
Syracuse University Syracuse University 

SURFACE SURFACE 

Northeast Parallel Architecture Center College of Engineering and Computer Science 

1994 

A Communication System for High-Performance Distributed A Communication System for High-Performance Distributed 

Computing Computing 

Salim Hariri 
Syracuse University 

JongBaek Park 
Syracuse University 

Manish Parashar 
Syracuse University 

Geoffrey C. Fox 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/npac 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Hariri, Salim; Park, JongBaek; Parashar, Manish; and Fox, Geoffrey C., "A Communication System for High-
Performance Distributed Computing" (1994). Northeast Parallel Architecture Center. 35. 
https://surface.syr.edu/npac/35 

This Working Paper is brought to you for free and open access by the College of Engineering and Computer 
Science at SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized 
administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/35?utm_source=surface.syr.edu%2Fnpac%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


A Communication System for High-Performance DistributedComputingSalim Hariri� 1, JongBaek Park, Manish Parashar and Geo�rey C. FoxNortheast Parallel Architectures CenterSyracuse UniversitySyracuse, NY 13244hariri@cat.syr.eduAbstractWith the current advances in computer and networking technology coupled with the availability of softwaretools for parallel and distributed computing, there has been increased interests in high-performance distributedcomputing (HPDC). We envision that HPDC environments with supercomputing capabilities will be availablein the near future. However, a number of issues have to be resolved before future network-based applicationscan exploit fully the potential of HPDC environment. In this paper, we present an architecture of a high-speedlocal area network and a communication system that provides HPDC applications with high bandwidth andlow latency. We also characterize the message-passing primitives required in HPDC applications and developa communication protocol that implementes these primitives e�ciently.1 IntroductionDecades of \experimentation" with parallel and distributed computing has established the importance ofhandling real-world applications. Enormous amount of research is being invested into exploring the natureof a general, cost-e�ective, scalable yet powerful computing model that will meet the computational andcommunication requirements of the wide range of applications that comprise the Grand Challenges (climatemodeling, uid turbulence, pollution dispersion, human genome, ocean circulation, quantum chromody-namics, semiconductor modeling, superconductor modeling, etc.). Based on these premises, there has beenincreased interests in high-performance distributed computing (HPDC). We envision that an HPDC environ-ment with supercomputing capabilities will be available in near future. The driving forces towards this endare (1) the advances in processor technology, (2) the emergence of high-speed networks (3) the developmentof software tools and programming environment.Current workstations are capable of delivering tens and hundreds of Megaops of computing power; forexample, a cluster of 1024 DEC Alpha workstations provides a combined computing power of 150 Gigaops,while the same sized con�guration of the CM5 from Thinking Machines Inc. has a peak rating of only128 Gigaops [16]. Thus, aggregate computing power of a group of high-performance workstations can becomparable to that of supercomputers. Further, workstations are general-purpose, exible and cost-e�ective;the cost-performance ratio for a workstation today is about 5000 peak ops/$ while that for a conventionalsupercomputer like a Cray is only 500 to 1000 peak ops/$ [16]. Furthermore, it has been shown that the1� Author to whom all correspondence should be sent 1



average utilization of a cluster of workstations is only around 10% [17]; most of their computing capacityis sitting idle. This un-utilized or wasted fraction of the computing power is sizable and, if harnessed, canprovide a cost-e�ective alternative to supercomputing platforms.Advances in computer networking technology have introduced high speed, reliable networks capableof providing high transfer rates. Current trend in local area networks is towards higher communicationbandwidth as we progress from Ethernet networks that operate at 10 Mbps (Megabit/sec) to higher speednetworks such as Fiber Distributed Data Interface (FDDI) networks that operate at 100 Mbps. Furthermore,it is expected that soon these networks will operate in Gbps (Gigabit/sec) range.Thus, it has been established that current clusters of high-performance workstations have the aggregatecomputing power to provide an HPDC environment that utilizes high speed networks (e.g., ATM, SONET,HUB-based LAN) [15]. It has also been established that it is not cost-e�ective to introduce new parallelarchitectures to deliver the computing power. Consequently, we envision that future computing environmentsneed to capitalize on and e�ectively utilize the existing heterogeneous computing resources.A number of issues have to be resolved to exploit the full potential of processing and networking tech-nologies. The primary barrier in building HPDC environment lies in the limited communication bandwidthavailable at the application level. In current local area networks (LANs), the bandwidths achievable at theapplication level are often an order of magnitude lower than that provided at the network medium [12, 13].For example, out of the physical bandwidth of 10 Mbps available at the medium level of the Ethernet, onlyabout 1.2 Mbps is available to the application [12]; it is therefore not su�cient to have even a Gigabit datalink if user applications could only use a small portion of the bandwidth. This degradation in performanceoccurs because of two main reasons: (1) Host-to-network interface which is characterized by its excessiveoverhead of processor cycles and system bus capacity, and because of heavy usage of timers, interrupts, andmemory read/writes; and (2) the standard protocols that are implemented as a stack of software layers andconsume most of the medium capacity and provide very little bandwidth to the application.In this paper, we present an approach to provide an e�cient communication environment for High-Performance Distributed Computing (HPDC). The main objectives of this research are:(1) To develop a high-speed local area network (HLAN) architecture for HPDC. The HLAN consistsof high-performance computers and high-speed networks. By employing two-tiered stack of protocol ar-chitecture, the HLAN architecture supports two modes of operation: normal-speed mode (where standardprotocols are used) and high-speed mode (where high-speed protocols are used). In this paper, we show twoexamples to implement the HLAN architecture. The �rst one is based on ring network with a host interfaceprocessor and the other one is based on the ATM network.(2) To develop a message passing interface for the HPDC environment. We �rst study some palleland distributed software tools that provide message passing primitives and then identify a maximal set ofprimitives for the proposed HPDC environment.(3) To develop a high-speed communication protocol (HCP) which provides an e�cient communicationenvironment suitable for HPDC. HCP is characterized with its simple communication scheme to provide lowlatency to operate in the Gbps range, and concurrent communication capability to allow multiple processesto communicate in parallel over the network. 2



Figure 1: A computer system vs. networked computing environment
Figure 2: A generalized architecture of HLANThe organization of the paper is as follows: Section 2 describes an architecture of high-speed local areanetwork (HLAN) and an HPDC environment that utilizes e�ciently the existing heterogeneous computersand the emerging high speed networks. Section 3 identi�es a set of message passing primitives by surveyingsome software tools. Section 4 describes the operation of high-speed communication protocol (HCP). Sec-tion 5 analyzes the performance of an application that runs over the proposed HLAN environment. Section 6summarizes the paper and provides some concluding remarks.2 An Environment for HPDCAs network speed increases to Gbit/sec range, communication time between computers is becoming com-parable to that between internal components of a computer. We envision that Gigabit LANs will allow itscomputers to interact and collaborate with latency comparable to that between the internal componentsof a computer. Consequently, future HPDC environment will be equivalent to the current single computersystem in terms of the communication latency as shown in Figure 1.Figure 2 depicts a generalized architecture of a proposed high-speed local area network (HLAN) thataims mainly at providing the required application bandwidth by using a high-speed protocol for HPDC andmaintaining at the same time the support of standard protocols. The approach adopted to achieve these3



Figure 3: An architecture of HLANtwo goals is based on providing two modes of operation: High-Speed Mode (HSM) and Normal-Speed Mode(NSM). At any given time the system can operate in either or both of these two modes. The HLAN consistsof two types of networks: the High-Speed Network (HSNet) and the Normal Speed Network (NSNet). TheHSNet, used during the HSM, consists of two sub-networks, the data network (D-net) and the status/controlnetwork (S-net) in a similar manner to the bus structure of a computer system which also can be decomposedinto two components (the data bus and status/control bus). The purpose of the S-net is to distribute controland status information about the activities of the computers connected to the D-net and also to supporte�cient implementation of group communication services. The NSNet is implemented using any standardlocal area network and is used during the NSM operation. The latency between the components of a computersystem shown in Figure 1 will be comparable to those between HPDC components. These networks can beimplemented as separate networks or could be logical networks on one physical network.One possible implementation of the HLAN architecture is shown in Figure 3, where the HSNet employstwo ring-type subnetworks. The D-net consists of two counter-rotating channels: while one ring is used fordata transmission, the other ring is used for acknowledgements. The D-net is a point-to-point network whereeach channel segment between nodes works independently, not in a shared manner as in token-ring networks.However, the S-net is a broadcast network based on token-ring scheme. In this paper, we study the design ofa host-interface processor (HIP) and a high-speed communication protocol to support such an environment.Another implementation of the HLAN architecture is based on the ATM network as shown in Figure 4.Instead of having di�erent physical subnetworks for the HSNet and NSNet, the ATM-based HLAN imple-ments them on two logical subnetworks sharing one physical ATM channel; by allocating more networkbandwidth to the HSM, both modes of tra�c can be multiplexed over the channels of the ATM-basedHLAN. The tra�c associated with the HSM is carried out through the solid lines (which represents a largepercentage of the aggregate bandwidth of the physical channel), while the NSM tra�c is delivered throughthe dotted lines.Figure 5 depicts an HPDC environment that provides applications with message passing primitives to4



Figure 4: An ATM-based HLANachieve e�cient environment over high-speed networks. The software portion of this environment consistsof a high-speed communication protocol (HCP) and a HCP runtime system. The HCP runtime systemis an interface between a parallel and distributed programming tool and the HCP services running on aninterface processor. In a distributed programming environment, software tools such as EXPRESS [21] orPVM [26] provide a communication library for message passing. The current implementations of these toolsutilize low-level communication programming interfaces (e.g., BSD socket library) that are supported bya standard transport protocol (e.g., TCP/IP). Because these interfaces involve a large number of systemcalls, data copying and memory management, they can not provide the high-bandwidth and the low-latencycommunication needed for HPDC. To solve the problems above, HCP provides all the services (data transfer,synchronization and control) needed for e�cient parallel and distributed computing. Furthermore, theseservices run on a host interface processor (HIP) and therefore o�oad the host. In next sections, we presenthardware and software support to build such HPDC environment.
5



Figure 5: An environment for HPDC
6



3 Software Support for HPDCThe approach to identify the message passing primitives is carried out in two steps: 1) analyze the message-passing primitives provided by existing software tools on current parallel and distributed systems; and 2)identify a maximal subset of message passing primitives that can be e�ciently implemented by a communi-cation protocol for parallel/distributed computing.3.1 Characterization of Message Passing PrimitivesIn order to identify the message passing services for HPDC, we �rst study the primitives provided by some cur-rent parallel/distributed programming tools. The software tools studied include EXPRESS [21], PICL [25],PVM [26], ISIS [23], and the iPSC communication library [27]. These tools were selected because of theiravailability at the Northeast Parallel Architecture Center at Syracuse University and also the following tworeasons: (1) they support most potential computing environments, i.e., parallel, homogeneous and heteroge-neous distributed systems; and (2) they are either portable tools (EXPRESS, PICL and PVM) or hardwaredependent tools (the iPSC communication library). There is an increased interest in the standardization ofmessage-passing primitives supported by software tools for parallel/distributed computing [28]. The char-acterization provided in this section can be viewed as step in this direction. The communication primitivessupported by existing libraries can be characterized into �ve classes, viz., point-to-point communication,group communication, synchronization, con�guration/control/management, and exception handling.Point-to-Point CommunicationThe point-to-point communication is the basic message passing primitive for any parallel/distributed pro-gramming tools. To provide e�cient point-to-point communication, most systems provide a set of functioncalls rather than the simplest send and receive primitives.� Synchronous and Asynchronous Send / Receive: The choice between synchronous and asynchronousprimitives depends on the nature and requirements of the application. As a result, most tools supportboth, asynchronous and synchronous send/receive primitives. To provide asynchronous message pro-cessing, additional supporting functionality must be provided in the tools. For example, 1) poll/probethe arrival and/or information of incoming messages e.g., extest and probe, used in EXPRESS andPVM, respectively; 2) install a user-speci�ed handler for incoming messages e.g., exhandle or hrecvused in EXPRESS or iPSC, respectively; and 3) install a user-speci�ed handler for outgoing messages,e.g., hsend used in iPSC.� Synchronous/Asynchronous Data Exchange: There are at least two advantages for providing suchprimitives. First, user is freed from having to decide which node should read �rst and which nodeshould write �rst. Second, it allows optimizations to be made for both speed and reliability.� Non-contiguous or Vector Data: One example of transferring a non-contiguous message is sendinga row (or column) of a matrix that is stored in column-major (or row-major) order. For example,exvsend/exvreceive used in EXPRESS. 7



Group CommunicationGroup communication for parallel or distributed computing can be further classi�ed into three categories,1-to-many, many-to-1, and many-to-many, based on the number of senders and receivers.� 1-to-Many Communication: Broadcasting and multicasting are the most important examples of thiscategory. Some systems do not explicitly use a separate broadcast or multicast function call. Instead,a wild card character used in the destination address �eld of point-to-point communication primitives,provides multicasting functions. It is important to note that in ISIS broadcast primitives with di�erenttypes and order are available to users. Users can choose the proper broadcast primitives according tothe applications.� Many-to-1 Communication: In many-to-1 communication, one process collects the data distributedacross several processes. Usually, such function is referred to as reduction operation and must bean associative, commutative function, such as, addition, multiplication, maximum, minimum, logicalAND, logical OR, or logical XOR. For example, g[op]0 and g[type][op] in PICL and iPSC, where opdenotes a function and type denotes its data type.� Many-to-Many Communication: There are several di�erent types of many-to-many communications.The simplest example is the case where every process needs to receive the result produced by a reductionoperation. The communication patterns of many-to-many operations could be regular or irregular.SynchronizationA parallel and distributed program can be divided into several di�erent computational phases. To preventasynchronous message from di�erent phases interfering with one another, it is important to synchronize allprocesses or a group of processes. Usually, a simple commandwithout any parameters, such as, exsync, sync0,gsync in EXPRESS, PICL, and iPSC respectively, can provide a transparent mechanism to synchronize allthe processes. However, there are several options that can be adopted to synchronize a group of processes.In PVM, barrier, which requires two parameters barrier name and num, blocks caller until a certain numberof calls with the same barrier name made. In PICL, barrier0 synchronizes the node processors currently inuse. In iPSC, waitall and waitone allow the caller to wait for speci�ed processes to complete.Another type of synchronization is that one process is blocked until a speci�ed event occurred. In PVM,ready and waituntil provide event synchronization by passing the signal. In ISIS, the order of events isused to de�ne virtual synchrony and a set of token tools (e.g., t sig, t wait, t holder, t pass, t request, etc.)are available to handle it. In fact, event detection is a very powerful mechanism for exception handling,debugging, as well as performance measurement.Con�guration, Control, and ManagementThe tasks of con�guration, control, and management is quite di�erent from system to system. A subsetof the con�guration, control and management primitives supported by the studied software tools are suchas to allocate and deallocate one processor or a group of processors, to load, start, terminate, or abortprograms, and for dynamic recon�guration, process concurrent or asynchronous �le I/O, nad query thestatus of environment. 8



Exception HandlingIn a parallel or distributed environments, it is important that the network, hardware and software failuresmust be reported to the user's application or system kernel in order to start a special procedure to handlethe failures. In traditional operating systems such as UNIX, exception handling is processed by event-basedapproach, where a signal is used to notify a process that an event has occurred and after that a signal handleris invoked to take care of the event. Basically, an event could be a hardware condition (e.g., bus error) orsoftware condition (e.g., arithmetic exception). For example, in the iPSC library, a user can attach a user-speci�ed routine to respond to a hardware exception by the handler primitive. In ISIS, a set of monitorand watch tools are available to users. EXPRESS supports tools for debugging and performance evaluation.PICL supports tools for event tracing.3.2 Message-Passing PrimitivesBased on the characterization of message-passing techniques used in parallel/distributed computing presentedin Table 1, we identify the set of primitives which can e�ciently implement the primitives supported by mostsoftware tools for parallel and distributed computing. The services can be broadly classi�ed as data transferservices, synchronization services, system management/ con�guration services and error handling services.Data transfer services include point-to-point services for sending, receiving and exchanging messages andgroup communication services for broadcasting and multicasting data (hcp send, hcp receive, hcp exchange,hcp bcast). Synchronization services allow a processor to lock resources so that no other processor can accessthem(hcp barrier). This service enables mutually exclude access of resources shared between processors.The hcp barrier primitive enables a speci�ed number of processor to synchronize at a logical barrier before proceeding. System management/ con�guration services (hcp probe, hcp msgstat, ...) include calls tomonitor sent and arriving messages, the current status of the network and hosts and to con�gure the hostsinto logi cal groups and for adding/ deleting hosts from/to these logical groups. Special error handlingservices include the hcp signal primitive which sends a high priority message to all hosts to propagate anyerror status and the hcp log/chkpt primitive to enable checkpointing and logging of previously speci�ed datafor debugging purposes. When the hcp log/chkpt signal is sent, all processors dump this data into a lo g �leand proceed with their computation. In what follows, we describe how some of the services shown in Table 2are implemented in HCP.4 HCP Implementation IssuesIn this section, we briey describe the design of HIP to o�oad the protocol processing from the host andthe operation of HCP.4.1 Host Interface ProcessorHIP is a communication processor capable of operating in two modes of operation such that either or bothof these modes can be active at a given time. Figure 6 shows the block diagram of the main functional unitsof the proposed HIP. The HIP design consists of �ve major subsystems: a Master Processing Unit (MPU),9



Table 1: A characterization of message-passing primitives for parallel and distributed computinga Transfer Engine Unit (TEU), a crossbar switch, and two Receive/ Transmit units (RTU-1, RTU-2). Thearchitecture of HIP is highly parallel and uses hardware multiplicity and pipeline techniques to achieve high-performance transfer rates. For example, the two RTUs can be con�gured to transmit and/or receive dataover high-speed channels while the TEU is transferring data to/from the host. More detailed description forHIP can be found in [5, 1].4.2 Point-to-Point Data Transfer over the D-netHCP is the protocol for the HSNet portion of HLAN. It supports two types of communication: point-to-point communication over the D-net and multicasting communication over the S-net. In this subsection, wedescribe the operation of the point-to-point data transfer.Each node participating in a computation over the D-net is in one of the following modes during itsoperation: Idle (ID), Receive-only (RO), Transmit-only (TO), Receive and transmit (RT), Receive-and-Receive (RR), Transmit-and-Transmit (TT) or Bypass (BP) mode. Initial mode is ID. In BP mode, a nodeis just isolated from the network and all the incoming data is forwarded to the next node with minimumdelay. Figure 7(a) shows all possible mode transitions for a node. Figure 7(b) demonstrates a case in whichnode 0 is transmitting data to node 2 and 6, node 5 is receiving data from node 4 and 6. Note that thereare 4 circuit connections established at the same time. The operation mode of each node is periodicallybroadcasted over the S-net. 10



Table 2: HCP servicesLong Message TransferWe distinguish between two transfer schemes depending on the message size: long message transfer andshort message transfer. A message with length of less than a data frame size is designated as a short messageand otherwise it is regarded as a long one. Each long message is transferred as a sequence of multiple dataframes. The size of a data frame is determined to be as large as possible because larger frames performbetter as will be shown later. However, the maximum frame size should be within the limit where clockskewing does not lead to a synchronization problem at the receiver.For long messages, data transmission is performed in two phases: connection setup and data transfer.Figure 8 shows all the steps involved in long message transfer; establishing a connection, receiving a con-�rmation of a successful connection, transferring the data frames, and �nally disconnecting the connection,respectively.� Connection setup phase: The source node initiates data transfer by sending a connection request(CR) frame to the destination node when it determines that all intermediate nodes, if any, are in ID mode(see Figure 8(a) ). This scheme will reduce probability for the CR to be blocked by intermediate nodes. Ifan intermediate node in the path remains in ID mode until the CR frame arrives at the node, it is changedto BP mode (this is highly probable because the CR will not be sent unless all intermediate nodes are inthe ID mode); otherwise the CR frame waits at the intermediate node which has changed its mode whilethe CR frame was traveling from the source node to that node. The CR frame will be forwarded when thechannel becomes available. This process is repeated until the CR frame reaches the destination node. TheCR frame carries the information of message length and data frame size so that the receiver can identify in11



Figure 6: Block diagram of HIPadvance how many data frames will arrive.Once the CR reaches the destination node, it responds with another control frame, connect con�rm(CC),which will be sent to the source in the opposite direction using the other ring (Figure 8(b)). No channelarbitration or waiting is needed for sending CC frame to the source since circuit is already established.� Data transfer phase: Once connection is established, data is transferred as multiples of frames(Figure 8(c)). Simple scheme for error and ow control is used as described later. Since the receiver knowsthe number of frames to be transferred, it automatically sends the disconnect (DC) signal when it receivesthe last frame with no error, i.e., the last frame is acknowledged with DC frame if correctly received as shownin Figure 8(d). Intermediate nodes should be able to detect the DC frame while they are in BP mode andthen switch their state to the appropriate modes.Short Message TransferIn this case, the data is transmitted with the CR frame. Consequently, the connection setup and datatransfer phases of long message transfer are combined into one step. When it passes intermediate node,the node changes to bypass mode until a DC frame is received from the destination node. Once the framereaches the destination, it responds with DC signal when the data received is in no error; the frame is treated12



Figure 7: Operation modes
Figure 8: Steps of long message transferas the last frame of a long message. This scheme reduces the connection setup overhead by eliminating theconnection con�rm (CC) step in long message transfer.Error and Flow ControlThe sender transmits a frame and then waits for ACK signal back from receiver. When the sender receivesa positive ACK (PACK), it sends the next frame; otherwise it retransmits the same frame. Retransmissionis repeated a prede�ned number of times and after that, an error signal is raised to the higher layers. Theacknowledgement frame is used to achieve ow control between the transmitter and receiver nodes. Whenreceiver does not have enough bu�er space for next frame, it responds with a not-ready indication by settinga ag in ACK frame. If the source receives the not-ready indication from the destination, it stops transmitingframe until it receives a ready indication. This simple scheme is attractive because it does not impose anylimit of the transmission rate that could be in Gigabit or Terabit range; it is doubtful that the current errorand ow control methods used in existing standard protocols can cope with such high transmission rate [14].Owing to the simple error/ow control scheme, HCP can cope and handle with mediums operatingin Gigabit or even Terabit range; in existing standard protocols, at high transmission rates, the networkinterface processor would have to process an incoming packet within a very short time interval. For example,let us suppose that 1000 instructions are needed for processing 1 Kbyte packets [14]. For a network operatingin 100 Mbit/sec and 1 Gbit/sec, the interface would have to process the incoming packet in 80 �sec, and 8�sec, respectively. Consequently, the network interface processor speed must have at least 12.5 MIPS and 125MIPS capability for maximum throughput. It is clear from this simple analysis that the existing protocols13



Figure 9: Frame format for D-netFigure 10: Frame formats for S-netcan not be scaled up to Gigabit or Terabit rates and new protocols such as HCP must be developed.Frame FormatsIn Figure 9, we show four types of frames which are used in D-net during HSM: CR frame with shortdata, CR frame with long data, Data frame, and ACK frame. The preamble �eld (PA) is used to achievesynchronization of receiver clock with sender's. The Starting Delimiter (SD) �eld and Ending Delimiter(ED) �eld denote the start and end of the frame, establishing unique frame boundaries. The type �elddi�erentiates the four kinds of frames. The Source (SRC) and Destination (DST) �elds in CR frame indicatethe network address of source and destination nodes and the length �eld represents the size of data to betransmitted in bytes. Due to the length �eld and frame size �eld in CR frame for long data, the receiver canidentify how many frames will arrive from the source node, i.e., number of frames to receive, nf = d length/frame sizee. The status �eld in ACK frame distinguishes acknowledgements of connection con�rm (CC) anddisconnect (DC) as well as positive (PACK) and negative (NACK) acknowledgement of data frames. TheRDY �eld in ACK frame denotes the availability of the bu�er space at the receiver. The checksum �eld(CHK) is based on a cyclic redundancy code to detect errors in received frames.4.3 Multicasting over the S-netGroup communication primitives such as multicasting and broadcasting are important for HPDC. HCPprotocol utilizes the broadcast capability of the S-net to e�ciently implement the group communicationprimitives. The S-net access protocol is an adaptation of a standard token ring protocol. In this protocolthe token not only controls the access to the S-net, but also propagates the status/control informationassociated with each node. Whenever a node receives the token, it writes its status in the designated�eld of the token frame as shown in Figure 10. If this station has data to send to a group of processes(multicasting/broadcasting), its puts the data on the S-net and then releases the token so that it can bepicked up by the next node. Figure 10 shows frame formats for both token and data frames. The GA �eld inthe data frame represents the group address for multicasting; any node whose group address corresponds to14



GA will read the frame. The FS �eld is used for acknowledgment; when a node receives erroneous frame, itsets the FS �eld and the source will respond accordingly. In order to prevent duplicate frames being receivedby a station, the one-bit �eld F/D is used to denote whether the received frame is new or duplicated.4.4 Performance ResultsWe analyzed the performance of the proposed HLAN environment; in this paper, we summarize the mainresults and the detailed analysis can be found in [5]. The results show that the application-to-applicationbandwidth over the D-net is about 40{45 % of medium bandwidth, which is a signi�cant improvementcompared with the performance of standard protocol implementation (which provides application with asmall fraction of medium speed, for example, about 10 % [12]). In addition, the networkwide bandwidthprovided by the D-net, which we de�ne as the ratio of the total number of bits transmitted over the D-netto the time taken for the transmission, can be even more than the medium bandwidth due to the concurrentcommunication capability of HCP and HIP. Furthermore, for the case where interprocess communication isdirected only to neighboring node such that application processes are arranged to communicate in pipelinedmanner, we can obtain even better performance. The networkwide bandwidths for this case are approxi-mately proportional to the number of computers; the more computers we use, the more parallel connectionscan be established. The networkwide bandwidth available for this case is much higher than the mediumbandwidth provided. For example, for a network with 15 computers, the e�ective application-to-applicationtransfer rates are approximately 690 Mbit/sec and 3.4 Gbit/sec for 100 Mbit/sec and 1 Gbit/sec channelsrespectively. We also obtained the broadcasting rate over the S-net to be more than 80 % of 100 Mbpschannel and 35 % of 1 Gbps medium.5 Application ExampleIn this section, we analyze the performance of the LU decomposition problem when it runs on the proposedHPDC environment. LU decomposition problem forms an integral part of many scienti�c and engineeringproblems to solve systems of linear equations takes advantage of the broadcast communication capability ofHCP.5.1 AlgorithmHost-node programmingmodel can be used, where the host program partitions the input data and distributesit to node processors and collects the results from each node. We use the same node algorithm reported in[4, 6] for our analysis as shown below:if my num = 0 /* for the �rst block */Factorize block 0 and obtain result A;Broadcast A;Update the remaining blocks;For step i = 1 to N � n� 1 /* for the subsequent blocks */if my num = i mod N 15



Figure 11: An example of LU factorization: N=4 and n=2Receive the previous factorization result A;Update block i using A;Factorize block i and obtain result B;Broadcast B;Update the remaining blocks using A;Update the remaining blocks using B;else if number of remaining blocks > 0Receive the result B;Update the remaining blocks;The operations in the algorithm, Factorize and Update, are further analyzed in Figure 11 [7], where anintermediate step (step 3) of the case of N=4 and n=2 is shown. The computations involved are:1) Factorization of the block C to obtain L1, L2, and U1which consists of (see Figure 11(b))Computation of column of uj : uj = (Lj)�1ujUpdate of column of lj : lj = lj �AjujPivot (piv) selection in lj and consequent row interchangesScaling of column : lj = lj=piv2) Computation of U2 : U2 = (L1)�1U23) Update of the bottom right blocks: B = B � L2U2Note that step 2) and 3) are computed in parallel (each computer updates the portion allocated to it).5.2 Performance AnalysisLet us assume that the size of the matrix is m � m and the same number of blocks are allocated to eachcomputer. Some variables which will be used in the analysis are de�ned as follows.16



Figure 12: Timing diagram for LU decompositionN = number of computersb = block size (number of columns)n = number of iterations or number of blocks allocated to each computerN � n = total number of stepsThe timing diagram for one implementation of the algorithm is shown in Figure 12 for the N = 4 case;Since the results of each factorized block is used by all the other processors, the HCP broadcast primitiveswill be used to send the factorized block to all computers. The notations used in the �gure are as follows:i = 1; 2; : : : ; N � n; steps of computationF (i) = factorization time at step iU (i; j) = update time for j remaining blocks at step iif i = 1; U (i; j) = 0if j � 0; U (i; j) = 0comm(i) = broadcast time at step iFrom Figure 12, we can estimate the computation time TLU as follows:TLU = F (1) + N�nXi=2 [comm(i) +MaxfA;B;Cg]where A = U (i � 1; n� 1� b i � 2N c) + U (i; n� 1� b i � 2N c)B = U (i; n� b i � 1N c) andC = U (i; 1) + F (i) 17



Factorization Updateb(b+1)(3(m�(i�1)b)�b)3 b3 + 2b2(m � ib)Table 3: Number of oating-point operations at each step of the LU algorithmTable 3 shows the number of oating-point operations per block at step i for each computer. Using thisanalysis, we can estimate the e�ective MFLOPS as follows:MFLOPSLU = (2=3) �m3TLU (1)where the numerator represents the approximate number of oating-point operations involved in wholecomputation, which can be approximated from Table 3 or can be found in [6]. Speedup performance can berepresented as SpeedupLU = (2=3) �m3 � (1=MFLOPScomputer)TLU (2)where the numerator is the single computer execution time.The speedup and e�ective MFLOPS are shown in Figures 13 and 14. In this analysis, 4 computers areused with 20 and 40 MFLOPS respectively and channel bandwidths of 100 Mbps and 1 Gbps are assumed.
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 50 100 150 200 250 300 350 400 450 500

o

o

o
o o

o
o o o

+

+

+

+

+

+

+
+ +

Matrix size

Speedup Effective
MFLOPS

1 Gbit channel

100 Mbit channel

24

28

32

36

40

44

48

52

56

60

Block size =5

LU Decomposition on HLAN -- 4 nodes (20 MFLOPS)

Figure 13: E�ective MFLOPS for LU decomposition(20 MFLOPS computers) 0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350 400 450 500

o

o

o

o
o

o o o o

+

+ +

+
+

+
+

+ +

Matrix size

Speedup
Effective
MFLOPS

1 Gbit channel

100 Mbit channel

40

60

80

100

120

Block size =5

LU Decomposition on HLAN -- 4 nodes (40 MFLOPS)

Figure 14: E�ective MFLOPS for LU decomposition(40 MFLOPS computers)18



6 ConclusionThe evolution of processor and networking technology has made the high-performance distributed computing(HPDC) attractive and cost-e�ective. We envision that high-speed network will allow its users to treatmultiple computing resources as a single system rather than a network of computers.In this paper, we proposed an architecture of high-speed local area network (HLAN) that capitalizes onthe current advances in processor technology, software and networking technology. The HLAN supports twomodes of operation: Normal-Speed Mode (NSM) where standard transport protocols are used to transmitand/or receive data over a channel allocated to this mode; and High-Speed Mode (HSM) where processescan access directly the HIP software layer to achieve the application-level transfer rates comparable to themedium speed.We analyzed the primitives, supported by existing parallel and distributed software tools and characterizethem into �ve categories; point-to-point communication, group communication, synchronization, con�guration/ control / management, and exception handling. Based on the analysis, we identi�ed a set of primitives forthe proposed message passing interface.We also demonstrated the performance gain of an application example running on the HLAN and showedthat the proposed HPDC environment is capable of providing supercomputing performance.We are currently studying to implement the HCP protocol over the emerging ATM (Asynchronous Trans-fer Mode) networks incorporating the D-net, S-net and the normal speed network into one network.References[1] J. B. Park and S. Hariri, \ Architectural Support for High-Performance Distributed Computing," Pro-ceedings of the 12th Annual IEEE International Phoenix Conference on Computers and Communica-tions'93 (IPCCC-93), pp. 319{325, March 1993.[2] S. Hariri, M. Parashar and J. B. Park, \ Software and Hardware Support for Workstation-based Super-computing," Proceedings of the 26th Hawaii International Conference on System Science (HICSS-26),IEEE, vol. 1, pp. 286{295, January 1993.[3] S. Hariri, J. B. Park, F-K. Yu, and M. Parashar, and G. C. Fox, \ A Message Passing Interfacefor Parallel and Distributed Computing," Proceedings of the 2nd International Symposium on High-Performance Distributed Computing (HPDC-2), IEEE, pp. 84{91, July 1993.[4] M. Parashar, S. Hariri, G. Mohamed and G. C. Fox, \ A Requirement Analysis for High PerformanceDistributed Computing over LANs, " First International Symposium on High-Performance DistributedComputing (HPDC-1), IEEE, pp. 142{151, September 1992.19



[5] J. B. Park, Ph.D dissertation: A Communication Protocol and Architectural Support for High-Performance Distributed Computing, Syracuse University, 1993.[6] A. G. Mohamed, G. C. Fox and G. Von Laszewski, \ Blocked LU Factorization on a MultiprocessorComputer," Technical Report SCCS-94b, Northeast Parallel Architectures Center, Syracuse University,April 1992.[7] M. J. Dayde and I. S. Du�, \ Level 3 BLAS in LU Factorization on the CRAY-2, ETA-10P, and IBM3090-200/VF, " The International Journal of Supercomputer Applications, Vol. 3, No. 2, pp. 40-70,Summer 1989.[8] T. F. La Porta and M. Schwartz,\ Architectures, Features, and Implementation of High-Speed TransportProtocols," IEEE Network Magazine, pp. 14{22, May 1991.[9] O. Menzilcioglu and S. Schilck, \ Nectar CAB: A High-Speed Network Processor," Proceedings ofInternational Conference on Distributed Systems, pp. 508{515, July 1991.[10] H. Kanakia and D. R. Cheriton, \ The VMP Network Adapter Board: High- performance NetworkCommunication for Multiprocessors," Proceedings of the SIGCOMM Symposium on CommunicationsArchitectures and Protocols, pp. 175{187, August 1988.[11] D. R. Cheriton and C. L.Williamson, \ VMTP as the Transport Layer for High-Performance DistributedSystems," IEEE Communication Magazine, pp. 37{44, June 1989.[12] G. Chesson, \ The Protocol Engine Design," Proceedings of the Summer 1987 USENIX Conference, pp.209{215, November 1987.[13] D. D. Clark, M. L. Lambert and L. Zhang,\ NETBLT: A High Throughput Protocol," Proceedings ofSIGCOMM'87, Computer communications review, Vol. 17, No. 5, pp. 353{359, 1987.[14] C. Partridge,\ How Slow Is One Gigabit Per Second? " Computer Communication Review, Vol. 20, No.1, pp. 44{52, January 1990.[15] H. T. Kung, \ Gigabit Local Area Networks: A Systems Perspective," IEEE Communications Magazine,pp. 79{89, April 1992.[16] Gordon Bell,\ Ultra Computers : A Teraop Before Its Time," Communications of the ACM, Vol. 35,No. 8, pp. 27{47, August 1992.[17] P. Kruegeer and R. Chawla, \ The Stealth Distributed Scheduler," Proceedings of the 11th InternationalConference on Distributed Computing Systems, pp. 336{343, May 1991.[18] M.P. Papazoglu and P. E. Pintelas, \ A Versatile Kernel Proposal for Multi- microprocessor SystemEnvironment," Microprocessing and Microprogramming , North Holland, pp.11{21, 1988.[19] F. E. Ross, \ An overview of FDDI: The Fiber Distributed Data Interface," IEEE Journal on SelectedAreas in Communications, pp. 1043{1051, September 1989.20



[20] D. Y. Cheng, \ A Survey of Parallel Programming Tools," Technical Report RND-91-005, NASA AmesResearch Center, Mo�ett Field, CA, May 1991.[21] Express 3.2, Introductory Guide for Workstations, Parasoft Corporation, 1991.[22] Express Fortran, User's Guide, Parasoft Corporation, 1990.[23] K. Birman, R. Cooper, T. Joseph, K. Marzullo, and M. Makpanggou, The ISIS System Manual, 1990.[24] K. Birman, A. Schiper, and P. Stephenson, \ Lightweight Causal and Atomic Group Multicast," ATMtrans. Computer Systems, Vol. 9, No. 3, pp. 272{314, August 1991.[25] G. A. Geist, M. T. Heath, B. W. Peyton and P. H. Worley, \ A User's Guide to PICL: A Portable Instru-mented Communication Library," Technical Report ORNL/TM-11616, Oak Ridge National Laboratory,October 1991.[26] A. Beguelin, J. Dongarra, A. Geist, R. Manchek and V. Sunderam, \ A User's Guide to PVM: ParallelVirtual Machine," Technical Report ORNL/TM-11826, Oak Ridge National Laboratory, July 1991.[27] Intel Supercomputer System Division, Beaverton, Oregon, \ iPSC/2 and iPSC/860 User's Guide," 1991.[28] D. W. Walker, \ Standards for Message-Passing in a Distributed Memory Environment," TechnicalReport ORNL/TM-12147, Oak Ridge National Laboratory, August 1992.

21


	A Communication System for High-Performance Distributed Computing
	Recommended Citation

	tmp.1285252205.pdf.OUTdj

