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Abstract 

A novel concept of clean diesel combustion using supercritical fluids is proposed and being 

investigated to address some key challenges encountered in the fuel and transportation sector. The 

core of this concept is to inject diesel fuel (DF) in the supercritical state to achieve clean, high-

efficient combustion in diesel engines. Among other challenging issues that must be addressed for 

the implementation of this new concept is the thermal stability of DF and the potential 

decomposition and solid deposit formation under engine conditions. In this work, thermal stability 

of DF was experimentally evaluated under subcritical and supercritical conditions in both static 

(batch system) and dynamic (continuous flow system) thermal stressing systems. The effects of 

thermal stressing temperature (200-440 
o
C) and duration (10-600 min) and CO2 concentration (~10 

wt%) were examined. DF decomposition is characterized by the average absolute deviation (AAD) 

of GC peak area percentages of all individual components. A temperature-time window (400-420 
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o
C, 0-60 min) where supercritical DF combustion in diesel engines may be possible was determined. 

CO2 as a diluent could prevent or reduce accumulation of solid deposits inside fuel pipes mainly 

due to an increased solubilization capacity of DF. Finally, different structures and morphologies of 

solid deposits observed under different batch thermal stressing conditions were discussed.  

 

Keywords: Decomposition, Diesel fuel, solid deposits, supercritical, thermal stability. 

 

1. Introduction 

Motivated by the increasing demands for transportation fuels and the more 

stringent  emission regulations, a novel concept of clean diesel combustion using supercritical fluids 

is proposed and being investigated [1-3]. The core of this new concept is to inject diesel fuel (DF) in 

the supercritical state instead of in the liquid state. Elimination of the droplet vaporization process 

would enhance fuel-air mixing and consequently, improve energy efficiency and reduce harmful 

emissions. To develop this new internal combustion engine technology, the thermal stability and 

possible decomposition of DF under extreme thermal conditions has to be addressed, among other 

key issues. DF would undergo extreme thermal stress for the time durations to reach the 

supercritical state before injection during engine operation and to cool down during the engine 

shutdown period. Previous studies have demonstrated severe engine failures caused by fuel coking 

at high temperatures [4]. Therefore, the science-based process design and development requires a 

better understanding of DF stability at high temperatures.  

The thermal stability of DF at relatively high temperatures has been minimally explored. 

Except for a few papers discussing DF stability below 150 
o
C [5-9], only three papers were found 

discussing thermal stability of DF at relatively high temperatures [10-12]. Nickolaus and Lefebvre 

[10] studied fuel injection at 317 
o
C and observed an increase in pressure drop across the nozzle due 

http://dict.cn/stringent


 

3 

 

to deposit formation. Beal and Hardy [11] studied thermal stability of DF using a quantitative 

gravimetric jet fuel thermal oxidation tester and found that thermal stressing of DF at 260 
o
C and 

3.4 MPa for a residence time of 6 s and for an experimental duration of 2.5 h resulted in significant 

formation of solid deposits. Anitescu et al. [12] studied thermal behavior of DF-diluent mixtures at 

temperatures and pressures up to 477 
o
C and 60 MPa, respectively, and concluded that fuel 

decompositions could be reduced with the addition of diluents. These previous investigations 

suggest that DF starts to degrade at about 260 
o
C and the degradation leads to the formation of solid 

deposits (or fuel coking) and diluents such as CO2 may be able to reduce fuel decomposition and 

coking. 

Thermal stability of a fuel is defined as the capability of the fuel to withstand high 

temperature stress for a reasonable time period without noticeable deterioration [13]. Such 

deterioration may include color change, formation of solid deposits, changes in physical properties, 

chemical properties and combustion properties, etc. Although thermal stability of DF has been 

minimally explored, extensive research on jet fuel stability has provided major variables that affect 

and control fuel decomposition and solid deposit formation. These variables fall into two categories: 

(1) chemical variables (or fuel-related variables) including fuel type, fuel processing, fuel 

composition, oxygen/sulfur/nitrogen contents and fuel additives, and (2) physical variables (or 

operating variables) including temperature, pressure, heat flux, flow regime, test duration and 

heated wall characteristics [3]. Studies on jet fuel thermal stability have been very beneficial to the 

understanding of DF thermal stability; for example, it has been suggested that the mechanisms of 

thermal-oxidation-reaction-induced deposit formation for DF and jet fuels are mechanistically 

similar [14]. In addition, it has been reported that thermal decomposition of liquid hydrocarbon fuels 

(jet fuel, DF, etc.) falls into three different regimes [15]: 

Thermal oxidation reaction regime (< 300 
o
C): Decomposition occurs by autoxidation reactions and 
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increases with increasing fuel temperature. The temperature range of this regime largely depends on 

fuel properties, and it has been reported that deposition began at 260 
o
C and became worse at 325-

400 
o
C [16]. 

Transition regime (300-500 
o
C): Both autoxidation and pyrolysis reactions contribute to 

decomposition and the rate of decomposition decreases with increase in fuel temperature possibly 

due to the transition from the liquid phase to the supercritical phase which enhanced solvent 

capability [17] or due to depletion of hydroperoxides [16]. 

Pyrolysis reaction regime (> 500 
o
C): Direct pyrolysis dominates and decomposition is 

enhanced as fuel temperature increases. 

As part of the ongoing efforts to develop supercritical fuel combustion technology [1-3,18-

21], this work is intended to provide a scientific base for the design of high temperature DF delivery 

and combustion systems. The major objectives are to provide a better understanding of thermal 

stability and decomposition behavior of DF under subcritical and supercritical conditions, to 

demonstrate the effects of thermal stressing temperature and duration and CO2 as a diluent on DF 

decomposition, and more importantly, to determine a thermal stressing temperature-time window 

where the operation of supercritical fuel injection in internal combustion engines would be practical. 

CO2 is chosen as a surrogate for the diesel engine exhaust gas to simplify our experiments. The 

exhaust gas was originally proposed to be recycled to the fuel system for two reasons - recover 

energy and reduce fuel decomposition [1]. It is recognized that the addition of a diluent (either CO2 

or real exhaust gas) to DF will reduce the energy density of the fuel in diesel engines. To address 

the impacts on engine performance of a diluent, engine experiments are required that are beyond the 

scope of this work. 

Both static and dynamic thermal stressing experiments were conducted for no. 2 DF and 

DF/CO2 mixtures. Fuel samples were then analyzed using gas chromatography equipped with a 
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mass selective detector (GC-MSD). Solid deposits were observed with a scanning electron 

microscope (SEM). Results from both the static and the dynamic experiments are valuable and 

significant for the intended application in supercritical DF delivery and combustion in diesel 

engines because diesel engines undergo both static (during shutdown period) and dynamic (under 

running conditions) operational conditions.  

 

2. Experimental  

2.1. Materials 

The DF used in this work was no.2 DF purchased from a local gas station, and the measured 

density was 0.835 ± 0.004 g/ml at room temperature. Hexane (pesticide grade) was purchased from 

Fisher Scientific, and carbon dioxide (bone dry) was supplied by Airgas. 

 

2.2. Batch thermal stressing of DF 

Batch thermal stressing of DF was carried out in a stainless steel tee (Fig. 1B, internal 

volume: ca. 0.6 ml) using a gas chromatograph oven (HP 5890) as a heating source. A schematic 

diagram of the setup is shown in Fig. 1A. DF of 0.45 ml was manually loaded in a CO2 

environment to avoid the trapping of air because oxygen affects fuel stability [17,22-25]. The oven 

temperature (T1) and the fuel temperature (T2) were measured by two thermocouples and recorded 

by a data acquisition system (LabVIEW, National Instruments). A small piece of stainless steel 

sheet (Fig. 1C) was added into the tee in each run to capture potential solid deposits formed during 

the thermal stressing process. Experiments were conducted at 200-440 
o
C for varying isothermal 

durations from 10 min to 600 min (Table 1, run #1-17). The maximum thermal stressing 

temperature was limited to 440 
o
C because a preliminary run showed that DF decomposed at 440 

o
C 

for a thermal stressing duration of 10 min.   



 

6 

 

 

2.3.  Batch thermal stressing of DF/CO2 mixtures 

Batch thermal stressing of DF/CO2 mixtures and DF for comparison was carried out in a 

stainless steel cross (internal volume: ca. 2 ml) heated by a heating tape (Briskheat). As illustrated 

in Fig. 1D, one opening of the cross was connected to a double-piston pump and two syringe pumps 

for the delivery of DF (Dynamex, Model SD-1), CO2 (ISCO 260D) and hexane (ISCO 100D), 

respectively, and the other three openings were connected to a pressure transducer (P), a 

thermocouple (T2) and a waste collection vial, respectively. Fuel temperature (T2), fuel pressure (P), 

and heating temperature (T1) were monitored and recorded by the data acquisition system. 

Experimental conditions are shown in Table 1 (run # 18-22). For thermal stressing of DF/CO2 

mixtures, a known amount of DF was pumped into the cross first, and then the cross was filled with 

CO2 to 4.83 MPa at room temperature. After each run, the cross was rinsed with hexane and then 

supercritical CO2 for the next run. In the last run (run #22) of this set of experiments, the DF/CO2 

mixture was heated continuously at ~ 15 
o
C/min up to 600 

o
C to study the starting point of 

significant DF decomposition. The T-P history was recorded, but fuel was coked and no sample was 

collected for analysis. 

 

2.4.  Continuous flow thermal stressing experiments 

To eliminate the possible effect of pressure on fuel decomposition, isobaric continuous flow 

thermal stressing experiments were conducted. As schematically illustrated in Fig. 1E, the flow 

system was mainly composed of a double-piston pump (Dynamex, Model SD-1) and a syringe 

pump (ISO 260D) used for pumping DF and CO2, respectively, a heating tape to preheat fuel 

mixtures, a thermal stressing stainless steel coil (I.D. 1.524 mm, 18.3 m) located in a GC oven, a 

cooling coil placed in a water bath, a stainless steel micro-filter (4200 series, Norman Filter) to 
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capture potential solid deposits, a back pressure regulator (Swagelok), thermocouples (T1-T4), 

pressure transducers (P1, P2), and a data acquisition system. Thermal stressing of DF/CO2 mixtures 

(DF:CO2=9:1 by mass) and DF for comparison was conducted at 440 
o
C and 30 MPa for a residence 

time 30 min (Table 1, run #22-23). The DF/CO2 mass ratio was selected to reduce the critical 

temperature of the fuel mixture to a value for which diesel fuel decomposition was minimal and the 

energy density of the fuel was not reduced significantly. The approach to determine the estimate is 

discussed in section 3.1. Each run lasted about 13 hours, and samples were collected in one hour 

intervals. 

 

2.5.  Fuel analysis by GC-MSD 

DF compositions were analyzed by GC-MSD (HP 5890, HP 5971) equipped with a HP-1MS 

crosslinked methyl siloxane column (30m × 0.25mm × 0.25µm). The oven temperature program 

was: hold at 45 
o
C for 3 min, ramp 1 

o
C/min to 270 

o
C and hold for 4 min. The injector and detector 

temperatures were 260 
o
C and 285 

o
C, respectively. All samples were prepared by diluting 2.0 µl 

DF in 1.0 ml hexane, and the injection volume was 1.0 µl.  

Fig. 2 shows examples of chromatograms for fresh DF and DF thermally stressed at 440 
o
C 

for 120 min. The No. 2 DF used in this study is composed of a variety of hydrocarbons having 

carbon numbers mainly from 8 to 25 (Fig. 2A). Thermal decomposition of DF involves both 

pyrolysis of high molecular weight compounds having carbon numbers mainly of 15 and above (Fig. 

2B) and formation of poly aromatic hydrocarbons via polymerization reactions. For quantitative 

analysis of fuel decomposition, a new method is proposed below. Chromatograms are integrated 

and area percentages of individual peaks (A%) are calculated. The deviations of A% for all DF 

components after thermal stressing can then be calculated by  
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  (1) 

where subscripts TS and F denote thermally-stressed DF and fresh DF, respectively, subscripts i and 

j denote the i
th

 and j
th

 peaks, respectively, and n denotes the total number of peaks. A negative 

Δ(A%)i value means thermal decomposition of the i
th

 compound, while a positive Δ(A%)i value 

indicates production of the i
th

 compound due to decomposition of other DF components. Since both 

negative and positive Δ(A%)i values indicate DF decomposition, the average absolute deviation 

(AAD) of A% given by Eq. (2) is used to characterize DF decomposition, and the greater AAD value 

means the higher degree of fuel decomposition.     

  (2) 

 Theoretically, the AAD value would be zero if no decomposition occurs. However, a Δ(A%) 

plot for fresh DF (Fig. 2C) shows small analytical uncertainty (AAD=0.06%), and the average AAD 

value for three fresh DF samples was (0.07 ± 0.01)%. Therefore, DF is considered thermally stable 

if the AAD value for thermally-stressed DF is within the analytical uncertainty. Fig. 2D shows an 

AAD value of 0.34% for DF thermally stressed at 440 
o
C for 120 min and indicates a significant 

decomposition.  

In additional to AAD values, we also calculated mean GC retention time by 
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2.6.  Solid deposit characterization by SEM 

Solid deposits formed on stainless steel sheets during the thermal stressing process were 

characterized by SEM (JEOL, JSM-5600). Samples were rinsed with hexane and then dried in air at 

room temperature before SEM observation. 

 

3. Results and Discussion 

3.1. Critical points of DF and DF/CO2 mixtures 

This work is focusing on fuel stability and decomposition under both subcritical and 

supercritical conditions, so we first studied the critical points of DF and DF/CO2 mixtures. The 

critical point of real DF can be estimated using empirical correlations, and we have reported in a 

previous study the critical point of DF, which is (440-470 
o
C, 1.9-2.2 MPa) and largely dependent 

of DF distillation profiles [20]. Estimating the critical points of DF/CO2 mixtures is extremely 

challenging due to the complexity of DF chemical compositions and the limitations of current 

modeling techniques. Therefore, we choose n-hexadecane as a surrogate for DF and calculate the 

critical points of n-hexadecane/CO2 mixtures. n-Hexadecane is chosen because it is a major 

component of DF and has a critical point close to that of real DF [20]. This simulation would 

provide relatively reliable estimates for the critical points of DF/CO2 mixtures.  

The critical points of n-hexadecane/CO2 mixtures of varying compositions were estimated 

by solving the Soave-Redlich-Kwong equation of state [26] using the PRO/II
®
 process engineering 

software (Invensys Inc.). Results are presented in Fig. 3, along with literature data [27,28]. Also 

plotted in Fig. 3 is the critical point range of real DF [20]. It is found that the critical temperature of 

the n-hexadecane/CO2 mixture decreases and the critical pressure increases as the n-hexadecane 

molar fraction (XHD) decreases (or the CO2 molar fraction increases). This result is important 
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because it indicates the possibility to transfer fuels from the liquid state to the supercritical state at 

relatively lower temperatures by adding diluents or additives. 

 

3.2. Coupled effects of temperature and residence time on DF thermal stability 

In the first set of batch experiments, DF was thermally stressed at 200-440 
o
C for 10-600 

min. Selected photos of DF samples are presented in Fig. 4, from which thermal stability behavior 

is roughly observed. At 300 
o
C, DF was very stable and noticeable color changes were only 

observed after 600-min thermal stressing. This observation is contradictory to the previous study 

where DF was found to start to degrade at 260 
o
C [11]. The possible explanations are the different 

experimental techniques used in the two studies and the improvement of fuel quality over the past 

two decades. In the former case, instead of analyzing the fuel they analyzed surface depositions on a 

metal foil strip resulting from flowing heated fuel at 260 oC over the strip for 2.5 hours. As 

temperature increased to 400 
o
C, DF still showed good stability for residence times up to 180 min. 

The fuel stability significantly reduced as temperature increased to 420 
o
C and further to 440 

o
C. 

Fuel color started to change at about 30 min and 10 min for 420 
o
C and 440 

o
C, respectively. The 

red curve in Fig. 4 indicates a rough transition zone, above which DF is unstable and below which it 

is stable. This curve also implies that DF could withstand higher temperatures if the residence time 

were much shorter, and this deduction is confirmed by the observation made in run #22 in Table 1 

and presented in Fig. 5. In run #22, the DF/CO2 mixture was heated at ~15 
o
C/min from room 

temperature to 440 
o
C and then cooled down to room temperature. The overlapping of the heating 

and cooling curves indicates negligible DF decomposition. The fuel mixture was re-heated at the 

same heating rate to more than 600 
o
C, and a sharp increase in pressure was observed in the P-T 

curve at about 470 
o
C (Fig. 5). The sharp change in the slope of the P-T curve corresponds to the 

onset of significant DF decomposition. Since the time duration from 440 to 470 
o
C was about 2 min, 
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we may conclude that DF can withstand high thermal stress under near critical or supercritical 

conditions for reasonable time durations (< 2 min). These time durations would be comparable with 

those required for DF to reach the supercritical state before injection during engine operation. 

However, DF would undergo the extreme thermal stress for longer time durations to cool down 

during the engine shutdown period, depending on the efficiency of cooling systems. Therefore, the 

current study is focused on DF thermal stability at temperatures up to 440 
o
C for longer thermal 

stressing durations.  

Quantitative stability and decomposition information can be obtained from the AAD plot 

presented in Fig. 6, in which the solid straight line represents the average AAD value for fresh DF 

and the dash straight lines represent the standard deviation. When thermal stressing temperatures 

were less than 420 
o
C and the residence time was no greater than 60 min, the AAD values were 

within the range of analytical uncertainties, indicating the good stability of DF under these thermal 

stressing conditions. At 300 
o
C and 600 min, the AAD increased to 0.16%. At 400 

o
C and > 60min, 

the AAD increased as the residence time increased and tended to reach an equilibrium state. At 420 

o
C and above, all AAD values were above the uncertainty range and increased as temperature or 

residence time or both increased. These results agree well with visual observations.  

Fig. 7 plots the mean GC retention time ( ) versus the thermal stressing residence time at 

varying temperatures. At 300 
o
C,   slightly increased when DF was thermally stressed for 600 min, 

At 400 
o
C,  remained nearly constant within 60 min and then decreased when the residence time 

increased to 180 min, which agrees with the AAD% changes presented in Fig. 6. When the 

residence time increased from 180 min to 300 min and further to 600 min,  remained constant 

initially and then slightly increased. These results suggest that longer residence time favors 

polymerization reactions to form higher molecular weight compounds. At 420 
o
C and above, 

decreased as temperature or residence time (up to 120 min) or both increased.  
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Finally, a small temperature-time window (400-420 
o
C, 0-60min) was determined where DF 

showed very good stability. Above this window, DF decomposition would become an issue. 

Decomposition would change fuel chemical and physical properties, further affect spray and 

combustion behavior, and ultimately, influence emissions and energy efficiency. In the worst 

scenario, decomposition would cause significant engine failure [4]. DF will remain in the liquid 

state at 400-420 
o
C because the critical temperature of DF is greater than 420 

o
C, as discussed in 

Section 3.1. Therefore, to guarantee a supercritical state, phase transition agents would be required 

to reduce the critical temperature of fuel mixtures to below 420 
o
C without or with minimally 

sacrificing fuel combustion properties.   CO2 was proposed as such an agent [1] and the effect on 

DF stability is evaluated below. 

 

3.3. Effect of CO2 on DF thermal stability 

Results obtained from the second set of batch thermal stressing experiments (Table 1, run 

#18-21) are presented in Fig. 8. Fig. 8A shows that the AADs for DF/CO2 (18-B, 19-B, 20-B and 

21-B) were greater than those for the corresponding DF samples (18-A, 19-A, 20-A and 21-A), 

indicating that DF stability reduced with the addition of CO2. As mentioned earlier, fuel 

decomposition involves not only pyrolysis reactions but polymerization reactions, and it is well 

known that aromatic and heteroaromatic compounds are significantly involved in deposit formation 

[16]. Therefore, some precursors for the formation of polycyclic aromatics hydrocarbons (PAHs) 

were examined. Fig. 8B-E shows that A% of four aromatic compounds including naphthalene, 2-

methylnaphthalene, 1-methylnaphthalene and 1, 4, 5-trimethylnaphthalene increased with the 

addition of CO2. These results may lead to the conclusion that CO2 promoted DF decomposition.  

However, we have overlooked the pressure effect. As noticed in Table 1, the thermal stressing 

pressures increased with the addition of CO2 by nearly one order of magnitude from 2-6 MPa for 
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DF to 30-70 MPa for DF/CO2. To eliminate the pressure effect, isobaric continuous flow thermal 

stressing experiments were conducted at 440 
o
C and 30 MPa for a residence time of 30 min, and 

results are presented in Fig. 9 and discussed below.      

The continuous flow systems reached the steady state within 120 min for both runs (run #23 

for DF and run #24 for DF/CO2 in Table 1). The steady state conditions maintained for about 300 

min for both runs and thus only samples collected in 120-420 min are included in this discussion. 

Photos of two sets of DF samples are presented in Fig. 9A, showing slight differences in color 

changes between two runs. The AAD values and changes in A% for four PAH precursors are 

reported in Fig. 9B-F, respectively, and the error bars indicate the standard deviations. Under the 

isobaric conditions, the AAD value and the concentrations of all four PAH precursors slightly 

decreased with the addition of CO2. This observation suggests that although CO2 was not able to 

effectively prevent DF decomposition, it did not promote DF decomposition. This opposite outcome 

is a strong evidence to support the argument that the enhancement in DF decomposition with the 

addition of CO2 in the batch experiments was actually caused by the increase in fuel pressure and 

CO2 itself had a minimal chemical effect on DF decomposition. In addition, it is noticed that the 

concentration of 1, 4, 5-trimethylnaphthalene decreased after the thermal stressing process 

regardless of the CO2 concentration. The possible explanation for this observation is either this 

chemical decomposes to form smaller molecules or it undergoes polymerization reactions to form 

higher molecular weight compounds or both. Additional research is required to address this issue. 

Fig. 9G plots the pressure drops across the micro-filter for both the DF and the DF/CO2 runs. 

The pressure drop for the DF/CO2 run was lower than that for the DF run, which may be explained 

by the reduction in fuel viscosity with the addition of CO2. During thermal stressing of DF, the 

pressure drop increased by about 25 % from 0.060 MPa at 120 min to 0.075 MPa at 420 min, and 

this increase was mainly caused by the accumulation of solid deposits inside the micro-filter. 
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During thermal stressing of the DF/CO2 mixture, the pressure drop did not increase; instead it 

slightly decreased from 0.041 to 0.035 MPa within the same thermal stressing duration, despite 

some variations, which suggests that CO2 was able to effectively prevent accumulation of solid 

deposits. Since CO2 was not able to prevent DF decomposition as discussed in the preceding 

paragraph, one possible interpretation for this new phenomenon is the phase transition effect. As 

discussed in Section 3.1, the addition of 10 wt% of CO2 brings the critical temperature of the 

DF/CO2 mixture down to below 440 
o
C and consequently, a phase transition from the liquid state to 

the supercritical state occurs. Supercritical fluids have unusual high solubilities and therefore 

possibly minimize deposition on fuel pipe walls [16]. In addition to the solubilization effect, the 

near-critical or supercritical environment may also promote unique reactions and affect product 

distributions [29-31].  

Finally, it may be concluded that CO2 is not able to prevent DF decomposition, but it can 

prevent or reduce accumulation of solid deposits inside fuel pipes, which is very encouraging. Also, 

addition of CO2 can reduce the critical temperature of fuel mixtures and thus, the supercritical fuel 

delivery and injection system can be operated at lower temperatures compared with using pure DF. 

However, additional investigations are necessary to address the chemical mechanism involved in 

the fuel coke reduction by CO2 and the effect of CO2 on spray and combustion behavior.  

 

3.4. Formation of solid deposits 

Fig. 10 shows SEM images of stainless steel sheets before and after thermal treatment in DF 

at 300, 400 and 440 
o
C for 120 to 600 min. These images demonstrate significant morphology 

changes among different thermal stressing conditions. Ring-type deposits (in white) of varying ring 

diameter up to 3 μm were formed when DF was stressed at 300 
o
C for 600 min (Fig. 10B). Similar 

structures, yet of smaller sizes, were observed at 400 
o
C for the same residence time (Fig. 10D). 
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Reducing the residence time to 300 min at 400 
o
C resulted in deposits in much smaller size. As 

temperature increased to 440 
o
C, a substantial number of deposits were produced (Fig. 10E), and 

the diameters of these crystal-like structures were in the order of magnitude of 100 nm with a 

relatively narrower size distribution (Fig. 10F). The morphology of solid deposits formed at 440 
o
C 

is consistent with that previously reported for the pyrolytic regime at higher temperatures [32]. The 

different morphologies of solid deposits observed under different thermal stressing conditions may 

imply different solid deposit formation mechanisms.  

It has been suggested that the nature and amount of solid deposition from the thermal 

decomposition of jet fuel were dependent on the substrate properties and jet fuel composition [33]. It 

was also reported that stainless steel tubes formed more deposits than aluminum tubes [16] probably 

due to the catalytic behavior of iron and iron-based alloys during carbon oxidation [33]. 

Contradictorily, however, a recent study showed that the deposits were formed by reactions in the 

liquid phase and the surface played a negligible role in deposit formation [34]. Other studies have 

reported the effects of trace amounts of sulfur and nitrogen compounds and other contaminants such 

as metals [35,36], because these elements were found in large concentrations in deposits compared 

to fresh fuels [25]. A recent study reported that nitrogen and sulfur compounds were presented only 

in the liquid-phase product, but not in the solid phase deposits, and indicated that they did not 

aggregate during solid formation [34]. Despite a number of studies on addressing the science behind 

solid deposit formation, the nature and the mechanism are still far from understood. These studies 

are beyond the scope of this work. Further studies are definitely required to address these issues and 

would contribute to the development of strategies for preventing DF coking.  

 

4. Conclusions 

In this work, the thermal stability of DF under subcritical and supercritical conditions was 
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experimentally evaluated in both batch and continuous flow thermal stressing systems. The effects 

of temperature, thermal stressing duration and CO2 on DF stability and decomposition were 

examined. CO2 was examined as a potential diluent to reduce the DF critical temperature and to 

determine whether it prevents DF coking at high temperatures. It was found that the thermal 

stability of DF reduced as temperature or thermal stressing duration or both increased. The onset 

temperature of instantaneous decomposition was about 470 
o
C. CO2 was not able to prevent DF 

decomposition, but it could prevent or reduce accumulation of solid deposits inside fuel pipes 

mainly due to the effect on the solubilization capacity of DF. Finally, two different structures and 

morphologies of solid deposits were observed under different batch thermal stressing conditions and 

might imply varying deposition mechanisms. The significance of this study is that it provides a 

deeper insight of thermal stability and decomposition behavior of DF and determines a temperature-

time window where supercritical DF combustion in diesel engines may work.   
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Fig. 1 Schematic diagrams of the experimental setups. A: batch setup for thermal stressing of diesel 

fuel; B:  photograph of the stainless steel tee; C: photograph of stainless steel sheets used to 

capture solid deposits; D: batch setup for thermal stressing of diesel fuel-CO
2
 mixtures; E: 

continuous flow thermal stressing system. 
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Fig. 2 Example of GC-MS chromatograms and quantitative analysis. A: chromatogram of fresh 

diesel fuel; B: chromatogram of diesel fuel thermally stressed at 440 
o
C for 120 min; C: 

typical peak area percentage variation between two GC-MS measurements for fresh diesel 

fuel; D: peak area percentage changes between chromatograms A and B; C9-C25 indicate 

normal alkanes having carbon numbers from 9 to 25. 
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Fig. 3 Estimated critical points of diesel fuel and diesel fuel surrogate (n-hexadecane)-CO2 

mixtures. XHD: molar fraction of n-hexadecane; (□) data from Ref. [24]; (■) critical point 

of n-hexadecane from Ref. [25]; (●) estimated in this work; solid line: critical point trend 

line; rectangle: critical point range of real diesel fuel [17].   
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Fig. 4 Selected photos of diesel fuel samples collected in the batch thermal stressing experiments. 
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Fig. 5 T-P history for batch thermal stressing of a DF/CO2 mixture (run #22 in Table 1) showing the 

start of significant DF decomposition. 
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Fig. 6 Quantitative analysis of GC-MS chromatograms showing diesel fuel decomposition under 

varying batch thermal stressing conditions.  
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Fig. 7 Changes in mean GC retention time of DF thermally stressed at 300-440 
o
C for 10-600 min. 

The horizontal solid line is for fresh DF and the horizontal dash lines indicate one standard 

deviation.    
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Fig. 8 Average absolute deviation of peak area percentages (A) and percentage change for 

individual peaks (B-E) indicating the effect of CO2 on diesel fuel decomposition. B: 

naphthalene (retention time in min: 33.78); C: 2-methylnaphthalene (47.58); D: 1-

methylnaphthalene (49.27); E: 1, 4, 5-trimethylnaphthalene (73.70). 
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Fig. 9 Results for the continuous flow thermal stressing experiments. A: photos of diesel fuel 

samples collected during thermal stressing of diesel fuel (DF) and diesel fuel-CO2 mixtures 

(DF/CO2); B: comparison of the average absolute deviation of peak area percentages; C-F: 

percentage changes for individual peaks for naphthalene (C), 2-methylnaphthalene (D), 1-

methylnaphthalene (E) and 1, 4, 5-trimethylnaphthalene (F); G: comparison of pressure drop 

changes. 
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Fig. 10 Selected SEM photographs of solid deposits formed during batch thermal stressing of diesel 

fuel. E and F are for the same sample but were taken using different magnifications as 

indicated in the photographs.  
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Table 1 Experimental conditions for batch thermal stressing of diesel fuel 

  Exp. Run#
 

T (
o
C) τ (min) DF (ml) CO2 (MPa) 

a 
P (MPa) Phase

 c 

  Batch-DF 1 200 15 0.45 0 n/a L 

2 300 10 0.45 0 n/a L 

3 300 600 0.45 0 n/a L 
4 400 10 0.45 0 n/a L 
5 400 30 0.45 0 n/a L 
6 400 60 0.45 0 n/a L 
7 400 180 0.45 0 n/a L 

8 400 300 0.45 0 n/a L 
9 400 600 0.45 0 n/a L 
10 410 30 0.45 0 n/a L 
11 420 30 0.45 0 n/a L 

12 420 60 0.45 0 n/a L 
13 420 120 0.45 0 n/a L 

14 430 30 0.45 0 n/a L 
15 440 10 0.45 0 n/a L 

16 440 30 0.45 0 n/a L 
17 440 120 0.45 0 n/a L 

Batch- 

DF/CO2 

18-A 440 30 1.7 0 1.8-4.0 L 

18-B 440 30 1.7 4.83 29.5-35.3 SC 

19-A 440 45 1.2 0 1.8-4.0 L 

19-B 440 45 1.2 4.83 29.3-31.6 SC 

20-A 440 45 1.4 0 1.7-3.6 L 

 20-B 440 45 1.4 4.83 31.1-37.9 SC 

 21-A 440 45 1.6 0 2.1-6.4 L 

 21-B 440 45 1.6 4.83 57.0-67.5 SC 

 22 >600 n/a 1.0 4.83 >90 SC 

  Continuous 23 440 30 100 
b 

0 
b 

30 L 

24 440 30 90 
b 

10 
b 

30 SC 
 

a 
“0” indicates no CO2 added; “4.83” was the initial pressure after loading DF and pressurizing with the 

system with CO2 at the room temperature. 

b 
The unit of these values is weight percent (wt%). 

c
 L-liquid; SC-supercritical 

 


