Syracuse University

SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and College of Engineering and Computer Science
Projects

1994

Random Data Accesses on a Coarse-grained Parallel Machine Il.
One-to-many and Many-to-one Mappings

Ravi V. Shankar
Syracuse University, School of Computer and Information Science, rshankar@top.cis.syr.edu

Sanjay Ranka
Syracuse University, School of Computer and Information Science, ranka@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

b Part of the Computer Sciences Commons

Recommended Citation

Shankar, Ravi V. and Ranka, Sanjay, "Random Data Accesses on a Coarse-grained Parallel Machine II. One-
to-many and Many-to-one Mappings" (1994). College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects. 37.

https://surface.syr.edu/lcsmith_other/37

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Flcsmith_other%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/37?utm_source=surface.syr.edu%2Flcsmith_other%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Random Data Accesses on a
Coarse-grained Parallel Machine
II. One-to-many and Many-to-one
Mappings

Sanjay Ranka
Ravi Shankar

CRPC-TRY94531-S
October 1994

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Random Data Accesses on a Coarse-grained Parallel Machine

II. One-to-many and Many-to-one Mappings

Ravi V. Shankar Sanjay Ranka
School of Computer and Information Science
Syracuse University, Syracuse, NY 13244-4100

e-mail: rshankar, ranka@top.cis.syr.edu

October 1994

Abstract

This paper describes deterministic communication-efficient algorithms for performing random
data accesses with hot spots on a coarse-grained parallel machine. The general random access
read/write operations with hot spots can be completed in Cun/p (+ lower order terms) time and
is optimal and scalable provided n > O(p®+p?7/p) (n is the number of elements distributed across
p processors, T is the start-up overhead and 1/u is the data transfer rate). C' is a small constant
between 3 and 4 for the random access write operation, slightly higher for the random access
read operation. Monotonic random access reads/writes can be completed with smaller constants
and are optimal for smaller n as well. The random access read/write operations provide the
framework for the communication-efficient simulation of CREW and CRCW PRAMs on a coarse-
grained distributed memory parallel machine. A companion paper [24] deals with the problem of

performing dynamic permutations.

1 Introduction

Let n be the number of elements distributed across p processors. In a Random Access Read (RAR),
each of the n elements may need to read data from another element [22]. The data is available in
array D. Each element has the index of the element from which data is needed in array P. That is,

element 7 needs D(P(7)). Figure 1 shows an example of a RAR.

Element index 0 1 2 3 4 5 6 7
Pointer P 7 . 0 7 1 6 3 0
After RAR D(7) - D(0) D(7) D(1) D(6) D(3) D(O)

Figure 1: RAR example

In a Random Access Write (RAW) each of the n elements may need to write data to another
element [22]. The data is available in array D. Each element has, in array P, the index of the
element to which it has to send its data. Unlike the RAR case, it is possible to have collisions
during a RAW. This happens when two or more data elements are written to the same destination.
When collisions are bound to occur, one of the following things can be done: (i) if the colliding data
values are the same, use that value; otherwise, report an error, or (ii) choose one of the colliding
values using a pre-defined rule, or (iii) combine the colliding data values using a pre-defined binary
associative operator. Figure 2 shows an example of a RAW where collisions are resolved using a
binary associative operator (shown as a + in the figure).

A forall statement of the following type in High Performance Fortran (HPF) [12] results in a
RAR:

forall (i=0:n-1) A(i) = D(P(i))
while the loop shown below when executed in parallel results in a RAW:

do (i=0:n-1)
A(P(i)) = A(P(1)) + D(i)

In a RAW, the n elements writing data can be viewed as n threads of control in the p processors.

These n threads write data to n elements of shared memory. In the RAW, the n threads and the

Element index 0 1 2 3 4 5 6 7
Pointer P 7 . 0 7 1 6 3 0
After RAW D(2)+D(7) D(4) - D(6) - - D(5) D(0)+D(3)

Figure 2: RAW example

shared memory of size n are equally divided among the p processors. Similarly, in the RAR, the
n threads reading data and the n elements of shared memory from which data is read are equally
divided among the p processors.

Random access reads/writes represent the basic operations that perform random data accesses
where the access patterns could be one-to-many or many-to-one mappings. We use the term hot
spots to refer to collisions that occur during a RAW or multiple reads from the same element during
the RAR. Parallelization of many applications require the distribution of the data structures over all
processors (either due to the lack of sufficient memory on one node or due to limited scalability when
keeping it replicated). Each processor requires a subset of data structures in order to perform its
computations locally. Some parts of the data structure are required by only one processor, while other
parts are required by several processors (and are hot spots). A simple example of this is the generation
of a locally essential tree on every processor, as is done for the parallelization of the Barnes-Hut-based
n-body implementations [28, 3, 26]. The inverse of the above scenario is one in which data items are
written into an accumulation array. Different entries within the accumulation array receive different
numbers of writes. Often hot spots tend to dictate the time taken to perform the communication,
and their distribution is available only at run-time. Such hot spots are inherent features of many
algorithms such as those for histogramming, geometric hashing [21, 25], and database searching.

Our algorithms alleviate the hot spots problem by dynamically stretching and shrinking them as
necessary. The algorithms are communication-efflicient and the number of data movements between
processors is kept very low. This was motivated by the fact that the cost of unit communication is

usually much higher than the cost of unit computation, as evident from existing machines.

2 Modeling a Coarse-grained Parallel Machine

We model a coarse-grained parallel machine as follows. A coarse-grained machine consists of several
processors connected by an interconnection network. Rather than making specific assumptions about
the underlying network, we assume a two-level model of computation. The two-level model assumes
a fixed cost for an off-processor access independent of the distance between the communicating
processors. A unit computation local to a processor has a cost of §. Communication between
processors has a start-up overhead of 7, while the data transfer rate is 1/u. For our complexity
analysis we assume that 7 and p are constant, independent of the link congestion and distance
between two nodes. With new techniques such as wormhole routing and randomized routing [15, 14,
8, 17], the distance between communicating processors seems to be less of a determining factor on
the amount of time needed to complete the communication. Further, the effect of link contention
(due to several messages traversing common links along their routes) is limited due to presence of
virtual channels and the fact that link bandwidths are much larger than node interface bandwidths.
This permits us to use the two-level model and view the underlying interconnection network as a

virtual crossbar network connecting the processors. The logP [7] model and the postal model [2] are

theoretical models based on the above philosophy, for coarse-grained machines.

¢ Sending a Message
Assuming no node contention, the time taken to send a message from one processor to another

is modeled as 7 + pum, where m is the size of the message.

¢ Global Combine and Prefix Scans
Assume that each processor contains a vector V;[0 - - - % —1]. Let p be the number of processors.
The global combine operation computes an element-wise sum of the local list in each processor.

The resultant vector R[0 - - - 1] is stored in all the processors.

p—1
R[j] = _Vily)
=0
The global vector prefix-scan performs an element-wise prefix-scan of the local list in each

processor. Assuming that 4 is the scan operator, the resultant vector R,[0 - - - %— 1] in processor

q (0 < ¢ < p)is given by:
g—1
Ryl5] =" Vilj]
=0

We assume that these operations can be completed in 2;1% time with a start-up overhead of

27log p.

e Complete Exchange
The complete exchange primitive performs all-to-all personalized communication with equal
sized messages. It ¢ is total length of all the messages sent out and received at every processor,

complete exchange can be performed in time pr + pt.

¢ Transportation
The transportation primitive performs many-to-many personalized communication with pos-
sibly high variance in message sizes. If the total length of the messages being sent out or
received at any processor is upper bounded by ¢, the time taken for the communication is 2ut
(+ lower order terms) when ¢ > O(p* + pr/p). If the outgoing and incoming traffic bounds
were r and ¢ instead, the communication takes time 2u(r + ¢) (+ lower order terms) when
either r > O(p? + pr/u) or ¢ > O(p? + pr/u). These asymptotic results are based on a worst

case analysis. A probabilistic analysis brings the O(p?) term in the traffic requirement down

to O(pv/pTp) 23],

Although our algorithms are analyzed under the assumptions of a virtual crossbar, most of them
are architecture independent and can be efficiently implemented on meshes and hypercubes. For
example, complete exchange is a well-studied problem for which several algorithms are available in

the literature using hypercubes [5] (time requirements proportional to traffic) and meshes [9] (time

P

P P Example (a) P, 3
i|0]112|3|4]|5 7 8191]10|11|12|13|14|15 16| 17| 18| 19/ 20| 21| 22| 23 24| 25| 26| 27| 28| 29| 30| 31
Pl4|5(5|1|5|5|0]|5 8115/8|9|10/13|13| 8 16| 20| 21| 21| 20| 16| 22| 17 291 29| 27| 28| 31| 26| 24| 29

P

P R Example (b) P, 3

i|0]1/2|3|4|5]|6|7 8 910/ 11|12| 13| 14|15 16| 17| 18| 19| 20| 21| 22| 23 24|25| 26| 27| 28| 29| 30| 31
P|4|5|25| 9|25|16| 22|15 1|18/ 8|4|30{18|31| 9 16/ 25/ 31| 13| 0| 6| 22| 14 31 211713 3 26(14|19

oU

P Example (c) P Ry

i|0|1]2|3|4|5]|6]|7 81910|11|12| 13| 14| 15 16| 17| 18| 19| 20| 21| 22| 23 24| 25| 26| 27| 28| 29| 30| 31
P| 4| 5|25| 9|15|15|12| 15 128/ 2|4/|30/28|31| 6 16|25/ 31| 13| 0| 6| 22|14 21 22| 17] 13| 31| 16| 23| 19

Communication matrices for examples (a), (b) and (c)

AR PR RR PR RR PR
P8 8 Pl2]2]2]2|8 P12 |5 18
RLI8 | |e Rl2]2]2]2]8 RIAL | [4e
P, 8 |8 Rl2]2]2 2|8 Pl2]2] 228
P, 8|8 Pl2]2]2 2|8 Pl | 1]6 1/8

8 8 88 8 8 8 8 8 88 8

Figure 3: RAW with Limited Hot Spots

requirements based on the cross-section bandwidth). The global combine and prefix scans can be
completed on a hypercube in the time specified above. The presence of specialized hardware networks

like the control network on the CM-5 can speed up the operation considerably for small vectors [6].

3 RAW with Limited Hot Spots

Special cases of the hot spots problem arise when the hot spots are distributed uniformly across the
processors. This is illustrated through three examples in figure 3. In example (a) the hot spots could
be resolved through simple local processing and no communication. The communication pattern
underlying example (b) is a complete exchange. The time taken for this case is pr 4+ un/p. Example
(c) is characterized by an upper bound on the number of elements received or sent out by any
processor. As shown in the accompanying communication matrix ! , the underlying communication
could involve messages with widely varying sizes. This is a bounded transportation problem, similar
to the communication that underlies a dynamic permutation. It can be performed in 2un/p time for
n > O(p® + p*r/p) (see [24] for details).

'n all the communication matrices that appear in this paper, the row and column numbers give the indices of the
sending and receiving processors respectively. The row sums and column sums give the total number of elements sent

out and received at a processor.

R R R 3
ilo|1/2]3|4[5]6| 7| |8]9]1011/1213/14/15 |16]17|1819|20|21|22|23| |24|25)26|27|28| 29|30 31
Pl4|5|25| 5|18/18/12)18] |1 |28/ 2|4|30/18/21] 6] | 6]22/31/23/ 0| 6| 2|25 |21]22 17/13|11]16|23|19

RAEPRR
P|3|1]3]1]8
Rl4| |2| 28
R |4 2| 2|8
Pl |26 |8
11 3135

Figure 4: RAW with Arbitrary Hot Spots

4 RAW with Arbitrary Hot Spots

Hot spots, in general, need not be uniformly distributed across the processors. An example is shown
in figure 4. In an extreme case where the sum of all the n elements is needed at a single destination,
the incoming traffic bound at one of the processors is O(n). The algorithm described in this section
splits the communication in the RAW into two stages ? , bringing the traffic bound down to O(n/p).
Processors sending elements during the first stage are referred to as source processors, while those
that receive elements during the second stage are destination processors. Processors that receive data
during the first stage and send data during the second stage are referred to as intermediate processors.
The RAW algorithm that deals with arbitrary hot spots includes two major communication stages

and involves:
e pre-processing at the source processors,

e communication between the source and intermediate processors (which resembles the commu-

nication underlying a dynamic permutation [24]),

e pre-processing at the intermediate processors (which includes prefix scans that resolve some of

the collisions at hot spots),

e communication between the intermediate and destination processors (which resembles the com-

munication underlying a monotonic dynamic permutation [24]), and
e post-processing at the destination processors.

Dividing the threads writing data and the elements in shared memory being written to, equally
among the p processors, results in n/p threads and n/p amount of shared memory per processor.

An important feature of the parallel RAW algorithm presented here is the grouping of elements into

?The two stages in the RAW algorithm are entirely different from the two stages in the algorithms for dynamic

permutations [24] or transportation [23].

buckets (as explained below). The parallel RAW algorithm takes O(kp 4+ n/kp)p + 3un/p time, k
being the number of buckets per processor. The algorithm is optimal with a complexity of 3un/p
when n > O(p® + p*r/u). The requirement n > O(p® + p*7/u) is not overly restrictive, because the
underlying architecture is coarse-grained and p is usually not too large. A sequential RAW algorithm

that works on n elements in a single processor would take O(n) time.

4.1 Pre-processing at the Source Processor

The shared memory at each of the p destination processors is initially viewed as a collection of &
buckets. Pre-processing first needs to be done in order to minimize the amount of communication
between the processors. In every processor, an array of size kp is created to record the number of
threads writing to each bucket. This is done by examining the n/p destination indices associated
with the n/p threads local to each processor. The local count is followed by a global vector sum-
combine, which results in an identical vector in every processor (figure 5). This vector gives the total
number of threads, from all the processors, writing to each bucket. These kp entries give exactly the
contention at each bucket. This predetermined contention is used to stretch (or shrink) buckets in
order to balance the communication to follow. The new extent of each bucket is easily obtained by
performing a local sequential prefix-sum-scan. Since threads from every processor could potentially
write to a newly stretched bucket, an additional step is used to allocate different portions of the
bucket to threads from different processors. This step basically repeats the global operation done
earlier with the local bucket hits array, but performs a global vector prefix-sum-scan instead of a
reduce. The prefix scan is exclusive, and as a result each processor knows exactly which portions of
the kp buckets it will write to. These are the intermediate locations to which data elements are to
be sent.

When the actual communication is performed, all data elements intended for the same destination
processor should be sent together as a single message. This message coalescing helps to minimize
communication overhead. Message coalescing is preceded by a sequential reshuffling of the data local
to each processor, if the element size is small. If the element size is large, local reshuffling can be

avoided through the use of a set of pointers to describe each message [24].

4.2 Communication Between Source and Intermediate Processors

The communication between the source and intermediate processors, as determined by the pre-
processing stage, is a bounded transportation problem, similar to the communication that underlies
a dynamic permutation. Figure 6 shows the communication in the first stage for the example intro-
duced in figure 4. The initial assignment of buckets to the destination processors and the extent of
the buckets after stretching are also shown. The numbers below each bucket gives the new length
of that bucket. Each processor has no more than n/p data elements to send out in the form of p or
less messages, and each receiving processor gets no more than n/p data elements due to the bucket

stretching. This communication can be performed in 2un/p time when n > O(p?® + p7/u).

L4444 1 0 0-3
AR RAnN |4 410
R 111 11-11
1212 2]] 2 112, 1213
AR ANNAREd 1 14] 14-20
| 6] 6/]6]]6 121 21-26
— 121 2]|2]]2 127 27-28
BLOI| 2] 2|9 31| 3|| 3|3 29 29-31
B|3||2|]| 2|0 5 b p P | 2o
nininin hoa RR 2/ RRRA
Bl O[O0 O 1] After sum-combine PRPP New extent of
% 1 0 0 1 R each bucket
B3| 1|03
B Ol t/]2/]3 I
I) oo 2/|4 01 || 23
gl of[2/[1]]0 o357 46 || 78 || 910
RORA\R R ofjojlollo 111
Cfontributions 0 1 1 1 12-12 13-13
Ol Processors 1
to epach bucket | O[3 | 4[4 — - [1416] 1717 18-20
10| 0]|1]]3 21-21 | | 22-23 | | 24-26
o[1|12 27-27 28-28
| 0] 0f[2]]3] 29-30 | | 31-31
R R K R R R R R
After prefix-sum-scan Portions of buckets

each processor writesto

Figure 5: Pre-processing at the Source Processor

| | | |
012 3. 4567 8 9 10 11'12 13 14 15 16 17 18 19120 21 22 23 24 25 26 27:28 29 30 31

B, B, B, B, B4 Bs By B,
RAR PR
P|3 3 118
R|3 1 2 2|8
Rl 2| 2 2| 2|8
Pl |2 3 3s
8 88 8

| | | | | | |
012 3 4567 8 9 10/11'12 13,14 15 16 17 18 19 20121 22 23 24 25 26127 28/29 30 31

s | 8] [me o) | el [e
! 7 12 6 23

Figure 6: Communication between Source and Intermediate Processors

B, B, B B, . B,

: P :
i-1 i — = i+1
precedin full succeedin
partial buck buckets partial bucket
B, B, B B, B, arebucket numbers
R ,Fi’ , Pt are processor numbers
|
‘ is a processor ' isabucket
oundary ! boundary

Figure 7: Ordering of Buckets in an Intermediate Processor

4.3 Processing at the Intermediate Processors

The maximum number of data elements received at each intermediate processor is n/p. These
elements belong to a set of consecutive buckets. The elements that contribute to a single bucket
are, in general, not contiguous unless a reshuffling is performed. The reshuffling would take under
kp+ n/p time and would involve two passes: the first through a maximum of kp buckets to find out
the number of elements contributing to each bucket, and the second through the n/p elements, to
move them to the right position. This does not alter the algorithm’s asymptotic time complexity,
but in practice could get expensive especially if the element size is large. If reshuffling is done, the
buckets in a processor will be explicitly ordered as shown in figure 7.

If reshuffling is not done, the ordering shown in figure 7 is not explicit. A sequential pass through
the n/p or less elements in each processor identifies the bucket that each element has to go to. The
buckets that are contained entirely in a processor are called full buckets, while those that stretch
across processor boundaries are called partial buckets. A processor cannot have more than two partial
buckets.

4.3.1 Processing of Full Buckets

Let b be the number of elements that have contributed to a bucket, that is, the number of threads
writing to the bucket. This bucket is classified as being sparseif b < n/kp > and as denseif b > n/kp.
Sparse buckets require storage of size b, and dense buckets require n/kp. The latter follows from
the fact that when more than n/kp elements contribute to a bucket of size n/kp, there must be
collisions and these collisions could be resolved using the given RAW collision resolving operator.
The processing of full buckets involves performing this collision resolution. In the intermediate

processors shown in the example in figure 8, By, By, Bs, Bg and By are full buckets that are sparse.

?Sparse buckets could have alternately been defined as buckets for which b < a constant times »n/kp

4.3.2 Processing of Partial Buckets

Of the buckets in each processor, only the first and last buckets could be partial. If they exist, they are
called the preceding partial bucket and the succeeding partial bucket, respectively. Decisions made as
to whether partial buckets are sparse or dense will be incomplete with just local information. For this
reason, partial buckets are always stored using the dense representation. Identifying the preceding
and succeeding partial buckets in each processor, if this information is not already available, takes
2log kp time using binary search on the kp sized array that holds the new extent of each bucket.
Once identified, processing is done in order to combine information from parts of buckets spread
across processors. This is done using a global segmented-sum-scan with vectors of size n/kp. Each
segment represents a stretched bucket. The only problems that arise are at processors that have
a succeeding and a preceding partial bucket (such as intermediate processors P; and P in the
example in figure 8), since this implies that such a processor should be part of two segments. This
problem is taken care of by temporarily ignoring the preceding partial buckets in such processors,
and completing the segmented scan. The results of the scan are augmented by having each processor
with ignored preceding partial buckets send its contents to the processor where that bucket started.
This is done by simple one-to-one communications with no node contention using vectors of size
n/kp. The segmented-scan and the multiple one-to-one communications take O(logp)t + O(n/kp)p

time combined and the constants involved are very small.

4.4 Communication Between Intermediate and Destination Processors

The communication between the intermediate and destination processors is again a bounded trans-
portation problem, similar to the communication that underlies a monotonic dynamic permutation
[24]. Figure 8 shows the second stage’s communication for the example introduced in figure 4. Con-
sider a bucket Bjp that is spread across many processors. A processor that contains By as a preceding
partial bucket does not send out any elements of By. A processor that contains Bj as a succeeding
partial bucket sends out all the elements of By. This amounts to [n/kp] elements, since partial buck-
ets are always stored using the dense representation. Due to this, the upper bound on the number of
elements sent out of any intermediate processor is [n/p| 4 [n/kp]. The upper bound on the number
of elements received at any destination processor is [n/p] since each of the k buckets at a destination
receives no more than n/kp elements. This communication can be completed in p(n/p+ n/kp) time
[24]. The algorithm for performing the communication is very similar to the algorithm presented in

figure 11 later in this paper.

4.5 Time taken by the RAW Algorithm

e The time taken for pre-processing at the source processor is O(n/p+kp)é+ O(log p)T+O(kp)u
since it involves sequential passes through arrays of size n/p and kp, and a global prefix-scan

and a global combine with an array of size kp.

| | | | | | |
01 2 34567 8 9 10!/11'12 1314 15 16 17 18 19 20'21 22 23 24 25 26127 28'29 30 31

B, | B, | | B By | B | . Bs] | B B,
T T T T T T T
' [4] X 12 0 4 X ' [4] X o2 3
RRPRBP
R
ﬁ 3
R
P 5
3

01 2 33 4 5 6 7 8 9 10 11312 13 14 15 16 17 18 19320 21 22 23 24 25 26 27328 29 30 31
| ®& o 8 || 8B . B || B | B || B | 8

(4]
T T

Figure 8: Communication between Intermediate and Destination Processors

e The communication between the source and intermediate processors takes 2p(r + p(n/p* + p))

time, that is, 2un/p time when n > O(p® + p*7/u).

e Processing of full buckets at the intermediate processors takes O(n/p + kp)é time, while the
processing of partial buckets takes an additional O(logp)T + O(n/kp)p for the prefix-scan with

an array of size n/kp.

e The time taken for communication between the intermediate and destination processors is

pT + p(n/p + n/kp).

e Rearranging elements at the destination processors needs O(n/p)é time.

Overall, the two-stage RAW algorithm takes O(n/p 4+ n/kp + kp)é + O(p + logp)r + O(n/kp +
kp)p + 3pn/p time. We choose the number of buckets k& per processor to satisfy n/p > n/kp and
n/p > O(kp), that is, 1 < k < p and n > O(kp?). There is a lot of leverage in choosing the value
of k. k being close to 1 reduces the time for the prefix-scan/combine with the array of size kp,
but increases the time for the prefix-scan with the array of size n/kp. k being close to p does the
opposite. An intermediate value of & brings down the time taken by the prefix-scans, leaving 3un/p
(4 lower order terms) as the time taken by the two-stage RAW algorithm. The algorithm imposes a
restriction of n > kp? while the underlying transportation primitive requires n > O(p® + p?7/p) for

optimality.

5 A Hybrid RAW Algorithm

A hybrid algorithm, incorporating features from both the limited hot spots RAW algorithm and the
arbitrary hot spots RAW algorithm, is illustrated through an example in figure 9. First, elements
whose final destination is the source processor itself, are not unnecessarily sent to intermediate
processors and received back. This transforms the communication matrix in figure 4 to the one

showed in figure 9(i). Second, buckets that are sparse are not processed using the two-stage algorithm

10

B| 4
RARR B| 4 PR B P
N I) R S Pl | 1] | 1]2
RI4L 1228 BJ2 Rl 4| | 1|27
Rl 4 2|6 Bl 7 R, 4 2|6
PRL 1216 |8 B4 P, SE
8 3 115 B[2 8 3 4 5
(i) B | 3| (i) (iii)

Figure 9: The Hybrid RAW Algorithm

for the following reason: Sparse buckets, by definition, do not receive more than n/kp elements. Each
destination processor has k buckets initially, and therefore, receives no more than n/p elements for
its sparse buckets. In any RAW, no source processor sends out more than n/p elements. Thus, the
processing of sparse buckets alone is a bounded transportation problem and can be completed in
2un/p time when n > O(p® + p*7/u). Figure 9(ii) shows the number of elements received by each
bucket. In the example, all buckets receiving 4 or less elements are sparse. Figure 9(iii) shows that
the processing of sparse buckets has bounded incoming and outgoing traflic at every processor. The
processing of dense buckets is done through the two-stage algorithm.

The processing of sparse buckets and the first stage in the processing of dense buckets can be
combined by sending out elements from the source processors to both the intermediate and the
destination processors together. In this case, the traffic bound at the source processors is n/p
while that at the receiving (intermediate/destination) processors is 2n/p. Communication can be
completed in p(n/p+ 2n/p) time. The predetermined contention at the sparse buckets can be used
to modify the initial stretching of buckets such that the traffic the bound at the receiving processors
is brought down to n/p. Communication for the first stage of the RAW now takes only 2un/p time
(Optimizations described in [24] can also be applied to the first stage). Thus the RAW algorithm
retains the small constants associated with the communication time even when the sparse buckets
are not processed using the two-stage algorithm.

Another advantage in processing sparse buckets separately is that the incoming and outgoing
traflic bounds for the communication in the second stage is likely to be lower in practical implemen-

tations because of the following reasons:

e The total outgoing traffic at any processor is bounded by n/p minus the traffic associated with

sparse buckets.

e The maximum outgoing traffic is proportional to the number of hot spot buckets handled by
any intermediate processor. If the number of hot spot buckets is small, the outgoing traffic

from any intermediate processor would also be small.

11

e The maximum incoming traffic is proportional to the number of hot spot buckets owned by
any destination processor. If the number of such hot spot buckets is small, the incoming traffic

at any destination processor would also be small.

6 Monotonic RAW

A special case of the RAW primitive arises when the destinations P(¢) for element ¢ are in sorted
order. This type of RAW can be performed in time g7 + un/p (4 lower order terms) on a virtual
crossbar, where ¢ is the maximum number of processors that any processor communicates with
(¢ < p). In a monotonic RAW, collisions can be resolved using a segmented scan initially. After this
scan the number of elements sent out or received by any processor is upper-bounded by [n/p].

The property that the destinations P(7) in all the sending processors are sorted to begin with, is
first used to divide the elements in the sending processors into segments. Each segment contains all
elements ¢ for which P(7) is identical. A segmented scan is performed using the given RAW collision
resolving operator. In each segment, all elements but the last need not participate in the RAW
any more. The elements are now resegmented, with each segment now defined as all the remaining
elements sending data to the same processor. Consider a single sending processor with s elements
(s < [n/p]). These s elements could be divided into as many as ¢ segments. The segments in
this processor (see figure 10) are of three kinds: preceding partial segments that continue from the
previous processor, succeeding partial segments that (start in this processor and) continue into the
next processor, and full segments that start and terminate in this processor. Let ay;, §;, and 7; be
the number of elements in these three kinds of segments respectively (a; + 8; + 7; = s) in sending
processor P;. The steps in the algorithm for a monotonic RAW are outlined in figure 11. The initial
element-wise segmentation takes én/p 4+ Tlog p time. The remainder of the steps can be performed
in 7q + pun/p, since each processor sends out no more than ¢ messages and these ¢ messages contain
a total of n/p elements. Therefore, a monotonic RAW can be performed in 7¢ 4+ pn/p time.

The generalize primitive [22] shown in figure 12, can also be done using an algorithm similar
to the monotonic RAW algorithm. Here, D(7), the data from element ¢ (0 < ¢ < n) has to be
sent to elements P(i — 1) + 1 to P(i) (assume P(—1) = —1). Two companion primitives, the
concentrate and the distribute also work with sorted destinations but, unlike generalize, perform only
one-to-one mappings. These primitives were originally defined in [22] and algorithms for these for a
coarse-grained parallel machine were presented in [24].

On a coarse-grained architecture, the generalize primitive involves each of the sending processors
sending out either [r/p| or [r/p| elements. The total number of elements sent out r < n. Each of the
receiving processors receives no more than [n/p] elements from no more than ¢ processors (¢ < p).
Unlike the monotonic RAW, the generalize primitive does not have any collisions. Therefore, the
element-wise segmented scan that was performed at the start of the monotonic RAW algorithm is

not needed. On the other hand, generalize involves multiple destination elements receiving copies

12

Figure 10: Segments in a processor during the Monotonic RAW algorithm

| | | |
0 0 o 1o o
| | | |
Rz tRa 'R B Re
_ .. P 1 _
il <= | ! e i+1
. preceding full succeeding
partial segment segments partial segment
of Sze a of tota size B of size y

Monotonic RAW

For all processors P;, 0 <1 < p—1, in parallel do

Define a segment to be all the elements sending data to the same destination element. Perform a segmented scan (upward,
inclusive) using the given RAW collision resolving operator. In each segment, all elements but the last, need not participate
in the RAW any more.

Redefine a segment to be all the remaining elements sending data to the same processor.

Determine whether the first and last segments are preceding partial segments and succeeding partial segments respectively, using

right and left shifts by one element

If processor has a succeeding partial segment or a full segment, then set s_bit to 1 and s_data to -y; else set s_bit to 0 and s_data

to o

Perform a segmented +scan (upward, inclusive) using s_bit to indicate the start of scan segments, and s_data as the element to

be scanned. Each processor contributes just one element to the scan.

A right shift by one gives each preceding partial segment the number of elements rprec preceding it in the same segment

(rprec < [n/p]).

Send elements in succeeding partial segment as a single message to the appropriate destination processor. Set traffic_sent to ;.

Send elements from each full segment to appropriate destination processor. Add 3; to traffic_sent.

Wait for a period of time corresponding to the sending of a message of size rprec — traffic_sent.

Send elements in preceding partial segment as a single message to the appropriate destination processor.

D
P
Result

Figure 11: Algorithm for Monotonic RAW

D(0) D(1) D(2) D(3) - - - -
1 4 5 7)) ,
D(0) D(0) D(1) D(1) D(1) D(2) D(3) D(3)

Figure 12: The Generalize Primitive

13

of the same element. For this reason, an element-wise segmented copy-scan is performed at the end
of the generalize algorithm. For this segmented scan, segment ¢ denotes elements P(i — 1) 4+ 1 to
P(%). On the virtual crossbar, the algorithm for generalize takes ¢7 + un/p + logp + én/p, that is,
g7 + pn/p time (assuming g7 is larger than tlog p).

7 Changes Required for RAR

Algorithms for the RAR primitive can be designed based on the RAW algorithms presented in the
previous sections. RAR does not involve collisions between elements. However, in the case of multiple
elements reading from the same source element there could be hot spots. An extreme case is the
broadcast primitive, where each of the n elements needs data from a single source element. The RAR
could involve limited hot spots, in which case inter-processor communication may not be required or
communication can be done using a complete exchange or bounded transportation. With arbitrary
hot spots, a two-stage algorithm can be used. A hybrid algorithm incorporating features from both,
the limited hot spots and the arbitrary hot spots cases, would be useful in practice.

The RAW algorithm involved source processors writing data to destination processors. In a
RAR algorithm it’s again the source processors sending their data to destination processors, but
that occurs only after the destination processors have requested them for the elements needed. The
RAR algorithm hence goes through twice the kind of communication that a RAW goes through.
However the first communication from source to destination processor involves the sending of just
addresses, while the second communication involves the sending of the elements. If the data elements
are of size m and the addresses of size 1, the first communication takes 3(pr + pn/p) time, while the
second takes 3(pr 4+ pmn/p) time. Thus, the RAR algorithm takes 6pr 4+ 3u(m + 1)n/p time when
n > O(p®/m+ p*r/um). In comparison, the RAW algorithm took 3pr + 3umn/p time under similar
restrictions on n.

The time required for a RAR can be reduced to 5pr 4+ p(3m + 2)n/p by replacing the two way
communication between the source and intermediate processors by a one way communication from
the source to the intermediate processors with elements of size m. This eliminates the sending of

requested element addresses from the intermediate to source processors, reducing time taken by

pT + pn/p.

8 CREW/CRCW PRAM Simulation

The PRAM is a shared-memory parallel programming model that has been widely used for the design
of parallel algorithms [13]. It is an abstract model which does not differentiate between the cost of
unit computation and unit communication. By simulating a PRAM on a more realistic (but still
sufficiently general) model, an efficient and reasonably architecture-independent implementation of

shared memory on distributed memory machines can be provided. The various algorithms presented

14

in the companion paper [24] described the simulation of the exclusive read and exclusive write
capabilities. The algorithms presented in this paper describe the simulation of the concurrent read

and concurrent write capabilities. The PRAM simulation is communication-efficient and is optimal
provided the size of the PRAM n > O(p® + pr/u).

9 Conclusions

In this paper we have presented communication-efficient algorithms for performing random data
accesses involving hot spots on a coarse-grained parallel machine. This was done through the design
of algorithms for the general random access write/read (RAW/RAR) primitives and for special cases
of the same. The algorithms for RAW were described in detail, and modifications required for the
RAR were outlined.

The main contribution of this paper is the presentation of algorithms that perform random data
accesses in time independent of the presence and severity of the hot spots. This is achieved by dy-
namically stretching and shrinking the hot spots as necessary. Further, the constants involved in the
communication time complexity are very small. This is a necessary requirement for effective utiliza-
tion of typical coarse-grained machines where the number of processors is small and communication
overheads are high. An important feature of the algorithms presented is that they are relatively
architecture independent and can be efficiently implemented on a wide variety of interconnection
networks.

We believe that the above primitives will be of crucial importance in the implementation of
data parallel constructs such as those found in High Performance Fortran [1]. These primitives
are also important for the implementation of the BSP model [27] on coarse-grained machines. The
parallelization of data parallel applications on coarse-grained machines have been limited to regular
applications or irregular applications with relatively static structure and limited hot spots. We
believe that the results presented in this paper are the first steps towards implementing dynamic data
parallel applications on coarse-grained machines. Another important requirement for efficient data
parallel implementations is the exploitation of structural as well as spatial locality in applications.
Preliminary results for exploiting spatial locality for adaptive and irregular applications have been
presented in [18, 19, 20]. The H-PRAM model [10, 11] presented a framework for the exploitation of
structural locality. Structural locality has also been exploited in nested data parallel languages such
as NESL [4] and in Proteus [16]. Our algorithms for parallel random data accesses were designed to

incorporate such additions in the immediate future.

References

[1] Seungjo Bae, Sanjay Ranka, Ravi V. Shankar. The HARD Primitive - Scalable Parallelization
of the FORALL statement and the gather/scatter Primitives in HPF, (in preparation).

15

[2] A. Bar-No. and S. Kipnis. Designing Broadcasting Algorithms for the Postal Model for Message-

Passing Systems, Proceedings of 4th ACM Symposium on Parallel Algorithms and Architectures,
1992, pp. 13-22.

[3] S. Bhatt, M. Chen, C. Lin, and P. Liu. Abstractions for parallel n-body simulation, Scalable

High-Performance Computing Conference SHPCC, 1992.

[4] G. E. Blleloch. NESL: A nested data parallel language, Technical Report CMU-CS-93-129,

Carnegie Mellon University, Jan. 1992.

[5] Shahid H. Bokhari. Complete Exchange on the iPSC/860, ICASE Technical Report No. 91-4,

[6]

[7]

[12]

[13]

[14]

[15]

NASA Langley Research Center, January 1991.

Zeki Bozkus, Sanjay Ranka, Geoffrey C. Fox. Benchmarking the CM-5 Multicomputer, Proceed-
ings of the Frontiers of Massively Parallel Computation, pp. 100-107, October 1992.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, T. von
Ficken, LogP: Towards a Realistic Model of Parallel Computation, Proceedings of 4th ACM
Symposium on Principles and Practices of Parallel Programming, pp. 1-12, 1993.

Willian J. Dally and Chuck L. Seitz. Deadlock-Free Message Routing in Multiprocessor Inter-
connection Networks, IEEE Trans. on Computers, 36(5):pp. 547-553, May 1987.

S. E. Hambrusch, F. Hameed, and A. A. Khokhar, Communication Operations on Coarse-
Grained Mesh Architectures, Technical Report, Department of Computer Science, Purdue Uni-

versity.

T. Heywood and S. Ranka. A Practical Hierarchical Model of Parallel Computation: The Model,
Journal of Parallel and Distributed Computing, November 1992, vol. 3, pp. 212-232.

T. Heywood and S. Ranka. A Practical Hierarchical Model of Parallel Computation: Binary
Tree and FFT Graph Algorithms, Journal of Parallel and Distributed Computing, November
1992, vol. 3, pp. 233-249.

High Performance Fortran Forum, High Performance Fortran Language Specification, March
1994.

Joseph Jaja. An Introduction to Parallel Algorithms Addison-Wesley, 1992.

Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis. Introduction to Parallel Com-
puting: Design and Analysis of Algorithms, Benjamin-Cummings, 1994.

C. Leiserson et al. The Network Architecture of the Connection Machine CM-5, Proc. 4th Annual
ACM Symposium on Parallel Algorithms and Architectures, San Diego, CA, 1992.

16

[16] P. Mills, L. Nyland, J. Prins, J. Reif, and R. Wagner. Protoyping Parallel and Distributed

Programs in Proteus, Proceedings of Symposium on Parallel and Distributed Processing, 1991.

[17] Lionel M. Ni and Philip K. McKinley. A Survey of Wormhole Routing Techniques in Direct
Networks, IEEE Computer, 26(2):62-76, February 1993.

[18] Chao-Wei Ou and Sanjay Ranka. Parallel Remapping Algorithms for Adaptive Problems, Fron-
tiers ’95. To appear.

[19] Chao-Wei Ou and Sanjay Ranka. Parallel Incremental Graph Partitioning Using Linear Pro-
gramming, Supercomputing ’94, November 1994. To appear.

[20] Chao-Wei Ou, Sanjay Ranka, and Geoffrey Fox. Fast Mapping And Remapping Algorithm For
Irregular and Adaptive Problems, Proceedings of the 1993 International Conference on Parallel

and Distributed Systems, Taipei, Taiwan, December 1993.

[21] Victor K. Prasanna, Cho-Li Wang, Scalable Data Parallel Object Recognition using Geometric
Hashing on the CM-5. Scalable High Performance Computing Conference, SHPCC, 1994.

[22] D. Nassimi and S. Sahni. Data Broadcasting in SIMD Computers, IEEFE Transactions on Com-
puters C-30(2):101-107 (1981).

[23] Ravi V. Shankar, Khaled A. Alsabti, Sanjay Ranka. The Transportation Primitive, CIS Technical
Report, Syracuse University, August 1994.

[24] Ravi V. Shankar, Sanjay Ranka. Random Data Accesses on a Coarse-Grained Parallel Machine
- I. One-to-one Mappings, CIS Technical Report, Syracuse University, October 1994.

[25] Ravi V. Shankar, Sanjay Ranka. Histogramming based Algorithms on a Coarse-grained Parallel

Machine, (in preparation).

[26] J. P. Singh. Parallel Hierarchical N-body Methods and Their Implications for Multiprocessors,
Ph.D. thesis, Stanford University, 1993.

[27] L. G. Valiant, A Bridging Model for Parallel Computation, Communication of the ACM, vol. 2,
No. 8, 1990, pp. 103-111. SIAM Journal of Sci. and Stat. Computation, 1991.

[28] M. Warren and J. Salmon. Astrophysical N-body simulations using hierarchical tree data struc-

tures, Supercomputing, 1992.

17

	Random Data Accesses on a Coarse-grained Parallel Machine II. One-to-many and Many-to-one Mappings
	Recommended Citation

	tmp.1286816405.pdf._j5SM

