
Syracuse University Syracuse University

SURFACE SURFACE

Theses - ALL

May 2014

Accelerating Pattern Matching in Neuromorphic Text Recognition Accelerating Pattern Matching in Neuromorphic Text Recognition

System Using Intel Xeon Phi Coprocessor System Using Intel Xeon Phi Coprocessor

Khadeer Ahmed
Syracuse University

Follow this and additional works at: https://surface.syr.edu/thesis

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Ahmed, Khadeer, "Accelerating Pattern Matching in Neuromorphic Text Recognition System Using Intel
Xeon Phi Coprocessor" (2014). Theses - ALL. 37.
https://surface.syr.edu/thesis/37

This Thesis is brought to you for free and open access by SURFACE. It has been accepted for inclusion in Theses -
ALL by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/thesis
https://surface.syr.edu/thesis?utm_source=surface.syr.edu%2Fthesis%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fthesis%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/thesis/37?utm_source=surface.syr.edu%2Fthesis%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

Neuromorphic computing systems refer to the computing architecture inspired by the working

mechanism of human brains. The rapidly reducing cost and increasing performance of state-of-

the-art computing hardware allows large-scale implementation of machine intelligence models

with neuromorphic architectures and opens the opportunity for new applications. One such

computing hardware is Intel Xeon Phi coprocessor, which delivers over a TeraFLOP of

computing power with 61 integrated processing cores. How to efficiently harness such

computing power to achieve real time decision and cognition is one of the key design

considerations. This work presents an optimized implementation of Brain-State-in-a-Box (BSB)

neural network model on the Xeon Phi coprocessor for pattern matching in the context of

intelligent text recognition of noisy document images. From a scalability standpoint on a High

Performance Computing (HPC) platform we show that efficient workload partitioning and

resource management can double the performance of this many-core architecture for

neuromorphic applications.

Accelerating Pattern Matching in Neuromorphic Text Recognition System Using
Intel Xeon Phi Coprocessor

by

Khadeer Ahmed

B.E., Visvesvaraya Technological University, 2006

Thesis
Submitted in partial fulfillment of the requirements for the degree of

Masters of Science Computer Engineering.

Syracuse University
May 2014

Copyright © Khadeer Ahmed 2014

All Rights Reserved

iv

Acknowledgement

I would like to thank my advisor Dr. Qinru Qiu for providing me an opportunity and

supporting me in my efforts for this work. She provided me a platform to launch and was

always available to guide me with her wisdom.

Also would like to acknowledge the help and invaluable guidance of Dr. Parth Malani

and Mangesh Tamhankar from Intel Corporation, who facilitated this as an internship project.

Parth was my mentor at Intel who helped in providing technical insights and project

development.

I am great full to everyone who facilitated my work by helping me gain valuable

experience into cutting edge, upcoming technologies and for the industry exposure.

Finally would like to thank my friends and in particular my family for their

encouragement, support and unwavering confidence in me.

v

TABLE OF CONTENTS

1 INTRODUCTION ... 1

1.1 OVERVIEW ... 1

1.2 RELATED WORK .. 3

2 BACKGROUND ... 5

2.1 BRAIN-STATE-IN-A-BOX MODEL .. 5

2.2 COGENT CONFABULATION ... 6

2.3 SOFTWARE ARCHITECTURE OF ITRS .. 8

3 INTEL XEON PHI COPROCESSOR ... 10

3.1 OVERVIEW ... 10

3.2 MICRO ARCHITECTURE ... 10

3.3 CORE ARCHITECTURE .. 11

3.4 VECTOR PROCESSING UNIT ... 12

3.5 THE INTERCONNECT ... 14

4 IMPLEMENTATION OVERVIEW .. 15

4.1 SYSTEM SETUP .. 16

5 PHASE 1 EXPERIMENTS .. 18

5.1.1 Experiment 1 – Serial code ... 18

5.1.2 Experiment 2 - OpenMP ... 19

5.1.3 Initial Runtime of MIC v/s Multicore CPU .. 20

6 PHASE-2 INCLUDING CONFABULATION .. 22

vi

6.1 EXPERIMENT .. 22

6.2 ANALYSIS ... 24

7 PHASE-3 OPTIMIZATIONS .. 25

7.1 SOFTWARE ARCHITECTURE OPTIMIZATIONS ... 26

7.1.1 Multiple comparison patterns to multiple OpenMP threads (MPMT) ... 26

7.1.2 Specific comparison pattern to specific pthread (SPST) ... 27

7.1.3 Specific pattern to specific pair of pthreads (SP2T) ... 29

7.2 COMPILER BASED OPTIMIZATIONS ... 30

7.2.1 Loop unrolling .. 30

7.2.2 Streaming stores .. 31

7.2.3 Inter Procedural optimization (IPO) ... 31

7.2.4 Prefetching ... 32

7.2.5 Vectorization .. 32

8 RESULTS AND ANALYSIS .. 34

8.1 OVERALL PERFORMANCE OPTIMIZATION .. 34

8.2 RESULTS .. 35

8.3 ANALYSIS ... 37

8.4 SAMPLE RUN FOR ITRS .. 39

8.4.1 Sample inputs... 39

8.4.2 Output for 15x15 characters .. 40

8.4.3 Output for 30x30 characters .. 41

9 CONCLUSION AND FUTURE WORK ... 42

9.1 CONCLUSION .. 42

9.2 FUTURE WORK .. 42

vii

10 APPENDIX.. 43

10.1 OPENMP .. 43

10.2 MPI ... 44

11 REFERENCES .. 46

12 VITA .. 50

viii

TABLE OF FIGURES

FIGURE 1: A SIMPLE EXAMPLE OF LEXICONS, SYMBOLS, AND KNOWLEDGE LINKS .. 7

FIGURE 2: ITRS PIPELINE ... 8

FIGURE 3: ITRS COGNITIVE MODEL .. 9

FIGURE 4: XEON PHI MICROARCHITECTURE .. 11

FIGURE 5: XEON PHI CORE ARCHITECTURE ... 12

FIGURE 6: VECTOR PROCESSING UNIT .. 13

FIGURE 7: INTERCONNECT .. 14

FIGURE 8: SOFTWARE ARCHITECTURE ... 16

FIGURE 9: BASELINE RUNTIME FOR SERIAL CODE IN FOR 15X15 CHARACTERS ... 18

FIGURE 10: BASELINE RUNTIME FOR SERIAL CODE IN FOR 30X30 CHARACTERS ... 19

FIGURE 11: RUNTIME GAIN WITH OPENMP OVER SERIAL FOR 15X15 CASE ... 19

FIGURE 12: RUNTIME GAIN WITH OPENMP OVER SERIAL FOR 30X30 CASE ... 20

FIGURE 13: MIC VS MULTICORE CPU RUNTIME FOR 15X15 CASE .. 20

FIGURE 14: MIC VS MULTICORE CPU RUNTIME FOR 30X30 CASE .. 21

FIGURE 15: PERFORMANCE GAIN OF MIC OVER MULTICORE CPU .. 21

FIGURE 16: RUNTIME COMPARISON OF MIC VS MULTICORE CPU WITH CONFAB .. 22

FIGURE 17: TIME SPENT ON MPI COMMUNICATION, MIC VS MULTICORE CPU .. 23

FIGURE 18: PERFORMANCE GAIN OF MIC OVER MULTICORE CPU .. 23

FIGURE 19: TOTAL TIME SPENT ON ONE CHARACTER .. 24

FIGURE 20: MPMT ARCHITECTURE ... 27

FIGURE 21: SPST ARCHITECTURE .. 28

FIGURE 22: SP2T ARCHITECTURE .. 30

FIGURE 23: PHASE BY PHASE RUNTIME REDUCTION ... 34

FIGURE 24: FLOPS ACHIEVED ... 34

FIGURE 25: BSB RUNTIME OPTIMIZATION .. 35

file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098850
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098851
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098852
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098853
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098854
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098855
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098856
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098857
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098858
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098859
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098860
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098861
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098862
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098863
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098864
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098865
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098866
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098867
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098868
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098869
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098870
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098871
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098872
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098873
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098874

ix

FIGURE 26: RUNTIME COMPARISON FOR STANDALONE CASE ... 36

FIGURE 27: RUNTIME COMPARISON WITH CONFAB ... 37

FIGURE 28: MULTI-LEVEL SCALING OF HYBRID ITRS ARCHITECTURE .. 39

FIGURE 29: SHARED MEMORY MODEL .. 44

FIGURE 30: MEMORY ARCHITECTURE ... 45

file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098875
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098876
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098877
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098878
file:///D:/RA/MS_thesis/Khadeer_Ahmed_Thesis.docx%23_Toc383098879

 1

1 Introduction

1.1 Overview

Cognitive computing is an emerging field made possible due to the advancement in High

Performance Computing (HPC) domain. There is a special interest in cognitive computing

because the challenges which are being faced today have no definite way of deriving a solution

and hence cannot be coded in the traditional style. There are many examples which fall under

this category, including natural language understanding, text image recognition, autonomous

unmanned vehicle controls, user preference suggestion, etc.

Neuromorphic computing systems refer to the computing architecture inspired by the working

mechanism and massive parallel structure of human brains. A neuromorphic information

processing model is presented in [1]. The model consists of a simple but massive parallel

pattern matching layer that generates fuzzy results retaining rich information (sometimes

referred as ambiguity) and a powerful information inference layer that removes the ambiguity

by statistical inference. The event-driven computation in neuromorphic engines loosely

represents the integrate-and-fire behavior of neurons, leading to high computation efficiency.

The hierarchical architecture mimics the primary sensory cortex and association cortex in

brain’s sensory processing area [2][3][4]. The model is applied for intelligent text recognition in

document image processing, where meaningful sentences are extracted from camera captured

documents and road signs. These are non-trivial problems as the images are captured with

perspective distortion, angular distortion, warping or other general noises. Reliable

 2

performance is achieved even when the system is exposed to new experiences. As their

experience gets richer and richer for every new exposure, their performance improves.

The state-of-the-art multi-core computer architecture enables large-scale implementation of

neuromorphic models. One of such computer system is Intel’s Xeon Phi coprocessor, where

more than 61 X86 compatible cores with 4-way multi-threading capability are integrated on a

single die. Each core has its own L1 and L2 cache and can access coherent L2 caches of any

other core [5]. This architecture delivers over a TeraFLOP computing bandwidth. How to

harness such computing power to achieve real-time cognition and decision is an urgent

research problem.

In this work, we accelerate the performance of the neuromorphic model for Intelligent Text

Recognition System (ITRS) using the hybrid Xeon - Xeon Phi coprocessor setup. According to

Amdahl’s law, the most effort in performance optimization should be spent on the most

common operation, which is identified to be pattern matching in ITRS. Pattern matching forms

the bottom layer of ITRS. It is implemented using an auto-associative memory model called

Brain-State-in-a-Box (BSB). BSB is a simple nonlinear, energy minimizing neural network

[7][8][9], whose convergence speed is proportional to the similarity between the input image

and the stored pattern. The bottom layer of the ITRS consists of large number of independent

BSB models, which are ideal candidates for parallel implementation.

A scalable platform capable of handling images with different resolutions for higher fidelity

pattern matching is developed on Intel’s Xeon Phi coprocessor. One of the reasons to select

Xeon Phi over GPGPU is that the applications can run natively on Xeon Phi compared to the

 3

offload model of GPGPU. This is particularly an important capability as it frees up the CPU to

handle more control intensive functions of ITRS [1].

1.2 RELATED WORK

The first stage of a text recognition system is image processing, which feeds the Optical

Character Recognition (OCR) modules. A wide variety of OCRs for printed text recognition were

developed over the years [10]. There is a heavy focus on improving their accuracy by employing

various image processing and classifying techniques including neural network based learning

techniques[11][12][13]. In ITRS, the intelligence for recognition and error correction has been

pushed to upper layers, where word and sentence contexts are considered. Hence it affords a

simple fuzzy pattern-matching layer, which generates more than one likely matches for a given

pattern. This is also why performance optimization rather than accuracy optimization is focused

in this work.

There are prior attempts to implement the pattern matching layer of ITRS on IBM Cell

processors [14][15]. However, the limited size of on-chip memory of Cell processor prevents us

from processing higher resolution images in reasonable time. Attempts have been made to

have a hardware solution for processing these BSB neural networks using memristor crossbar

arrays [16]. However, no real hardware has been implemented yet. GPGPU based optimizations

have been implemented for several similar neural network models [17][18][19]. They need

special attention from the CPU to move computation data from main memory to GPU memory.

Furthermore, combining CUDA with Message Passing Interface (MPI) is not an ideal option [20].

 4

Efficient use of Single Instruction Multiple Data (SIMD) architecture is the key to achieving high

performance with Xeon Phi coprocessor. Several SIMD vectorization techniques are proposed in

[21]. A comprehensive guide on optimization for the coprocessor is given by [22][23]. Work on

optimizing a data intensive application running natively on the coprocessor is presented in [24].

Its authors have tried to reduce inter-thread dependency to minimize thread syncing overhead.

Efficient parallelization of batch pattern training algorithm for the coprocessor and other HPC

platforms is proposed in [25]. It uses MPI to perform communication and reduction operations

at the same time.

 5

2 BACKGROUND

In this chapter, the computation model and software architecture of ITRS are presented,

followed by a brief introduction of hardware architecture of Xeon Phi coprocessor.

2.1 Brain-state-in-a-box model

BSB model is a simple, auto-associative, nonlinear, energy minimizing neural network [7][8][9].

A common application of the BSB model is to recognize a pattern from the given noisy input. It

can also be used as a pattern recognizer that employs a smooth nearness measure and

generates smooth decision boundaries.

There are two main operations in a BSB model, Training and Recall. Here the focus is on BSB

recall operation. The mathematical model of a BSB recall operation can be represented in the

following form:

𝑥(𝑡 + 1) = 𝑆(𝛼 ∗ 𝐴 ∗ 𝑥(𝑡) + 𝜆 ∗ 𝑥(𝑡) + 𝛾 ∗ 𝑥(0)) (1)

Where:

 𝑥 is an N dimensional real vector

 𝐴 is an NxN connection matrix

 𝐴 ∗ 𝑥 (𝑡) is a matrix-vector multiplication operation

 𝛼 is a scalar constant feedback factor

 𝜆 is an inhibition decay constant

 𝛾 is a nonzero constant if there is a need to maintain the input stimulation

 𝑆 () is the “squash” function defined as follows:

𝑆(𝑦) = {

1 𝑖𝑓 𝑦 > 1
𝑦 𝑖𝑓 −1 ≤ 𝑦 ≤ 1

−1 𝑖𝑓 𝑦 < 1
 (2)

 6

Note that in our implementation, we choose 𝜆 to be 1.0 and 𝛾 to be 0.0. But they can be easily

changed to other values. Given any input pattern 𝑥(0), the recall process executes equation (1)

iteratively to reach convergence. A recall converges when all entries of 𝑥(𝑡 + 1) are either

“1.0” or “-1.0”.

The BSB model is selected in the ITRS for two reasons. First, it is simple to operate compared to

other complex neural network models [4]. Although it has lower accuracy, the error can be

corrected by the upper layer information processing. Second, its convergence roughly indicates

the similarity between the input and the stored pattern. It is pointed out by [4] that the average

convergence time of the BSB model increases as the input goes further away from the

attractor. Such property enables the racing behavior in character recognition, which is

discussed in confabulation sub section.

2.2 Cogent confabulation

Cogent confabulation is a connection-based cognitive computing model. It captures

correlations between objects (or features) at the symbolic level and stores this information as a

knowledge base [1]. Given an observation, familiar information with high relevancy will be

recalled from the knowledge base.

Based on the theory, the cognitive information process consists of two steps: learning and

recall. During learning, the knowledge links are established and strengthened as symbols are

co-activated. During recall, a neuron receives excitations from other activated neurons. A

“winner-takes-all” strategy takes place within each lexicon. Only the neurons (in a lexicon) that

represent the winning symbol will be activated and the winner neurons will activate other

 7

neurons through knowledge links. At the same time, those neurons that did not win in this

procedure will be suppressed.

Figure 1 shows an example of lexicons, symbols, and knowledge links. The three columns in

Figure 1 represent three lexicons for the concept of shape, object, and color with each box

representing a neuron. Different combinations of neurons represent different symbols. For

example, the pink neurons in lexicon I represent the cylinder shape, the orange and yellow

neurons in lexicon II represent a fire extinguisher and a cup, while the red neurons in lexicon III

represent the red color. When a cylinder shaped object is perceived, the neurons that

represent the concepts “fire extinguisher” and “cup” will be excited. However, if a cylinder

shape and a red color are both perceived, the neurons associated with “fire extinguisher”

receive more excitation and become activated while the neurons associated with the concept

“cup” will be suppressed. At the same time, the neurons associated with “fire extinguisher” will

further excite the neurons associated with its corresponding shape and color and eventually

make those symbols stand out from other symbols in lexicons I and III.

Figure 1: A simple example of lexicons, symbols, and knowledge links

 8

2.3 Software Architecture of ITRS

ITRS is developed to extract meaningful sentences from document images. It has two

information processing layers, a BSB model based pattern-matching layer and a confabulation

model based statistical inference layer. The salient feature of ITRS is that it provides

contextually correct sentence reconstruction even if there are illegible characters or words in

the document image. This is enabled by a trained knowledge base, which captures the

statistical information among building components in English language, from letters and words

to phrases and part-of-speech tagging.

The information processing in ITRS has several stages, which can be arranged as a pipeline

shown in Figure 2. After simple image processing which corrects image distortion, skew and

warping, the character images are segmented from document image and forwarded to BSB,

where fuzzy pattern matching is performed. The pattern matching results will be processed by

word level and sentence confabulation for inference based error correction and association.

Figure 2: ITRS Pipeline

Word
Confabulation

Sentence
Confabulation

Image
Processing

BSB

Confabulation
Meaningful

Sentence

Document
Image

 9

A working example of ITRS is shown in Figure 3. Given a noisy document image, the BSB

provides best effort pattern matching for each character images. Each question mark in the

figure represents all 26 possible alphabets. The word confabulation layer forms all possible

words based on these matching alphabets and the sentence confabulation layer selects the

words that forms the most meaningful sentence. It is easy to see that, for each sentence, one

sentence confabulation task and multiple word confabulation tasks must be executed, along

with even more number of BSB pattern matching tasks. Information is passed across layers. The

computation tasks in the same layer are independent to each other and hence can be

implemented in parallel.

The pattern-matching layer (BSB) is trained on clean font image. The word level confabulation is

trained by reading a dictionary. And the size of word level knowledge base is about 200 MB.

The sentence level knowledge base is trained by reading multiple classic literatures. The size of

this knowledge base is 6 - 12 GB.

Figure 3: ITRS Cognitive model

 10

3 Intel Xeon Phi coprocessor

3.1 Overview

Intel Xeon Phi coprocessor is based on Intel Many Integrated Core Architecture or Intel MIC. It

is an architecture which consists of more than 50, modified x86 cores on a single die. The

primary advantage of this architecture is that it can run the existing x86 code with very few

modifications, at the same time get huge performance boost due to many independent parallel

cores. The following sections briefly describe the hardware architecture of Knights Corner (KNC)

generation Intel Xeon Phi coprocessor.

3.2 Micro architecture

The coprocessor primarily consists of processing cores, caches, memory controllers, PCIe client

logic, and a very high bandwidth bidirectional ring interconnect as shown in Figure 4. Each core

has a private L2 cache that is kept fully coherent by a global-distributed tag directory (TD). The

memory controllers and the PCIe client logic provide a direct interface to the GDDR5 memory

on the coprocessor and the PCIe bus, respectively. There are 8 memory controllers supporting

up to 16 GDDR5 channels delivering up to 5.5 GT/s transfer speed, this provides a theoretical

aggregate bandwidth of 352 GB/s (gigabytes per second) directly connected to the Intel® Xeon

Phi™ coprocessor [6]. All these components are connected together by the ring interconnect.

 11

3.3 Core architecture

Each core in the coprocessor is power efficient and provides a high throughput for highly

parallel workloads. It uses a short in-order pipeline and is capable of supporting 4 threads in

hardware. It supports legacy IA (Intel Architecture) with an overhead of 2% with respect to the

area costs of the core and is even less at the chip level [5]. The core architecture is as shown in

Figure 5. The core can execute 2 instructions per clock cycle, one on the U-pipe and one on the

V-pipe. The V-pipe cannot execute all instruction types, and simultaneous execution is

governed by pairing rules. Most integer and mask instructions have a 1-clock latency, while

most vector instructions have 4-clock latency with a 1 clock throughput. The Level One (L1)

cache accommodates higher working set requirements for four hardware contexts per core. It

has a 32 KB L1 instruction cache and 32 KB L1 data cache. It has 8-way associativity, with a 64

byte cache line. It also features a 512 KB unified Level Two (L2) cache. The L2 organization

comprises 64 bytes per way with 8-way associativity [6].

Figure 4: Xeon Phi microarchitecture

Source: http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

 12

3.4 Vector Processing Unit

The vector processing unit (VPU) shown in Figure 6 is an important part of the core, which helps

to greatly improve the performance. The VPU features a novel 512-bit SIMD instruction set,

known as Intel Initial Many Core Instructions (Intel IMCI). The VPU can execute 16 single-

precision (SP) or 8 double-precision (DP) operations per cycle. The VPU also supports Fused

Multiply-Add (FMA) instructions and hence can execute 32 SP or 16 DP floating point

operations per cycle. It also provides support for integers. The VPU contains the vector register

file (32 registers per thread context), and can read one of its operands directly from memory,

including data format conversion on the fly. Broadcast and swizzle instructions are also

available [6].

Figure 5: Xeon Phi core architecture

Source: http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

 13

Vector units are very power efficient for HPC workloads. A single operation can encode a great

deal of work and does not incur energy costs associated with fetching, decoding, and retiring

many instructions. However, several improvements were made to support such wide SIMD

instructions. For example, a mask register is added to the VPU to allow per lane predicated

execution. This helps in vectorizing short conditional branches, thereby improving the overall

software pipelining efficiency. The VPU also supports gather and scatter instructions, which are

simply non-unit stride vector memory accesses, directly in hardware. Thus for codes with

sporadic or irregular access patterns, vector scatter and gather instructions help in keeping the

code vectorized.

The VPU also features an Extended Math Unit (EMU) that can execute transcendental

operations such as reciprocal, square root, and log, thereby allowing these operations to be

executed in a vector fashion with high bandwidth. The EMU operates by calculating polynomial

approximations of these functions.

Figure 6: Vector Processing Unit

Source: http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

 14

3.5 The Interconnect

The interconnect, as shown in Figure 7 is implemented as a bidirectional ring. Each direction is

comprised of three independent rings. The first, largest, and most expensive of these is the data

block ring. The data block ring is 64 bytes wide to support the high bandwidth requirement due

to the large number of cores. The address ring is much smaller and is used to send read/write

commands and memory addresses. Finally, the smallest ring and the least expensive ring is the

acknowledgement ring, which sends flow control and coherence messages.

Figure 7: Interconnect

Source: http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

 15

4 Implementation Overview

Sequential implementation of the ITRS software was used as the starting point, followed by 3

development phases. The first phase is to restructure the ITRS software to support multiple

parallel BSB threads, and thus to parallelize the pattern matching layer. The BSB threads and

the ITRS software were first implemented on a standalone Xeon host. Each BSB can handle 2

character image sizes, with 15x15 or 30x30 pixels per character image. They correspond to 256

bytes wide and 1024 bytes wide input vectors respectively. This is a crucial step as both Xeon

host and the coprocessor are based on similar x86 architecture, hence initial code development

and testing becomes smoother. Once the initial code is tested on Xeon host, it can also be

compiled and run on Xeon Phi.

Naturally the next phase is to move the BSB code to Xeon Phi coprocessor, and port the image

processing and confabulation models on the host Xeon processor of our system. Message

Passing Interface (MPI) is used for data communication between confabulation and BSB. In this

way the pattern-matching layer is separated from the rest of the ITRS and allocate more

computing resources to it. Image processing module groups the character images in to

workloads and issues them to BSB through MPI. Each workload consists of 96 characters, which

is an input to the BSB module. The size is chosen to provide a good balance between

communication and computation time. BSB compares each image in the workload against 93

trained patterns. The pattern set consists of lower case and upper case English alphabets,

numbers and some common symbols & punctuations. The output is the set of matching pat-

terns, which are called letter candidates, and their convergence speed. These results are used

by the confabulation module to generate meaningful sentences.

 16

The third and final phase is to optimize the BSB code for Xeon Phi coprocessor. Figure 8 shows

the hybrid Xeon – Xeon Phi architecture for this phase. Confabulation is moderately parallel and

is a tree structured algorithm. While BSB is massively parallel in nature. Xeon host also manages

dispatching the images to BSB and collecting the results. The methods utilized and the avenues

explored for optimization along with the development details are described in the following

chapters.

4.1 System setup

An Intel 2-socket Xeon server host machine was used for the development. OpenMP, Intel MPI

along with Intel C++ compiler (version: 13.0.5.192) were used and Intel VTune Amplifier was

used to profile the code on both Xeon processor and the coprocessor. A micro OS runs on each

Xeon Phi card known as Manycore Platform Software Stack (MPSS). Table shown below

provides more details on the system setup.

Figure 8: Software Architecture

Dispatcher

Word
Confab.

Word
Confab.

Word
Confab.

Xeon host

Sentence
Confab.

Sentence
Confab.

Flow
Controller

Thread

M

P

I

Char img
Queue

BSB Results

MPI

Communicator
& Scheduler

thread

Result Buffer

Xeon Phi

BSB
b1

b11 b12 b1n

BSB
bm

bm1 bm2 bmn

w1 w2 wn

s1 sm

 17

Table 1: Setup details

 Xeon Xeon Phi

Part number E5-2687W 7110P

#Physical Processors 2 2

#Cores
8

(Total 8*2 = 16 cores)

61

(Total 61*2 = 122 cores)

Cache

L1 – 512KB

L2 – 2MB

L3 – 20MB

L1 – 32KB

L2 – 512KB

#Threads 16*2 = 32 61*4 = 244

Frequency 3.1GHz 1.1 GHz

RAM 32 GB GDDR 8 GB

OS
Redhat Enterprise 6.3

(2.6.32-279)
MPSS 2.1.5889-16

 18

5 Phase 1 Experiments

In this phase the base line performance of serial code on Xeon host is determined and the BSB

code is restructured for parallel implementation.

5.1.1 Experiment 1 – Serial code

Standalone serial BSB code was compiled using gcc and icc compilers and their runtimes

compared as the existing Cell processor code is compiled using gcc compiler. This experiment is

performed to judge the baseline performance of the initial setup. The results for 15x15

characters and 30x30 characters are shown in Figure 9 and Figure 10 respectively. From the

charts it is evident that icc provides better performance compared to gcc with O3 level

optimizations enabled.

Figure 9: Baseline runtime for serial code in for 15x15 characters

 19

5.1.2 Experiment 2 - OpenMP

The standalone Xeon BSB is parallelized using OpenMP and compiled using both gcc and icc for

multicore CPU and the results are as shown in Figure 11 and Figure 12. Two kinds of

parallelization were implemented using OpenMP: first with an OpenMP thread for every

character in workload, second was with OpenMP task for every core compute section. For

remainder of the work, all compilations are done using icc compiler.

Figure 10: Baseline runtime for serial code in for 30x30 characters

Figure 11: Runtime gain with OpenMP over serial for 15x15 case

72%

93.8%

77%

93.5%

0

10

20

30

40

50

60

70

80

90

100

g++ (O3) icc (default Opt)

%
 g

ai
n

 o
ve

r
se

ri
al

Compilers

% Runtime gain over serial (15x15)

Parallel

Parallel with task

 20

5.1.3 Initial Runtime of MIC v/s Multicore CPU

In this experiment the BSB code was implemented on a multicore CPU architecture and Xeon

OpenMP code was ported to the MIC architecture. From Figure 13 and Figure 14 it is clear that

15x15 case is suitable for multicore CPU and 30x30 case is suitable for MIC. Figure 15 shows

that there is a drop in performance of for 15x15 case and gain for the case of 30x30 character.

These results are for un-optimized code. After optimization there is performance gain for both

the cases and these details are presented in chapter 7 and 8.

Figure 12: Runtime gain with OpenMP over serial for 30x30 case

70.5%

72.4%72.2%

74.2%

68

69

70

71

72

73

74

75

g++ (O3) icc (default Opt)

%
 g

ai
n

 o
ve

r
se

ri
al

Compilers

% Runtime gain over serial (30x30)

Parallel

Parallel with task

Figure 13: MIC vs multicore CPU runtime for 15x15 case

0.33 s

1.37 s

0.32 s

0.87 s

0

0.4

0.8

1.2

1.6

Multicore
CPU

MIC

R
u

n
ti

m
e

 in
 s

e
co

n
d

s

Processor

Runtime MIC vs. Multicore CPU
(15x15)

Parallel

Parallel with task

 21

The data requirement for 15x15 case is very low compared to 30x30 case and per core cache on

multicore CPU is large compared to per core cache of MIC. Hence the parallelization overhead

becomes significantly greater for 15x15 case on MIC. These results are not representative of the

nature of the algorithm and platform as the code is not optimized yet. The results after

optimization are presented in chapters 7 and 8.

Figure 14: MIC vs multicore CPU runtime for 30x30 case

23 s

9.44 s
21.5 s

9.37 s

0

5

10

15

20

25

Multicore
CPU

MIC

R
u

n
ti

m
e

in
 s

e
co

n
d

s

Processor

Runtime MIC vs. Multicore CPU
(30x30)

Parallel

Parallel with task

Figure 15: Performance gain of MIC over multicore CPU

-75.9

143.6

-63.2

129.5

-100

-50

0

50

100

150

200

15x15 30x30%
 P

er
fo

rm
an

ce
 g

ai
n

Work load

% gain MIC over Multicore CPU

Parallel

Parallel with task

 22

6 Phase-2 Including confabulation

In this phase the BSB is interfaced with confabulation using MPI. The BSB code is compiled for

Xeon Phi coprocessor. The image processing and confabulation models run on the host Xeon

processor of our system. Experiments are carried out to evaluate the performance and the

communication overhead.

6.1 Experiment

A higher resolution character image is preferred by the ITRS application hence, from this point

onwards more concentration is given on 30x30 cases. All the experiments described in this

section are for the case of confabulation integrated with un-optimized BSB. The initial BSB

runtime on MIC was 18.41 seconds, some minor tweaking (reducing unnecessary computation)

was performed to reduce the runtime. Figure 16 shows the average run time on MIC and

multicore CPU with the error bars indicating the maximum and minimum runtimes obtained

during this run.

The threads performing computation run independently from the MPI communication threads.

Hence there is overlap of computation and communication, which is the ideal case as the MIC

Figure 16: Runtime comparison of MIC vs multicore CPU with confab

13.08 s

20.75 s

35.00 s
37.65 s

0

10

20

30

40

50

Task No Task

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

BSB parallelization method

MIC vs Multicore CPU

Per workload (30x30)

MIC

Multicore

CPU

 23

spends maximum time possible for computation. Figure 17 shows the time spent on MPI

communication with both receive and transmit time included for one workload. The MIC

runtime of 13.08 seconds from Figure 16 mostly comprises of computation time. The

corresponding MPI communication time from Figure 17 is 5.04 seconds.

Figure 18 summarizes the performance gain of MIC over multicore CPU due to drop in run time.

With the un-optimized BSB code, gain of 167% was achieved with minor tweaking and just by

porting the BSB to MIC.

The total time spent on the core compute part of the code is summarized in Figure 19. It is clear

that MIC spends longer in the core compute section and one of the primary reason is, MIC runs

Figure 17: Time spent on MPI communication, MIC vs multicore CPU

5.04 s

7.09 s

12.28 s
9.19 s

0

5

10

15

Task No Task

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

BSB parallelization method

MIC vs Multicore CPU

MPI time per workload (30x30)

MIC

Multicore

CPU

Figure 18: Performance gain of MIC over multicore CPU

 24

at 1GHz and multicore CPU at 3GHz. Even with this huge difference the MIC outperforms a

multicore CPU as MIC is highly parallel.

6.2 Analysis

From the above experiment it can be inferred that, the workload is highly data intensive but

benefits from parallelism. Though CPU is better in data handling, MIC has better overall

runtime. Based on this inference the following optimization opportunities can be explored to

improve overall performance:

• Memory pre-allocation on MIC

• Data localization

• Reduce per char runtime on MIC to increase performance

• Other MIC specific optimizations

Figure 19: Total time spent on one character

2.06 s

0.59 s
0.10 s 0.11 s

0

1

2

3

Task No Task

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

BSB parallelization method

MIC vs Multicore CPU

Per char recall linear time (15x15)

MIC

Multicore

CPU

27.75 s

11.34 s

2.05 s 2.11 s

0

10

20

30

40

Task No Task

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

BSB parallelization method

MIC vs Multicore CPU

Per char recall linear time (30x30)

MIC

Multicore

CPU

 25

7 Phase-3 Optimizations

Two progressive steps are taken to optimize the pattern-matching layer to exploit the resource

on Xeon Phi. The first step is to restructure the software for efficient resource management and

workload balance. The second step is to tweak compiler options to investigate different auto

optimization/vectorization techniques and performance benefits.

The core computation of BSB model is matrix vector multiplication as shown in equation (1).

This is repeated for a maximum of 50 iterations or until the results converge whenever an input

image is compared against a stored pattern. It is worth to note that the Intel Math Kernel

Library (MKL) provides an optimized parallel implementation for matrix-vector multiplication,

where the original matrix and vector are segmented and loaded to different cores for

distributed processing. The results will be merged at the end. However, the performance of

such fine-grained workload partition and parallelization is severely limited by Amdahl’s law.

Unless the size of the matrix and vector is sufficiently large, the performance gain from parallel

computing is not enough to offset the overhead of communication and synchronization [26].

Furthermore, to get best performance, MKL allocates the maximum resources i.e. all the cores,

for one matrix-vector operation. Hence we have to serialize the bottom layer of ITRS and run

the pattern-matching tasks one by one. It was observed that such globally serial and locally

parallel (GSLP) implementation is not efficient for ITRS.

In contrast to GSLP, we adopt a globally parallel and locally serial approach. OpenMP threads

and pthreads are created and distributed across Xeon Phi to handle multiple pattern-matching

tasks independently. They are referred as solver threads. All threads run in parallel. Their

 26

synchronization is handled by thread safe blocking queues, which have critical sections defined

for accessing the queue and blocks the thread if the queue is empty. This allows the

architecture to be inherently load balancing as each computation thread can pick up workload

from the queues whenever it finishes processing the current task. The compute threads have

data exchange only with the thread-safe queue. The communication with the rest of the ITRS

system, which runs on the host CPU, is handled by another thread. By decoupling the compute

thread from MPI communication, we keep them busy for maximum duration.

7.1 Software architecture optimizations

The first step of optimization is to the find the best software architecture for efficient resource

management and workload balancing. For any combination of input image and stored pattern

for comparison, a pattern-matching task is created. The set of pattern-matching tasks for all of

the 96 input images forms the workload. Based on how the workload is partitioned and

distributed, three different resource management schemes are tested and their performance is

compared.

7.1.1 Multiple comparison patterns to multiple OpenMP threads (MPMT)

In this architecture 244 solver threads are created using OpenMP. This is the number of logical

cores available on the coprocessor card. Any pattern-matching job can be assigned to any of

the available solver threads. Figure 20 shows how the workload is created and assigned.

 27

Because the threads can work on any available job at any time, this approach has excellent load

balancing ability. However, the BSB models for different patterns have different weight

matrices. Due to the limited cache size, every time a new pattern-matching job is started, a new

weight matrix of the BSB model (corresponding to the pattern to be compared) must be

shuttled/read into the target core’s local cache. When 244 threads running simultaneously,

large amount of data transfer is created, which causes bus contention. Explicit data

management to preserve data locality can improve the performance significantly. Using this

resource management scheme, it takes 18.41 seconds to process 96 input images with 30x30

resolution. The performance analysis from VTune Amplifier confirms that there were huge

memory stalls in the compute section of the solver thread. This indicates that the performance

of the pattern-matching layer is bounded by memory performance.

7.1.2 Specific comparison pattern to specific pthread (SPST)

To get finer control over data, thread creation and destruction, pthreads are used instead of

OpenMP threads as shown in Figure 21. A set of 93 pthreads are created during initialization

Figure 20: MPMT architecture

0 1 2 96

0 1 2 93

Characters per
workload

Symbols for
comparison

MIC –
OpenMP threads

0 1 2 ----- 244

To any thread

Sort results

 28

and destroyed only when the ITRS terminates. There are 3 other threads, which take care of

MPI communication and cleanup. We also divide the entire workload into 93 sets. Each set of

workload contains pattern-matching tasks between all input images and one of the 93 stored

patterns. A specific set of workload is assigned to a specific pthread. Because each pthread

always compares the input with the same stored pattern, the weight matrix of the

corresponding BSB model can stay in the cache. Therefore, the data contention problem in

MPMT is relieved.

Since the solver threads are alive for the entire duration of the program and each thread works

on a specific symbol, there is better utilization of cache. Compared to MPMT, the work

distribution of SPST may not be uniform but the performance gained due to efficient memory

utilization outperforms load balancing overhead

Performance can also be tweaked by changing the thread affinity. Specifying affinity of a

particular thread makes it run on the specified logical core. Three affinity settings were tried

out as described below:

Figure 21: SPST architecture

0 1 2 96

0 1 2 93

Characters per
workload

Symbols for
comparison

MIC –
pthreads

0 1 2 ----- 93 Sorter

 29

Compact affinity: Each thread was assigned to adjacent core. The run time was 18.5

seconds. This is not very ideal setting as every physical core (and its local cache) is shared by 4

pthreads.

Affinity for alternate logical cores: In this case each physical core will run no more than

two threads. This is an improvement over the previous case because only 2 threads share a

physical core and the cache. The runtime was 11.3 seconds.

Scatter affinity: By default the micro OS running on the coprocessor scatters the

threads among the 244 logical cores. This is the best configuration, as it tries to minimize cache

sharing among threads. The runtime in this case was 10.37 seconds.

Performance analysis by VTune Amplifier shows that the optimized solver code was not getting

steady stream of data due to sustained memory bandwidth limitations and smaller local cache

size for the required data. We were able to achieve 176.58 GB/s memory bandwidth utilization.

7.1.3 Specific pattern to specific pair of pthreads (SP2T)

The architecture in Figure 22 was developed to improve weight matrix data retention in cache.

It is similar to SPST, however, each weight matrix was split into halves and distributed to a

solver thread and its companion thread. While issuing characters for comparison a duplicate

copy was also issued to the companion thread. Hence one workload now needs 93*2=186

threads as shown in Figure 22.

 30

Although the core computation in this case took the same time as SPST, new overhead for

syncing the computation between the thread pairs is added. The runtime had now increased to

13.92 seconds.

7.2 Compiler based optimizations

Compiler switches and corresponding pragmas, language extensions and appropriate coding

styles were employed to assist in auto optimization, based on the guidelines provided by the

Intel compiler. Loop unrolling, vectorization, prefetching, streaming stores and Inter Procedural

optimization (IPO) were evaluated.

Streaming stores and IPO had limited boost in performance due to the nature of the BSB

algorithm.

7.2.1 Loop unrolling

This is a technique where the program's speed is increased by converting loops to linear code

and performing optimizations on this code. Some optimizations that can be performed are

reducing or removing instructions that control the loop, simplifying or reducing some pointer

Figure 22: SP2T architecture

0 1 2 96

0 1 2 93

Characters per
workload

Symbols for
comparison

MIC –
pthreads

0 1 2 ----- 186 Sorter

 31

arithmetic, reducing the number of looping condition tests and number of iterations. It also

reduces branch penalties and opens up opportunities for data prefetching which is crucial in

hiding latencies for memory intensive operations etc.

Pragmas were inserted in the code and compiler switches were used to enable loop unrolling.

Since the software architecture was already refined the compiler generated optimized loops

without the need for additional guidance for loop unrolling.

7.2.2 Streaming stores

Streaming stores are a set of instructions which bypass the cache and directly update the

memory location. With this optimization normal loops saw a drop in runtime of about 6

seconds, but blocked loops (loops where data is partitioned for cache line) didn’t show any

significant change. This is because of the nature of data access required by the BSB algorithm,

where higher number of stream reads are required compared to the number of stream writes.

7.2.3 Inter Procedural optimization (IPO)

IPO is a collection of compiler techniques used to improve performance of frequently used

functions. It analyzes the entire program or a single block of code and tries to reduce or

eliminate duplicate calculations, inefficient use of memory, and to simplify iterative sequences

such as loops.

Our case didn’t show any significant change in run time as the main computation kernel is

simplified and vectorized.

 32

7.2.4 Prefetching

The coprocessor does not have out of order execution but it incorporates prefetch techniques

to keep the pipeline full. It is accomplished by issuing prefetch instructions interleaved between

other instructions before the actual need for the specified data/instruction. These instructions

don’t stall the processor and the data/instructions will be available ready in cache by the time

they are actually needed.

The coprocessor supports both hardware prefetch and software prefetch. In our case it relies

more on software prefetching than on hardware prefetch. Hardware prefetching is enabled by

default. The BSB algorithm did not benefit from the hardware prefetcher due to the nature of

data access pattern required by the algorithm. However software prefetching had significant

impact on the runtime and is enabled by default. For the case of 30x30 character BSB run

needed about 16 seconds without software prefetching and after enabling, it took about 10

seconds for the same run.

An experiment was carried out by manually adding prefetch intrinsics and hints for prefetch

distances to C++ code. In comparison the compiler optimized code provided better

performance as it was able to compute optimum prefetch distances. As an observation in this

particular case; manually adding prefetch is probably best suited if the coding style is at

assembly level or for intrinsic heavy coding format.

7.2.5 Vectorization

The Xeon Phi compiler performs vectoization, which converts scalar operations (operations on

one set of data) to vector operations (same operation is performed on multiple data). One

 33

vector instruction operates on multiple operands hence significantly reducing the effective

runtime compared to scalar implementation.

The coprocessor has vector processing units with 512 bit vector registers. These VPUs help in

greatly reducing the code runtime. In fact vectorization provided the largest boost to the

overall performance. All the results presented in this section are obtained with vectorized code.

Vectorization was achieved by recoding computation loops in a specific pattern [22], along with

the use of language extensions (restrict) specific to the Intel compiler and respective compiler

switches. Also the data had to be memory aligned to benefit from these optimizations. The

code was fine-tuned and the required level of optimization achieved was confirmed through

specific compiler reports.

 34

8 Results and Analysis

8.1 Overall performance optimization

The Figure 23 shown below, provides performance snapshot of different implementation

milestones. The performance achieved for best case scenario in terms of Giga FLOPs is shown in

Figure 24.

Figure 23: Phase by phase runtime reduction

21.5 s
18.41 s

10.37 s

0

5

10

15

20

25

Phase 1
Multicore

CPU

Phase 2
MIC

Phase 3
MIC

R
u

n
ti

m
e

 in
 s

e
c

Project phases

Best case BSB Runtime

BSB Runtime

Phase 1: standalone BSB
Phase 2 & 3: interfaced with
confab

Figure 24: FLOPs achieved

17.95

59.50

130.60

0 50 100 150

Serial

Multicore
CPU

MIC

G FLOPs

Im
p

le
m

en
ta

ti
o

n

Standalone BSB Performance

30x30 workload

 35

8.2 Results

After applying the SPST resource management with scatter affinity, and with the help of

compiler based optimization options, we were able to optimize the pattern-matching layer for

MIC architecture and achieved 1.8x performance gain on Intel’s Xeon Phi coprocessor over

MPMT as shown in Figure 25. The runtimes plotted are for one workload of 96 characters at

30x30 resolution.

For fair comparison, the same pattern-matching layer is also implemented on a standalone CPU

and IBM Cell processor based PlayStation 3® setup. The CPU used in this experiment has 16

physical cores, each supporting 2-way simultaneous multi-threading. Each core has 512KB L1

cache, 2MB L2 cache and 20MB L3 cache. Since there are more threads than logic cores, the

workload balancing is done by OS. Each PS3 processor has 6 Synergetic Processing Elements

(SPE) and one PowerPC processor. Each SPE handles one SPST threads.

Figure 25: BSB Runtime Optimization

18.41 s

10.37 s

13.92 s

0

5

10

15

20

MPMT SPST SP2T

R
u

n
ti

m
e

 in
 s

e
c.

Software Architecture

BSB runtime on MIC

1.8x

 36

We consider the performance of the serial version of BSB algorithm running on CPU as our base

reference and set its performance to 1. Figure 26 gives the normalized performance of the

pattern matching layer implemented on CPU, Xeon Phi and PS3. Because the same software

architecture is implemented, the comparison measures the performance gained by upgrading

the hardware to the MIC architectures. There is no Cell processor implementation data for

30x30 resolution case, as it was not feasible to run at this resolution due to limited memory. As

we can see, Xeon Phi is able to provide 1.35x performance gain over the PS3 for 15x15 images

and 1.94x performance gain over optimized CPU implementation for 30x30 images.

Figure 27 shows the normalized performance comparison considering the communication

interface with the rest of the ITRS. Again, Xeon Phi is able to provide 1.46x performance gain

over the PS3 for 15x15 images and 1.9x gain over the optimized CPU implementation for 30x30

images.

Figure 26: Runtime comparison for standalone case

1 1

7.2

3.4

8.7

6.66.5

Cell N/A
0

2

4

6

8

10

15x15 30x30

R
e

la
ti

ve
 S

p
e

e
d

u
p

o
ve

r
Se

ri
al

BSB Runtime Speedup over Serial Implementation

Serial

Multi-core
CPU

MIC

Cell

1.35x

1.94x

 37

8.3 Analysis

The pattern matching workload for each input character image is a matrix multiplication, for

30x30 character it is [1024 x 1024] * [1024 x 1]. Each element in these matrices is a float data,

hence the size of the weight matrix is 4MB and the size of the input vector is 4KB. The result of

the matrix vector multiplication generates 4KB of new data. For each input image, the number

of times this multiplication is performed is: 50*93 = 4650, where 50 is the maximum number of

iterations allowed for convergence. The above number of iterations is repeated for all the

characters in the workload i.e. 96 times.

Total data requirement per iteration is ~4MB. Total cache on the coprocessor is about 30 MB.

This cache is coherent and can be accessible through any core. Each core has 32 KB L1 cache

and 512 KB L2 caches.

The data required per iteration is significantly greater than the per core cache size hence there

is memory spill over per iteration. This is clearly the bottleneck which is holding back the overall

performance. The nature of core compute part of the algorithm is like stream read. This

Figure 27: Runtime comparison with confab

1 1

6.7

3.3

8.3

6.5
5.7

Cell N/A
0

2

4

6

8

10

15x15 30x30

R
e

la
ti

ve
 S

p
e

e
d

u
p

o
ve

r
Se

ri
al

ITRS Runtime Speedup over Serial Implementation

Serial

Multi-core
CPU

MIC

Cell

1.46x

1.9x

 38

application is data intensive and the achieved bandwidth is 176.58 GB/s (peak) which is almost

same as Stream Memory Benchmark which peaks at 181 GB/s [27].

The BSB runs natively on the coprocessor hence the Xeon host is dedicated solely for

confabulation. This is especially beneficent as the BSB can run independently by receiving

workload requests and send results through MPI without stalling any other module. Hence as

many BSBs can run as the system can support.

The software architecture where a specific symbol is issued to a specific pthread as shown in

Figure 21 is found to be ideal for MIC architecture. The scaling capabilities are described based

on this software architecture. This architecture is very flexible and allows for testing the

behavior in terms of scaling at the workload level with in the Xeon Phi coprocessor. For one

workload configuration 3 + 93 + 1 = 97 threads are required. The number of threads for two

simultaneous workload configuration is 3 + (93 + 1) * 2 = 191 threads. Going beyond this is not

advisable as number of threads will exceed the available hardware resources.

The BSB also scales at the node level and cluster level along with ITRS as shown in Figure 28.

The BSBs communicate directly with the host Xeon processor and not with each other. This kind

of partitioning helps in maintaining simplicity and low MPI communication delays. Using

multiple coprocessor cards in a single node provides linear performance scaling of BSB. The

same scaling benefit can be achieved at the cluster level as well.

 39

8.4 Sample run for ITRS

8.4.1 Sample inputs

Figure 28: Multi-level scaling of hybrid ITRS architecture

Xeon Host Xeon Phi Coprocessors

MIC-0

MIC-1

MIC-n

M
P

I

M
P

I
M

P
I

M
P

I

BSB

BSB

BSB

Image
Processing

Img. Dispatcher/
result collector

Word
Confab

Word
Confab

Word
Confab

Sentence
Confab

Sentence
Confab

Core level parallelism
Multi-threading, shared memory

Node level parallelism
Loose synchronous, MPI

Xeon Host Xeon Phi Coprocessors

MIC-0

MIC-1

MIC-n

M
P

I

M
P

I
M

P
I

M
P

I

BSB

BSB

BSB

Image
Processing

Img. Dispatcher/
result collector

Word
Confab

Word
Confab

Word
Confab

Sentence
Confab

Sentence
Confab

Core level parallelism
Multi-threading, shared memory

Cluster level parallelism

Independent tasks, MPI

Page Scheduler

 40

8.4.2 Output for 15x15 characters

 41

8.4.3 Output for 30x30 characters

 42

9 Conclusion and future work

9.1 Conclusion

We started off with a goal of upgrading the processing capability and accelerating BSB by

having an efficient and optimized platform which can scale up to a cluster level. We parallelized

and optimized the serial version of BSB for Xeon Phi coprocessor. During optimization we

explored several avenues on the software architecture side and tweaked auto-optimization

features available. We explored the effectiveness of using OpenMP and pthreads for the BSB

algorithm. Both 15x15 and 30x30 resolution images were experimented on and found that

30x30 case is now feasible. Overall we were able to achieve a speed up of ~2x with our ITRS

hybrid Xeon – Xeon Phi coprocessor implementation. This architecture is scalable at the core

level, node level and at the cluster level. Every BSB (coprocessor) added to the system provides

linear scaling in overall performance of all BSBs combined.

9.2 Future work

Our future work on this problem is to optimize the architecture for memory bandwidth. Also

we will be reformulating the algorithm such that the computation can be split on multiple cores

and span multiple iterations, to improve data retention on the coprocessor.

 43

10 Appendix

10.1 OpenMP

It is an Application Program Interface (API) that may be used to explicitly direct multi-threaded,

shared memory parallelism. OpenMP is a short for Open Multi-Processing. It is comprised of

three primary API components:

 Compiler Directives

 Runtime Library Routines

 Environment Variables

The main purpose of OpenMP is to provide a standard among a variety of shared memory

architectures/platforms. It is simple and limited set of directives for programming shared

memory machines. It provides capability to incrementally parallelize a serial program, unlike

message-passing libraries which typically require an all or nothing approach. The standard

provides the ability to implement both coarse-grain and fine-grain parallelism utilizing fork join

threading model. This API is specified for C/C++ and Fortran.

OpenMP is designed for multi-processor/core, shared memory machines. The underlying

architecture can be shared memory – Uniform Memory Access (UMA) or Non Uniform Memory

Access (NUMA) as shown in Figure 29.

 44

10.2 MPI

MPI stands for Message Passing Interface. It is a standard established for portable, efficient and

flexible message passing application. It primarily addresses the message-passing parallel

programming model: data is moved from the address space of one process to that of another

process through cooperative operations on each process. The standard allows for

communication in case of shared memory or with distributed memory as well as with hybrid

memory architectures as shown in Figure 30.

 Uniform Memory Access Non-Uniform Memory Access

Figure 29: Shared memory model

Source: https://computing.llnl.gov/tutorials/openMP

https://computing.llnl.gov/tutorials/openMP

 45

MPI is a common standard and is widely used on HPC platforms. It provides the ability to

abstract the underlying communication technologies and hence is very portable. All parallelism

is explicit and programmer specified.

 Distributed Memory Hybrid Memory

Figure 30: Memory architecture

Source: https://computing.llnl.gov/tutorials/mpi/

https://computing.llnl.gov/tutorials/mpi/

 46

11 References

[1] Qinru Qiu; Qing Wu; Bishop, M.; Pino, R.E.; Linderman, R.W., "A Parallel Neuromorphic

Text Recognition System and Its Implementation on a Heterogeneous High-

Performance Computing Cluster,"Computers, IEEE Transactions on , vol.62, no.5,

pp.886,899, May 2013 doi: 10.1109/TC.2012.50

[2] R. Wray, C. Lebiere, P. Weinstein, K. Jha, J. Springer, T. Belding, B. Best, and V.

Parunak, “Towards a Complete, Multilevel Cognitive Architecture,” Proc. of the

International Conference for Cognitive Modeling, 2007.

[3] R. S. Swenson, “Review of clinical and functional neuroscience,” Educational Review

Manual in Neurology, Castle Connolly Graduate Medical Publishing, 2006.

[4] J. A. Anderson, “An Introduction to Neural Networks,” The MIT Press, 1995.

[5] George Chrysos, Intel Corporation Intel® Xeon Phi™ Coprocessor - the Architecture

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-

knights-corner

[6] Intel® Xeon Phi™ Coprocessor System Software Developers Guide

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-

developers-guide

[7] J. Park, Y. Park, “An Optimization Approach to Design of Generalized BSB Neural

Associative Memories,” Neural Computation, MIT Press Journals, Vol. 12, No. 6, Jun.

2000, pp. 1449-1462.

[8] Y. Park, “Optimal and Robust Design of Brain-State-in-a-Box Neural Associative

Memories," Neural Networks, Elsevier, Volume 23, Issue 2, Mar. 2010, pp. 210-218.

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide

 47

[9] Schultz, “Collective recall via the brain-state-in-a-box network,” Neural Networks, IEEE

Transactions on, vol. 4, no. 4, pp. 580–587, 1993.

[10] S. Mori, C.Y. Suen, and K. Yamamoto, “Historical Review of OCR Research and

Development,” Proc. IEEE, vol. 80, no. 7, pp. 1029-1058, July 1992.

[11] Jianchang Mao, "A case study on bagging, boosting and basic ensembles of neural

networks for OCR," Neural Networks Proceedings, 1998. IEEE World Congress on

Computational Intelligence. The 1998 IEEE International Joint Conference on , vol.3,

no., pp.1828,1833 vol.3, 4-9 May 1998

[12] Blando, L.R.; Kanai, J.; Nartker, T.A., "Prediction of OCR accuracy using simple image

features," Document Analysis and Recognition, 1995., Proceedings of the Third

International Conference on , vol.1, no., pp.319,322 vol.1, 14-16 Aug 1995

[13] Peng Ye; Doermann, D., "Learning features for predicting OCR accuracy," Pattern

Recognition (ICPR), 2012 21st International Conference on , vol., no., pp.3204,3207,

11-15 Nov. 2012

[14] Qing Wu; Mukre, P.; Linderman, Richard; Renz, T.; Burns, D.; Moore, M.; Qinru Qiu,

"Performance optimization for pattern recognition using associative neural memory,"

Multimedia and Expo, 2008 IEEE International Conference on , vol., no., pp.1,4, June 23

2008-April 26 2008

[15] Taha, T.M.; Yalamanchili, P.; Bhuiyan, M.A.; Jalasutram, R.; Mohan, S.K., "Parallelizing

two classes of neuromorphic models on the Cell multicore architecture," Neural

Networks, 2009. IJCNN 2009. International Joint Conference on , vol., no.,

pp.3046,3053, 14-19 June 2009

 48

[16] Miao Hu; Hai Li; Qing Wu; Rose, G.S.; Yiran Chen, "Memristor crossbar based

hardware realization of BSB recall function," Neural Networks (IJCNN), The 2012

International Joint Conference on , vol., no., pp.1,7, 10-15 June 2012

[17] Honghoon Jang; Anjin Park; Keechul Jung, "Neural Network Implementation Using

CUDA and OpenMP," Digital Image Computing: Techniques and Applications (DICTA),

2008 , vol., no., pp.155,161, 1-3 Dec. 2008

[18] Billconan and Kavinguy. A neural network on gpu

http://www.codeproject.com/Articles/24361/A-Neural-Network-on-GPU

[19] Nere, A.; Hashmi, A.; Lipasti, M., "Profiling Heterogeneous Multi-GPU Systems to

Accelerate Cortically Inspired Learning Algorithms," Parallel & Distributed Processing

Symposium (IPDPS), 2011 IEEE International , vol., no., pp.906,920, 16-20 May 2011

[20] Diaz, J.; Munoz-Caro, C.; Nino, A., "A Survey of Parallel Programming Models and Tools

in the Multi and Many-Core Era," Parallel and Distributed Systems, IEEE Transactions

on , vol.23, no.8, pp.1369,1386, Aug. 2012

[21] Xinmin Tian; Saito, H.; Preis, S.V.; Garcia, E.N.; Kozhukhov, S.S.; Masten, M.;

Cherkasov, A.G.; Panchenko, N., "Practical SIMD Vectorization Techniques for Intel®

Xeon Phi Coprocessors," Parallel and Distributed Processing Symposium Workshops &

PhD Forum (IPDPSW), 2013 IEEE 27th International , vol., no., pp.1149,1158, 20-24

May 2013

[22] David Mackay, Optimization and Performance Tuning for Intel® Xeon Phi™

Coprocessors - Part 1: Optimization Essentials http://software.intel.com/en-

http://www.codeproject.com/Articles/24361/A-Neural-Network-on-GPU
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-1-optimization

 49

us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-

part-1-optimization

[23] Shannon Cepeda, Optimization and Performance Tuning for Intel® Xeon Phi™

Coprocessors, Part 2: Understanding and Using Hardware Events

http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-

intel-xeon-phi-coprocessors-part-2-understanding

[24] Gao Tao; Lu Yutong; Suo Guang, "Using MIC to Accelerate a Typical Data-Intensive

Application: The Breadth-first Search," Parallel and Distributed Processing Symposium

Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International , vol., no.,

pp.1117,1125, 20-24 May 2013

[25] Turchenko, V.; Bosilca, G.; Bouteiller, A.; Dongarra, J., "Efficient parallelization of batch

pattern training algorithm on many-core and cluster architectures," Intelligent Data

Acquisition and Advanced Computing Systems (IDAACS), 2013 IEEE 7th International

Conference on , vol.02, no., pp.692,698, 12-14 Sept. 2013

[26] Intel® Math Kernel Library http://software.intel.com/en-us/intel-mkl

[27] Karthik Raman Optimizing Memory Bandwidth on Stream Triad

http://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-stream-

triad

[28] Blaise Barney, OpenMP https://computing.llnl.gov/tutorials/openMP

[29] Blaise Barney, Message Passing Interface (MPI)

https://computing.llnl.gov/tutorials/mpi/

http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-1-optimization
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-1-optimization
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-stream-triad
http://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-stream-triad
https://computing.llnl.gov/tutorials/openMP
https://computing.llnl.gov/tutorials/mpi/

 50

12 Vita

Education R.N.S INSTITUTE OF TECHNOLOGY, Bangalore, India (V T U)

Bachelor of Engineering in Electronics and Communication

Professional

Experience

INTEL CORPORATION, Santa Clara, CA

Intern [Jan 2013 to July 2013]

 Explored and implemented various software architectures to optimize the

performance of BSB (brain state in a box) algorithm used for character pattern

recognition on Intel Xeon Phi coprocessor.

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING, Syracuse University,

Syracuse, NY

Research Assistant

 Document Image Parsing and Understanding using Neuromorphic Architecture

[Jan 2012 to Dec 2012], [Aug 2013 to present]

 Surface EMG signal processing on FPGA [Feb 2011 to July 2011]

 Researched building a system that is immune to malware [Aug 2009 to Dec 2009]

Teaching Assistant

 Object Oriented Design course [CSE 687 - Spring 2010], [CSE 283 - Fall 2011]

IWAVE SYSTEMS TECHNOLOGIES PVT LTD. (www.iwavesystems.com) Bangalore, India

Engineer (Member Technical – Hardware) [May 2007 to July 2008]

 Develop, test and maintain storage IP cores

Publication /

Presentations

o Poster on “Brain Inspired Information Association on Hardware” at DATE 2013

conference

o Paper on “A novel approach for simulation, measurement and representation of

surface EMG (sEMG) signals” at IEEE ASILOMAR 2011 conference

o Poster on FPGA based circuit simulation using wavelets on Nunan Lecture And

Research Day at Syracuse University (2010), judged as a runner-up

o Poster on Digital Synthesizer/Mixer on Nunan Lecture And Research Day at Syracuse

University (2009)

o Paper on improving MPEG system to accommodate 3D perspective

o Verilog tutorial on behalf of GROVE (Group of VLSI Enthusiasts) with hands on session

	Accelerating Pattern Matching in Neuromorphic Text Recognition System Using Intel Xeon Phi Coprocessor
	Recommended Citation

	Accelerating Pattern Matching in Neuromorphic Text Recognition System Using Intel Xeon Phi Coprocessor

