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Abstract 

Neuromorphic computing systems refer to the computing architecture inspired by the working 

mechanism of human brains. The rapidly reducing cost and increasing performance of state-of-

the-art computing hardware allows large-scale implementation of machine intelligence models 

with neuromorphic architectures and opens the opportunity for new applications. One such 

computing hardware is Intel Xeon Phi coprocessor, which delivers over a TeraFLOP of 

computing power with 61 integrated processing cores. How to efficiently harness such 

computing power to achieve real time decision and cognition is one of the key design 

considerations. This work presents an optimized implementation of Brain-State-in-a-Box (BSB) 

neural network model on the Xeon Phi coprocessor for pattern matching in the context of 

intelligent text recognition of noisy document images. From a scalability standpoint on a High 

Performance Computing (HPC) platform we show that efficient workload partitioning and 

resource management can double the performance of this many-core architecture for 

neuromorphic applications. 
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1 Introduction 

1.1 Overview 

Cognitive computing is an emerging field made possible due to the advancement in High 

Performance Computing (HPC) domain. There is a special interest in cognitive computing 

because the challenges which are being faced today have no definite way of deriving a solution 

and hence cannot be coded in the traditional style. There are many examples which fall under 

this category, including natural language understanding, text image recognition, autonomous 

unmanned vehicle controls, user preference suggestion, etc. 

Neuromorphic computing systems refer to the computing architecture inspired by the working 

mechanism and massive parallel structure of human brains. A neuromorphic information 

processing model is presented in [1]. The model consists of a simple but massive parallel 

pattern matching layer that generates fuzzy results retaining rich information (sometimes 

referred as ambiguity) and a powerful information inference layer that removes the ambiguity 

by statistical inference. The event-driven computation in neuromorphic engines loosely 

represents the integrate-and-fire behavior of neurons, leading to high computation efficiency. 

The hierarchical architecture mimics the primary sensory cortex and association cortex in 

brain’s sensory processing area [2][3][4]. The model is applied for intelligent text recognition in 

document image processing, where meaningful sentences are extracted from camera captured 

documents and road signs. These are non-trivial problems as the images are captured with 

perspective distortion, angular distortion, warping or other general noises. Reliable 
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performance is achieved even when the system is exposed to new experiences. As their 

experience gets richer and richer for every new exposure, their performance improves. 

The state-of-the-art multi-core computer architecture enables large-scale implementation of 

neuromorphic models. One of such computer system is Intel’s Xeon Phi coprocessor, where 

more than 61 X86 compatible cores with 4-way multi-threading capability are integrated on a 

single die. Each core has its own L1 and L2 cache and can access coherent L2 caches of any 

other core [5]. This architecture delivers over a TeraFLOP computing bandwidth. How to 

harness such computing power to achieve real-time cognition and decision is an urgent 

research problem.  

In this work, we accelerate the performance of the neuromorphic model for Intelligent Text 

Recognition System (ITRS) using the hybrid Xeon - Xeon Phi coprocessor setup. According to 

Amdahl’s law, the most effort in performance optimization should be spent on the most 

common operation, which is identified to be pattern matching in ITRS. Pattern matching forms 

the bottom layer of ITRS. It is implemented using an auto-associative memory model called 

Brain-State-in-a-Box (BSB). BSB is a simple nonlinear, energy minimizing neural network 

[7][8][9], whose convergence speed is proportional to the similarity between the input image 

and the stored pattern. The bottom layer of the ITRS consists of large number of independent 

BSB models, which are ideal candidates for parallel implementation. 

A scalable platform capable of handling images with different resolutions for higher fidelity 

pattern matching is developed on Intel’s Xeon Phi coprocessor. One of the reasons to select 

Xeon Phi over GPGPU is that the applications can run natively on Xeon Phi compared to the 
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offload model of GPGPU. This is particularly an important capability as it frees up the CPU to 

handle more control intensive functions of ITRS [1]. 

1.2 RELATED WORK 

The first stage of a text recognition system is image processing, which feeds the Optical 

Character Recognition (OCR) modules. A wide variety of OCRs for printed text recognition were 

developed over the years [10]. There is a heavy focus on improving their accuracy by employing 

various image processing and classifying techniques including neural network based learning 

techniques[11][12][13]. In ITRS, the intelligence for recognition and error correction has been 

pushed to upper layers, where word and sentence contexts are considered. Hence it affords a 

simple fuzzy pattern-matching layer, which generates more than one likely matches for a given 

pattern. This is also why performance optimization rather than accuracy optimization is focused 

in this work. 

There are prior attempts to implement the pattern matching layer of ITRS on IBM Cell 

processors [14][15]. However, the limited size of on-chip memory of Cell processor prevents us 

from processing higher resolution images in reasonable time. Attempts have been made to 

have a hardware solution for processing these BSB neural networks using memristor crossbar 

arrays [16]. However, no real hardware has been implemented yet. GPGPU based optimizations 

have been implemented for several similar neural network models [17][18][19]. They need 

special attention from the CPU to move computation data from main memory to GPU memory. 

Furthermore, combining CUDA with Message Passing Interface (MPI) is not an ideal option [20].  
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Efficient use of Single Instruction Multiple Data (SIMD) architecture is the key to achieving high 

performance with Xeon Phi coprocessor. Several SIMD vectorization techniques are proposed in 

[21]. A comprehensive guide on optimization for the coprocessor is given by [22][23]. Work on 

optimizing a data intensive application running natively on the coprocessor is presented in [24]. 

Its authors have tried to reduce inter-thread dependency to minimize thread syncing overhead. 

Efficient parallelization of batch pattern training algorithm for the coprocessor and other HPC 

platforms is proposed in [25]. It uses MPI to perform communication and reduction operations 

at the same time. 
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2 BACKGROUND 

In this chapter, the computation model and software architecture of ITRS are presented, 

followed by a brief introduction of hardware architecture of Xeon Phi coprocessor. 

2.1 Brain-state-in-a-box model 

BSB model is a simple, auto-associative, nonlinear, energy minimizing neural network [7][8][9]. 

A common application of the BSB model is to recognize a pattern from the given noisy input. It 

can also be used as a pattern recognizer that employs a smooth nearness measure and 

generates smooth decision boundaries. 

There are two main operations in a BSB model, Training and Recall. Here the focus is on BSB 

recall operation. The mathematical model of a BSB recall operation can be represented in the 

following form:  

𝑥(𝑡 + 1) = 𝑆(𝛼 ∗ 𝐴 ∗ 𝑥(𝑡)  +  𝜆 ∗ 𝑥(𝑡)  +  𝛾 ∗ 𝑥(0)) (1)  

Where: 

 𝑥 is an N dimensional real vector 

 𝐴 is an NxN connection matrix 

 𝐴 ∗ 𝑥 (𝑡) is a matrix-vector multiplication operation 

 𝛼 is a scalar constant feedback factor 

 𝜆 is an inhibition decay constant 

 𝛾 is a nonzero constant if there is a need to maintain the input stimulation 

 𝑆 () is the “squash” function defined as follows: 

𝑆(𝑦) = {

1 𝑖𝑓 𝑦 > 1
𝑦 𝑖𝑓 −1 ≤ 𝑦 ≤ 1

−1 𝑖𝑓 𝑦 < 1
 (2)  
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Note that in our implementation, we choose 𝜆 to be 1.0 and 𝛾 to be 0.0. But they can be easily 

changed to other values. Given any input pattern 𝑥(0), the recall process executes equation (1) 

iteratively to reach convergence. A recall converges when all entries of 𝑥(𝑡 + 1) are either 

“1.0” or “-1.0”. 

The BSB model is selected in the ITRS for two reasons. First, it is simple to operate compared to 

other complex neural network models [4]. Although it has lower accuracy, the error can be 

corrected by the upper layer information processing. Second, its convergence roughly indicates 

the similarity between the input and the stored pattern. It is pointed out by [4] that the average 

convergence time of the BSB model increases as the input goes further away from the 

attractor. Such property enables the racing behavior in character recognition, which is 

discussed in confabulation sub section. 

2.2 Cogent confabulation 

Cogent confabulation is a connection-based cognitive computing model. It captures 

correlations between objects (or features) at the symbolic level and stores this information as a 

knowledge base [1]. Given an observation, familiar information with high relevancy will be 

recalled from the knowledge base. 

Based on the theory, the cognitive information process consists of two steps: learning and 

recall. During learning, the knowledge links are established and strengthened as symbols are 

co-activated. During recall, a neuron receives excitations from other activated neurons. A 

“winner-takes-all” strategy takes place within each lexicon. Only the neurons (in a lexicon) that 

represent the winning symbol will be activated and the winner neurons will activate other 
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neurons through knowledge links. At the same time, those neurons that did not win in this 

procedure will be suppressed. 

 

Figure 1 shows an example of lexicons, symbols, and knowledge links. The three columns in 

Figure 1 represent three lexicons for the concept of shape, object, and color with each box 

representing a neuron. Different combinations of neurons represent different symbols. For 

example, the pink neurons in lexicon I represent the cylinder shape, the orange and yellow 

neurons in lexicon II represent a fire extinguisher and a cup, while the red neurons in lexicon III 

represent the red color. When a cylinder shaped object is perceived, the neurons that 

represent the concepts “fire extinguisher” and “cup” will be excited. However, if a cylinder 

shape and a red color are both perceived, the neurons associated with “fire extinguisher” 

receive more excitation and become activated while the neurons associated with the concept 

“cup” will be suppressed. At the same time, the neurons associated with “fire extinguisher” will 

further excite the neurons associated with its corresponding shape and color and eventually 

make those symbols stand out from other symbols in lexicons I and III. 

 
Figure 1: A simple example of lexicons, symbols, and knowledge links 
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2.3 Software Architecture of ITRS 

ITRS is developed to extract meaningful sentences from document images. It has two 

information processing layers, a BSB model based pattern-matching layer and a confabulation 

model based statistical inference layer. The salient feature of ITRS is that it provides 

contextually correct sentence reconstruction even if there are illegible characters or words in 

the document image. This is enabled by a trained knowledge base, which captures the 

statistical information among building components in English language, from letters and words 

to phrases and part-of-speech tagging.  

 

The information processing in ITRS has several stages, which can be arranged as a pipeline 

shown in Figure 2. After simple image processing which corrects image distortion, skew and 

warping, the character images are segmented from document image and forwarded to BSB, 

where fuzzy pattern matching is performed. The pattern matching results will be processed by 

word level and sentence confabulation for inference based error correction and association. 

 
Figure 2: ITRS Pipeline 

Word 
Confabulation

Sentence 
Confabulation

Image 
Processing

BSB

Confabulation
Meaningful

Sentence

Document 
Image
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A working example of ITRS is shown in Figure 3. Given a noisy document image, the BSB 

provides best effort pattern matching for each character images. Each question mark in the 

figure represents all 26 possible alphabets. The word confabulation layer forms all possible 

words based on these matching alphabets and the sentence confabulation layer selects the 

words that forms the most meaningful sentence. It is easy to see that, for each sentence, one 

sentence confabulation task and multiple word confabulation tasks must be executed, along 

with even more number of BSB pattern matching tasks. Information is passed across layers. The 

computation tasks in the same layer are independent to each other and hence can be 

implemented in parallel. 

The pattern-matching layer (BSB) is trained on clean font image. The word level confabulation is 

trained by reading a dictionary. And the size of word level knowledge base is about 200 MB. 

The sentence level knowledge base is trained by reading multiple classic literatures. The size of 

this knowledge base is 6 - 12 GB.  

 
Figure 3: ITRS Cognitive model 
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3 Intel Xeon Phi coprocessor 

3.1 Overview 

Intel Xeon Phi coprocessor is based on Intel Many Integrated Core Architecture or Intel MIC. It 

is an architecture which consists of more than 50, modified x86 cores on a single die. The 

primary advantage of this architecture is that it can run the existing x86 code with very few 

modifications, at the same time get huge performance boost due to many independent parallel 

cores. The following sections briefly describe the hardware architecture of Knights Corner (KNC) 

generation Intel Xeon Phi coprocessor. 

3.2 Micro architecture 

The coprocessor primarily consists of processing cores, caches, memory controllers, PCIe client 

logic, and a very high bandwidth bidirectional ring interconnect as shown in Figure 4. Each core 

has a private L2 cache that is kept fully coherent by a global-distributed tag directory (TD). The 

memory controllers and the PCIe client logic provide a direct interface to the GDDR5 memory 

on the coprocessor and the PCIe bus, respectively. There are 8 memory controllers supporting 

up to 16 GDDR5 channels delivering up to 5.5 GT/s transfer speed, this provides a theoretical 

aggregate bandwidth of 352 GB/s (gigabytes per second) directly connected to the Intel® Xeon 

Phi™ coprocessor [6]. All these components are connected together by the ring interconnect. 
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3.3 Core architecture 

Each core in the coprocessor is power efficient and provides a high throughput for highly 

parallel workloads. It uses a short in-order pipeline and is capable of supporting 4 threads in 

hardware. It supports legacy IA (Intel Architecture) with an overhead of 2% with respect to the 

area costs of the core and is even less at the chip level [5]. The core architecture is as shown in 

Figure 5. The core can execute 2 instructions per clock cycle, one on the U-pipe and one on the 

V-pipe. The V-pipe cannot execute all instruction types, and simultaneous execution is 

governed by pairing rules. Most integer and mask instructions have a 1-clock latency, while 

most vector instructions have 4-clock latency with a 1 clock throughput. The Level One (L1) 

cache accommodates higher working set requirements for four hardware contexts per core. It 

has a 32 KB L1 instruction cache and 32 KB L1 data cache. It has 8-way associativity, with a 64 

byte cache line. It also features a 512 KB unified Level Two (L2) cache. The L2 organization 

comprises 64 bytes per way with 8-way associativity [6]. 

 
Figure 4: Xeon Phi microarchitecture 

Source: http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner 

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
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3.4 Vector Processing Unit 

The vector processing unit (VPU) shown in Figure 6 is an important part of the core, which helps 

to greatly improve the performance. The VPU features a novel 512-bit SIMD instruction set, 

known as Intel Initial Many Core Instructions (Intel IMCI). The VPU can execute 16 single-

precision (SP) or 8 double-precision (DP) operations per cycle. The VPU also supports Fused 

Multiply-Add (FMA) instructions and hence can execute 32 SP or 16 DP floating point 

operations per cycle. It also provides support for integers. The VPU contains the vector register 

file (32 registers per thread context), and can read one of its operands directly from memory, 

including data format conversion on the fly. Broadcast and swizzle instructions are also 

available [6]. 

 
Figure 5: Xeon Phi core architecture 

Source: http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner 

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
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Vector units are very power efficient for HPC workloads. A single operation can encode a great 

deal of work and does not incur energy costs associated with fetching, decoding, and retiring 

many instructions. However, several improvements were made to support such wide SIMD 

instructions. For example, a mask register is added to the VPU to allow per lane predicated 

execution. This helps in vectorizing short conditional branches, thereby improving the overall 

software pipelining efficiency. The VPU also supports gather and scatter instructions, which are 

simply non-unit stride vector memory accesses, directly in hardware. Thus for codes with 

sporadic or irregular access patterns, vector scatter and gather instructions help in keeping the 

code vectorized. 

The VPU also features an Extended Math Unit (EMU) that can execute transcendental 

operations such as reciprocal, square root, and log, thereby allowing these operations to be 

executed in a vector fashion with high bandwidth. The EMU operates by calculating polynomial 

approximations of these functions. 

 
Figure 6: Vector Processing Unit 

Source: http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner 

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
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3.5 The Interconnect 

The interconnect, as shown in Figure 7 is implemented as a bidirectional ring. Each direction is 

comprised of three independent rings. The first, largest, and most expensive of these is the data 

block ring. The data block ring is 64 bytes wide to support the high bandwidth requirement due 

to the large number of cores. The address ring is much smaller and is used to send read/write 

commands and memory addresses. Finally, the smallest ring and the least expensive ring is the 

acknowledgement ring, which sends flow control and coherence messages. 

 

  

 
Figure 7: Interconnect 

Source: http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner 

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner


 15 
 

 

4 Implementation Overview 

Sequential implementation of the ITRS software was used as the starting point, followed by 3 

development phases. The first phase is to restructure the ITRS software to support multiple 

parallel BSB threads, and thus to parallelize the pattern matching layer. The BSB threads and 

the ITRS software were first implemented on a standalone Xeon host. Each BSB can handle 2 

character image sizes, with 15x15 or 30x30 pixels per character image. They correspond to 256 

bytes wide and 1024 bytes wide input vectors respectively. This is a crucial step as both Xeon 

host and the coprocessor are based on similar x86 architecture, hence initial code development 

and testing becomes smoother. Once the initial code is tested on Xeon host, it can also be 

compiled and run on Xeon Phi.  

Naturally the next phase is to move the BSB code to Xeon Phi coprocessor, and port the image 

processing and confabulation models on the host Xeon processor of our system. Message 

Passing Interface (MPI) is used for data communication between confabulation and BSB. In this 

way the pattern-matching layer is separated from the rest of the ITRS and allocate more 

computing resources to it. Image processing module groups the character images in to 

workloads and issues them to BSB through MPI. Each workload consists of 96 characters, which 

is an input to the BSB module. The size is chosen to provide a good balance between 

communication and computation time. BSB compares each image in the workload against 93 

trained patterns. The pattern set consists of lower case and upper case English alphabets, 

numbers and some common symbols & punctuations. The output is the set of matching pat-

terns, which are called letter candidates, and their convergence speed. These results are used 

by the confabulation module to generate meaningful sentences.  
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The third and final phase is to optimize the BSB code for Xeon Phi coprocessor. Figure 8 shows 

the hybrid Xeon – Xeon Phi architecture for this phase. Confabulation is moderately parallel and 

is a tree structured algorithm. While BSB is massively parallel in nature. Xeon host also manages 

dispatching the images to BSB and collecting the results. The methods utilized and the avenues 

explored for optimization along with the development details are described in the following 

chapters. 

 

4.1 System setup 

An Intel 2-socket Xeon server host machine was used for the development. OpenMP, Intel MPI 

along with Intel C++ compiler (version: 13.0.5.192) were used and Intel VTune Amplifier was 

used to profile the code on both Xeon processor and the coprocessor. A micro OS runs on each 

Xeon Phi card known as Manycore Platform Software Stack (MPSS). Table shown below 

provides more details on the system setup. 

 
Figure 8: Software Architecture 
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Table 1: Setup details 

 Xeon Xeon Phi 

Part number E5-2687W 7110P 

#Physical Processors 2 2 

#Cores 
8 

(Total 8*2 = 16 cores) 

61 

(Total 61*2 = 122 cores) 

Cache 

L1 – 512KB 

L2 – 2MB 

L3 – 20MB 

L1 – 32KB 

L2 – 512KB 

#Threads 16*2 = 32 61*4 = 244 

Frequency 3.1GHz 1.1 GHz 

RAM 32 GB GDDR 8 GB 

OS 
Redhat Enterprise 6.3 

(2.6.32-279) 
MPSS 2.1.5889-16 
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5 Phase 1 Experiments 

In this phase the base line performance of serial code on Xeon host is determined and the BSB 

code is restructured for parallel implementation. 

5.1.1 Experiment 1 – Serial code 

Standalone serial BSB code was compiled using gcc and icc compilers and their runtimes 

compared as the existing Cell processor code is compiled using gcc compiler. This experiment is 

performed to judge the baseline performance of the initial setup. The results for 15x15 

characters and 30x30 characters are shown in Figure 9 and Figure 10 respectively. From the 

charts it is evident that icc provides better performance compared to gcc with O3 level 

optimizations enabled.  

 

 
Figure 9: Baseline runtime for serial code in for 15x15 characters 
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5.1.2  Experiment 2 - OpenMP 

The standalone Xeon BSB is parallelized using OpenMP and compiled using both gcc and icc for 

multicore CPU and the results are as shown in Figure 11 and Figure 12. Two kinds of 

parallelization were implemented using OpenMP: first with an OpenMP thread for every 

character in workload, second was with OpenMP task for every core compute section. For 

remainder of the work, all compilations are done using icc compiler. 

 

 
Figure 10: Baseline runtime for serial code in for 30x30 characters 

 
Figure 11: Runtime gain with OpenMP over serial for 15x15 case 
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5.1.3 Initial Runtime of MIC v/s Multicore CPU 

In this experiment the BSB code was implemented on a multicore CPU architecture and Xeon 

OpenMP code was ported to the MIC architecture. From Figure 13 and Figure 14 it is clear that 

15x15 case is suitable for multicore CPU and 30x30 case is suitable for MIC. Figure 15 shows 

that there is a drop in performance of for 15x15 case and gain for the case of 30x30 character. 

These results are for un-optimized code. After optimization there is performance gain for both 

the cases and these details are presented in chapter 7 and 8. 

 

 
Figure 12: Runtime gain with OpenMP over serial for 30x30 case 
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Figure 13: MIC vs multicore CPU runtime for 15x15 case 
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The data requirement for 15x15 case is very low compared to 30x30 case and per core cache on 

multicore CPU is large compared to per core cache of MIC. Hence the parallelization overhead 

becomes significantly greater for 15x15 case on MIC. These results are not representative of the 

nature of the algorithm and platform as the code is not optimized yet. The results after 

optimization are presented in chapters 7 and 8. 

  

 
Figure 14: MIC vs multicore CPU runtime for 30x30 case 
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Figure 15: Performance gain of MIC over multicore CPU 
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6 Phase-2 Including confabulation 

In this phase the BSB is interfaced with confabulation using MPI. The BSB code is compiled for 

Xeon Phi coprocessor. The image processing and confabulation models run on the host Xeon 

processor of our system. Experiments are carried out to evaluate the performance and the 

communication overhead. 

6.1 Experiment 

A higher resolution character image is preferred by the ITRS application hence, from this point 

onwards more concentration is given on 30x30 cases. All the experiments described in this 

section are for the case of confabulation integrated with un-optimized BSB. The initial BSB 

runtime on MIC was 18.41 seconds, some minor tweaking (reducing unnecessary computation) 

was performed to reduce the runtime. Figure 16 shows the average run time on MIC and 

multicore CPU with the error bars indicating the maximum and minimum runtimes obtained 

during this run. 

 

The threads performing computation run independently from the MPI communication threads. 

Hence there is overlap of computation and communication, which is the ideal case as the MIC 

 
Figure 16: Runtime comparison of MIC vs multicore CPU with confab 
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spends maximum time possible for computation. Figure 17 shows the time spent on MPI 

communication with both receive and transmit time included for one workload. The MIC 

runtime of 13.08 seconds from Figure 16 mostly comprises of computation time. The 

corresponding MPI communication time from Figure 17 is 5.04 seconds.  

 
Figure 18 summarizes the performance gain of MIC over multicore CPU due to drop in run time. 

With the un-optimized BSB code, gain of 167% was achieved with minor tweaking and just by 

porting the BSB to MIC. 

 

The total time spent on the core compute part of the code is summarized in Figure 19. It is clear 

that MIC spends longer in the core compute section and one of the primary reason is, MIC runs 

 
Figure 17: Time spent on MPI communication, MIC vs multicore CPU 
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Figure 18: Performance gain of MIC over multicore CPU 
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at 1GHz and multicore CPU at 3GHz. Even with this huge difference the MIC outperforms a 

multicore CPU as MIC is highly parallel. 

 

6.2 Analysis 

From the above experiment it can be inferred that, the workload is highly data intensive but 

benefits from parallelism. Though CPU is better in data handling, MIC has better overall 

runtime. Based on this inference the following optimization opportunities can be explored to 

improve overall performance: 

• Memory pre-allocation on MIC 

• Data localization 

• Reduce per char runtime on MIC to increase performance 

• Other MIC specific optimizations 

  

  
Figure 19: Total time spent on one character 
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7 Phase-3 Optimizations 

Two progressive steps are taken to optimize the pattern-matching layer to exploit the resource 

on Xeon Phi. The first step is to restructure the software for efficient resource management and 

workload balance. The second step is to tweak compiler options to investigate different auto 

optimization/vectorization techniques and performance benefits.  

The core computation of BSB model is matrix vector multiplication as shown in equation (1). 

This is repeated for a maximum of 50 iterations or until the results converge whenever an input 

image is compared against a stored pattern. It is worth to note that the Intel Math Kernel 

Library (MKL) provides an optimized parallel implementation for matrix-vector multiplication, 

where the original matrix and vector are segmented and loaded to different cores for 

distributed processing. The results will be merged at the end. However, the performance of 

such fine-grained workload partition and parallelization is severely limited by Amdahl’s law. 

Unless the size of the matrix and vector is sufficiently large, the performance gain from parallel 

computing is not enough to offset the overhead of communication and synchronization [26]. 

Furthermore, to get best performance, MKL allocates the maximum resources i.e. all the cores, 

for one matrix-vector operation. Hence we have to serialize the bottom layer of ITRS and run 

the pattern-matching tasks one by one. It was observed that such globally serial and locally 

parallel (GSLP) implementation is not efficient for ITRS.  

In contrast to GSLP, we adopt a globally parallel and locally serial approach. OpenMP threads 

and pthreads are created and distributed across Xeon Phi to handle multiple pattern-matching 

tasks independently. They are referred as solver threads. All threads run in parallel. Their 
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synchronization is handled by thread safe blocking queues, which have critical sections defined 

for accessing the queue and blocks the thread if the queue is empty. This allows the 

architecture to be inherently load balancing as each computation thread can pick up workload 

from the queues whenever it finishes processing the current task. The compute threads have 

data exchange only with the thread-safe queue. The communication with the rest of the ITRS 

system, which runs on the host CPU, is handled by another thread. By decoupling the compute 

thread from MPI communication, we keep them busy for maximum duration. 

7.1 Software architecture optimizations 

The first step of optimization is to the find the best software architecture for efficient resource 

management and workload balancing. For any combination of input image and stored pattern 

for comparison, a pattern-matching task is created. The set of pattern-matching tasks for all of 

the 96 input images forms the workload. Based on how the workload is partitioned and 

distributed, three different resource management schemes are tested and their performance is 

compared. 

7.1.1 Multiple comparison patterns to multiple OpenMP threads (MPMT) 

In this architecture 244 solver threads are created using OpenMP. This is the number of logical 

cores available on the coprocessor card. Any pattern-matching job can be assigned to any of 

the available solver threads. Figure 20 shows how the workload is created and assigned. 
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Because the threads can work on any available job at any time, this approach has excellent load 

balancing ability. However, the BSB models for different patterns have different weight 

matrices. Due to the limited cache size, every time a new pattern-matching job is started, a new 

weight matrix of the BSB model (corresponding to the pattern to be compared) must be 

shuttled/read into the target core’s local cache. When 244 threads running simultaneously, 

large amount of data transfer is created, which causes bus contention. Explicit data 

management to preserve data locality can improve the performance significantly. Using this 

resource management scheme, it takes 18.41 seconds to process 96 input images with 30x30 

resolution. The performance analysis from VTune Amplifier confirms that there were huge 

memory stalls in the compute section of the solver thread. This indicates that the performance 

of the pattern-matching layer is bounded by memory performance. 

7.1.2 Specific comparison pattern to specific pthread (SPST) 

To get finer control over data, thread creation and destruction, pthreads are used instead of 

OpenMP threads as shown in Figure 21. A set of 93 pthreads are created during initialization 

 
Figure 20: MPMT architecture 
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and destroyed only when the ITRS terminates. There are 3 other threads, which take care of 

MPI communication and cleanup. We also divide the entire workload into 93 sets. Each set of 

workload contains pattern-matching tasks between all input images and one of the 93 stored 

patterns. A specific set of workload is assigned to a specific pthread. Because each pthread 

always compares the input with the same stored pattern, the weight matrix of the 

corresponding BSB model can stay in the cache. Therefore, the data contention problem in 

MPMT is relieved. 

Since the solver threads are alive for the entire duration of the program and each thread works 

on a specific symbol, there is better utilization of cache. Compared to MPMT, the work 

distribution of SPST may not be uniform but the performance gained due to efficient memory 

utilization outperforms load balancing overhead 

 

Performance can also be tweaked by changing the thread affinity. Specifying affinity of a 

particular thread makes it run on the specified logical core. Three affinity settings were tried 

out as described below: 

 
Figure 21: SPST architecture 
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Compact affinity: Each thread was assigned to adjacent core. The run time was 18.5 

seconds. This is not very ideal setting as every physical core (and its local cache) is shared by 4 

pthreads.  

Affinity for alternate logical cores: In this case each physical core will run no more than 

two threads. This is an improvement over the previous case because only 2 threads share a 

physical core and the cache. The runtime was 11.3 seconds. 

Scatter affinity: By default the micro OS running on the coprocessor scatters the 

threads among the 244 logical cores. This is the best configuration, as it tries to minimize cache 

sharing among threads. The runtime in this case was 10.37 seconds. 

Performance analysis by VTune Amplifier shows that the optimized solver code was not getting 

steady stream of data due to sustained memory bandwidth limitations and smaller local cache 

size for the required data. We were able to achieve 176.58 GB/s memory bandwidth utilization. 

7.1.3 Specific pattern to specific pair of pthreads (SP2T) 

The architecture in Figure 22 was developed to improve weight matrix data retention in cache. 

It is similar to SPST, however, each weight matrix was split into halves and distributed to a 

solver thread and its companion thread. While issuing characters for comparison a duplicate 

copy was also issued to the companion thread. Hence one workload now needs 93*2=186 

threads as shown in Figure 22. 
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Although the core computation in this case took the same time as SPST, new overhead for 

syncing the computation between the thread pairs is added. The runtime had now increased to 

13.92 seconds. 

7.2 Compiler based optimizations 

Compiler switches and corresponding pragmas, language extensions and appropriate coding 

styles were employed to assist in auto optimization, based on the guidelines provided by the 

Intel compiler. Loop unrolling, vectorization, prefetching, streaming stores and Inter Procedural 

optimization (IPO) were evaluated. 

Streaming stores and IPO had limited boost in performance due to the nature of the BSB 

algorithm.  

7.2.1 Loop unrolling 

This is a technique where the program's speed is increased by converting loops to linear code 

and performing optimizations on this code. Some optimizations that can be performed are 

reducing or removing instructions that control the loop, simplifying or reducing some pointer 

 
Figure 22: SP2T architecture 
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arithmetic, reducing the number of looping condition tests and number of iterations. It also 

reduces branch penalties and opens up opportunities for data prefetching which is crucial in 

hiding latencies for memory intensive operations etc. 

Pragmas were inserted in the code and compiler switches were used to enable loop unrolling. 

Since the software architecture was already refined the compiler generated optimized loops 

without the need for additional guidance for loop unrolling. 

7.2.2 Streaming stores 

Streaming stores are a set of instructions which bypass the cache and directly update the 

memory location. With this optimization normal loops saw a drop in runtime of about 6 

seconds, but blocked loops (loops where data is partitioned for cache line) didn’t show any 

significant change. This is because of the nature of data access required by the BSB algorithm, 

where higher number of stream reads are required compared to the number of stream writes. 

7.2.3 Inter Procedural optimization (IPO) 

IPO is a collection of compiler techniques used to improve performance of frequently used 

functions. It analyzes the entire program or a single block of code and tries to reduce or 

eliminate duplicate calculations, inefficient use of memory, and to simplify iterative sequences 

such as loops. 

Our case didn’t show any significant change in run time as the main computation kernel is 

simplified and vectorized. 
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7.2.4 Prefetching 

The coprocessor does not have out of order execution but it incorporates prefetch techniques 

to keep the pipeline full. It is accomplished by issuing prefetch instructions interleaved between 

other instructions before the actual need for the specified data/instruction. These instructions 

don’t stall the processor and the data/instructions will be available ready in cache by the time 

they are actually needed. 

The coprocessor supports both hardware prefetch and software prefetch. In our case it relies 

more on software prefetching than on hardware prefetch. Hardware prefetching is enabled by 

default. The BSB algorithm did not benefit from the hardware prefetcher due to the nature of 

data access pattern required by the algorithm. However software prefetching had significant 

impact on the runtime and is enabled by default. For the case of 30x30 character BSB run 

needed about 16 seconds without software prefetching and after enabling, it took about 10 

seconds for the same run. 

An experiment was carried out by manually adding prefetch intrinsics and hints for prefetch 

distances to C++ code. In comparison the compiler optimized code provided better 

performance as it was able to compute optimum prefetch distances. As an observation in this 

particular case; manually adding prefetch is probably best suited if the coding style is at 

assembly level or for intrinsic heavy coding format. 

7.2.5 Vectorization 

The Xeon Phi compiler performs vectoization, which converts scalar operations (operations on 

one set of data) to vector operations (same operation is performed on multiple data). One 
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vector instruction operates on multiple operands hence significantly reducing the effective 

runtime compared to scalar implementation. 

The coprocessor has vector processing units with 512 bit vector registers. These VPUs help in 

greatly reducing the code runtime. In fact vectorization provided the largest boost to the 

overall performance. All the results presented in this section are obtained with vectorized code. 

Vectorization was achieved by recoding computation loops in a specific pattern [22], along with 

the use of language extensions (restrict) specific to the Intel compiler and respective compiler 

switches. Also the data had to be memory aligned to benefit from these optimizations. The 

code was fine-tuned and the required level of optimization achieved was confirmed through 

specific compiler reports. 
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8 Results and Analysis 

8.1 Overall performance optimization 

The Figure 23 shown below, provides performance snapshot of different implementation 

milestones. The performance achieved for best case scenario in terms of Giga FLOPs is shown in 

Figure 24. 

 

 

 
Figure 23: Phase by phase runtime reduction 
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Figure 24: FLOPs achieved 
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8.2 Results 

After applying the SPST resource management with scatter affinity, and with the help of 

compiler based optimization options, we were able to optimize the pattern-matching layer for 

MIC architecture and achieved 1.8x performance gain on Intel’s Xeon Phi coprocessor over 

MPMT as shown in Figure 25. The runtimes plotted are for one workload of 96 characters at 

30x30 resolution. 

 

For fair comparison, the same pattern-matching layer is also implemented on a standalone CPU 

and IBM Cell processor based PlayStation 3® setup. The CPU used in this experiment has 16 

physical cores, each supporting 2-way simultaneous multi-threading. Each core has 512KB L1 

cache, 2MB L2 cache and 20MB L3 cache. Since there are more threads than logic cores, the 

workload balancing is done by OS. Each PS3 processor has 6 Synergetic Processing Elements 

(SPE) and one PowerPC processor. Each SPE handles one SPST threads.  

 

Figure 25: BSB Runtime Optimization 
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We consider the performance of the serial version of BSB algorithm running on CPU as our base 

reference and set its performance to 1. Figure 26 gives the normalized performance of the 

pattern matching layer implemented on CPU, Xeon Phi and PS3. Because the same software 

architecture is implemented, the comparison measures the performance gained by upgrading 

the hardware to the MIC architectures. There is no Cell processor implementation data for 

30x30 resolution case, as it was not feasible to run at this resolution due to limited memory. As 

we can see, Xeon Phi is able to provide 1.35x performance gain over the PS3 for 15x15 images 

and 1.94x performance gain over optimized CPU implementation for 30x30 images. 

 

Figure 27 shows the normalized performance comparison considering the communication 

interface with the rest of the ITRS. Again, Xeon Phi is able to provide 1.46x performance gain 

over the PS3 for 15x15 images and 1.9x gain over the optimized CPU implementation for 30x30 

images. 

 

Figure 26: Runtime comparison for standalone case 

1 1

7.2

3.4

8.7

6.66.5

Cell N/A
0

2

4

6

8

10

15x15 30x30

R
e

la
ti

ve
 S

p
e

e
d

u
p

o
ve

r 
Se

ri
al

BSB Runtime Speedup over Serial Implementation

Serial

Multi-core
CPU

MIC

Cell

1.35x

1.94x



 37 
 

 

 

8.3 Analysis 

The pattern matching workload for each input character image is a matrix multiplication, for 

30x30 character it is [1024 x 1024] * [1024 x 1]. Each element in these matrices is a float data, 

hence the size of the weight matrix is 4MB and the size of the input vector is 4KB. The result of 

the matrix vector multiplication generates 4KB of new data. For each input image, the number 

of times this multiplication is performed is: 50*93 = 4650, where 50 is the maximum number of 

iterations allowed for convergence. The above number of iterations is repeated for all the 

characters in the workload i.e. 96 times. 

Total data requirement per iteration is ~4MB. Total cache on the coprocessor is about 30 MB. 

This cache is coherent and can be accessible through any core. Each core has 32 KB L1 cache 

and 512 KB L2 caches.  

The data required per iteration is significantly greater than the per core cache size hence there 

is memory spill over per iteration. This is clearly the bottleneck which is holding back the overall 

performance. The nature of core compute part of the algorithm is like stream read. This 

  

Figure 27: Runtime comparison with confab 
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application is data intensive and the achieved bandwidth is 176.58 GB/s (peak) which is almost 

same as Stream Memory Benchmark which peaks at 181 GB/s [27]. 

The BSB runs natively on the coprocessor hence the Xeon host is dedicated solely for 

confabulation. This is especially beneficent as the BSB can run independently by receiving 

workload requests and send results through MPI without stalling any other module. Hence as 

many BSBs can run as the system can support. 

The software architecture where a specific symbol is issued to a specific pthread as shown in 

Figure 21 is found to be ideal for MIC architecture. The scaling capabilities are described based 

on this software architecture. This architecture is very flexible and allows for testing the 

behavior in terms of scaling at the workload level with in the Xeon Phi coprocessor. For one 

workload configuration 3 + 93 + 1 = 97 threads are required. The number of threads for two 

simultaneous workload configuration is 3 + (93 + 1) * 2 = 191 threads. Going beyond this is not 

advisable as number of threads will exceed the available hardware resources.  

The BSB also scales at the node level and cluster level along with ITRS as shown in Figure 28. 

The BSBs communicate directly with the host Xeon processor and not with each other. This kind 

of partitioning helps in maintaining simplicity and low MPI communication delays. Using 

multiple coprocessor cards in a single node provides linear performance scaling of BSB. The 

same scaling benefit can be achieved at the cluster level as well. 
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8.4 Sample run for ITRS 

8.4.1 Sample inputs 

 

 

Figure 28: Multi-level scaling of hybrid ITRS architecture 
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8.4.2 Output for 15x15 characters 
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8.4.3 Output for 30x30 characters 
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9 Conclusion and future work 

9.1 Conclusion 

We started off with a goal of upgrading the processing capability and accelerating BSB by 

having an efficient and optimized platform which can scale up to a cluster level. We parallelized 

and optimized the serial version of BSB for Xeon Phi coprocessor. During optimization we 

explored several avenues on the software architecture side and tweaked auto-optimization 

features available. We explored the effectiveness of using OpenMP and pthreads for the BSB 

algorithm. Both 15x15 and 30x30 resolution images were experimented on and found that 

30x30 case is now feasible. Overall we were able to achieve a speed up of ~2x with our ITRS 

hybrid Xeon – Xeon Phi coprocessor implementation. This architecture is scalable at the core 

level, node level and at the cluster level. Every BSB (coprocessor) added to the system provides 

linear scaling in overall performance of all BSBs combined. 

9.2 Future work 

Our future work on this problem is to optimize the architecture for memory bandwidth. Also 

we will be reformulating the algorithm such that the computation can be split on multiple cores 

and span multiple iterations, to improve data retention on the coprocessor. 
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10 Appendix 

10.1 OpenMP 

It is an Application Program Interface (API) that may be used to explicitly direct multi-threaded, 

shared memory parallelism. OpenMP is a short for Open Multi-Processing.  It is comprised of 

three primary API components: 

 Compiler Directives 

 Runtime Library Routines 

 Environment Variables 

The main purpose of OpenMP is to provide a standard among a variety of shared memory 

architectures/platforms. It is simple and limited set of directives for programming shared 

memory machines. It provides capability to incrementally parallelize a serial program, unlike 

message-passing libraries which typically require an all or nothing approach. The standard 

provides the ability to implement both coarse-grain and fine-grain parallelism utilizing fork join 

threading model. This API is specified for C/C++ and Fortran. 

OpenMP is designed for multi-processor/core, shared memory machines. The underlying 

architecture can be shared memory – Uniform Memory Access (UMA) or Non Uniform Memory 

Access (NUMA) as shown in Figure 29. 
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10.2 MPI 

MPI stands for Message Passing Interface. It is a standard established for portable, efficient and 

flexible message passing application. It primarily addresses the message-passing parallel 

programming model: data is moved from the address space of one process to that of another 

process through cooperative operations on each process. The standard allows for 

communication in case of shared memory or with distributed memory as well as with hybrid 

memory architectures as shown in Figure 30. 

 

  

      Uniform Memory Access   Non-Uniform Memory Access 

Figure 29: Shared memory model 

Source: https://computing.llnl.gov/tutorials/openMP 

 

 

 

https://computing.llnl.gov/tutorials/openMP
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MPI is a common standard and is widely used on HPC platforms. It provides the ability to 

abstract the underlying communication technologies and hence is very portable. All parallelism 

is explicit and programmer specified. 

  

 

  Distributed Memory    Hybrid Memory 

Figure 30: Memory architecture 

Source: https://computing.llnl.gov/tutorials/mpi/ 

  

https://computing.llnl.gov/tutorials/mpi/
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