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CONDUCTIVITY OF N-DIMENSIONAL COMPOSITES CONTAINING 
HYPERSPHERICAL INCLUSION* 

A. S. SANGANIt 

Abstract. A problem of determining the macroscopic or effective thermal conductivity of an N- 
dimensional composite medium containing N-dimensional nonoverlapping hyperspherical inclusions is 
considered. Since the macroscopic conductivity is expected to become less sensitive to the detailed spatial 
distribution of the inclusions for N _ 4, only the special case of periodic arrangement of the inclusions is 
considered. An expression for the macroscopic conductivity correct to O(X3N+8), X being the ratio of 
"diameter" of the inclusions to- the spacing between them, is derived and the numerical results for the 
conductivity are presented as a function of X and N for the two special cases of perfectly conducting and 
insulating inclusions. The effective conductivity of the composite is found to approach that of the continuous 
matrix in higher dimensions. 

Key words. Laplace equation in N-dimensions, random walk, effective conductivity or diffusivity in 
inhomogeneous media 

AMS(MOS) subject classification. 35J05 

1. Introduction. One of the classical problems in physics is the determination of 
the effective or macroscopic property of a two-phase medium consisting of inclusions 
of one material of known shape embedded homogeneously into a continuous matrix 
of another having physical properties different from its own. When the inclusions are 
spheres and their amount is small, the effective thermal conductivity k* of the composite 
medium is given by the well-known Maxwell relation 

k* + 3(a -1) , + o(02) 
k a+2 

where k is the thermal conductivity of the continuous matrix phase, a is the ratio of 
thermal conductivities of the inclusions and the matrix, and 4 is the volume fraction 
of the spheres. The above result is valid for small 4 and applies to arbitrary size and 
spatial distribution of the spherical inclusions. For the cases where either k is not 
small or where a differs greatly from unity, it is necessary to specify the size and 
spatial distributions of the inclusions to obtain more accurate estimates of k*. Determi- 
nation of k* when these distributions are given has been the subject of numerous 
articles in the past. For example, k* for the complete range of k for the equal size 
spherical or cylindrical inclusions in both the periodic and the random spatial distribu- 
tions have been obtained [4]-[6], [8], [9]. It is found that unless a >> 1 and 4 approaches 
its maximum allowable value (corresponding to the case when the inclusions begin to 
touch their neighbors) the estimates obtained for the periodic arrangements of the 
inclusions compare well with those obtained for the random arrangements. 

The. effective conductivity approaches infinity at the maximum volume fraction 
of the perfectly conducting inclusions (a = oo) either as the inverse square root of the 
minimum gap between the inclusions in case of the cylindrical (two-dimensional) 
inclusions or logarithmically in case of the spherical (three-dimensional case) 
inclusions, and thus the exact arrangement of the particles becomes an important 
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variable in determining k* in the limiting case of a ->oX and 4 - t the maximum 
allowable volume fraction. 

Brady [1] has considered a problem of determining the well-known O(O) Einstein 
correction to the effective viscosity of the suspension of neutrally buoyant N- 
dimensional hyperspheres (or simply the N-dimensional "spheres") for arbitrary N 
(N ? 2). The problems of determining k* or the effective viscosity for the general case 
of N-dimensional "spherical" particles serve as interesting home assignments to the 
graduate students taking their first course in fluid mechanics and heat transfer. As 
shown below, the coefficient of 4 in (1) in this general case becomes N(a - 1)/(a + N - 
1), which increases linearly with N when a= oo. The students fascinated by such 
exercises question what would happen at large 4. Although the coefficient of 4 increases 
linearly with N. the effective conductivity is expected to become less sensitive to the 
geometrical arrangement of the "spheres" even when a = oo and as the "spheres" begin 
to touch their neighbors for N _ 4, in accordance with the trend set by N = 2 and 3. 
The purpose of this note is to give the estimates of k* for arbitrary N and 4 for the 
case of simple periodic arrangement. Although we are not aware of any physical 
situation where the results for the general N-dimensional case may be directly appli- 
cable, such an effort, i.e., the determination of k* for an arbitrary N. is undertaken 
largely due to the general interest in the problem of determining the macroscopic 
properties of the inhomogeneous media. Since the boundary value problem to be 
solved appears in many other physical situations, including the electrical conduction 
and the diffusion or the "random-walk" problems, the solution presented here may 
perhaps have utility in some situations other than the case of thermal conduction 
considered here. 

2. Formulation and the method of solution. The boundary value problem to be 
solved is the familiar Laplace equation for the conduction of heat subject to the 
continuity of the temperature and flux at the boundaries of the N-dimensional 
"spheres" of radii a with their centers coinciding with an N-dimensional lattice. Since 
the effective conductivity is expected to remain bounded for N ? 4, it would suffice to 
calculate the first few terms in the asymptotic expansion of k* for small 4. The leading 
order effect of the particles at 4 ->0 can be approximated as that due to the point 
thermal dipoles. Since the temperature field due to a point dipole decays only as r'-N 
at large r, where r is the distance from the dipole, it can be shown that the sum total 
due to the presence of many dipoles present in the medium is not absolutely convergent. 
The ways of overcoming the difficulties of this kind are now well known and here we 
follow Zuzovski and Brenner [10] and Sangani and Acrivos [7] by beginning with the 
singular function S for the Laplace equation. This function satisfies the differential 
equation 

(2) S(r) N [T E(rr)] 

where ra are the lattice points, T is the "volume" of the unit cell, and AN is a constant 
to be specified later. The sink term 1IT is needed in the definition of S to satisfy the 
overall heat balance for S. It is evident that any derivative of S will satisfy the Laplace 
equation so that the temperature at any point outside the "spheres" can be expressed 
as 

00 

(3) T= G(-*)x+ fI G( *)Ap+1( *)PV(p,S 
p=l 
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where G is the imposed temperature gradient, x is the position vector, Ap+l is a tensor 
of rank p + 1, V(p) is the gradient operator of rank p, and (.)P implies a p-fold inner 
product. Thus, for example, in the Einstein notation 

(4) G( )Ap+l( PV(p)= Gj dxAj dx13 

The tensors A depend only on the geometry of the array. Since any derivative of S 
satisfies the Laplace equation, we will require that the trace of A with respect to any 
two of the indices i2, i3, * * *, ip+l must be zero. To determine A from the boundary 
conditions that the temperature and flux are continuous everywhere, and in particular 
at the surface of the "spheres," we express the temperature inside the particle situated 
at the origin in terms of the growing harmonics and in terms of both the growing and 
decaying harmonics outside the "sphere." The relationship between the coefficients of 
the growing and decaying harmonics is then determined by satisfying the afore- 
mentioned boundary conditions at the surface of the "sphere" situated at the origin. 
Thus, let us assume, without loss of generality, that Gi = 8i, and that near r = 0 

(5) S=g+g' 
where g is the singular part of S. Also let us choose AN in (2) such that the singular 
part is given by 

(6) g -log (1/r), N-2 

The temperature near r = 0 can be expressed now in terms of the derivatives of g 
as 

E fp( . )PV(p)g+ r2P+N-2hp( * )PV(P)g r_ a, 

(7) T jjE r2P+N-2h(h )PV(p)g, r _ a p 

where f, h, and h' are the coefficients of the decaying and growing harmonics. On 
satisfying the boundary conditions at r = a, we obtain 

(8) fp= -Lphpa2p+N-2 

with 

(9) L a+ 1 + (N-2)/p- 

On expanding T', the regular part of the temperature, near r = 0 and expressing each 
term in the expansion in terms of growing harmonics, it can be shown that 

( 10) hp = 
( 

! [ N + 4(p )!! _ 
V (P) T'(0), p _1 p! [ + ( - )! 

with (-2)!! (-1)!! (0)!! = 1. In deriving (10), we have used the fact that V2T'= 0. 
Now, a comparison of (7) and (3) suggests that 

(11) fp=el( )Ap+l 

where el is the unit vector in the xl-direction that is chosen to coincide with the 
direction of the mean temperature gradient in the composite medium. The regular part 
T' can be obtained by substituting g' for S in (3) so that on using (10) we have 

(12) f (} (12) fp =Lpa P -v(p), XI+ fq f( _)qV (qg 
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where 

(13) -(-~~~~ ~~~1) 
p 

(N -4)!! L 
p! [N+2(p-2)]!! " 

Now (12) can be solved by successive approximation when a is small, i.e., when the 
dispersed phase "volume" fraction 4 is small. We will solve (12) for the special case 
of a simple "cubic" lattice for which the N basis vectors are along the N-coordinate 
axes. For this lattice, the symmetry conditions require that f(2p) 0 and the explicit 
expressions for the first few f's are obtained as follows: 

(14a) f7 FaN L7LV(7)lg (0) + O(aN )], 

(14b) f5 = Fa N+8LV(5)lg'(0) + a N4L3V(3)1g'(O)( * 8)3V8g'(0) + (aN+8)], 

f3 Fa N+4L34V(3)g1'(0) + a N+4L3V(3)lg'( *)3V(6). ' 
(14c) + N+8L5v5)g' ()( )5() (N+l2)], + a + L5V () g 9'(0) ( )V (8)g 9+ O (a )] 

f, = F,6jl 

(14d) = a NLj[l + F{Vj,g'(0)+ aN+4L3(a N+4L3V(3)lg'( *)3V6g'(0) +V(3)1g'(0)) 

(_)3*V(3)1g '(0) + aN8 L5V(5)lg(* )5V(5)1g '(0) + O(a N+2)}]8i1 

where F represents the magnitude of the thermal dipole in the xl-direction. It can be 
shown that the effective conductivity of the composite medium is related to F by 

(15) k=1 + (bCNFa N 
k 

with 

(16) CN = N(N 2), N-3, 
N N, N=2. 

In (15), 4 is the "volume" fraction of the "spheres" and is defined by 

VN aN 
(17) V= a 

where VN is the "volume" of the "sphere" of unit radius and r = hN is the "volume" 
of the unit cell with each side of the unit cell being h units. It can be shown that V' 
satisfies the following recursion relation: 

(18) VN = N-2 N 

with 

(19) V =1r and V3=- 4. 2 ~~~~~33 

Or, alternatively, combining (18) and (19), we have 

(20) Vf M =-. V' 1 1 (2=)N ____r 
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Finally, to determine AN in (2) so that the singular part of S is given exactly by 
(6), we must apply the divergence theorem to a small "sphere" of radius ? centered 
around r = 0 and take the limit E -> . This yields 

(21) AN {N( )N N-3, 

or simply, AN = VN CN. 

3. Results. To determine the effective conductivity, we need to substitute F given 
by (14d) into (15) and evaluate the various derivatives of g' appearing in (14d). These 
derivatives depend on h, the size of the unit cell. The final result can be expressed in 
terms of a nondimensional radius X defined by 

(22) x ( X- 

where 4, is the maximum allowable "volume" fraction of the "spheres" packed in the 
simple "cubic" array and corresponds to the case where each "sphere" in the array 
just begins to touch its neighboring "spheres." t is related to VN by 

(23) N VN 
and has the numerical values 0.785, 0.524, 0.308, 0.1645, 0.0807, and 0.0369 for N= 2, 
3, 4, 5, 6, and 7, respectively. 

In evaluating the constants appearing in (14d), we may chose a =x and h =2 
with no loss of generality. The result of combining (14d) and (15) can now be expressed 
as 

(24) k*~ ~~~~~ 4tx NNL, (24) k-1 I C'X k F 

with 

(25) F=1- L [eiX + 1e - N+4+L5e4X O?(X +)] 

where the constants el-e4 are related to various derivatives of g' evaluated at r = 0. It 
may be noted that, to O(xN), the expression (24) reduces to the Maxwell result (1) 
with the coefficient of 4 given by 

(26) NLI = (a-1)N 
(26) 1 cx~~+N-19 

in accordance with the well-known results for N = 2 and N = 3. The explicit expressions 
for the constants el-e4 are: 

(92g, 
el- =X2 (0), e2= [V(3)1g'( ) (3)19]=O 

(27) e2e3 = [V(3)1g'( )3V(6)g'( )3V(3)19]=O 

e4 = [V(5)lg'(* )5 (5)lglr=O- 

To evaluate the derivatives of g', we note first of all that an integral representation of 
S satisfying (2) is 

(28) S=- {g(r-ra)_ {N g(r-r') dr'} 
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so that near r = 0 

(29) g'== ? g(r-r')-_ 
A 

g(r-r) dr'. 
raoo0 'T a Tar 

Here Ta is the "volume" occupied by the unit cell labeled "a." It may be noted that 
although the sums in (29) do not converge individually, the difference between the 
two sums converges so that g' is finite. To evaluate the derivatives of g', however, we 
may ignore the second sum on the right-hand side of (29) provided that the sum of 

2--N the derivatives of the terms in the first sum is absolutely convergent. Since g - r 
this means that the derivatives of order greater than or equal to three can be computed 
directly by differentiating the first term in (29). Thus 

(30) V(p)g'(0) = I V(p)g(O-r), p ' 3- 
aO 

To evaluate the second derivative of g' at r = 0 needed in determining e, via (27), we 
use a different method. Here, because of the "cubic" symmetry of g' and, because of 
(2), we observe that g' near r = 0 must be of the form 

Ar2 
(31) g'= const. + 2N + 0(r 4). 

2 NT 

The second-order derivative at r 0 is now readily evaluated, yielding 

AN 
(32) el 

A 
N 

Taking h =2, the above expression gives el = V/4 and vr/6, respectively, for N =2 
and 3, in agreement with the results obtained by Perrins, McKenzie, and McPhedran 
[6] and Zuzovski and Brenner [10]. Next, to evaluate e2, let us define 

(33) A(4) = Aijkl LdXi dXj dXk dX1 r=O 

Since V2g' = 0, we note that the trace of A with respect to any two of its indices must 
be zero. Also, A must be symmetric with respect to all of its indices and invariant 
under 900 rotation of the coordinate axes since the unit cell is "cubic." A most general 
expression for A(4) satisfying all of the above conditions involves only one scalar: 

(34) Aijkl = AI1ijkl = A{8ijkl - ijkl} 

with 

(35) iijkl= N+2 [ijkl + iljk + 5ik8fl] 

and 8(4) = 5ijkl equals unity if i ==j = k 1, and zero otherwise. It can be shown now that 

(36) e = (3)l(* )A(3)1 = N A(4)( *)4A(4) = A2 (N+ 2) 

The scalar AI can be evaluated by taking i =j = k = 1 = 1, whence we obtain 
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Substituting (30) into (37) and using either a method of theta functions outlined in 
Born and Misra [2] or by a direct summation method using a computer, Al can be 
determined for various N. Similarly, the constant e4 is evaluated from 

(38) e4= A(6)(' (6) 

where A(6) must be of the form 
I 

_ __ _1 A A 

(39) A(6) = A2 { 16-3(N+4) I2'4-N+ 284I =A286. 

After some lengthy algebra, it can be shown that 

(40) 
A 

( )6? 
A N(N-1)( N-2) 

(40) 8~~~~~~6(')3 66 (N +4)(N +8) 
and 

(41) A2= N- N2) [(' _x6 

The constant e3 can also be shown to be related to A2 by 

(42) e A(N-2)(N+2) e3 =A2 (N+4)(N+8)- 

Finally, to evaluate the derivatives required by expressions (37) and (41), we may 
make use of the following general result: 

(9p2N p12 -S(N +2p +2s -4)!! p! -s2N-p2 
(43) dP r-= (-1)PS 2S!(N-4)!! (p2s)! 1 

These derivatives were evaluated with the help of a computer program and the computed 
values of el-e4 are given in Table 1 for various N. The resulting expression for N = 3 
is in perfect agreement with that reported by Sangani and Acrivos [7] to the level of 
approximation, i.e., O(X4N+8), considered in the present study. Although these authors 
employed a technique similar in principle to the one employed here, the resulting 
algebra was quite different as they used expansions in the Legendre functions instead 
of the tensor calculus employed here. The perfect agreement between the two is 
gratifying in view of the rather tedious algebra involved in both techniques. The 
numerical values of k*/ k as a function of X and N for a = c and a = 0 are shown in 
Figs. 1 and 2, where the exact results for N = 2 and 3 as given by Perrins, McKenzie, 

TABLE 1 
The constants e -e4 and 4, for various N. 

N e, e2 e3 e4 X, 
3 0.5236 13.586 8.062 400.72 0.5236 
4 0.6169 66.761 37.195 5533.9 0.308 
5 0.4935 128.02 82.961 21911.6 0.1645 
6 0.3230 153.31 131.48 47270 0.0807 
7 0.1846 136.94 169.29 70056 0.0369 
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dIN FIG. 1. k*/ k as a function of X and N for perfectly conducting (a = o) inclusions. The solid lines for 
N 1, 2, and 3 correspond to the exact results, whereas the dotted lines for N =3 to 7 correspond to the 
asymptotic expression derived in the present study. 
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FIG. 2. k*/ k as a function of X and Nfor perfectly insulating (a = 0) inclusions. The solid lines for N = 1 
to 3 correspond to the exact results whereas the dotted lines for N = 3 to 7 correspond to the asymptotic expression 
derived in the present study. 
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and McPhedran [6] and McPhedran and McKenzie [4] are shown along with the 
asymptotic results for N = 3, 4, 5, 6, and 7 as calculated from (24), (25), and Table 1. 
The exact result for N -1 is trivially obtained from 

(44) k*( a 1_ ) 

which corresponds to the effective conductivity of a composite consisting of parallel 
slabs. It may also be noted that k*/ k approaches infinity as X -> 1 for a = oo and N = 2 
and 3 as [6], [7] 

k* -2 log (l-X)- 0.69 (N = 3, a = oo), 

k (21-X i-2.0 (N = 2, a = oo). 

This divergent behavior of k* for N = 2 or 3 at X = 1 and a = oo cannot be captured, 
in general, with only few terms in the expansion near X = 0. However, we find that the 
asymptotic expansion given by (24) and (25) for N =3 gives surprisingly accurate 
estimates of k* up to X = 0.95 even for a =oo. For larger N, we expect (24) and (25) 
to give fairly accurate estimates even at X = 1. These estimates for k*/ k at X = 1 and 
a = oo are 3.23, 2.09, 1.55, and 1.27, respectively, for N = 4, 5, 6, and 7. Thus, we see 
that the effective conductivity of the composite approaches that of the matrix in higher 
dimensions even though the coefficient of O(O) in the expression for k*/k has been 
found to increase linearly with N. This is because the maximum allowable "volume" 
fraction in higher dimensions decreases very rapidly, in fact, exponentially with N. 

For a = 0, k*/ k approaches zero as X -* 1 for N = 2 while it approaches a constant 
for N ?>3. (Note that k*-0 at all X for N= 1.) As shown by Keller [3] 

k*(a = oo) = k2/ k*(a = 0) 

for N=2. At X = 1, the "spheres" (or circles) in N =2 provide infinite resistance to 
the heat flux and hence k* ->0 as x ->1. For N> 2, however, the flux through the 
matrix remains finite even at X = 1 and a =0, so that k*/ k approaches unity very 
rapidly in higher dimensions. 
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