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Abstract

In this paper we present several algorithms for performing all-to-many personalized commu-
nication on distributed memory parallel machines. We assume that each processor sends a
different message (of potentially different size) to a subset of all the processors involved in
the collective communication. The algorithms are based on decomposing the communication
matrix into a set of partial permutations. We study the effectiveness of our algorithms both

from the view of static scheduling and from runtime scheduling.

Index Terms: Loosely synchronous communication, node contention, non-uniform mes-

sage size, personalized communications, runtime scheduling, static scheduling.



1 Introduction

Load balancing and reduction of communication are two important issues for achieving good
performance on distributed memory parallel computers. It is important to map the program
such that the total execution time is minimized; the mapping typically can be performed
statically or dynamically. For most regular and synchronous problems [10], this mapping can
be performed at the time of compilation by giving directives in the language to decompose
the data and its corresponding computations (based on the owner computes rule—where
each processor only computes values of data it owns [6, 7, 23, 28]). This typically results
in regular collective communication between processors. Many such primitives have been
developed in [2, 21].

For a large class of scientific problems that are irregular in nature, achieving a good
mapping is considerably more difficult [8]. Further, the nature of this irregularity may not
be known at the time of compilation and can be ascertained only at runtime. The handling
of irregular problems requires the use of runtime information to optimize communication and
load balancing [13, 18, 20]. These packages derive the necessary communication information
based on the nonlocal data required for performing local computations.

Consider the parallelization of a single concurrent computational phase of an explicit un-
structured mesh fluids calculation. This step is typically executed repeatedly without change
in computational structure. The computational structure of the above code is given in Fig-
ure 1. Similar examples of such computations are iterative solvers using sparse matrix-vector
multiplications [24]. Further, a multiple phase computation consists of a series of dissimilar,
loosely synchronous computational phases where each individual phase is a single concurrent
computational phase. Examples of these computations include unstructured multigrid [17],
parallelized sparse triangular solver [1, 4], and particle-in-cell codes [15, 26].

The key problem in efficiently executing these programs is partitioning the data and com-
putation such that the load on each node is balanced and the communication is minimized.
Figure 2 describes a decomposition of such a problem. The z and y arrays in Figure 1
represent the nodes in Figure 2, while the nde array represents the edges. This partitioning
then dictates the program’s synchronization and communication requirements, which must
also be computed. The computational pattern may only be available at runtime and may
not be done directly by the compiler; instead, calls to a runtime environment need to be
generated to do the partitioning. Several algorithms are available in the literature to perform
this partitioning (see [16] for a detailed list of such references).

The partitioning described in Figure 2 generates an 8 x 8 communication matrix COM
(Table 1). A “1”7 in the (7, j ) entry represents the fact that processor P; needs to communicate
to processor P;. Each message is of different size and each processor may send a different
number of messages. In our example, Fy sends only three messages while P, sends five
messages. If we allow processors to arbitrarily send their outgoing messages, it may happen
that at one stage processors Py, P, P, Py and FPs will all try to send messages to processor

P,. Since the receiving processor typically can receive messages from only one processor



C This 1s a simplified sweep over edges of a mesh. A flux across a
C mesh edge is calculated. Calculation of the flux involves

C flow variables stored in array x. The flux is accumulated to array y.

do:=1,N
S1 nl = nde(i,1)
S2 n2 = nde(i,2)
S3 flux = f(x(nl),x(n2))
S4 y(nl)
S5 y(n2)
end do

nl) + flux

= y(
= y(n2) — flux

Figure 1: Code representing a simple explicit unstructured fluid calculation.

at a time, one or more of the sending processors may have to wait for other processors to
complete their communication. We use the term node contention to refer to this situation.
We will show that node contention has a deteriorating effect on the total time required for
communication.

In this paper, we develop several simple methods of scheduling all-to-many personalized
communication. The cost of the scheduling algorithm can be amortized over several iter-
ations, as the same schedule can be used several times. In the above unstructured mesh
example, the same iteration is typically repeated several times.

In general, assuming a system with n processors, our algorithms take as input an n x n
communication matrix COM. COM(i,j) is equal to a positive integer m if processor P
needs to send a message (of m unit) to P;, 0 <i,j <n — 1. Our algorithms decompose the
communication matrix COM into a set of partial permutations, pmy, pms, - - -, pm;, where [
is a positive integer and pm¢ represents the :'! entry in vector pmyg. The decomposition is
made such that if COM(i,j) # 0, then there exists a k, 1 < k <[, such that pmi = j.

The communication matrix of Table 1 may be decomposed into the following permuta-

tions:

pmy = (6,7,0,1,2,3,4,5),

pmy = (2,3,6,5,7,4,0,1),

pms = (—,0,1,2,3,7,—,4),
pmy = (1,2,3,4,5,—,7,6), and
pms = (—,—,4,—,6,—,2,—).

where in each permutation every processor both sends and receives at most one message.
Assuming that the processors perform their operation in a synchronous fashion, the time
taken to complete a permutation depends on the largest message in the permutation. Since

the message sizes in one permutation may vary widely, we develop several schemes to reduce
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Figure 2: The partitioning of irregular mesh.

| Joj1]2]3[4]5]6]7]

0 111 1

1 111 1
2 1 111 1

3 111 111

4 111 171

3 1

6 1 1 1 1
7 1 171

Table 1: An 8 x 8 communication matrix (blank entries imply no communication).



the variance of message size within one permutation. This is done by splitting large messages
into smaller pieces, each of which is sent in different phases.

With the advent of new routing methods [9, 19, 25], the distance to which a message is
sent is becoming relatively less and less important [3]. Thus, assuming no link contention,
permutation is an efficient collective communication primitive. For an architecture like the
CM-5, the data transfer rate seems to be bounded by the speed at which data can be sent or
received by any processor [5]. Thus, if a particular processor receives more than one message
or has to send out more than one message in one phase, then the time will be lower bounded
by the time required to remove the messages from the network by the processor receiving
the maximum amount of data.

Clearly, this is not going to be the case for all architectures. The paths of two messages
may have a common link. This may sequentialize the transfer of the two messages (especially
for machines that use circuit switching routing). Assuming that routing is static in nature
(i.e., the path to send a message from one node to another node can be predetermined),
we can build partial permutations that satisfy the property that no two messages interact;
however, this would depend on the topology and routing methodology and would increase
the cost of obtaining a good schedule.

The algorithms described in this paper do not take link contention into account. A main
reason for this is that message routing is randomized on the CM-5 [14, 25], it is not possible to
statically schedule messages in such a fashion that link contention can be avoided, although
randomization alleviates that problem to a large extent. The variation of time required for
different random permutations (in which each node sends a data to a random, but different
node) is very small on a 32-node CM-5 (cf. Section 3.2). The algorithms developed in this
paper can be extended to the architectures where link contention is an important issue by
decomposing communication matrix into partial permutations which avoid link contention.
The cost of these algorithms would depend on the topology as well as the routing method.

We show that our algorithms are inexpensive enough to be suitable for static as well
as runtime scheduling. If the number of times the same communication schedule is used is
large (which happens for a large class of problems [7]), the fractional cost of the scheduling
algorithm is quite small. Further, compared to naive algorithms, our algorithm can result in
a significant reduction in the total amount of communication.

The rest of this paper is organized as follows. Notations, definitions, and general commu-
nication properties used throughout are given in Section 2. Section 3 provides an overview
of CM-5. Section 4 presents a simple asynchronous communication algorithm. Section 5
describes algorithms that avoid node contention. Section 6 proposes approaches to reduce
the variance of message size in one permutation. Section 7 presents experimental results on

a 32-node CM-5. Finally, conclusions are given in Section 8.



2 Preliminaries

The communication matrix COM is an n X n matrix where n is the number of processors.
COM({t,7) is equal to a positive integer m if processor P; needs to send a message (of m
units) to P;, otherwise COM(%,75) = 0, 0 < 4,5 < n. Thus, row ¢ of COM represents the
sending vector, sendl;, of processor P;, which contains information about the destination
node and the size of outgoing messages. Column ¢ of COM represents the receiving vector,
recvl;, of processor P;, which contains information about the source node and the size of
incoming messages. The entry Sendlf (recvlf) represents the ;™ entry in the vector sendl;
(recvl;). Assuming COM(t, ) = m, then sendl! = recvl; = m. We will use sendl and recvl
to represent each processor’s sending vector and receiving vector when there is no ambiguity.

COM can be decomposed into a set of communication phases, c¢pg, 1 < k <[, [, a positive

integer, such that
COM(i,j)=m, m>0 = 3%k, 1<k<I, ep,=7.
We define the k' communication phase as
epy=4, 1=0,1,....,n—1, and 0< j <n

if processor P; needs to send a message to processor P; at the k™ phase, otherwise cpi, = —1.

Thus, node contention can be formally defined as
dk, 1< k<, cpjj =71 and cp22:j2:>i17£i2 and j3 = jo # —1,

where ¢1,15 =0,1,....,n — 1 and 0 < 1,72 < n.

A partial permutation pmy is a communication phase that
pm};1 =71 and pm}f =J9, 11,02 =0,1,...,n—1 and 0 < j1,50 <n,

=1 & J1=J2;
pm¢ = —1 if P; does not send a message at this permutation.
Since permutation has the useful property that every processor both sends and receives

at most one message, it does not cause any node contention. In this paper we will use

permutation as our underlying communication scheme.

2.1 Notation and Assumptions

We categorize scheduling algorithms into several categories:

1. Uniformity of message—Uniform messages mean all messages are of equal size. In this
paper we assume that messages are of non-uniform size. In case the messages are of
the same size, the algorithms developed in [22] have considerably smaller scheduling

overhead.



2. Density of communication matriz—1If the communication matrix is nearly dense, then
all processors send data to all other processors. If the communication matrix is sparse,
then every processor sends to only a subset of processors. Our algorithms assume that

the latter is true. There are a number of algorithms for the totally dense cases [2, 12].

3. Static or runtime scheduling—Communication scheduling must be performed statically

or dynamically.

For the reasons mentioned in the previous section, the algorithms described in this pa-
per do not take link contention into account. We also make the following assumptions for

developing our algorithms and their complexity analysis.

1. Every permutation can be completed in (7 + M) time, where 7 is the communica-
tion latency, M is the maximum size of any message sent in this permutation, and ¢

represents the inverse of data transmission rate.

2. In case communication is sparse, all nodes send and receive an approximately equal
number of messages. Let density d represent the number of messages sent or received

by every processor.

3. We assume that each processor can send only one message and receive only one message
at a time. If the density is d, then at least d permutations are required to send all

messages.

3 CM-5 System Overview

This section gives a brief overview of the CM-5 system that we used to conduct our exper-
iments. The CM-5 is available in configuration of 32 to 1024 processing nodes, each node
being a SPARC microprocessor with 32M bytes of memory and optional vector units. The
node operates at 33 MHz and is rated at 22 Mips and 5 MFlops. When equipped with vector
units, each node of the machine is rated at 128 Mips (peak) and 128 MFlops (peak).

The CM-5 internal networks include two components, data network and control network.
The CM-5 has a separate diagnostics network to detect and isolate errors throughout the
system.

The data network provides high-performance data communications among all system
components. The network has a peak bandwidth of 5M bytes/sec for node-to-node commu-
nication. However, if the destination is within the same cluster of 4 or 16, it can give a peak
bandwidth of 20M bytes/sec and 10M bytes/sec, respectively [5]. Figure 3 shows the data
network with 16 nodes.

The control network handles operations that require the cooperation of many or all
processors. It accelerates cooperative operations such as broadcast and integer reduction,

and system management operations such as error reporting.
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Figure 3: CM-5 data network with 16 nodes.

3.1 Node Contention on CM-5

Table 2 shows the impact of node contention on a 32-node CM-5. In these experiments,
processor Fs; is the receiving node, and processors P;, 0 < ¢ < d are sending nodes. In every
phase, each sending node sends an equal amount of data (256 bytes or 4K bytes) to Ps
simultaneously. We record the time (in milliseconds) taken for Ps; to complete receiving all
incoming data, and the maximum, minimum, and average time taken among sending nodes
to complete sending data.

The results reveal that when the number of messages sent to the same node (at the same
time) increases, the average time each sending node needs to complete sending its message
increases (the same holds true for the maximum time and minimum' time among the sending
processors). Thus it is inefficient to allow more than one node to send a message to the same
processor simultaneously.

These observations suggest that node contention will result in overall performance degra-
dation. Avoiding node contention should therefore be considered as an important factor

when we conduct communication scheduling.

3.2 Cost of Random Permutations

We randomly generated 2 test sets, each containing 5000 random permutations. The sizes of
the message used in each of these permutations are 1K bytes and 256K bytes, respectively.
The communication cost distribution (in terms of average communication cost) is given in
Figures 4 and 5. The results depict that for most cases the communication cost is within
+10% of average cost (the average communication costs for message of size 1K bytes and
256K bytes are 0.543 milliseconds and 62.923 milliseconds, respectively). Thus the perfor-

1One exception to the time increase is that when all 31 nodes send messages to processor Psi, nodes Psg,
Pag, Psp, and Ps; are in the same 4-node cluster, which can provide higher communication bandwidth, so
the minimum time taken in this case is less compared with the 16-node case.



d 256 bytes 4096 bytes

recv send recv send

max | min ave max min ave

0.089 | 0.131 | 0.050 | 0.061 | 0.516 | 0.504 | 0.485 | 0.488
0.125 | 0.150 | 0.070 | 0.081 | 1.083 | 1.048 | 1.023 | 1.038
0.205 | 0.199 | 0.098 | 0.116 | 2.189 | 2.124 | 2.085 | 2.097
0.375 1 0.298 | 0.173 | 0.210 | 4.693 | 4.844 | 4.353 | 4.502
16 | 0.731 | 0.575 | 0.302 | 0.394 | 9.865 | 10.065 | 9.155 | 9.476
31 1.396 | 1.279 | 0.151 | 0.815 | 19.485 | 19.544 | 2.847 | 15.550

O =N

Table 2: The impact of node contention on a CM-5.

dist 1 2 4 8 16 ave
comm | 47.136 | 47.143 | 47.320 | 62.582 | 68.006 || 62.923

* comm: communication cost in milliseconds.

** ave: average communication cost of 5000 randomly generated permutation samples.

Table 3: Communication cost for permutations with message of length 256K bytes within

different cluster sizes.

mance of our algorithms, which use permutation as the underlying communication scheme,
are not significantly affected by a given sequence of permutation instances. The bandwidth
achieved for these permutations is approximately 4M bytes/sec, which is close to the peak
bandwidth of 5M bytes per second provided by the underlying hardware for long distance
messages.

There are some permutations for which the performance is expected to be better than
random permutations. One such class of permutations is when processor P; exchanges mes-
sages with processor Pigaist?, 0 <4 < n and dist = 1,2,4,8,16. Each permutation represents
a communication pattern where processors communicate with processors within the clusters
of 2, 4, 8, 16, and 32, respectively. The results for these permutations are given in Table 3.
These results show that these specialized permutations, in which every processor sends a
message to another processor within the same group of 8 nodes, take approximately 25%
less time over random permutations. However, our algorithms do not exploit these special

cases.

2q represents bitwise exclusive OR operator.
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Figure 4: Communication cost distribution for 5000 permutation samples with message of

length 1K bytes on a 32-node CM-5.
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Figure 5: Communication cost distribution for 5000 permutation samples with message of

length 256K bytes on a 32-node CM-5.

4 Asynchronous Communication (AC)

The most straightforward approach is to use asynchronous communication. The algorithm

is divided into three phases:

1. Each processor first posts requests for expected incoming messages (this operation will

pre-allocate buffers for those messages).
2. Each processor sends all of its outgoing messages to other processors.

3. Each processor checks and confirms incoming messages (some of which may already

have arrived at their receiving buffer(s)) from other processors.



Asynchronous_Send_Receive()

For all processors P;, 0 < ¢ < n —1, in parallel do
allocate buffers and post requests for incoming messages;
send out all outgoing messages to other processors;

check and confirm incoming messages from other processors.

Figure 6: Asynchronous Communication Algorithm.

During the send-receive process, the sending processor need not wait for a completion
signal from the receiving processor, but can keep sending outgoing messages until they are
all done. This naive approach is expected to perform well when density d is small. The
asynchronous algorithm is given in Figure 6.

The worst case time complexity of this algorithm is difficult to analyze, as it will depend
on the congestion and contention on the nodes and network. Also, each processor may
have only limited space in message buffers. In such cases, when the system buffer space
is fully occupied by unconfirmed messages, further messages will be blocked at the sender
processors’ side. The overflow may block processors from doing further processing (including
the receiving of messages) because processors are waiting for other processors to consume
and empty their buffers in order to receive new incoming messages. This situation may never
be resolved and a deadlock may occur among processors.

In case the sources of incoming messages are not known in advance or there is no buffer
space available for pre-allocation, we may replace the post-send-confirm operation by the
send-detect-receive operation, where we use busy waiting to detect incoming messages and
copy them into the application buffer. Buffer copying is very costly and should generally be

avoided. The experimental results described in this paper use the approach given in Figure 6.

5 Methods Avoiding Node Contention

Our scheduling algorithms assume the availability of a global communication matrix COM.
A concatenation operation [5] can be performed on the sending vector (of length n) of each
processor to derive this matrix at runtime. For an n-node CM-5, performing a concatenate
operation with each node contributing a message of size n is efficient and can be completed
in O(n? + 7logn) amount of time [5]. Concatenate operation has efficient implementation
on other architectures like hypercubes and meshes [2, 21]. In case the communication matrix
COM is sparse in nature, each processor will send and receive d messages in a system with
n processors (d < n), we can reduce the total time to O(dn + 7logn) by using a sparse
representation for the sending vector. In such a case, the communication matrix would be
an n X d matrix such that each row is a sparse representation of the corresponding sending

vector.

10



Linear_Permutation()
For all processors P;, 0 < ¢ < n —1, in parallel do
fork =1to n-1do
j=1Dk;
if COM(i,7) > 0 then P; sends a message to P;;
if COM(j,2) > 0 then P; receives a message from P;;
endfor

Figure 7: Linear Permutation Algorithm.

5.1 Linear Permutation (LP)

In this algorithm (Figure 7), each processor P; sends a message to processor Pigr) and
receives a message from Pgp), where 0 < k < n. When COM(¢,j) = 0, processor F; will
not send a message to processor P;, but will receive a message from P; it COM(y,¢) > 0. The
entire communication uses pairwise exchange (j =i Gk < i = j & k). A simple variation of
LP is that each processor P; sends a message to processor Fiyr) mod » and receives a message
from Pi_g) mod n, Wwhere 0 < k& < n. The experimental results show that, for the CM-5, the
former approach performs slightly better.

This algorithm assumes that the number of processors, n, is a power of 2, and the

algorithm can easily be extended when n is not a power of 2.

5.2 Random Scheduling Using Heaps (RS_NH)

During the communication scheduling, the worst case time complexity to access each entry of
C'OM is O(n?). In order to reduce this overhead, the first step of this algorithm is to compress
the COM into an n x d matrix CCOM by a simple compressing procedure (Appendix A).
This procedure will improve the worst case time to access each active element (of CCOM)
to O(dn).

If we perform this compression statically, the time complexity is O(n(n + d)) = O(n?).
When performing this operation at runtime, each processor compacts one row, and then all
processors participate in a concatenate operation to combine individual rows into an n x d
matrix. The cost of this parallel schemeis O(n+ (dn+7logn)) = O(dn+ 7logn) (assuming
the concatenate operation can be completed in O(dn + 7logn) time).

The vector prt is used as a pointer whose elements point to the maximum number of
positive columns in each row of CCOM. In order to schedule the communication in such a
way that each processor will try to send out larger messages first, we sort the active entries in
CCOM by message size. A heap (denoted by heapy in row k) is embedded such that the root
entry CCOM (k,0) contains the largest message size among all the entries in row k. Three

heap procedures are needed in the algorithm: Heap_Extract_Maz() returns the location of the

11



RS_NH()
1. Use matrix COM to create an n x d matrix CCOM;

2. In each row k, 0 < k < n, build a heap heap; based on the entries CCOM (k,j)’s

corresponding message size, where 0 < j < d;

3. Generate_Permutations().

Figure 8: Random Scheduling using Heaps (RS_NH) Algorithm.

entry with largest message size within a heap; Heap_Remove() removes the specified entry
from the heap; and Heap_Insert() inserts an entry into the heap. Each of these procedures
can be completed in O(log d) time [11].

The vectors send and receive are used to record the destination of each outgoing message
and the source of each incoming message in one permutation, respectively; send(:) = j
denotes processor P; needs to send a message to processor P;, and receive(j) = ¢ denotes
processor P; will receive a message from processor F;. These two vectors are initialized to
—1 at the beginning of each iteration. We assume that CCOM(i,7) = —1 if no message is
to be sent. After the compressing procedure, the first d columns of each row may contain
active entries. When searching for a available entry along row ¢, the first column j with
CCOM(i,5) = k and receive(k) = —1 will be chosen. We then set send(:) = k and
recetve(k) = ¢. Since the messages are non-uniform, the message sizes in one permutation
may vary in a wide range. If we allow every processor to completely send its message, then
the communication time in each step is upper bounded by the maximum message size in each
step. (Although RS_NH is executed in a loosely synchronous fashion, processors with small
messages may be idle while waiting for processors with large messages to complete.) In order
to eliminate idle time for processors, we introduce several approaches to choose a reasonable
message size in each communication phase such that processors with small messages will
send their messages completely, while processors with large messages will send only part of
their messages.

The RS_NH algorithm is described in Figure 8.

Step 1 (Figure 8) takes O(n?) time to complete sequentially. When used at runtime,
each processor creates one row of CCOM, then all processors participate in a concatenate
operation. The time required for this step is O(dn + 7logn). The time required for Step 2
is O(dn).

Step 1 (Figure 9) takes O(n) time. Step 3 requires a sort operation (we use merge sort
in our experiments, which has a time complexity of O(nlogn)). This sort operation can
be approximated by using a histogram-based approach to reduce the scheduling time. The

time required for communication in Step 4 is O(7 + ¢ME ) time where MF _. is the

12



Generate_Permutations()
For all processors P;, 0 < ¢ < n —1, in parallel do
Repeat

1. Set all entries of vectors send and recetve to —1;

2. ¢ = random(1..n);
fory = 0to n-1do
i=(x+y) mod n; j=0; S=¢;
while (send(i) = -1 AND j < prt(i)) do
k=CCOM(i,l), where | = Heap_FExtract_Max (heap;);
if (receive(k) = -1) then;
send(i) = k; receive(k) = 1;
endif
S=SUCCOM(i,l); Heap_Remove(heap; l); j =7+ 1;
endwhile
For all entries, CCOM(i, k), in S (except the last one), Heap_Insert(heap;, My );
[ My, is CCOM(2,k)’s corresponding message size */
endfor

3. Mipresn = Decide_Size();

4. if (send(i) # -1) then P; sends a message, no bigger than My con, 10 Pyenaiy;

if (receive(i) # -1) then P receives a message from Peceive(i);

5. For each row k which sent a complete message at this iteration, decreases prt(k) by
1; For each row [ which only sent partial message, add the remainder of the message

back to its proper location in heapy;

Until all messages are sent.

Figure 9: Procedure Generate_Permutations().

13
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Figure 10: (Number of heap operations / n) versus (%ln d).

most efficient message size at permutation pmy. (We develop methods to choose the value
of M} .. in the next section.) Step 5 takes O(nlog d) time.

The maximum message size allowed to be sent in one iteration is Mip.esn (each iteration
may have a different value of Mp,csn, which is decided by the function Decide_Size()). Sup-
posing the threshold is chosen so that only (n — k) messages are greater than the threshold,
we set A = %

The algorithm in Figure 9 can be decomposed into two stages. The first stage performs
only the scheduling required for all communication phases. The second stage performs all
necessary communication. For ease of explanation, we have combined these two stages. The
worst case computational complexity of the algorithm is O(C'dn), where C is the number of
permutations generated by this algorithm. This assumes that all of the entries are searched
in every iteration (Step 3 of Figure 8)

However, one would expect that on an average the algorithm should have much better
behavior. The analysis is very difficult as it depends on several parameters (n, d, sizes of
different messages, destinations of different messages). Further, the number of messages
to be sent (and received by every processor) may be different at intermediate stages, even
though this value may be the same for all nodes before the beginning of first stage.

The number of heap operations in Step 2 (Figure 9) was measured for different values of
n and A for randomly generated communication matrices with uniform message sizes. We
have plotted number of heap operations / n against dlALd in Figure 10. In this simulation,
we arbitrarily picked up n(l — A) messages in each permutation (to simulate the (n — k)
messages that are greater than the threshold My, in the permutation) and put them
(entire messages) back in the heap. The results show that the number of heap operations in
Step 2 is approximately O(dT” Ind). Thus, the time taken for this step could be approximated
by O(dT” log® d). This shows that the expected behavior of this algorithm could be much

better then the worst case. In Section 6, we propose several schemes to choose the value \.
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6 Approaches for Evaluating A\

When the message sizes in one permutation are non-uniform, communication time is bounded
by the maximum message size in that permutation and processors with smaller message size
may be idle. A suitable value of A needs to be found to decide the threshold for message size
to be sent in one permutation.

In function Decide_Size(), the first step is to sort all messages in one iteration by their

size. There are several schemes that can be used to decide on an appropriate value of .

6.1 Fixed )\

The most straightforward approach is for A to be fixed throughout the entire scheduling.
This approach requires running the application program several times with different values
of A in order to find the best value. If the algorithm needs to be executed at runtime,
each processor can begin with a different A to schedule the communication. The processor
with the minimum estimated communication time will send the schedule generated to other

processors. This can then be used by all processors to carry out the communication.

6.2 )\ Proportional to d

In this approach, the value A is proportional to the value of d*® at the current stage. For
example, A can be set as 0.8d*, where d* is the average number of active entries in each row

at the current stage. The implementation of this scheme is similar to “Fixed \” approach.

6.3 Incremental Approach

In Figure 11, when value A increases by A\, the message size will increase by AM. This

will affect the communication cost in the following ways:

e Since the maximum message size is increased by AM, the cost of this extra communi-
cation = AM X .

e The additional utilization of bandwidth = (1 — X) x AM x ¢.
e The approximate reduced cost due to decrease in set up cost &= AX x 7.

Thus we should choose X + A\ instead of A if
(1= XAMxe>AMxe—ANXT

— AM XA < AXXT

3We denote d* as the expected average number of active entries in each row of CCOM after one iteration

of scheduling.
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Figure 11: X versus M graph.

A
— )\gAM:Q. (1)

The above analysis assumes that all permutations are completed synchronously. Clearly,
this is not the case in the RS_NH algorithm given in Figure 9, in which some processors may
begin the next permutation while other processors are still executing the current permuta-
tion.

7 Experimental Results

We have implemented our algorithms on a 32-node CM-5. In this section we describe the
different versions of our algorithms tested and different data sets used for their evaluation.

Preliminary simulation results show that for schemes which use fixed value of A, by the
time the average number of messages left on nodes (after some iterations) is close to 1, the
number of entries left in each row are uneven. Further, the degree of unevenness increases
if one chooses a smaller value of A\. This effect is amplified for large values of n. Hence, we

used a two-phase approach for choosing A. In the first phase, we use one of the approaches

d
716
Then, in the second phase (where d* is small), A is reset to 1, i.e., completely send out every

presented in Section 6 until d* is reduced to a small value (we use max{2, <=} in this paper).

message in one permutation.

7.1 Algorithms

In our experiments we used the following algorithms:

1. AC (the Asynchronous Communication algorithm).
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. LP (the Linear Permutation algorithm).

. RS_N. This is essentially the same as the RS_NH algorithm, but the RS_N algorithm

assumes that all the messages are of equal size and does not employ any heap operation.

. RS_NH. The RS_NH algorithm with “Incremental” approach. Let Ay = Ao + £k X %,
where A\g = 0.75 and 0 < k£ < 0.25. We define

AN
Gaink:—-z—AMk,
)\k g@
and A is chosen to be A\, such that
k-1
Z Gain;
1=0

is maximized. The additional complexity of choosing A by using this scheme is O(n)
per iteration.

. RS_NH-+tfixed. The RS_NH algorithm with fixed value of A. We experimented with
%7 %7 %7 %7
mance among different values of A to represent the performance (including number of

the following A values: and 1.0. In each instance we used the best perfor-

permutations, scheduling cost, and communication cost) of this algorithm.

. RS_NH+4 (X = 1). This scheme is equivalent to the RS_ZNH+fixed with A = 1 through-
out the scheduling. We maintained the heap structures during the process, and let the
messages in every permutation be completely sent out (i.e., there are no message split-
ting operations).

. RS_N+sort. This algorithm is the same as RS_N except for the fact that we sort the
active entries in each row of CCOM by message size at the beginning of the scheduling
algorithm. We sort the rows only once, and do not make an effort to maintain the sort
sequences during the scheduling. In contrast, RS_NHs maintain the sort sequences
throughout the scheduling.

All the algorithms are executed in a loosely synchronous fashion. We did not explicitly

use global synchronization to enforce synchronization between communication stages in any

of the algorithms proposed above.

7.2 Data Sets

The data sets for our experiments can be classified into three categories:

1. This test set contains two subgroups, each of which has 50 different communication

matrices with the same value of d. In each matrix, every row and every column have
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approximately d active entries (d is equal to 8 and 16, respectively). The procedure

we used to generate these test sets is described in [27].

The messages in one communication phase are non-uniform, where the size is equal to
COM(t,7) multiplied by msg_unit. The different values of msg_unit used in this test
set are 2% for 4 < k < 13.

This test set (skewed distribution) contains samples with skewed size distribution.
Three information arrays can be used to represent the characteristics of these samples:
dest[5] = {1,2,4,8,17}, dense[5] = {1,2,4,8,16}, and length[5] = {16,8,4,2,1}. The
rows of COM are grouped into five sets. Set k& (1 < k < 5) can be characterized
by dist[k], dense[k], and length[k]. dist[i]] = number of rows in the set i; denseli] =
number of active entries in a row belonging to the set ¢; and length[i] = length of each

message in the set 2.

The motivation of this test set is to observe the case where a few processors have a
small number of large messages, while other processors have a bulk of small messages.
The total amount of data to be sent by every processor is equal. The different values

of msg_unit used for our experiments are 2¢ for 4 < k < 14.

This test set contains communication matrices generated by graph partitioning algo-
rithms [16]; the samples represent fluid dynamics simulations of a part of an airplane
(Figure 12) with different granularities (2800-point and 53961-point). In order to
observe the algorithm’s performance with different message sizes, we multiplied the
matrices in this test set by a variable msg_un:t. The different values of msg_unit used

for our experiments are 2% for 4 < k < 12.

In the test set 3, the number of messages sent (or received) by each node is uneven. For

example, for the 2800-point sample we have the following parameters:

The maximum number of messages sent by any processor = 15.
The minimum number of messages sent by any processor = 3.
The average number of messages sent by any processor = 9.25.
The maximum length of all messages = 36 units.

The minimum length of all messages = 1 unit.

S A

The average length of all messages = 14.2 units.

The corresponding values for the 53961-point sample are 18, 6, 10.81, 276, 1, and 93.21,

respectively.

7.3

Results and Discussion

The scheduling costs of various algorithms do not include the time for the following opera-

tions:
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Figure 12

1. Time to compress COM into CCOM (RS_Ns and RS_NHs, which will take O(n?) time

in the sequential mode and O(dn + 7logn) time in the parallelized version).

2. Time to sort CCOM at the beginning of scheduling for RS_N+sort, which will take
O(ndlog d) time in the sequential mode and O(dn) time in the parallelized version.

3. Time to create heaps in CCOM at the beginning of scheduling (RS_NHs), which will

take O(nd) time in the sequential mode as well as in the parallel version.

The main reasons for not including these timings are that they would be different in the

once during the schedulin

cost.

Clearly, one could add

estimate of the total cost.

: The unstructured grid used for our simulations.

static (sequential) and runtime (parallel) version. Although the time complexity of some of
these operations looks very high, it is worth noting that these operations are executed only
g. So the constant values before of the complexity terms are very

small when compared with the constant before of the complexity terms of the scheduling

these costs to the costs given in this section to get a more accurate
Table 4 shows that the exclusion of most of the above operations
affects the total cost by only a small fraction. The sort portion of RS_N-+sort is expensive;

however, our experimental results (in the later sections) reveal that this method provides no
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d compress heap sort
comp comp comp

4 0.206 | 0.108 | 0.445
8 0.087 | 0.095 | 0.855
16 0.037 | 0.075 | 1.435
24 0.023 | 0.065 | 1.575

Table 4: Compress, heap, and sorting overhead in terms of corresponding scheduling cost
for sequential execution.

improvement over RS_N in terms of the total cost of communication (RS_N has a significantly

lower scheduling cost).

7.3.1 Uniform Distribution

Table 5 and Figure 13 show the results of d = 8 and d = 16. Results show that RS_N
outperforms AC and LP by a big margin. RS_N+sort does not provide improvement over
RS_N. The different variations of RS_NHs have very similar results, all of which provide a
considerable improvement over RS_N. This clearly shows the usefulness of heap structures
and thresholding to reduce the variance of messages in one permutation.

When d = 16, the performance difference between algorithms becomes prominent. Thus,
when the density or message size increases, the RS_NH algorithms are the algorithms of
choice.

Figure 14 shows that maintaining heaps (which are used in RS_NHs) is expensive. The
overhead fraction of RS_N is less than 0.25 for messages of size 16K on a 32-node CM-5.
The overhead of RS_NH remains high when the message size is less than 16K (msg_unit =
27); it becomes negligible for larger messages. This overhead computation is based on the
assumption that the same schedule is used only once. In most applications the same schedule
is utilized many times, hence the fractional cost would be considerably lower (inversely
proportional to the number of times the same schedule is used). In such cases, all our

algorithms are also suitable for runtime scheduling.

7.3.2 Skewed Distribution

In test set 2, the total number of messages sent by every processor is same. This characteristic
makes RS_INH+(X = 1) useless. This is because the heap structure will keep the active entries
in each row in a similar order. This should, in general, make the probability of finding an
entry in each row non-random and result in more permutations and larger communication
cost. Our experimental results support this fact.

The rows with larger messages have a smaller number of messages, and the rows with

the smallest messages have the largest number of messages, which in turn will dominate
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the number of permutations needed. Thus, the splitting of large messages should even
out the message sizes in one permutation without significantly increasing the number of
permutations.

Table 6 and Figure 15 show the results of test set 2. As expected, the RS_INH+(A = 1)
has a similar performance to that of RS_N. The results also show RS_NH and RS_NH+fixed

have clear improvements over other approaches.

7.83.3 Airfoil Mesh

Table 7 and Figure 16 show the results for a 2800-point and 53961-point sample, respectively.
The results for both samples have behavior similar to the first test set, which reveals that
even if the number of messages in each row is non-uniform, our algorithms maintain their
characteristics and performance. The RS_NHs are superior when the msg_unit becomes
large, which in turn means that it is worth the extra effort (of using heap and message
breaking) to reduce the variance of message sizes in each permutation. These results also
show the comparison of fixed A and variable A (incremental approach). The observation
reveals that the two methods have comparable performance. So for static applications (which
can be pre-run to find the best value of A), a fine-tuned fixed value of A may be as good as (or
even better than) the dynamic values of A found during the scheduling. We can potentially
run the algorithms for different values of A in parallel and choose the best one; however, it

is difficult to estimate the actual performance (with varying A) and choose the best value of

A.

7.4 Discussion

It is hard to make generalizations on which algorithms are better, based on the limited
number of experimental results presented above. In general, scheduling costs vary in the

following manner:
S_cost(AC) < S_cost(LP) < S_cost(RS_Ns) < S_cost(RS_NHs) ;
while the communication costs vary in the following fashion:

C _cost(RS_NHs) < C_cost(RS_Ns) < C _cost(LP) < C_cost(AC) .

Clearly, depending on the structure of the communication matrix and the number of
times a particular schedule is used, one method may be superior to another. However, if the

number of times the same schedule is utilized is large, RS_NH seems to be a better approach.

& Conclusions

In this paper we have developed several algorithms for scheduling all-to-many personalized
communication with non-uniform message sizes. The performance of the asynchronous com-

munication algorithm (AC) depends on network congestion. The memory requirements of
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this algorithm are large. This algorithm is only suitable for small message sizes. The linear
permutation algorithm (LP) is very straightforward and introduces little computation over-
head, but it needs to go through the same number of communication phases (n — 1) even if
the density d is small.

The RS_NH algorithms are found to be very useful in handling non-uniform messages.
The use of a heap structure to maintain the sort sequences so that the bigger messages will
be scheduled earlier, and the decomposition of large messages into smaller messages, give a
significant reduction of the total time required for communication.

We have proposed three approaches to decide the value A (the number of complete mes-
sages sent out in every phase of communication). The first two require pre-running for
several fixed values of A, while the third chooses the value on-the-fly. Experimental results
have shown that our algorithms perform well with artificially generated samples as well as
with samples from an actual application.

Another advantage of our algorithms as compared to the other algorithms is that once
the schedule is completed, communication can potentially be overlapped with computation,
i.e., computation on a packet received in the previous phase can be carried out while the
communication of the current phase is being performed. It is also worth noting that due
to compaction, nearly all processors receive data packets (of nearly equal size). If any
computation needs to be performed using incoming data and it is proportional to the size of
the packet, it should lead to good load balance.

There is a large amount of literature on how to partition a task graph so as to minimize
communication cost. A few methods that are iterative in nature can be found in [16]. After
a particular threshold any improvement in partitioning is expensive. For problems requiring
runtime partitioning, it is critical that this partitioning be completed extremely fast. For
such problems, the gains provided by effective communication scheduling may far outweigh
the gains obtained by spending the same amount of time on achieving better partitioning.

For different applications, different kinds of communication patterns are used. It is un-
clear which methods will be better than others for specific classes of communication patterns.
However, we do believe that our methods can significantly reduce the total time of commu-
nication. Choosing the best method among the variety of algorithms presented in this paper
will depend on the underlying architecture, the type of communication patterns, and on
whether the scheduling has to be performed statically or at runtime.

One of the issues we have not addressed in this paper is link contention. On the CM-5, link
contention does not significantly affect the communication cost of the schedules generated
by our algorithms. We are currently developing algorithms for architectures on which link

contention 1s an important issue.
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Appendix A: Compressing Procedure

for 1=0 to n—1 do
k=0
for 7=0to n—1 do
if COM(i,5)=1 then
CCOM(i, k) = j;
k=k+1;
endif
endfor
pri(i) =k —1;
Randomly swap CCOM (¢,0..prt(7));
endfor
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d | msg_unit AC LP RS_N RS_N RS.NH | RS_.NH
+sort +(A=1)
comm”™
16 3.820 7.943 3.380 4.066 3.839 3.777
64 8.124 11.463 5.455 6.370 5.879 5.901
256 24.873 26.771 15.101 16.840 15.176 15.291
8 1024 89.027 83.063 57.825 59.436 53.744 54.560
4096 | 301.681 282.814 | 222.201 225.684 | 207.420 209.661
8192 | 830.939 | 967.832 | 592.921 | 656.096 | 467.793 | 519.234
COHlpT 0 0.091 3.211 3.245 16.872 10.1
perrni 0 31.0 10.1 10.22 11.2 10.14
comm
16 8.178 9.514 6.408 7.653 7.050 7.126
64 17.780 16.112 10.494 12.152 10.959 11.212
256 52.173 43.161 29.385 32.330 28.607 29.121
16 1024 176.308 144.127 112.133 114.414 101.869 103.660
4096 | 819.440 | 971.286 | 588.601 | 601.386 | 396.460 | 400.644
8192 | 2916.056 | 2851.732 | 1609.473 | 1633.950 | 1309.655 | 1310.013
comp 0 0.091 6.57 6.62 45.403 31.502
perm 0 31.0 18.56 18.52 19.8 18.8

*: Communication cost, in milliseconds.

et —i-

: Scheduling cost, in milliseconds.

: Number of communication phases needed.

Table 5: Experimental results for non-uniform message sizes on a 32-node CM-5.

minimum message size in each level is msg_unit bytes, and the maximum size is 32 X msg_unat

bytes.
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Figure 13: Communication cost for non-uniform message sizes on a 32-node CM-5.
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Figure 14: Computation overhead of RS_NH algorithm in terms of communication cost.
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msg_unit AC LP RS_N RSN | RS.NH | RS.NH | RS_NH

+sort +(A=1) | +fixed

comm
16 5.893 9.049 6.673 6.711 10.111 6.722 6.485
64 8.231 10.066 7.490 7.552 | 11.052 7.494 7.398

256 | 15.841 | 15.938 | 12911 12.928 | 15.705 12.876 | 12.279
1024 | 44.761 | 40.159 | 36.977 36.741 | 36.655 36.513 | 32.722
4096 | 154.052 | 134.647 | 132.543 | 131.628 | 119.861 130.678 | 114.365

16384 | 813.610 | 904.941 | 949.817 | 1003.330 | 707.041 967.669 | 598.615
comp 0 0.097 7.678 8.84 43.41 21.77 | 34.451
perm 0 31.0 20.1 20.2 31.7 20.4 21.45

Table 6: Experimental results for skewed distribution pattern on a 32-node CM-5. The
minimum message size in each level is msg_unit bytes, and the maximum size is 16 X msg_unat

bytes.

1000
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Figure 15: Communication cost for skewed distribution.
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points | msg_unit AC LP RS_N RSN | RS.NH | RS.NH | RS.NH

+sort +(A=1) | +fixed

comm
16 5.340 8.959 5.595 5.632 7.272 5.624 5.409
32 6.710 9.762 6.258 6.264 7.886 6.264 6.122

64 9.674 | 11.991 7.879 7.837 9.284 7.717 7.606
128 | 15.323 | 16.861 | 11.478 | 11.359 | 12.226 10.805 | 10.875
2800 256 | 25.870 | 26.322 | 19.502 | 18.986 | 18.607 17.690 | 17.274

512 | 47.209 | 44.454 | 35.147 | 34.045 | 31.365 31.247 | 30.076
1024 | 86.679 | 79.324 | 65.342 | 63.657 | 57.582 57.224 | 55.537
2048 | 165.237 | 146.995 | 125.460 | 119.634 | 108.972 110.711 | 104.951
4096 | 297.637 | 283.917 | 232.721 | 225.080 | 208.906 | 209.687 | 197.226

comp 0 0.097 5.052 5.03 29.38 14.523 | 22.137
perm 0 31.0 15.15 15.2 19.65 15.45 15.55
comm

16 | 16.103 | 17.941 | 12.907 | 12.718 | 14.920 11.700 | 12.253
32| 26.826 | 27.349 | 20.965 | 20.619 | 21.536 18.532 | 18.950
64 | 48.367 | 46.552 | 37.662 | 36.642 | 35.513 32.599 | 32.771
53961 128 | 87.700 | 80.769 | 69.874 | 67.731 | 63.126 60.816 | 60.148

256 | 163.598 | 149.746 | 135.387 | 129.456 | 118.149 115.609 | 113.558

512 | 300.644 | 280.240 | 256.659 | 250.574 | 228.418 | 225.190 | 219.322
comp 0 0.097 6.059 6.024 | 40.231 19.245 | 28.396
perm 0 31.0 18.05 18.15 26.4 18.15 20.05

Table 7: Experimental Results for airfoil mesh simulations on a 32-node CM5. The minimum
message size in each level is msg_unit bytes, and the maximum size is 36 (for grid of size

2800) and 276 (for grid of size 53961) xmsg_unit bytes.
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Figure 16: Communication cost for airfoil mesh simulation on a 32-node CM-5.
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