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Abstract

This paper completes an investigation of the logical expressibility of finite, locally

stratified, general logic programs. We show that every hyperarithmetic set can

be defined by a suitably chosen locally stratified logic program (as a set of

values of a predicate over its perfect model). This is an optimal result, since

the perfect model of a locally stratified program is itself an implicitly definable

hyperarithmetic set (under a recursive coding of the Herbrand base); hence to
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obtain all hyperarithmetic sets requires something new, in this case selecting

one predicate from the model.

We find that the expressive power of programs does not increase when one con-

siders the programs which have a unique stable model or a total well-founded

model. This shows that all these classes of structures (perfect models of lo-

cally stratified logic programs, well-founded models which turn out to be total,

and stable models of programs possessing a unique stable model) are all closely

connected with Kleene’s hyperarithmetical hierarchy. Thus, for general logic

programming, negation with respect to two-valued logic is related to the hyper-

arithmetic hierarchy in the same way as Horn logic is to the class of recursively

enumerable sets. In particular, a set is definable in the well-founded semantics by

a program P whose well-founded partial model is total iff it is hyperarithmetic.

1 Introduction

In this paper we investigate the complexity of the perfect model semantics of locally strat-

ified logic programs. Our results extend the results of:

Smullyan [Smu61] and Andreka and Nemeti [AN78] on the expressive power of Horn pro-

grams, and

Apt and Blair [AB90] results on the expressive power of stratified logic programs.

The results of Apt and Blair state that the Σ0
n sets of natural numbers are precisely defined

by the stratified programs with n strata. This result (as we show) extends into the transfinite

with the locally stratified logic programs.

Specifically, we show that the locally stratified logic programs defined precisely the

hyperarithmetic sets (that is ∆1
1 sets). This shows that the class of predicates definable

by the locally stratified logic programs coincides with the class of predicates definable by

programs with the unique stable models (see [MNR90]) as well as programs with the two-

valued well-founded model [?, ?].

As a consequence, we show that the minimum lengths of (local) stratification of logic

programs are arbitrary large constructive ordinals.

We also observe that the well-founded semantics, up to any constructive ordinal, can be

uniformly simulated by locally stratified programs.
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2 Preliminaries

We assume the reader is familiar with the basics of logic programming and the Herbrand

semantics of logic programs. For the interested reader, greater detail on preliminary tech-

nical matters can be found in a variety of sources, [Ll87] and [ABW88], in particular. The

following definitions and facts are useful to recall.

The definition of an Herbrand interpretation, and the one-step deduction operator TP

associated with a logic program P is the usual one [Ll87, Apt90].

The operator TP can be iterated, transfinitely. There are several useful ways to do

this, but we will confine ourselves to the way that is most efficiently suited to our current

purposes. The limit ordinal and successor ordinal cases do not need to be distinguished.

Definition 2.1:
TP ⇑0(I) = I

TP ⇑α(I) =
⋃

β<α TP (TP ⇑β(I))

When P is a definite clause program, TP ⇑ω(∅) is the least Herbrand model of P .

Hereafter, L is a fixed, countable, language. Locally stratified programs were originally

introduced by Przymusinski, [Pr88]. Following the presentation in Apt and Bezem, [ABe90]

we define the locally stratified logic programs via

Definition 2.2 A program P is locally stratified if there exists a mapping stratum, which

we call a partitioning, from BL to the countable ordinals such that for every ground instance

A ← L1 & . . . & Ln of a clause in P the following conditions hold for each 1 ≤ i ≤ n:

(i) if Li is B then stratum(A) ≥ stratum(B);

(ii) if Li is ¬B then stratum(A) > stratum(B), and,

so that we don’t waste ordinals,

(iii) the range of stratum is closed under initial segments;

i.e. if α ∈ range(stratum) and β < α, then β ∈ range(stratum).

The mapping stratum determines a transfinite partition of BL. Let Hα = stratum−1(α).

We say that a clause of the form

A ← B1& . . . & Bm & ¬C1 & . . . & ¬Cn

is a clause in normal order and is a normal order of any clause resulting from a permutation

of the literals in its body.
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Let grdL(P ) be the set of all ground (i.e. variable-free) instances of normal orders of

the clauses of program P with respect to the language L. The fact that there are in general

multiple normal orders of program clauses in P is immaterial.

Definition 2.3 Let P be locally stratified, and let stratum be the associated partitioning.

Let γ be the least ordinal not in the range of stratum. A local stratification of a normal

program P is a partition of grdL(P ) given by

grdL(P ) =
•⋃

α<γ

Pα

such that each clause A ← L1 & . . . & Ln in grdL(P ) is in Pα if, and only if, stratum(A) =

α.

As a notational convenience let

P̄δ =
•⋃

α<δ

Pα .

We now define M(P ) and M(P̄δ), which we will see, are the unique stable models of P

and P̄δ, respectively.

Definition 2.4: Let

grdL(P ) =
•⋃

α<γ

Pα .

be a local stratification of P . Put

M(P̄0) = ∅

M( ¯Pα+1) = TP ⇑ωM(P̄α), for each α < γ

M(P̄λ) =
⋃

α<λ M(P̄α), for each limit ordinal λ ≤ γ

and

M(P ) = M(P̄γ)

For P a locally stratified logic program, the ground instantiation of P is r.e. Hence,

the dependency graph is also r.e. Thus a locally stratified partition of the Herbrand base

of P can be constructed as follows: Repeatedly select the set of all minimal elements from

the dependency graph, which constitutes a co-r.e. set, and let the next stratum be this set.

Delete these elements from the graph to obtain an r.e. set. We can see that the procedure

must terminate, by a cardinality argument, and in fact by standard recursion-theoretic

techniques can be shown to terminate at a stage γ strictly below ωck
1 .

Recall the notion of stable model, introduced by Gelfond and Lifschitz, [GL88].
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We have the following result that precisely characterizes the complexity of the class of

all stable models of P .

Proposition 2.1: Marek, Nerode and Remmel, [MNR91] The class St(P ) of stable models

of a normal logic program P is Π0
2.

Marek, Nerode and Remmel showed that the set of stable models of a normal program is,

up to a 1 : 1 recursive renaming, set of infinite paths through a recursive tree, and hence

forms a Π0
2 class of sets. This is the idea behind the preceding proposition. By a basic

recursion-theoretic observation, it follows that if a program is fortunate enough to have a

unique stable model, then that model is hyperarithmetic, since the unique element of a

singleton arithmetic class is necessarily hyperarithmetic. This is the situation with locally

stratified programs as we see from the next proposition.

Proposition 2.2: Marek and Subrahmanian, [MS89] Let

grdL(P ) =
•⋃

α<γ

Pα

be a local stratification of P . Then M(P̄δ) is the unique stable model of P , for each δ ≤ γ.

The following two corollaries of the preceding result, which can be obtained by standard

recursion-theoretic techniques, have not previously been observed.

Corollary 2.3: M(P ) is hyperarithmetic.

Corollary 2.4: γ < ωCK
1 if γ is the least ordinal for which a locally stratified partition of

grdL(P ) can be obtained.

Proof: If γ is as in the hypothesis, then M(P̄δ) is sufficiently uniform for M(P̄γ) not to be

hyperarithmetic if γ = ωCK
1 .

The preceding proposition immediately raises the question of whether it has a suitable

converse; namely, is every hyperarithmetic set given by the unique stable model of a locally

stratified program? As we remarked in the introduction this is indeed the case, but one

must be careful here. More precisely, one must say every hyperarithmetic set is given by the

interpretation of a predicate symbol in the unique stable model of a locally stratified program.

This in not merely an artifact of our technical definitions; rather, it is forced by results of

recursion theory that show that not every hyperarithmetic set is implicitly definable, i.e. is

not the member of a singleton arithmetic class [Kol91].
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3 Representing Ordinal Notations

Following [Ro67] let Wz be the domain of the zth unary partial recursive with respect to a

suitable indexing, and define

Dom: 2ω −→ 2ω

by

Dom(X) = { z : Wz ⊆ X } .

Moreover, let

Dom↑0(X) = X

Dom↑α(X) =
⋃

β<α Dom(Dom↑β(X))

Concerning this operator we have the following facts, [Ro67].

1. Dom↑ωCK
1 (∅) is Π1

1-complete.

2. x ∈ Dom↑ωCK
1 (∅) iff Wx ⊆ Dom↑ωCK

1 (∅) .

3. Dom ∈ Π0
1 .

4. Dom↑α (∅) is hyperarithmetic for all α < ωCK
1 . (cf. Theorem 3.13, [Hi78]).

The elements of Dom↑ωCK
1 (∅) can be thought of as notations for constructive ordinals.

For z ∈ Dom↑ωCK
1 (∅) let ||z || be the least ordinal α such that z ∈ Dom↑α + 1 (∅). (“+1”

since if Wz = ∅ then ||z ||= 0; also this permits us to have notations for limit ordinals.) Note

that if z ∈ Dom↑ωCK
1 (∅) then z 6∈ Dom↑||z ||(∅) but Wz ⊆ Dom↑||z ||(∅).

In the remainder of the paper we will assume that the only function symbols of the

language L are the constant 0 and the unary function symbol s. Thus the Herbrand universe

of L is {0, s(0), s(s(0)), . . . , sn(0), . . . }. We further assume that L has sufficient predicate

symbols to supply the predicate symbols required for the development in the remainder of

the paper. It should be noted that only a fixed finite number of predicate symbols will be

required. We will also need notation for substitutions. E{X 7→ t} denotes the expression

that results from syntactically substituting term t for each occurrence of variable X in E.

We will not have to substitute for more than one variable at a time, and we will not need

to be concerned about substituting into the scope of bound variables. We regard variable

occurrences in the presentations of programs as free. Thus, for example, when instantiate

the variable Z in the programs below to a term t, we instantiate all occurrences of Z in P

to t.

The second of the facts concerning Dom is important in particular for showing that for

each α < ωCK
1 there is a locally stratified logic program P with predicate symbol p such
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that

p(sn(0)) ∈M(P ) iff n ∈ Dom↑α (∅) .

Moreover, we have the stronger result that P can be given uniformly in terms of α. Specif-

ically:

Theorem 3.1: A finite logic program can be found with a clause

p(X, Z) ← q(X, Y, Z)

such that for each z ∈ N, if P+
z is P{Z 7→ sz(0)}, then

P+
z is locally stratified iff z ∈ Dom↑ωCK

1 (∅)

and whenever z ∈ Dom↑ωCK
1 (∅)

p(sn(0), sz(0)) ∈M(P+
z ) iff n ∈ Dom↑||k ||(∅) for some k ∈ N such that ||k ||<||z || .

The proof of the theorem depends critically on the ability to replace the bodies of clauses

by clauses with only one literal in a way that strongly relates dependencies in a program

to the program’s semantics, cf. the next section. A similar approach could be taken by

adapting the logic program representations of register machines devloped by Sheperdson

[She91] and Nerode and Shore [NS93].

4 Binary Logic Programs

The dependency relation induced by a given program among ground atoms is not generally

thought to be closely tied to the program’s semantics because the dependency relation

remains unchanged when conjunctions between literals in normal clause bodies are replaced

by disjunctions. Nevertheless, we are able to present a technique that allows for a tight

relationship between a program’s semantics and its ground dependency relation, and use

this as a basis for the construction that we use to establish the main results.

Definition 4.1 A binary logic program is a definite clause program with at most one atom

in any clause body.

We assume from here on that logic programs are written over a first-order language

whose Herbrand universe is generated by the constant symbol 0 and unary function symbol

s. We adopt the following syntactic abbreviations. s0(0) stands for 0 and sn+1(0) stands

for s(sn(0)).
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Definition 4.2: Let P be a normal logic program (i.e. a program in which positive as well

as negative literals may occur in the bodies of the program’s clauses), and let ground(P ) be

the set of ground instances of the program’s clauses with respect to the Herbrand universe

of the language of P . Ground atom A refers positively to ground atom B (in P ) if there is

a clause in ground(P ) of the form

A ← L1 & . . . & B & . . . & Ln

A refers negatively to B if there is a clause in ground(P ) of the form

A ← L1 & . . . &¬B & . . . & Ln

A refers to B if A refers to B either positively or negatively. (Note that A may both positively

and negatively refer to B.) A depends on B if (A, B) is in the transitive closure of the refers

to relation. A positively depends on B if (A, B) is in the transitive closure of the refers

positively to relation. A negatively depends on B if there are atoms A′ and B′ such that A

depends on A′ or is A′, B′ depends on B or is B, and A′ refers negatively to B′. We say

that the pair (A, B) is in the negative dependency relation if A negatively depends on B.

Atom A negatively depends directly on atom B if there is an atom A′ such that A depends

positively on A′ or is A′ and A′ refers negatively to B. We say that the pair (A, B) is in

the direct negative dependency relation if A negatively depends directly on B.

Note that the direct negative dependency relation is well-founded if, and only if, the

negative dependency relation is well-founded.

The following basic lemma relates well-foundedness of negative dependency to local

stratification [Pr88].

Lemma 4.1: Normal program P is locally stratified if, and only if, the negative dependency

relation of P is well-founded.

We next introduce the fundamental idea linking a program’s dependency relation to its

semantics.

Definition 4.3 Let ground atom A depend positively on ground atom B with respect to

program P . Then the pair (A, B) is said to be a logical dependency iff P ∪ {B} |= A.

A program is dependency sound if every pair of ground atoms in the positive dependency

relation of P is a logical dependency.
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Proposition 4.2 Every binary program is dependency sound.

The next definition rigorously sets out the notion of two programs having equivalent

least models with respect to certain predicates.

Definition 4.4 Let L be a first order language and let P1, P2 be definite clause logic pro-

grams over L. Let L′ be a sublanguage of L and suppose the restrictions of the least models

of P1 and P2 to the Herbrand base of L′ are the same. Then P1 and P2 are said to be

extensionally equivalent with respect to L′.

We are now in a position to usefully introduce the construction of a binary program

that is extensionally equivalent to a given program.

Definition 4.5 Let P be a definite clause program. Extend L to a language L′ by adjoining

a new function symbol fp for each predicate symbol p in L other than =. fp has the same

arity as p. Corresponding to each atom p(t1, . . . , pn) of L, the translation, fp(t1, . . . , pn)

is a term of L’. In general, for each atom A of L, let tA denote the translation of A.

Corresponding to P the binary extensional equivalent Q of P is defined as follows. Extend

L’ by adjoining a new binary function symbol stack, a new binary function symbol cons and

a new constant symbol nil. Corresponding to each program clause

A← B1, . . . , Bn

of P , form the clause

stack(cons(tA, Y ), Z)) ← stack(cons(tB1
, cons(tB2

, . . . , cons(tBn
, Y ) . . .)), Z) .

Q also contains a bridging clause for each predicate symbol p:

p(X1, . . . , Xn) ← stack(cons(fp(X1, . . . , Xn), nil), fp(X1, . . . , Xn))

Finally, Q contains the terminating clause

stack(nil, Z) ← .

We assume below that as needed we may uniformly rename the predicate symbols and the

associated function symbols in binary extensional equivalent programs to ensure that distinct

programs have have no predicate symbols in common whenever this device is needed.

Proposition 4.3 The binary extensional equivalent of P is extensionally equivalent to P ,

with respect to the language of P .
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For the proof that we give of Theorem 3.1 in the next section, we will need the following

proposition.

Proposition 4.4 Let Q be the binary extensional equivalent of P and let A and B be ground

atoms in the language of P . Then

A depends on stack(nil, tB) iff Q |= A and B is A .

5 Representing Hyperarithmetic Sets with Locally Strati-

fied Programs

We are continuing the proof of Theorem 3.1. Observe that, given a constructive ordinal α,

the following holds:

∀x[x ∈ Dom↑α (∅)⇔ ∃β[Wx ⊆ Dom↑β (∅) & β < α]]

As is familiar from the usual logic programming representation we can represent this as a

general program clause where the expression of subset containment is just an abbreviation

of a universal formula:

x ∈ Dom↑α (∅)←Wx ⊆ Dom↑β (∅) & β < α

Next, we replace α and β by the elements m′ and m of Dom ↑ ωCK
1 (∅)) which serve as

notations for α and β. Specifically, ||m ||+1 is the least ordinal α such that m ∈ Dom↑α (∅).

Thus:

x ∈ Dom↑||m′ ||(∅) ←Wx ⊆ Dom↑||m ||(∅) & ||m ||<||m′ || (1)

is a “definition” of Dom↑α (∅).

If we want to inductively construct Dom ↑ α (∅) for a constructive ordinal α, we need

only to allow m, m′ to range over a subset of Dom↑ (α + 1) (∅) sufficient for ||m ||, ||m′ || to

range over all ordinals up through α. Choose an r.e. set S so that

∃m[||m ||<||m′ || & m, m′ ∈ S]

is also an r.e. set. To show that such an r.e. set exists (see also, e.g., [Ro67]). let

Φ(X) = {y : ∃x(y ∈Wx & x ∈ X)}
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Φ is a monotonic enumeration operator. Its role is similar to the union operator in set

theory. In the same way as union, which after iteration ω times generates the transitive

closure, iterated Φ provides us with all the notations needed to produce notations of all

ordinals below ||z ||, given z ∈ Dom↑ωCK
1 (∅). Define the iteration sequence:

Φ0(X) = X

Φn+1(X) = Φ(Φn(X)), n ∈ ω

and

Φω(X) =
⋃

n∈ω Φn(X) .

If X ∈ Σ0
1, so is Φω(X) (cf. [Ro67]). Suppose z ∈ Dom↑ωCK

1 (∅). Then, since Φ is monotone

Φω({z}) ⊆ Dom↑ωCK
1 (∅)

and

{||y ||: y ∈ Φω({z}))} =<||z||

So now, for a constructive ordinal α we select z ∈ Dom↑(α + 1) (∅). We now have:

∃m[||m ||<||m′ || & m, m′ ∈ Φω({z})]↔ ∃m[m ∈ Φω({m′}) & m′ ∈ Φω({z})]

The right side of the above is obviously Σ0
1. Hence we can now rewrite the formula (1) as:

x ∈ Dom↑||m′ ||(∅) ←Wx ⊆ Dom↑||m ||(∅) & m ∈ Φω({m′}) & m′ ∈ Φω({z}) (2)

which holds if z ∈ Dom↑ωCK
1 (∅).

We are introducing now an auxiliary program P̂z as follows. By the results of [AN78,

She91], for each k-ary recursively enumerable relation R ⊆ Nk we can find a definite clause

program PR with the predicate symbol pR so that:

pR(sa1(0), . . . sak(0)) ∈ TPR
↑ω (∅) if and only if R(a1, . . . , ak).

Let R1, R2 be the relations given by

R1(m, m′)⇔ m ∈ Φω({m′})

R2(y, x)⇔ y ∈Wx

Finally, let q(x, m) abbreviate “x ∈ Dom↑||m ||(∅)”. P̂z is, then, a general program consist-

ing of general program clause:

q(X, M ′)← ∀Y [pR2
(Y, X)→ q(Y, M)] & pR1

(M, M ′) & pR1
(M ′, sz(0)) (3)

11



together with the definite clauses of the programs PRi
, i = 1, 2.

We now transform the clause (3) to a set of normal program clauses by an operational

technique for eliminating universal quantifiers in general program clauses bodies. We replace

clause (3) with two clauses:

q(X, M ′)← ¬w(X, M) & pR1
(M, M ′) & pR1

(M ′, sz(0)), (4)

w(X, M)← pR2
(Y, X) & ¬q(Y, M)

and let Qz be a normal program consisting of clauses (4) and the definite clauses of PR1

and PR2
. We can also assume (by renaming predicate symbols if necessary) that PR1

and

PR2
have no predicate symbols in common.

The programs Qz are not locally stratified. Indeed, q(0, 0) refers negatively to w(0, 0)

which in turn refers negatively q(0, 0) by setting X, M, M ′, and Y to 0 in the clauses (4).

To remedy this we will employ binary extensional equivalent programs.

Consider the recursively enumerable relation R0 defined by

R0(x, m, m′, z) iff R1(m, m′) & R1(m
′, z)

(The role of x will be apparent momentarily.) Let PR0
be a definite clause program that

computes the r.e. relation R0. Thus, for some predicate symbol pR0
in the language of PR0

,

PR0
|= pR0

(sx(0), sm(0), sm′

(0), sz(0)) iff R0(x, m, m′, z) .

Let QR0
be the binary extensional equivalent of PR0

, but where the program’s terminating

unit clause

stack(nil, Z) ←

is replaced by the clause

stack(nil, fpR0
(X, M, M ′, Z)) ← ¬w(X, M, Z) (5)

Similarly, let PR′

2
be a definite clause program that computes the r.e. relation R′

2 defined

by

R′
2(x, y, m, z) iff R2(y, z) ,

and let QR′

2
be the binary extensional equivalent of PR′

2
, but where the program’s termi-

nating clause is replaced by

stack(nil, fp
R′

2

(X, Y, M, Z)) ← ¬q(Y, M, Z) . (6)
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We assume that by renaming predicate symbols as necessary that QR0
and QR′

2
have no

predicate symbols in common other than w and q. For each z ∈ N form the program Pz as

follows. The clauses of Pz are:

q(X, M ′, sz(0))← pR0
(X, M, M ′, sz(0)) (7)

w(X, M, sz(0))← pR′

2
(X, M, Y, sz(0)) (8)

together with the clauses for PR0
and PP ′

2
with sz(0) substituted for Z in clauses 5 and 6.

We may assume that the variable Z is not used in any of the other clauses in programs PR0

and PR′

2
. Notice that the predicate q(·, ·, ·) is a variation of the predicate q of the program

Qz. There we could not control enough the dependence relation and so it was not a locally

stratified program. Here, the situation changes. We have now the following crucial fact.

Proposition 5.1 z ∈ Dom↑ωCK
1 (∅) if, and only if, the program Pz is locally stratified.

Proof: It suffices to show that the negative dependency relation of Pz is well-founded

whenever z ∈ Dom↑ωCK
1 (∅).

Suppose that there is a sequence A0, A1, . . . of ground atoms of the language of program

Pz such that for every k ≥ 1

Ak negatively depends on Ak−1.

Notice that in the graph of the refers to relation all negative edges arise only via ground

instances of clauses 5 and 6. Thus this sequence yields a sequence of ground atoms

q(sx0(0), sm0(0), sz(0)), q(sx1(0), sm1(0), sz(0)), . . .

such that

q(sxk(0), smk(0), sz(0))

negatively depends directly on

w(sxk(0), smk+1(0), sz(0))

which negatively depends directly on

q(sxk+1(0), smk+1(0), sz(0))

Thus, for all k ∈ N,

R1(mk+1, mk) & R1(mk, z)

and hence, since z ∈ Dom↑ωCK
1 (∅),

||mk+1 ||<||mk ||<||z || .
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This yields an infinite descending chain of constructive ordinals and hence a contradiction.

For the converse, note that if z 6∈ Dom↑ωCK
1 (∅), then there is a sequence

z, z1, z2, . . .

of natural numbers such that zk+1 ∈Wzk
, for all k ∈ N. It follows that

q(szk(0), szk(0), sz(0))

negatively depends directly on

q(szk+1(0), szk+1(0), sz(0)) for all k ≥ 1.

In proposition 5.1 we established that the program Pz is locally stratified (whenever

z ∈ Dom ↑ ωCK
1 (∅)). Therefore, for such z, Pz possesses the perfect model, M(Pz). We

shall now investigate the extension of predicate q in those models.

Proposition 5.2 Let z ∈ Dom↑ωCK
1 (∅)). The following are equivalent:

(a) q(sx(0), sm(0), sz(0)) belongs to M(Pz)

(b) m ∈ Φω({z}) and x ∈ Dom↑||m ||(∅)

Proof: First observe

q(sx(0), sm′

(0), sz(0)) ∈M(Pz)

if and only if

for some m ∈ N, pR0
(sx(0), sm(0), sm′

(0), sz(0)) ∈M(Pz)

if and only if

for some m ∈ N, stack(nil, fpR0
(sx(0), sm(0), sz(0))) ∈M(Pz)

and R1(m, m′) and R1(m
′, z).

if and only if

for some m ∈ N, M(Pz) |= ¬w(sx(0), sm(0), sz(0)) and

m ∈ Φω({m′}) and m′ ∈ Φω({z}).

But

w(sx(0), sm(0), sz(0)) ∈M(Pz)

if and only if

14



for some y ∈ N, stack(nil, fpR0
(sx(0), sm(0), sy(0), sz(0))) ∈M(Pz)

if and only if

for some y ∈ N, stack(nil, fpR0
(sy(0), sm(0), sz(0))) ∈M(Pz)

and y ∈Wx

if and only if

for some y ∈ N, y ∈Wx and M(Pz) |= ¬q(sy(0), sm(0), sz(0)).

Therefore, q(sx(0), sm′

(0), sz(0)) ∈M(Pz)

if and only if

for some m ∈ N : for all y ∈ N : m ∈ Φω({m′}) and m′ ∈ Φω({z})

and (y /∈Wx or M(Pz) |= q(sy(0), sm(0), sz(0)). (9)

We now proceed by transfinite induction.

Case 1. ||z ||= 0. Then Wz = ∅, so by the immediately preceding equivalence neither of the

conditions m′ ∈ Φω({z}) nor q(sx(0), sm′

(0), sz(0)) ∈M(Pz) can hold, for all m′, x ∈ N.

Case 2. || z ||> 0. Suppose q(sx(0), sm′

(0), sz(0)) ∈ M(Pz). The by property (9) and the

induction hypothesis:

for some m ∈ N, for all y ∈ N, m ∈ Φω({m′}) and m′ ∈ Φω({z}) and y ∈Wx →

y ∈ Dom↑||m ||(∅),

which can be restated as

for some m ∈ N, m ∈ Φω({m′}) and m′ ∈ Φω({z}) and Wx ⊆ Dom↑||m ||(∅).

Hence,

for some m ∈ N: m ∈ Φω({m′}) and m′ ∈ Φω({z})

and x ∈ Dom↑(||m ||+1) (∅) ⊆ Dom↑||m′ ||(∅).

Thus

q(sx(0), sm′

(0), sz(0)) ∈ M(Pz) is equivalent to x ∈ Dom ↑ ||m′ ||(∅) and m′ ∈

Φω({z}).
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We are finally in the position to complete the proof of Theorem 1. To obtain P include

three clauses:

p(X, Z)← q(X, Y, Z) (10)

and

q(X, M ′, Z)← pR0
(X, M, M ′, Z)

w(X, M, Z)← pR′

2
(X, M, Y, Z)

together with the clauses for PR0
and PR‘2 .

If we instantiate P to P{Z 7→ sz(0)}, (i.e. equivalently, we instantiate clauses (10)

using the substitution {Z 7→ sz(0)} and add the clauses of the program Pz), the resulting

program, which we denote P+
z , remains locally stratified by Proposition 5.2, provided z is

in Dom↑ωCK
1 (∅). Moreover, by Proposition 5.2:

p(sx(0), sz(0)) ∈M(P )

if and only if

for some m ∈ N, q(sx(0), sm(0), sz(0)) ∈M(Pz)

if and only if

for some m ∈ N, m ∈ Φω({z}) and x ∈ Dom↑||m ||(∅)

if and only if

for some m ∈ N, ||m ||<||z || and x ∈ Dom↑||m ||(∅)

If z is not in Dom ↑ ωCK
1 (∅) then, by proposition 5.1, Pz and hence P+

z is not locally

stratified.

The following corollary to theorem 1 is immediate.

Corollary 5.3 A finite logic program P can be found with a clause

p(X, Y ) ← q(X, Y, Z)

such that for z ∈ Dom↑ωCK
1 (∅) where ||z || is a limit ordinal,

p(sx(0), sz(0)) ∈M(P{Z 7→ sz(0)}) if, and only if, x ∈ Dom↑||z ||(∅).

By adding a few more clauses which comprise a program for computing a certain partial

recursive function we have the following variation of the main theorem.
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Corollary 5.4 A program Q can be found with binary predicate symbol r such that

z ∈ Dom↑ωCK
1 (∅) if, and only if, Q{Z 7→ sz(0)} is locally stratified,

and whenever z ∈ Dom↑ωCK
1 (∅)

r(sx(0), sz(0)) ∈M(Q{Z 7→ sz(0)}) iff x ∈ Dom↑||z ||+1 (∅) .

Proof: Obtain Q be adding a set of definite clauses to program P given by the main theorem

with a new binary predicate symbol r (i.e. r does not occur in P ) so that

r(sx(0), sz(0)) ∈M(Q) iff p(sx(0), sϕ(z)(0)) ∈M(P )

where ϕ is a partial recursive function chosen so that Wϕ(n) = {n}, for all n ∈ N. It follows

that ||ϕ(z) ||=||z ||+1 whenever z ∈ Dom↑ωCK
1 (∅).

The proof of Proposition 5.1 permits us to read off an explicit local stratification of P+
z ,

whenever z ∈ Dom↑ωCK
1 (∅). We partition the Herbrand base BP as follows:

For each ground atom q(t1, t2, t3), if t3 = sz(0) and t2 = sm′

(0) for some m′ ∈ Φω({z}),

then ||m′ ||= λ + k for some limit ordinal λ and finite k. We put q(t1, t2, t3) in the stratum

Hλ+2k; otherwise q(t1, t2, t3) is placed in H0. Notice that if t3 = sz(0) then the stratum in

which q(t1, t2, t3) is placed is determined by t2.

Suppose an atom A negatively depends directly on q(t1, t2, t3). Then

A is w(sx(0), t2, t3) for some x ∈ N, or

A is pR′

2
(sx(0), t1, t2, t3) for some x ∈ N, or

A is stacks, fp
R′

2

(sy(0), t1, t2, t3)) for some x ∈ N.

Thus all atoms q(t1, t2, t3) on which A negatively depends directly are in the same

stratum, if A is of one of the three forms immediately above. Thus, if A negatively depends

directly on q(t1, t2, t3) and q(t1, t2, t3) is in stratum Hα then place A in stratum Hα+1.

In particular, all ground w(u1, u2, u3) that do not negatively depend directly on any

q(t1, t2, t3) are placed in H0.

In this way we obtain a partition

BP \ {p(sx(0), pz(0)):x ∈ N} =
⋃

α<γ

Hα

(where γ is the supremum of ordinals used in the construction).

Finally define

Hγ = {p(sx(0), sz(0)) : x ∈ N}
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So

BP =
⋃

α<γ+1

Hα

We can now verify that the conditions of local stratification are met by the partition,

straightforwardly.

When we trace the ordinals used in the construction, we see that two cases may occur:

either || z || is limit, or for a unique limit λ and k ∈ N, || z ||= λ + k + 1. In the first case

γ = λ, in the second γ = λ + 2k. In the either case

Theorem 5.5

ground(P+
z ) =

⋃

α≤γ+1

Pα

where γ = lub{λ + 2k : λ + k <||z ||, λ limit, k finite }.

By standard techniques of recursion theory on can show that for every hyperarith-

metic set A these is a constructive ordinal α such that A is 1: 1 reducible to Dom ↑α (∅).

In outline, this is shown by 1: 1 reducing A to a well-founded recursion-theoretic tree Tβ

[cf. theorem XXIIa in [Ro67], chapter 16] and then reducing Tβ to a subset of Dom↑α (∅),

for some constructive α whose size can be estimated in terms of β.

Theorem 5.6 For every hyperarithmetic set A there exists a locally stratified program PA,

with a predicate symbol r such that

r(sx(0)) ∈M(PA) iff x ∈ A .

Proof: Let A be hyperarithmetic. Then for some α < ωCK
1 , A ≤1 Dom↑α (∅). Let f be a

recursive function used in this reduction. Let Pf be a Horn program which computes the

graph of f . We assume that the set of predicate symbols of Pf is disjoint with that of our

program P whose instantiations P+
z define Dom ↑ ||z ||(∅). Moreover we assume that the

predicate gr(·, ·) computes the graph of f .

Now, we select z such that || z ||= α and a new unary predicate symbol q, and write a

program PA which is the union of two programs:

Pz

Pf

and the clause
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q(X)← gr(X, Y ), p(Y, sz(0)).

(where p is the predicate symbol defining Dom↑α (∅) in P+
z .)

Notice that PA is locally stratified. The local stratification of the part of the language

corresponding to P+
z is preserved, atoms of the form q(t) are put in a new stratum above

the strata of p, and the atoms of the form gr(t1, t2) and other ground atoms of the language

of Pf can be put anywhere, as long as they are put in a single, existing, stratum.

Next, notice that q(sn(0)) ∈ M(PA) if, and only if, for some m, gr(sn(0), sm(0)) ∈

M(PA) and p(sm(0), sz(0)) ∈M(PA). But this is equivalent to

f(n) = m & m ∈ Dom↑α (∅)), i.e. n ∈ A.

6 The Well-Founded Semantics

The well-founded partial model for a program P is defined by transfinite induction. One

very commonly used construction uses the alternating fixed point operator of Van Gelder

[VG89]; we follow more closely the presentation of [BS91]. For any logic program P an r.e.

operator FP is defined (the Gelfond-Lifschitz operator for the stable semantics). Now FP

is anti-monotonic, so F2
P is monotonic. The well-founded semantics infers a ground atom

β iff β is in the least fixed point of F2
P , and it infers ¬β iff β is not in the greatest fixed

point of F2
P . These fixed points can be constructed by transfinite recursion; here L is the

language of P :

W+
P⇑ < η =

⋃

ν<η

W+
P⇑ν. (Hence W+

P⇑ < 0 = ∅)

W+
P⇑η = F2

P (W+
P⇑η)

W−
P⇑ < η =

⋂

ν<η

W−
P⇑ν. (Hence W−

P⇑ < 0 = BL)

W−
P⇑η = F2

P (W−
P⇑η).

Now x ∈ FP (I) can be defined over the natural numbers by a first order formula

∃y1, . . . , yk, z(φ(x, y1, . . . , yk, z) ∧ y1 6∈ I ∧ · · · ∧ yk 6∈ I

where I does not appear in φ [Sch90]. Substitution gives a first order formula defining

x ∈ F2
P (I) in which I appears only positively. Hence both inductions reach fixed points

in ≤ ωck
1 steps; call the fixed points W+

P⇑∞ and W−
P⇑∞. Then W+

P⇑∞ is the least fixed

point of F2
P , and W−

P⇑∞ is the greatest fixed point. (In fact, it is well-known that both

reach fixed points in the same number of steps.) Also, W+
P⇑∞ is Π1

1 definable, and W−
P⇑∞

is Σ1
1 definable.
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The well-founded partial model of P is total if W+
P⇑∞ = W−

P⇑∞, that is, if for each

ground atom β, either β or ¬β is inferred.

Theorem 6.1 A set is definable in the well-founded semantics by a program P whose well-

founded partial model is total iff it is hyperarithmetic.

Proof: If the well-founded partial model of P is total, then W+
P⇑∞ = W−

P⇑∞ is, by the

above discussion, both Π1
1 and Σ1

1 definable, i.e., it is hyperarithmetic. On the other hand,

if a set is hyperarithmetic definable, then it is definable by a locally stratified program P , by

Theorem 5.6, and, by [VGRS91], the well-founded partial model of P is total and W+
P⇑∞

is the perfect model.

Theorem 6.2 Suppose the well-founded partial model of a program P is total. Then there

is a locally stratified program Q where, for each ground atom β of P , L is in the well-founded

partial model of P iff β is in the perfect model of Q.

Proof: Since the well-founded partial model is total, the set of ground atoms true in it is

hyperarithmetic. By Theorem 5.6, such a program Q exists.

Moreover, using the methods of the previous section, we can simulate the well-founded

semantics up to any constructive ordinal stage in the inductive construction – uniformly in a

notation for the ordinal. Recall that the well-founded partial model is not necessarily total.

Thus, to represent with a locally stratified program, we must represent positive and negative

literals separately; we shall add relation symbols p+ and p− for each relation symbol p of

P .

Theorem 6.3 Let P be a logic program. Then there is a logic program Q with an extra

variable Z so that, when Z is instantiated to sz(0) for z ∈ Dom⇑ωck
1 ,

• the instantiated program is locally stratified, and

• for any ground atom p(~t) of P , p(~t) ∈W+
P⇑ < ‖z‖ iff p+(~t) is in the perfect model of

the instantiated program, and

• for any ground atom p(~t) of P , p(t) 6∈W−
P⇑ < ‖z‖ iff p−(~t) is in the perfect model of

the stratified program.
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