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Hierarchical Tree-Structures as Adaptive MeshesDavid J. EdelsohnNortheast Parallel Architectures CenterSyracuse UniversitySyracuse, NY 13244Abstract1 IntroductionTwo basic types of simulations exist for mod-eling systems of many particles: grid-based(point particles indirectly interacting with oneanother through the potential calculated fromequivalent particle densities on a mesh) andparticle-based (point particles directly inter-acting with a one another through poten-tials at their positions calculated from theother particles in the system). Grid-basedsolvers traditionally model continuum prob-lems, such as 
uid and gas systems, and mixedparticle-continuum systems. Particle-basedsolvers �nd more use modeling discrete sys-tems such as stars within galaxies or other rar-e�ed gases. Many di�erent physical systems,including electromagnetic interactions, gravi-tational interactions, and 
uid vortex interac-tions, all are governed by Poisson's Equation:r2� = �4�G�; (1)for the gravitational case. To evolve N parti-cles in time, the exact solution to the problemrequires calculating the force contribution toeach particle from all other particles at eachtimestep:Fi = NXj 6=i Gmimj(xj � xi)jxj � xij3 : (2)

The O(N2) operation count is prohibitive forsimulations of more than a few thousand par-ticles commonly required to represent astro-physical and vortex con�gurations of interest.One method of decreasing the operationcount utilizes grid-based solvers which trans-late the particle problem into a continuumproblem by interpolating the particles ontoa mesh representing density and then solvethe discretized equation. Initial implemen-tations were based upon Fast Fourier Trans-form (FFT) and Cloud-in-Cell (CIC) methodswhich can calculate the potential of a massdistribution on a three-dimensional grid withaxes of length M in O(M3 logM3) operationsbut at the cost of lower accuracy in the forceresolution. All of these algorithms are dis-cussed extensively by Hockney and Eastwood[12].A newer type of grid-based solver for dis-cretized equations classi�ed as a multilevelor multigrid method has been in develop-ment for over a decade [7, 8]. Frequentlythe algorithm utilizes a hierarchy of rectan-gular meshes on which a traditional relax-ation scheme may be applied, but multiscalemethods have expanded beyond any particu-lar type of solver or even grids, per se. Re-laxation methods e�ectively damp oscillatoryerror modes whose wavenumbers are compa-rable to the grid size, but most of the it-erations are spent propagating smooth, low-



wavenumber corrections throughout the sys-tem. Multigrid utilizes this property by resam-pling the low-wavenumber residuals onto sec-ondary, lower-resolution meshes thereby shift-ing the error to higher wavenumbers compa-rable to the grid spacing where relaxation ise�ective. The corrections computed on thelower-resolution meshes are interpolated backonto the original �ner mesh and the combinedsolutions from the various mesh levels deter-mine the result.Many grid-based methods for particle prob-lems have incorporated some form of local di-rect force calculation, such as the particle-particle / particle-mesh (PPPM) method orthe Method of Local Corrections (MLC), tocorrect the force on a local subset of parti-cles. The grid is used to propagate the far-�eld component of the force while direct forcecalculations provide the near-�eld componenteither completely or as a correction to the\external" potential. The computational coststrongly depends on the criterion used to dis-tinguish near-�eld objects from far-�eld ob-jects. Extremely inhomogeneous systems ofdensely clustered particles can deteriorate tonearly O(N2) if most of the particles are con-sidered neighbors requiring direct force com-putation.A class of alternative techniques which havebeen implemented with great success utilizemethods to e�ciently calculate and combinethe coe�cients of an analytic approximationto the particle forces using spherical harmonicmultipole expansions in three dimensions.�
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 are the disjoint spatial regions, and G(r)is the Green's function. Instead of integratingG over the volume V
 , one may compute thepotential (and, in a similar manner, the gradi-ent) at any position by calculating the multi-pole moments which characterize the densitydistribution in each region, evaluating G andits derivatives at r � r
 , and summing overindices.Not only does spatially sorting the particlesinto a tree-type data structure provide an ef-�cient database for individual and collectiveparticle information [18], but the various al-gorithms require and utilize the hierarchicalgrouping of particles and combined informa-tion to calculate the force on each particle fromthe multipole moments in O(N logN ) opera-tions or less.Implementations for three dimensionalproblems frequently use an oct-tree | a cubedivided into eight octants of equal spatialvolume which contain sub-cubes similarly di-vided. The cubes continue to nest until, de-pending on the algorithm, the cube containseither zero or one particles or a few parti-cles of equal number to the other \terminal"cells. Binary trees which subdivide the vol-ume with planes chosen to evenly divide thenumber of particles instead of the space alsohave been used [3]; a single bifurcation sepa-rates two particles spaced arbitrarily close to-gether while the oct-tree would require arbi-trarily many sub-cubes re�ning one particularregion. This approach may produce fewer arti-facts by not imposing an arbitrary rectangularstructure onto the simulation, but construc-tion is more di�cult and information about2



each cut must be stored and used throughoutthe computation.Initial implementations for both grid-basedand multipole techniques normally span theentire volume with a uniform resolution netin which to catch the result. While this isadequate for homogeneous problems, it eitherwastes computational e�ort and storage orsacri�ces accuracy for problems which exhibitclustering and structure. Many of the algo-rithms described above provide enough 
exi-bility to allow adaptive implementationswhichcan conform to complicated particle distribu-tion or accuracy constraints.2 Adaptive StructuresMesh-based algorithms have started to incor-porate adaptive mesh re�nement to decreasestorage and wasted computational e�ort. In-stead of solving the entire system with a �xedresolution grid designed to represent the �neststructures, local regions may be re�ned adap-tively depending on accuracy requirementssuch as the density of particles. Unlike �nite-element and �nite-volume algorithms whichdeform a single grid by shifting or adding ver-tices, adaptive mesh re�nement (AMR) algo-rithms simply overlay regions of interest withincreasingly �ne rectangular meshes. Berger,Colella, and Oliger have pioneered applicationof this method to hyperbolic partial di�eren-tial equations [5, 6]. Almgren recently has ex-tended AMR for multigrid to an MLC imple-mentation [1].Adaptive mesh re�nement traditionally hasbeen limited to rectangular regions. Mc-Cormick and Quinlan have extended their veryrobust, inherently conservative adaptive meshmultilevel algorithm called Asynchronous FastAdaptive Composite (AFAC) [14] to relax non-rectangular sub-regions directly between twogrid levels. The algorithm is a true mul-

tiscale solver not limited to relaxation-typesolvers. AFAC provides special bene�ts forparallel implementations because the variouslevels in a single multigrid cycle may be sched-uled in any convenient order and combined atthe end of the cycle instead of the traditional,sequentially-ordered V-cycle.In the particle-based solver regime, theBarnes-Hut [4] method utilizes an adaptivetree to store information about one particleor the collective information about particlesin the sub-cubes. Each particle calculates theforce on itself from all of the other particlesin the simulation by querying the hierarchi-cal database, descending each branch of thetree until a user-speci�ed accuracy criterionhas been met. The accuracy is determinedby the solid angle subtended by the clusterof particles within the cube from the vantagepoint of the particle calculating the force. Ifthe cube contains a single particle or all of theparticles in the cube can be approximated bythe center of mass, the force is computed usinga multipole expansion; otherwise, each of theeight sub-cubes is examined in turn using thesame criterion. By utilizing combined infor-mation instead of the individual data at theterminal node of each branch, the algorithmrequires O(N logN ) operations.The Fast Multipole Method (FMM) devel-oped by Greengard and Rokhlin [11] utilizesnew techniques to quickly compute and com-bine the multipole approximations in O(N )operations. Initial implementations sorted theparticles into groups on a �xed level of thetree with the hierarchical pyramid structureproviding the communication network usedto combine and re-propagate the multipole-calculated potential. Recent enhancements in-clude adaptive re�nement of the hierarchy cre-ating structures similar to a Barnes-Hut tree[10].Both Katzenelson and Anderson have notedthe applicability of a variety of \tree algo-3



rithms" to the N-body problem. Katzenelsonutilizes the common structure of the Barnes-Hut and FMM algorithms to study how thisproblem can be mapped to a variety of parallelcomputer designs [13]. Anderson utilizes themultigrid framework as a basis for communica-tion in his FMM implementationwhich substi-tutes Poisson integrals for spherical harmonicmultipole expansions [2].3 Tree as GridWe propose that the exact same hierarchicalstructure used by particle-based methods nowmaybe e�ectively utilized in adaptive mesh re-�nement implementation. The spatially struc-tured cubic volumes into which the mass-points are sorted are inherently situated, sized,and ordered as an e�cient adaptive mesh rep-resenting the system of interest. Instead ofinterpreting the hierarchy as a graphical rep-resentation of the tree-shaped database, it canfunction as the physical mesh which links thegrid resolution with the particle density. Fig-ures 1 and 2 represent a two-dimensional tree-structure from a particle simulation. Figures 3and 4 show the con�guration in �gure 2 repre-sented by a composite grid. The similarity be-tween �gures 2 and 3 demonstrates the conver-gence of these two di�erent approaches. Treelevels and cells may not directly correspondwith grid levels and zones, i.e. multiple parti-cles (and cells) from multiple levels would becollected to form a single grid level of appro-priate resolution aligned with the tree cells.This relationship stems from the grid-basedalgorithms reliance on the locality of the dis-crete operator and the particle-based schemessimilar utilization of locality to e�ciently col-lect, combine, and redistribute the multipolemoments. In the Poisson case, the localitystems from the regularity of harmonic func-tions which allow accurate approximation of

Figure 1: A perspective view of a 4-level 2-D tree including lines and dots representingparent-child relationships.the smooth, far-�eld solution by low-order rep-resentations [1]. Barnes-Hut requires the lo-cality of the tree not just as a framework forthe algorithm but to provide the ability to se-lectively descend into sub-cubes as needed dur-ing the computation allowing Salmon to create\locally essential" datasets per processor [15].Locality is common to and useful for manyloosely synchronous parallel algorithms [9].This union of hierarchies provides oppor-tunities beyond similar programming struc-ture [2, 13]: it allows easier synthesis of com-bined particle and mesh algorithms and al-lows hierarchy-building developments to ben-e�t both simulation methods. An additionaladvantage of the oct-tree over the binary tree(recursive bisection) for dividing space is evi-dent when combining particle and mesh algo-rithms: the spatially divided oct-tree allowsfor easy alignment with a mesh while the thebinary tree does not easily overlay a mesh oranother tree [17]. The parallel implementationof the Barnes-Hut code by Salmon [15], includ-ing domain decomposition and tree construc-4



Figure 2: A collapsed representation of asmall, two-dimensional Barnes-Hut tree con-taining 32 particles.tion, provides insights applicable to adaptivemesh re�nement on massively-parallel multi-ple instruction multiple data (MIMD) comput-ers. The locality of the algorithms preciselyprovide the structure necessary for e�cientparallel domain decomposition and ordered,hypercube-like communication on MIMD ar-chitectures.An astrophysical model combining a smooth
uid for gas dynamics with discrete parti-cles representing massive objects can occur en-tirely on a mesh or using a mixed simulation.The block structures available in the AFACalgorithm allow arbitrarily-shaped, nested re-gions of rectangular meshes to be used as

Figure 3: The 
attened tree in �gure 2 inter-preted as a composite grid.the relaxation grid for a multilevel algorithm;these regions can directly represent the par-tially complete sub-cubes present in oct-treedata structures frequently used in three di-mensional particle simulations. When combin-ing both methods, the density of mass pointsis no longer su�cient as an estimate for nec-essary grid resolution, so additional criteriabased upon acceptable error in other aspectsof the simulation, e.g. accurately reproduc-ing shocks, will a�ect the construction of themesh. But the grid can adapt to these con-straints and the hierarchy still provides themultipole information at points of interest.If the Method of Local Corrections is incor-porated to provide greater accuracy for localinteractions, the neighboring regions requiringcorrection can utilize the Barnes-Hut test ofopening-angle or the Salmon test of cumula-tive error contribution [16] instead of a directproximity calculation. The correction can becalculated using a multipole expansion insteadof the direct particle-particle interaction whichimproves e�ciency for the worst-case scenarioof dense clusters. While the same machinery5



Figure 4: Another view of the composite gridin �gure 3 showing the individual grid levelsfrom which it is constituted.can be used to solve the entire particle prob-lem with a multipole method, some boundaryconditions may be much harder to implement,necessitating the use of a local correction gridmethod.4 ConclusionGrid-based particle simulation algorithms con-tinue to provide an e�ective technique forstudying systems of point-like particles in ad-dition to continuum systems. These methodsare a useful alternative to grid-less simulationswhich cannot incorporate 
uid interactions orcomplicated boundary conditions as easily ore�ectively. While the approach is quite dif-ferent, the tree-structure and enhanced accu-racy criterion which are the bases of multi-pole methods are equally applicable as the fun-damental structure of an adaptive re�nementmesh algorithm. The two techniques comple-ment each other well and can provide a usefulenvironment both for studying mixed particle-continuum systems and for comparing results

even when a mesh is not necessitated by thephysically interesting aspects of the modeledsystem. The hierarchical structure naturallyoccurs in problems which demonstrate local-ity such as systems governed by the PoissonEquation.Implementations for parallel, distributed-memory computers gain direct bene�t fromthe locality. Because both the grid-based andparticle-based methods form the same hier-archical structure, common data partitioningcan be employed. A hybrid simulation usingboth techniques implicitly has the informationfor both components | particle and 
uid |at hand on the local processor node, simpli-fying the software development and increasingthe e�ciency of computing such systems.Considerations such as the e�ciency ofa deep, grid-based hierarchy with few oreven one particle per grid cell need to beexplored. Current particle-based algorithmresearch comparing computational accuracyagainst grid resolution, i.e. one can utilizelower computational accuracy with a �ner gridor less re�nement with higher computationalaccuracy, will strongly in
uence this result.Also, the error created by interpolating theparticles onto a grid and then solving the dis-crete equation must be addressed when com-paring grid-less and grid-based methods.AcknowledgmentsI would like to thank Chris Anderson, AndrewConley, Dan Quinlan, and John Salmon forextremely helpful discussions. This researchwas supported by an IBM Corporation Grad-uate Fellowship in Computational Science, aSyracuse University Graduate Fellowship, andan IBM Corporation grant for ComputationalScience.6
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