ℘ is uniformly

bounded from above and below. With this in mind we find the coefficients

in (2.2), by using the fixed density (2.3) and by writing

I :=

∫
Ω
℘(x) log

(
1

℘(z)

)
dσ and u∞(θ) :=

∫
Ω
℘(x) log |Φθ(x)| dσ.

The key idea in this representation is that we may embed the line up(θ)

in a harmonic family of lines parametrized by λ ∈ H+,

up(λ) :=
1

p
I + u∞(λ) =

1

p

∫
Ω
℘(x) log

(
|Φλ(x)|p

℘(z)

)
dσ.

It is important to notice that we kept the slope I fixed and because of the

non-vanishing assumption the constant term u∞(λ) becomes a harmonic

function of λ. Again, in view of Jensen’s inequality we have the envelope

property, the analogue of (2.2) for all λ ∈ H+ and 0 < p 6∞,

(2.4) up(λ) 6 log ‖Φλ‖p and upθ(θ) = log ‖Φθ‖pθ .

By our assumptions, for p = p0 we thus have up0(λ) 6 log ‖Φλ‖p0 6 0 for

all λ ∈ H+. Here Harnack’s inequality for nonpositive harmonic functions in

H+ takes a particularly simple form when restricted to the interval θ ∈ (0, 1):

(2.5) up0(θ) 6 θ up0(1) for θ ∈ (0, 1).
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Finally combining the estimates (2.4) and (2.5) yields

log ‖Φθ‖pθ = upθ(θ) = up0(θ) +

(
1

pθ
− 1

p0

)
I

6 θ up0(1) + θ

(
1

p1
− 1

p0

)
I

= θ up1(1) 6 θ logM1,

which is exactly what we aimed to prove.

The argument can easily be adapted to accommodate the cases when p0 =

∞ or p1 =∞. We will instead use a limiting argument. First, normalize to

σ(Ω) = 1, then ‖ · ‖p increases with p and one has ‖f‖∞ = limp→∞ ‖f‖p.
Hence, as (2.1) holds, we obtain the desired result by approximating the

possibly infinite exponents by finite ones.

Let us finally dispense with the extra assumption (2.1). Since the removal

of a null set from Ω is allowed, we may assume that the non-vanishing

condition holds for every x ∈ Ω, i.e. one may take E = ∅ in (1.7). Choose

first a family ϕn(λ) of Möbius transformations such that

ϕn(1) = 1, lim
n→∞

ϕn(λ) = λ, λ ∈ H+, and ϕn(H+) ⊂ H+, n ∈ N,

and let for any positive integer k,

(2.6) Ωn,k := {x ∈ Ω : |Φλ(x)| ∈ [1/k, k] for all λ ∈ ϕn(H+) }.

The measurable sets Ωn,k fill the space,
⋃∞
k=1 Ωn,k = Ω. Moreover, for each

fixed integer k > 1 the non-vanishing analytic family

(x, λ) 7→ Φϕn(λ)(x), x ∈ Ωn,k, λ ∈ H+,

satisfies the uniform bound (2.1), and thus we may interpolate it. Letting

k →∞ gives ‖Φϕn(θ)‖pθ 6M θ
1 , and the claim (1.8) follows by Fatou’s lemma

taking a second limit n→∞. �

We remark that the Harnack inequality used above can be deduced from

the standard Harnack inequality in the unit disc u(w) 6 1−|w|
1+|w| u(0) by a

change of variables λ = (1−w)/(1 +w). The very same change of variables

allows one to deduce Lemma 1.6 for the values λ ∈ (0, 1) as a consequence

of Lemma 1.4, and rest follows from rotational symmetry.
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3. Proofs of the Main Theorems

We start with some preliminaries. Our goal is to apply the Interpolation

Lemma 1.6 in estimating the variational integrals such as (1.3), and therefore

we look for analytic and nonvanishing families of gradients of mappings. In

view of the Lambda-lemma [36] this takes us to the notion of quasiconformal

mappings. By definition, in any dimension n > 2 these are homeomorphisms

f : Ω → Ω′ in the Sobolev class W 1,n
loc (Ω) for which the differential matrix

Df(x) ∈ Rn×n and its determinant are coupled in the distortion inequality,

(3.1) |Df(x)|n 6 K(x) detDf(x) , where |Df(x)| = max
|ξ|=1

|Df(x)ξ|,

for some bounded function K(x). The smallest K(x) > 1 for which (3.1)

holds almost everywhere is referred to as the distortion function of the map-

ping f . We call f K-quasiconformal if K(f) := ‖K(x)‖∞ 6 K.

In dimension n = 2 it is useful to employ complex notation by introducing

the Cauchy-Riemann operators

∂f = fz =
∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
and ∂̄f = fz̄ =

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
Writing

|Df(z)| = |fz| + |fz̄| and det Df(z) = J(z, f) = |fz|2 − |fz̄|2,

we see that for a planar Sobolev homeomorphism f the K-quasiconformality

simplifies to a linear equation

(3.2) fz̄ = µ(z)fz

called the Beltrami equation. Here the dilatation function µ is measurable

and satisfies ‖µ‖∞ =: k = K−1
K+1 < 1.

The Beltrami equation will then enable holomorphic deformations of the

homeomorphism f and of its gradient. Indeed, under a proper normalization

the solutions to (3.2) and their derivatives depend holomorphically on the

coefficient µ, see [5, p. 188].

For choosing the normalization, recall that Theorems 1.2 - 1.3 consider

identity boundary values, and thus mappings that extend conformally out-

side Ω. We therefore look for solutions to (3.2) defined in the entire plane C,

with the dilatation µ vanishing outside the domain Ω. On the other hand,
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the identity boundary values cannot be retained under general holomorphic

deformations; one needs to content with the asymptotic normalization

(3.3) f(z) = z + b1z
−1 + b2z

−2 + · · · , for |z| → ∞

Global W 1,2
loc -solutions to (3.2) with these asymptotics are called principal

solutions. They exist and are unique for each coefficient µ supported in the

bounded domain Ω, and each of them is a homeomorphism. They can be

found simply in the form of the Cauchy transform

(3.4) f(z) = z +
1

π

∫
C

ω(ξ) dξ

z − ξ
, where ω = fz̄ ∈ L 2(C)

Substituting ω := fz̄ into (3.2) yields a singular integral equation for the

unknown density function ω ∈ L 2(C),

(3.5) ω − µSω = µ ∈ L 2(C)

Here the Beurling Transform, a Calderón-Zygmund type singular integral,

(3.6) Sω = − 1

π

∫
C

ω(ξ) dξ

(z − ξ)2
= fz − 1

is an isometry in L 2(C), whence (3.5) can be solved by the Neumann se-

ries. We refer to the well-known monographs [1], [30] and [5] for the basic

properties and further details on quasiconformal mappings.

Regularity results in W 1,p
loc originated in [18], [19], where S was considered

on L p for suitable exponents p > 2. As a Calderón-Zygmund operator S is

bounded in L p, but determining here the operator norm is a much harder

question. The as yet unsolved conjecture [31] of Iwaniec asserts that

Conjecture 3.1. For all 1 < p <∞ it holds

(3.7) ‖S‖L p(C) = p∗ − 1 :=

{
p− 1 , if 2 6 p <∞
1/(p− 1) , if 1 < p 6 2

As mentioned in the introduction, the full quasiconcavity of the Burkholder

functional Bp would, among its many potential consequences, imply also

(3.7). This follows from another very useful inequality of Burkholder [23].

Namely, with the positive constant Cp = p
(

1− 1
p

)1−p
for p > 2 , we have

Cp ·
(
|fz|p −(p−1)p|fz̄|p

)
6
(
|fz| − (p−1) |fz̄|

)
·
(
|fz| + |fz̄|

)p−1 ≡ Bp(Df)

Thus Burkholder’s functional can be viewed as a rank-one concave envelope

of the p-norm functional of the left hand side. It is because of this connection
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why Morrey’s Problem becomes relevant to Conjecture 3.1. For precise

statements and further information on related topics we refer to [14, 16, 23,

47].

It is also appropriate to note that the origin of the Burkholder functional

lies in Burkholder’s groundbreaking work on sharp estimates for martingales

[20] - [23]. This work has been later on extended in various ways, including

applications to computing optimal or almost optimal estimates for norms of

singular integrals, e.g. of the Beurling-Ahlfors operator. Also the Bellman

function techniques (see e.g. [41]) are closely related. We mention only [15],

[17], [23], [25], [27], [41], [42], [44], [47] and refer to the recent survey [14]

for a wealth of information and an extensive list of references.

We next recall some standard facts on smooth approximation of principal

solutions of the Beltrami equation. Especially, we have a special interest

in the Jacobian and whether it is strictly positive. Schauder’s regularity

theory of elliptic PDEs with Hölder continuous coefficients becomes useful.

It applies to general quasilinear Beltrami systems, see Theorem 15.0.7 in [5].

∂f

∂z̄
= µ(z, f)

∂f

∂z
+ ν(z, f)

∂f

∂z
, |µ(z, f)|+ |ν(z, f)| 6 k < 1

where the coefficients µ , ν ∈ C α(C × C) , 0 < α < 1 . Accordingly, every

solution f ∈ W 1,2
loc (C×C) is C 1, α

loc -regular. Of course, if f is quasiconformal,

then the inverse map h(w) = f−1(w) is also C 1, α
loc -regular since it solves

similar system
∂h

∂w̄
= −ν(h,w)

∂h

∂w
− µ(h,w)

∂h

∂w
Thus, we have

Lemma 3.2 (C 1, α-regularity). The principal solution of the Beltrami equa-

tion (3.2) in which µ ∈ C α(C) , 0 < α < 1 , is a C 1, α(C) - diffeomorphism.

In particular, |fz|2 > J(z, f) > 0 , everywhere.

As might be expected, almost everywhere convergence of the Beltrami

coefficients yields W 1, 2
loc - convergence of the principal solutions. The precise

statement reads as follows:

Lemma 3.3 (Smooth Approximation). Suppose the Beltrami coefficients

µ
`
∈ C∞◦ (Ω) satisfy |µ

`
(z)| 6 k < 1 , for all ` = 1, 2, ..., and converge

almost everywhere to µ . Then the associated principal solutions f ` : C→
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C are C∞-smooth diffeomorphisms converging in W 1, 2
loc (C) to the principal

solution of the limit equation fz̄ = µ(z)fz .

Every measurable Beltrami coefficient satisfying |µ(z)| 6 k χΩ(z) , 0 6

k < 1 , can be approximated this way.

As the last of the preliminaries, in applying the Interpolation Lemma 1.6

we will need sharp L 2-estimates of gradients, valid for all complex defor-

mations of a given mapping. For the principal solutions in the unit disk D,

these result from the classical Area Theorem (see e.g.[5, p. 41]).

Lemma 3.4 (Area Inequality). The area of the image of the unit disk under

a principal solution in D does not exceed π. It equals π if and only if the

solution is the identity map outside the disk.

Let us recall a proof emphasizing the null-Lagrangian property of the Jaco-

bian determinant. On the circle we have the equality f(z) = g(z) , where

g ∈ W 1,2(D) is given by g(z) = z +
∑
n>1

bn z̄
n , for |z| 6 1 . This yields∫

D
J(z, f) dz =

∫
D
J(z, g) dz =

∫
D

(
1− |gz̄(z)|2

)
dz 6 π

Equality occurs if and only if gz̄ ≡ 0 , meaning that all the coefficients bn

vanish.

Having disposed of these lemmas, we can now proceed to the proof of

the main integral estimate, where in the complex notation the Burkholder

functional takes the form

(3.8) B p
Ω [f ] :=

∫
Ω

(
|fz| − (p− 1) |fz̄|

)
·
(
|fz| + |fz̄|

)p−1
dz , p > 2.

We will actually deduce (1.3) from a slightly more general result, where we

relax the identity boundary values and allow principal mappings:

Theorem 3.5 (Sharp L p-inequality). Let f : C → C be the principal

solution of a Beltrami equation;

(3.9) fz̄(z) = µ(z) fz(z) , |µ(z)| 6 k χD(z) , 0 6 k < 1,

in particular, conformal outside the unit disk D.

Then, for all exponents 2 6 p 6 1 + 1/k, we have

(3.10)

∫
D

(
1 − p |µ(z)|

1 + |µ(z)|

) (
|fz(z)|+ |fz̄(z)|

) p
dz 6 π.
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Equality occurs for some fairly general piecewise radial mappings discussed

in Section 5.

The above form of the main result gives a flexible and remarkably precise

local description of the L p-properties of derivatives of a quasiconformal

map, especially interesting in the borderline situation p = 1 + 1/k. Indeed,

combined with the Stoilow factorization, the theorem gives for any W 1,2
loc (Ω)-

solution to (3.9), injective or not, the estimate

(3.11)
(
k − |µ(z)|

) ∣∣Df(z)
∣∣ 1+1/k ∈ L 1

loc(Ω).

Thus for all K-quasiregular mappings we obtain optimal weighted higher

integrability bounds at the borderline case p = 2K/(K−1). For p below the

borderline, the W 1,p
loc -regularity was established already in [4]. The borderline

integrability was previously covered [7] only in the very special case |µ| =

k · χE , for E ⊂ D, in Theorem 3.5.

The proof of Theorem 3.5 applies the Interpolation lemma in conjunction

with analytic families of quasiconformal maps. However, the choice of the

specific analytic family for our situation is quite non-trivial, in order to

enable sharp estimates. In a sense the speed of the change with respect to

the analytic parameter must be localized in a delicate manner, see (3.14)

below.

Proof of Theorem 3.5. Given a principal solution f to (3.9), with µ(z) ≡ 0

for |z| > 1, we are to prove the integral bounds (3.10). There is no loss of

generality in assuming that µ ∈ C∞◦ (D) , for if not, we approximate µ with

C∞◦ -smooth Beltrami coefficients, and, thanks to Fatou’s lemma, there is no

difficulty in passing to the limit in (3.10). On the other hand, this reduction

could be avoided by using the argument of Remark 3.6 below.

With this assumption we fix an exponent 2 6 p 6 1 + ‖µ‖−1
∞ and look for

holomorphic deformations of the given function f , via an analytic family of

Beltrami equations together with their principal solutions,

(3.12) F λz̄ = µ
λ
(z)F λz , µ

λ
(z) = τλ(z) · µ(z)

|µ(z)|
Here τλ(z) is an analytic function in λ to be chosen later with |τλ(z)| < 1.

We aim to explore Interpolation in the disk, Lemma 1.6, by applying it to
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a suitable non-vanishing analytic family constructed from the derivatives of

F λ(z). Hence the question is the right choice of τλ.

We want F 0(z) ≡ z, thus τ0(z) ≡ 0, while for some value λ = λ◦ we

need to have τλ◦(z) = |µ(z)|, so that f = F λ◦ . Comparing the exponents in

(3.10) and in Lemma 1.6 suggests that we choose

(3.13) p = 1 +
1

λ◦
, p0 =∞, p1 = 2.

These conditions will then be confronted with the need of weighted L 2-

bounds consistent with the inequality (3.10).

To make the long story short, we choose

(3.14) µ
λ
(z) = τλ(z) · µ(z)

|µ(z)|
, where

τλ(z)

1 + τλ(z)
= p · |µ(z)|

1 + |µ(z)|
· λ

1 + λ
,

or more explicitly,

µ
λ
(z) =

p λµ(z)

(1 + λ) (1 + |µ(z)| ) − p λ |µ(z)|

The complex parameter λ runs over the unit disk, |λ| < 1 . One may

visualize λ 7→ τλ(z) as the conformal mapping from the unit disk onto the

horocycle {
w ∈ D : 2 Re

(
w

1 + w

)
< p · |µ(z)|

1 + |µ(z)|

}
determined by the weight function in (3.10).

From (3.14) one readily sees that |µ
λ
(z)| 6 |λ|χD(z), furthermore µ

λ
∈

C α(C) , 0 < α 6 1 . Therefore the equation (3.12) admits a unique principal

solution F λ : C → C , which is a C 1, α - diffeomorphism. It depends ana-

lytically [2] on the parameter λ , as seen by developing (3.5) in a Neumann

series, and we have

|F λz |2 > |F λz |2 − |F λz̄ |2 = J(z, F λ) > 0 , everywhere in C.

Moreover, F 0(z) = z with F λ◦ = f , where λ◦ was defined by (3.13).

As the non-vanishing analytic family {Φ
λ
}|λ|<1

we choose

(3.15) Φ
λ
(z) = F λz (z)(1 + τλ(z)).

Explicitly,

Φ
λ
(z) =

(1 + λ) (1 + |µ(z)| ) F λz (z)

(1 + λ) (1 + |µ(z)| ) − p λ |µ(z)|
6= 0 , for all z ∈ D
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Furthermore, since F λ◦ ≡ f , F λ◦z ≡ fz ,

(3.16) |Φλ◦(z)| = (1 + |µ(z)| ) |fz| = |fz| + |fz̄| = |Df |

We shall then apply the Interpolation Lemma 1.6 in the measure space

M (D , σ) over the unit disk, where

dσ(z) =
1

π

(
1 − p |µ(z)|

1 + |µ(z)|

)
dz

We start with the centerpoint λ = 0, where the Beltrami equation reduces

to the complex Cauchy-Riemann system Fz̄ ≡ 0 with principal solution the

identity map. Hence F 0
z ≡ 1 , Φ0(z) ≡ 1 and M0 = ‖Φ0‖∞ = 1 .

The estimate M1 = supλ∈D ‖Φλ‖2 6 1 requires just a bit more work.

First, in view of Lemma 3.4,∫
D
J(z, F λ) dz 6 π

with equality if and only if F λ(z) ≡ z outside the unit disk. Here we find

from (3.14) that

J(z, F λ) = |F λz (z)|2(1− |µλ(z)|2) = |Φλ(z)|2
(

1− 2 Re
τλ(z)

1 + τλ(z)

)
=

|Φλ(z)|2
(

1− p |µ(z)|
1 + |µ(z)|

Re
2λ

1 + λ

)
> |Φλ(z)|2

(
1− p |µ(z)|

1 + |µ(z)|

)

Hence

|Φ
λ
(z)|2 dσ(z) 6

1

π
J(z, F λ) dz

and, therefore,

M1 = sup
|λ|<1

∫
D
|Φ

λ
(z)|2 dσ(z) 6 sup

|λ|<1

1

π

∫
D
J(z, F λ) dz 6 1

We are now ready to interpolate. For every 0 6 r < 1 , in view of the

interpolation lemma, we have

Mr = sup
|λ|=r

‖Φ
λ
‖ 1+r

r
6M

1−r
1+r

0 M
2r

1+r

1 6 1.

It remains to substitute r = 1
p−1 = λ◦ . The desired inequality is now

immediate,∫
D

(
1− p |µ(z)|

1 + |µ(z)|

) ∣∣Df(z)
∣∣ p dz = π

∫
D

∣∣Φλ◦(z)
∣∣ 1+r
r dσ(z) 6 π
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�

Proof of Theorems 1.2 and 1.3. To infer Theorem 1.3 we extend f as the

identity outside Ω. Since Ω is bounded,
∫

Ω |Df |
2 6 K

∫
Ω J(x, f) < ∞ so

that f ∈ W 1,2(Ω). But then one easily verifies that the extended function

f defines an element of W 1,2
loc (C), and accordingly, a K-quasiconformal map

of the entire plane.

Consider then a disk DR ⊃ Ω. By re-scaling, if necessary, Inequality

(3.10) applies to DR in place of the unit disk and with |DR| in place

of π. This yields Bp
DR

[f ] 6 Bp
DR

[Id]. On the other hand Bp
DR\Ω[f ] =

Bp
DR\Ω[Id] , by trivial means. Hence Theorem 1.3 follows.

Theorem 1.2, in turn, is a direct consequence of Theorem 1.3. The

pointwise condition Bp (Df) > 0 for f = z + h(z), together with the

boundary condition h ∈ C∞0 (Ω), ensures that f represents a (smooth) K-

quasiconformal homeomorphism of Ω having identity boundary values. Here

p and K are related by p = 2K/(K − 1) and we may apply Theorem 1.3 at

the borderline exponent. �

Remark 3.6. Above we employed a standard approximation by smooth home-

omorphisms in order to easily ensure that our analytic family of quasicon-

formal maps has non-vanishing Jacobian everywhere. It might be of interest

to observe that actually all analytic families of ∂z-derivatives of quasicon-

formal maps are non-vanishing, i.e. non-vanishing outside a common set

of measure zero. This can be deduced via a standard reduction from the

following result:

Lemma 3.7. Assume that the measurable dilatation µλ depends analytically

on the parameter λ ∈ U , where U ⊂ C is a domain. Suppose also that

|µλ| 6 aχΩ for some 0 6 a < 1, for all λ ∈ U .

Let f = f(λ, z) be the principal solution of the Beltrami equation fz̄ =

µλfz. Then λ→ fz yields a non-vanishing analytic family.

Proof. By localization we may assume that U = D. If the µλ are smooth

functions of the z-variable, the non-vanishing property is due to Lemma 3.2.

For a general non-smooth µλ we introduce the mollification µλ,n := φ1/n∗µλ,

where φε is a standard approximation of identity. Then for any compact
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subset K ⊂ D

(3.17) lim
n→∞

sup
λ∈K
‖µλ,n − µλ‖L p(Ω) = 0 for any p > 1.

Denoting by fn = fn(λ, z) the principal solution corresponding to µλ,n and

by choosing p large enough, we may utilize [5, Lemma 5.3.1], to see that

‖(fn)z − fz‖2 → 0, uniformly in λ ∈ K.

Next, developing the L 2(Ω)-valued analytic functions fz and (fn)z as a

power series in λ, we see from Cauchy’s formula that the Taylor coefficients

of (fn)z converge in L 2(Ω) to those of fz. Thus, moving to a subsequence

if needed, we have outside a set E ⊂ Ω of measure zero,

(3.18) (fn)z(λ, z)→ fz(λ, z), local uniformly in λ ∈ D.

Now, according to Hurwitz’s theorem, the limit of a sequence of non-

vanishing analytic functions converging locally uniformly is either every-

where non-zero, or identically zero. Choosing a parameter λ0, the deriva-

tive fz(λ0, ·) can vanish only on a set E0 of measure zero [5, Corollary 3.7.6].

Thus fz(λ, z) 6= 0 for every λ ∈ D and every z ∈ Ω \ (E ∪ E0). �

The notions of quasiconvexity and rank-one convexity extend to functions

defined on an open subset O ⊂ R2×2. Rank-one convexity now demands that

for any A ∈ O and rank-one matrix X ∈ R2×2 the map t 7→ E(A + tX) is

convex in a neighbourhood of zero. The condition for being rank-one concave

or null Lagrangian is modified analogously. Similarly, in the definition of

quasiconvexity (1.1) one simply restricts to linear maps A and perturbations

f ∈ A+ C∞0 (Ω) such that Df(z) ∈ O for all z ∈ Ω.

With the above generalized definitions in mind we next explore a dual

formulation to Theorem 1.3, i.e. we will pass via the inverse map from ex-

pansion estimates to compression estimates. In doing so, we shall restrict

to the space O = R2×2
+ consisting of matrices with positive Jacobian deter-

minant. The inverse functional takes the form

Ê(A) := E(A−1) · detA, detA > 0,

and it preserves rank-one convexity, quasiconvexity as well as polyconvex-

ity [10, p. 211]. One should also note that for φ ∈ C∞0 (Ω) the condition

Df(z) = A + Dφ(z) ∈ R2×2
+ for all z ∈ Ω automatically implies that f is a

diffeomorphism f : Ω→ A(Ω). This enables one to switch to inverse map if
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needed. Our main observation here is that the procedure of taking inverse

functionals naturally leads to a full one-parameter family of Burkholder

functionals.

Let us recall the standard case (1.2) where one now includes all exponents

p > 1,

Bp (A) =
( p

2
detA +

(
1− p

2

)
|A|2

)
· |A|p−2 , p > 1

We set for p 6 1,

Bp (A) :=
( p

2
|A|2 +

(
1− p

2

)
detA

)
· |A|−p · (detA) p−1 , detA > 0.

Then the functionals Bp are homogeneous of degree p, depend continuously

on p, and we have for the inverse transformation B̂p = Bq, where p+ q = 2.

These facts justify the definitions. Note that, in particular, we recover the

null-Lagrangian cases p = 0 and p = 2 as smooth phase transition points

between the rank-one convex and rank-one concave regimes:

Proposition 3.8. In the space of matrices A ∈ R2×2
+

(3.19) A 7→ Bp(A) is

 rank-one convex if 0 6 p 6 2
null-Lagrangian if p = 0 or p = 2
rank-one concave if p 6 0 or p > 2.

The standard case of p > 1 above goes back to Burkholder [23] and the rest

follows from applying the inverse transformation. In the complex notation

we have, for any p ∈ R,

B p
Ω [f ] =

∫
Ω

Bp(Df) =

∫
Ω

(
|fz| ∓ (p− 1) |fz̄|

)
·
(
|fz| ± |fz̄|

)p−1
dz ,

where ± stands for the sign of (p− 1).

Another application of the inverse transformation, this time to Theorem

1.3 leads to

Theorem 3.9. Let f : Ω−→Ω be a K-quasiconformal map of a bounded

open set Ω ⊂ C onto itself, extending continuously up to the boundary,

where it coincides with the identity map Id(z) ≡ z. Then

(3.20) B p
Ω [f ] 6 B p

Ω [Id ] for all − 2

K − 1
6 p 6 0 .

Further, the equality occurs for a class of (compressing) piecewise radial

mappings discussed in Section 5.
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4. Sharp L logL , L p and Exponential integrability

The sharp integral inequalities provided by Theorems 3.5 and 1.3 give us

a number of interesting consequences. We start with the following optimal

form of the Sobolev regularity of K-quasiconformal mappings.

Corollary 4.1. Suppose Ω ⊂ C is any bounded domain and f : Ω → Ω

is a K−quasiconformal mapping, continuous up to ∂Ω, with f(z) = z for

z ∈ ∂Ω. Then

(4.1)
1

|Ω|

∫
Ω

∣∣Df(z)
∣∣ p dz 6

2K

2K − p (K − 1)
, for 2 6 p <

2K

K − 1

The estimate holds as an equality for f(z) = z|z|1/K−1, z ∈ D, as well for a

family of more complicated maps described in Section 5.2.

Proof. Inequality (4.1) is straightforward consequence of Theorem 1.3, since

for p < 2K/(K − 1) we have pointwise Bp

(
Df(x)

)
> |Df(x)|p 2K− p (K−1)

2K .

�

We next introduce yet another rank one-concave variational integral, sim-

ply by differentiating B p
Ω [f ] at p = 2 ,

(4.2) FΩ [f ] := lim
p↘2

B p
Ω [f ] − B 2

Ω [f ]

p − 2
=

1

2

∫
Ω

[ (
1 + log |Df(z)|2

)
J(z, f) dz − |Df(z)|2 dz

]
The nonlinear differential expression J(z, f) log |Df(z)|2 , for mappings with

nonnegative Jacobian, is well known to be locally integrable, see [28] for the

following qualitative local estimate on concentric balls B ⊂ 2B ⊂ Ω ,

(4.3) −
∫
B
J(z, f) log

(
e+

|Df(z)|2
−
∫
B
|Df |2

)
dz 6 C −

∫
2B
|Df(z)|2dz

see also Theorem 8.6.1 in [34]. However, for global estimates one must

impose suitable boundary conditions on f . For example, global L log L (Ω)

estimates follow from (4.3) if f extends beyond the boundary of Ω with

finite Dirichlet energy and nonnegative Jacobian determinant. This is the

case, in particular, when f(z)− z ∈ W 1,2
0 (Ω) .

Let us denote the class of homeomorphisms f ∈ W 1,2
loc (C) which coincide

with the identity map outside a compact set by W 1,2
id (C) . It is useful to
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observe (see e.g. [5, Thm. 20.1.6]) that such a map is automatically uni-

formly continuous. Further, the C∞-smooth diffeomorphisms in W 1,2
id (C)

are dense. Precisely, one has

Lemma 4.2 (Approximation Lemma, [33, Thm. 1.1] ). Given any home-

omorphism f ∈ W 1,2
id (C) , one can find C∞-smooth diffeomorphisms f ` ∈

W 1,2
id (C) , ` > 1 , such that

‖f ` − f‖∞ + ‖D(f ` − f )‖L 2(C) → 0, as `→∞.

Passing to a subsequence if necessary, we may ensure that Df ` −→ Df

almost everywhere.

With estimates for the Burkholder integrals we now arrive at sharp global

L log L (Ω) bounds.

Proof of Corollary 1.7. Upon the extension as identity outside Ω , f ∈
W 1,2

id (C) . We use the sequence { f ` } in the approximation Lemma 4.2,

and view each f ` as a principal solution to its own Beltrami equation

f `z̄ = µ`(z) f
`
z , |µ`(z)| 6 k` < 1 , µ`(z) = 0 , for |z| > R.

where R is chosen, and temporarily fixed, large enough so that Ω ⊂ DR =

{z : |z| < R} . It is legitimate to apply Theorem 1.3 for each of the maps

f ` : DR → DR ,

Bp
DR

[f `] 6 |DR| = B2
DR

[f `] , whenever 2 6 p 6 1 + k−1
`

Letting p↘ 2 we obtain

(4.4)

∫
DR

(
1 + log |Df `(z)|2

)
J(z, f `) dz 6

∫
DR

|Df `(z)|2 dz

Convergence theorems in the theory of integrals let us pass to the limit when

`→∞ , as follows ∫
DR

J(z, f)
[
1 + log |Df(z)|2

]
dz =∫

DR

J(z, f)
[
1 + log(1 + |Df |2)

]
dz −

∫
DR

J(z, f)
[

log(1 + |Df |−2)
]

dz

6 lim inf
`→∞

∫
DR

J(z, f `)
[
1 + log(1 + |Df `|2)

]
dz

− lim
`→∞

∫
DR

J(z, f `) log
(

1 + |Df `|−2
)

dz
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Here the (lim inf)-term is justified by Fatou’s theorem while the (lim)-term

by the Lebesgue dominated convergence, where we observe that the inte-

grand is dominated point-wise by J(z, f `) |Df `|−2 6 1. The lines of com-

putation continue as follows

= lim inf
`→∞

∫
DR

J(z, f `)
[
1 + log |Df `|2

]
dz 6

lim inf
`→∞

∫
DR

|Df `|2 dz =

∫
DR

|Df(z)|2 dz

Finally, we observe that∫
DR\Ω

J(z, f)
[
1 + log |Df(z)|2

]
dz =

∫
DR\Ω

|Df(z)|2 dz ,

which combined with the previous estimate yields (1.10), as desired. �

The above energy functional can be further cultivated by applying the

inverse map, as described at the end of Section 3. A search of minimal

regularity in the corresponding integral estimates leads us to mappings of

integrable distortion.

Corollary 4.3. Let Ω ⊂ R2 be a bounded domain, and suppose h ∈ W 1,1
loc (Ω)

is a homeomorphism of Ω such that h(z) = z for z ∈ ∂Ω. Assume h satisfies

the distortion inequality

|Dh(z)|2 6 K(z)J(z, h), a.e in Ω,

where 1 6 K(z) < ∞ almost everywhere in Ω. The smallest such function,

denoted by K(z, h), is assumed to be integrable. Then

(4.5) 2

∫
Ω

log |Dh| − log J(z, h) 6
∫

Ω
K(z, h)− J(z, h)

In particular, log J(z, h) is integrable. Again there is a wealth of functions,

to be described in Section 5, satisfying (4.5) as an identity.

Note that in fact

K(z, h) =

{
|Dh(z)|2
J(z,h) , if J(z, h) > 0,

1, otherwise.

Thus according to the corollary, the functional H (A) in (1.11) is quasicon-

vex at A = Id, in its entire natural domain of definition O = R2×2
+ .
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Proof of Corollary 4.3. It was observed in [6] that if h : Ω→ h(Ω) is a home-

omorphism of Sobolev class W 1,2
loc (Ω) with integrable distortion K(z, h) ∈

L 1(Ω), then its inverse map f = h−1 : h(Ω)
onto→ Ω belongs to W 1,2(h(Ω))

and one has

(4.6)

∫
h(Ω)
|Df |2 =

∫
Ω
K(z, h).

Enhancement of this identity for mappings h ∈ W 1,1
loc (Ω) is given in [29].

In our situation f(z) − z = h−1(z) − z is continuous in Ω, vanishes on

∂Ω, and belongs to W 1,2(Ω). It is well-known that this implies f(z) ∈
z + W 1,2

0 (Ω). Thus it is legitimate to apply Corollary 1.7 to deduce

(4.7)

∫
Ω

1 + 2 log
( |Dh|
J(z, h)

)
6
∫

Ω
K(z, h).

Here we used the identity |A−1| = |A|/ det(A) and a change of variable, made

legitimate by the fact that f is a homeomorphism of Sobolev class W 1,2(Ω).

The claim obviously follows from (4.7), and Hadamard’s inequality yields

the logarithmic integrability,

−
∫

Ω
log J(z, h) 6 2

∫
Ω

log |Dh| − log J(z, h),

with equality here for the indentity mapping. �

In particular, the Jacobian of a map with integrable distortion cannot

approach zero too rapidly. This result is in fact known [35], the novelty in

(4.5) is the sharpness.

We next turn to the exponential integrability results, which will follow

from Theorem 3.5 at the limit p→∞.

Proof of Corollary 1.8. Let us assume we are given a function µ, supported

in D with |µ(z)| 6 1 for all z ∈ D. We then consider the principal solution

f of the Beltrami equation fz = εµfz and apply Theorem 3.5 with k = ε

and p = 1 + 1/ε to obtain

(4.8)

∫
D

(
1− |µ(z)|
1 + ε|µ(z)|

) ∣∣Df(z)
∣∣1+1/ε

dz 6 π.

By applying the Cauchy-Schwarz inequality and the L 2-isometric property

of S, wee see that for almost every z ∈ D, developing (3.5)-(3.6) to a Neu-

mann series represents fz as a power series in ε, with convergence radius
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> 1. Hence

fz = 1 + εSµ+O(ε2) for a.e. z ∈ D.

We may use this to compute pointwise

(1 + 1/ε) log |Df | = (1 + 1/ε)
(

log(1 + ε|µ|) + log |fz|
)

= |µ|+ Re Sµ+O(ε).

Hence
∣∣ Df ∣∣1+1/ε

= exp(|µ|+ Re Sµ) +O(ε) and the desired result follows

at the limit ε→ 0 by an application of Fatou’s lemma on (4.8). �

5. Piecewise Radial Mappings

5.1. Examples of optimality in Theorems 1.2, 1.3 and 3.5. Our ex-

position here is slightly condensed since the basic principle behind these

examples can be found already in the paper [8] of A. Baernstein and S.

Montgomery-Smith, or in the paper [32] of the second author. Let us start

by describing the building block of the maps that yields equality in our main

result. For any 0 6 r < R consider the radial map

(5.1) g(z) = ρ( |z| ) z

|z|

defined in the disc {|z| 6 R}. We assume that ρ : [0, R]→ [0, R] is absolutely

continuous and strictly increasing with ρ(0) = 0, and that ρ is linear on [0, r].

We first restrict ourselves to the situation p > 1, and then need the following

expanding assumption

(5.2)
ρ(t)

t
> ρ̇(t) > 0 , t ∈ (r,R)

together with the normalization ρ(R) = R. Hence on the boundary the map

g coincides with the identity map, and if needed we may extend g to the

exterior {|z| > R} by setting g(z) = z for these values.

The differential of g exhibits the following rank-one connections

(5.3) Dg(z) =
ρ(|z|)
|z|

Id+

(
ρ̇(|z|)− ρ(|z|)

|z|

)
z ⊗ z
|z|2

.

It is known, see [12, Proposition 3.4] that concavity along the indicated rank-

one lines already secures the quasiconcavity condition for the radial map g.

In our situation the assumption (5.2) indeed ensures that the Burkholder
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integrals become linear on the rank-one segments displayed in (5.3), which

implies

(5.4) B p
B(0,R) [g] = B p

B(0,R) [Id].

Actually, a direct computation (see [8, 32] for details) using the formulas

gz(z) = 1
2

(
ρ̇(|z|) +ρ(|z|)/|z|

)
and gz̄(z) = 1

2

(
ρ̇(|z|)−ρ(|z|)/|z|

)
z/z̄ yields

B p
B(0,R) [g] = π

∫ R

0

(
[ ρ(t) ]p

tp−2

)′
dt = π

[ ρ(R) ]p

R p−2
− lim

t→0+
π

[ ρ(t) ]p

t p−2

= πR2 = |B(0, R)| = B p
B(0,R) [Id].

The above computation indicates that if r = 0 , we must in addition require

(5.5) ρ(t) = o(t
1− 2

p ) as t→ 0 .

Assume then that f0(z) = az + b is a (complex) linear map defined in a

bounded domain Ω ⊂ C. Given 0 6 r < R and a ball B(z0, R) ⊂ Ω together

with the increasing homeomorphism ρ : [0, R] → [0, R] and the radial map

g as discussed above, we may modify f0 in B(z0, R) by defining

f1(z) =

{
f0(z) if z 6∈ B(z0, R),
ag(z − z0) + (az0 + b) if z ∈ B(z0, R),

By scaling, (5.4) shows that we have B p
B(z0,R) [f1] = B p

B(z0,R) [f0], and, con-

sequently

(5.6) B p
Ω [f1] = B p

Ω [f0].

In the next step we may deform f1 in a disc that is contained in either one of

the sets Ω \B(z0, R) or B(z0, r), where f1 is linear. Inductively one obtains

fn from fn−1 by deforming fn−1 accordingly in the domains of linearity. By

induction, we see that all such mappings have the same energy, which is

equal to the energy of their linear boundary data az + b:

(5.7) B p
Ω [fn] = B p

Ω [az + b] = ap |Ω|

This iteration process may, but need not, continue indefinitely so as to

arrive at e.g. Cantor type configuration of annuli and a homeomorphism

f∞ : Ω
onto−→ Ω∗ := aΩ+b. Without going to the formal definition, we loosely

refer to reasonable (e.g. converging in W 1,1) such limits f = limn→∞ fn as

piece-wise radial mappings, see Figure 1.
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Figure 1. Annular Packing

Definition 5.1. Let p > 1 and let Ω ⊂ C be any nonempty bounded

domain. The class A p(Ω) consists of piece-wise radial mappings f∞ :

Ω
onto−→ Ω whose construction starts with f0(z) ≡ z , the convergence

f∞ = limn→∞ fn takes place in W 1,p(Ω) and the condition (5.2) is in force.

The following observation is a direct corollary of (5.7).

Proposition 5.2. For any p > 1 and f ∈ A p(Ω) we have

(5.8) B p
Ω [f ] = B p

Ω [Id] = |Ω|.

In interpreting this conclusion one may say that B p
Ω is a null Lagrangian

when restricted to A p(Ω) .

We get a plethora of fairly complicated maps that produce equality in

our main Theorems. One just needs to consider any f ∈ A p that satisfies

the additional condition Bp(Df(x)) > 0, i.e. in the construction one applies

maps ρ that satisfy

(5.9)
ρ(t)

t
> ρ̇(t) >

(
1− 2

p

) ρ(t)

t
.
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In case of Theorem 1.2, in order to satisfy the smoothness assumption one of

course has to pick the functions ρ in the construction so that the (possibly

limiting) map belongs to Id+ C∞◦ (Ω).

In order to incorporate the range p 6 1, one introduces the compressing

assumption, the opposite of (5.2):

(5.10)
ρ(t)

t
6 ρ̇(t) , t ∈ (r,R)

together with the condition limt→0+ ρ(t)/t1−2/p = ∞ in case r = 0 and

p < 0. The previous construction yields after finitely many iterations non-

trivial examples of maps that satisfy (5.8) in case p < 1. Also limiting maps

can be considered, but then one has to take care of the Burkholder functional

to remain well-defined.

In view of Conjecture 1.1, the maps in A p(Ω) are potential global ex-

tremals for B p
Ω . Indeed, it can be shown that they are critical points of

the associated Euler-Lagrange equations. Furthermore, this property to a

large extent characterizes Burkholder functionals: these functionals are the

only (up to scalar multiple) isotropic and homogeneous variational integrals

with the A p(Ω) as their critical points. This topic will be discussed in a

companion paper.

Here, we content with pointing out the following result, where we employ

the customary notation C 1
id(Ω) = id +C 1

◦ (Ω) , where C 1
◦ (Ω) stands for the

space of functions C 1 -smooth up to the boundary of Ω and vanishing on

∂Ω .

Corollary 5.3. The Burkholder functional B p
Ω : C 1

id(Ω) → R , p > 2 ,

attains its local maximum at every C 1- smooth piece-wise radial map in

A p(Ω) for which the condition (5.9) is further reinforced to:

(5.11)
ρ(t)

t
> ρ̇(t) >

1

K

ρ(t)

t
, K <

p

p− 2
.

Proof. The lower bound (5.11) can be used to verify that f isK-quasiconformal

with K < p/(p − 2). Namely, as f ∈ C 1
id(Ω) , one checks that f is neces-

sarily conformal at points corresponding to t = 0 and the derivative is

non-vanishing. Hence the strict inequality for K will not be destroyed by

small C 1 -perturbations. Theorem 1.3 applies, and by combining it with

Proposition 5.2 the claim is evident. �
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5.2. Equality in Corollaries 1.7, 1.8, 4.1 and 4.3. If one substitutes

in the formula (4.2) a function for which B p
Ω[f ] = B 2

Ω[f ], we acquire the

equality in the L log L -inequality of Corollary 1.7. Especially, by (5.8) we

obtain

Lemma 5.4. Let Ω be a bounded domain in the plane. If f belongs to class⋃
p>2 A p(Ω), then there is equality in (1.10) in Corollary 1.7.

Actually, one checks that in the construction condition (5.5) can be replaced

by the analogue ρ(t) = o
(

log(1/t)−1
)
. Concerning Corollary 4.3, an alterna-

tive route to its integral estimates comes by taking the derivative ∂pB
p
Ω [f ]

at p = 0. Thus elements of
⋃
p<0 A p(Ω) give the identity at (4.5).

We next turn our attention to Corollary 1.8. It turns out that there, as

well, one has a very extensive class of functions µ of radial type that yield

an equality in the estimates. These functions can be viewed as infinitesimal

generators of the expanding class of radial mappings defined above.

Lemma 5.5. Let α : (0, 1)→ [0, 1] be measurable and with the property∫ 1

0

1− α(t)

t
dt =∞.

Set

µ(z) = −z
z̄
α(|z|) for |z| < 1, µ(z) = 0 for |z| > 1.

Then there is equality in Corollary 1.8, i.e.∫
D

(1− |µ(z)|) e |µ(z)| ∣∣exp(Sµ(z))
∣∣ dz = π

Proof. Let φ(z) = 2z
∫ 1
|z|

α(t)
t dt for |z| < 1 and set φ(z) = 0 elsewhere. Then

we compute that φ ∈ W 1,2(C) with

φz̄ ≡ µ, φz = Sµ(z) = 2

∫ 1

|z|

α(t)

t
dt− α(|z|), |z| < 1.

Thus ∫
D

(1− |µ(z)|)e|µ(z)|+Re Sµ(z)dm

= 2π

∫ 1

0

(
1− α(t)

)
exp

[
2

∫ 1

t

α(s)

s
ds

]
t dt = π,

as we have the identity

d

dt

(
t2 exp

[
2

∫ 1

t

α(s)

s
ds

])
= 2t

(
1− α(t)

)
exp

[
2

∫ 1

t

α(s)

s
ds

]
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and our assumption gets rid of the substitution at t = 0. �

More complicated examples may be obtained by a similar iteration pro-

cedure as described above.

Finally, equality in (4.1) obviously implies that necessarily the distor-

tion function K(z, f) ≡ K in Ω. Hence examples are produced by specific

functions ρ in (5.1), the powers

ρK(t) = R1−1/K t1/K , r < t < R,

where ρK(t) is linear on (0, r], if r > 0. For 2 6 p < 2K
K−1 let A p

K(Ω)

denote the subclass of A p(Ω) consisting of those piecewise radial mappings

where, first, we fill the domain Ω by discs or annuli up to measure zero,

second, at each construction step choose ρ = ρK , and third, choose r = 0 at

any possible subdisk remaining in the limiting packing construction. This

ensures that the limiting function f does not remain linear in any subdisk,

so that we have K(z, f) ≡ K up to a set of measure zero. Then, as |Ω| <∞,
it is easy to see that convergence f∞ = limn→∞ fn takes place in W 1,p since

now 1− p|µn(z)|(1 + |µn(z)|)−1 > c0 > 0. Moreover, since there is equality

in Theorem 3.5 and K(z, f) ≡ K, one obtains for any f ∈ A p
K(Ω) that

1

|Ω|

∫
Ω

∣∣Df(z)
∣∣ p dz =

2K

2K − p (K − 1)
.

5.3. On L p-bounds for Quasiconformal Mappings in Rn. Let us close

with a discussion on higher dimensional analogues of our optimal results

in plane. This leads to new conjectures on the L p-regularity problem of

quasiconformal maps in space. We begin with the following statement in all

dimensions.

Theorem 5.6. The functions Bn
p : Rn×n → R defined by

(5.12) Bn
p (A) =

( p

n
detA + (1− p

n
)
∣∣A∣∣n ) · |A|p−n, p > n.

are rank-one concave.

For the proof and more information on this topic see [32]. Of course, one

may be tempted to show that Bn
p is quasiconcave, but that is beyond our

reach in such a generality. However, we state here potential consequences

of the conceivable quasiconcavity of the above n-dimensional Burkholder
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functional for quasiconformal maps, i.e. analogues of our optimal results in

plane.

Conjecture 5.7. Suppose f : B → B is a K -quasiconformal mapping of

the unit ball onto itself that is equal to the identity on ∂B . Then,

(5.13) −
∫

B

(
n− p +

p

K(x)

)
|Df(x)|p dx 6 n , for n 6 p 6

nK

K − 1

Therefore,

(5.14) −
∫

B
|Df(x)|p dx 6

nK

nK − p(K − 1)

There are also sharp estimates with the critical upper exponent p = nK
K−1 ,

(5.15) −
∫

B

(
1

K(x)
− 1

K

) ∣∣Df(x)
∣∣ nKK−1 dx 6 1− 1

K

Hence

(5.16)

∫
E

∣∣Df(x)
∣∣ nKK−1 dx 6 |B| , where E = {x ∈ B ; K(x) = 1 }

All the above inequalities are sharp; n-dimensional radial and power map-

pings produce examples for the equalities.
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Department of Mathematics and Statistics, 2009. iv+64 pp.

20. D.L. Burkholder, An elementary proof of an inequality of R. E. A. C. Paley, Bull.
London Math.Soc. 17 (1985), 474–478.

21. D.L. Burkholder, A sharp and strict Lp-inequality for stochastic integrals. Ann.
Probab. 15 (1987), no. 1, 268–273.
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