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Abstract

With the current advances in computer and networking technology coupled with the availability of software
tools for parallel and distributed computing, there has been increased interests in high-performance distributed
computing (HPDC). We envision that HPDC environments with supercomputing capabilities will be available
i the near future. However, a number of issues have to be resolved before future network-based applications
can exploit fully the potential of HPDC environment. In this paper, we present an architecture of a high-speed
local area network and a communication system that provides HPDC applications with high bandwidth and
low latency. We also characterize the message-passing primaitives required in HPDC applications and develop

a communication protocol that implementes these primitives efficiently.

1 Introduction

Decades of “experimentation” with parallel and distributed computing has established the importance of
handling real-world applications. Enormous amount of research is being invested into exploring the nature
of a general, cost-effective, scalable yet powerful computing model that will meet the computational and
communication requirements of the wide range of applications that comprise the Grand Challenges (climate
modeling, fluid turbulence, pollution dispersion, human genome, ocean circulation, quantum chromody-
namics, semiconductor modeling, superconductor modeling, etc.). Based on these premises, there has been
increased interests in high-performance distributed computing (HPDC). We envision that an HPDC environ-
ment with supercomputing capabilities will be available in near future. The driving forces towards this end
are (1) the advances in processor technology, (2) the emergence of high-speed networks (3) the development
of software tools and programming environment.

Current workstations are capable of delivering tens and hundreds of Megaflops of computing power; for
example, a cluster of 1024 DEC Alpha workstations provides a combined computing power of 150 Gigaflops,
while the same sized configuration of the CM5 from Thinking Machines Inc. has a peak rating of only
128 Gigaflops [16]. Thus, aggregate computing power of a group of high-performance workstations can be
comparable to that of supercomputers. Further, workstations are general-purpose, flexible and cost-effective;
the cost-performance ratio for a workstation today is about 5000 peak flops/$ while that for a conventional

supercomputer like a Cray is only 500 to 1000 peak flops/$ [16]. Furthermore, it has been shown that the
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average utilization of a cluster of workstations is only around 10% [17]; most of their computing capacity
is sitting idle. This un-utilized or wasted fraction of the computing power is sizable and, if harnessed, can
provide a cost-effective alternative to supercomputing platforms.

Advances in computer networking technology have introduced high speed, reliable networks capable
of providing high transfer rates. Current trend in local area networks is towards higher communication
bandwidth as we progress from Ethernet networks that operate at 10 Mbps (Megabit/sec) to higher speed
networks such as Fiber Distributed Data Interface (FDDI) networks that operate at 100 Mbps. Furthermore,
it is expected that soon these networks will operate in Gbps (Gigabit/sec) range.

Thus, it has been established that current clusters of high-performance workstations have the aggregate
computing power to provide an HPDC environment that utilizes high speed networks (e.g., ATM, SONET,
HUB-based LAN) [15]. Tt has also been established that it is not cost-effective to introduce new parallel
architectures to deliver the computing power. Consequently, we envision that future computing environments
need to capitalize on and effectively utilize the existing heterogeneous computing resources.

A number of issues have to be resolved to exploit the full potential of processing and networking tech-
nologies. The primary barrier in building HPDC environment lies in the limited communication bandwidth
available at the application level. In current local area networks (LANSs), the bandwidths achievable at the
application level are often an order of magnitude lower than that provided at the network medium [12, 13].
For example, out of the physical bandwidth of 10 Mbps available at the medium level of the Ethernet, only
about 1.2 Mbps is available to the application [12]; it is therefore not sufficient to have even a Gigabit data
link if user applications could only use a small portion of the bandwidth. This degradation in performance
occurs because of two main reasons: (1) Host-to-network interface which is characterized by its excessive
overhead of processor cycles and system bus capacity, and because of heavy usage of timers, interrupts, and
memory read/writes; and (2) the standard protocols that are implemented as a stack of software layers and
consume most of the medium capacity and provide very little bandwidth to the application.

In this paper, we present an approach to provide an efficient communication environment for High-
Performance Distributed Computing (HPDC). The main objectives of this research are:

(1) To develop a high-speed local area network (HLAN) architecture for HPDC. The HLAN consists
of high-performance computers and high-speed networks. By employing two-tiered stack of protocol ar-
chitecture, the HLAN architecture supports two modes of operation: normal-speed mode (where standard
protocols are used) and high-speed mode (where high-speed protocols are used). In this paper, we show two
examples to implement the HLAN architecture. The first one is based on ring network with a host interface
processor and the other one is based on the ATM network.

(2) To develop a message passing interface for the HPDC environment. We first study some pallel
and distributed software tools that provide message passing primitives and then identify a maximal set of
primitives for the proposed HPDC environment.

(3) To develop a high-speed communication protocol (HCP) which provides an efficient communication
environment suitable for HPDC. HCP is characterized with its simple communication scheme to provide low
latency to operate in the Gbps range, and concurrent communication capability to allow multiple processes

to communicate in parallel over the network.















3 Software Support for HPDC

The approach to identify the message passing primitives is carried out in two steps: 1) analyze the message-
passing primitives provided by existing software tools on current parallel and distributed systems; and 2)
identify a maximal subset of message passing primitives that can be efficiently implemented by a communi-

cation protocol for parallel/distributed computing.

3.1 Characterization of Message Passing Primitives

In order to identify the message passing services for HPDC, we first study the primitives provided by some cur-
rent parallel/distributed programming tools. The software tools studied include EXPRESS [21], PICL [25],
PVM [26], ISIS [23], and the iPSC communication library [27]. These tools were selected because of their
availability at the Northeast Parallel Architecture Center at Syracuse University and also the following two
reasons: (1) they support most potential computing environments, i.e., parallel, homogeneous and heteroge-
neous distributed systems; and (2) they are either portable tools (EXPRESS, PICL and PVM) or hardware
dependent tools (the iPSC communication library). There is an increased interest in the standardization of
message-passing primitives supported by software tools for parallel/distributed computing [28]. The char-
acterization provided in this section can be viewed as step in this direction. The communication primitives
supported by existing libraries can be characterized into five classes, viz., point-to-point communication,

group communication, synchronization, configuration/control/management, and exception handling.

Point-to-Point Communication

The point-to-point communication is the basic message passing primitive for any parallel/distributed pro-
gramming tools. To provide efficient point-to-point communication, most systems provide a set of function

calls rather than the simplest send and receive primitives.

e Synchronous and Asynchronous Send / Receive: The choice between synchronous and asynchronous
primitives depends on the nature and requirements of the application. As a result, most tools support
both, asynchronous and synchronous send/receive primitives. To provide asynchronous message pro-
cessing, additional supporting functionality must be provided in the tools. For example, 1) poll/probe
the arrival and/or information of incoming messages e.g., extest and probe, used in EXPRESS and
PVM, respectively; 2) install a user-specified handler for incoming messages e.g., exhandle or hrecv
used in EXPRESS or iPSC, respectively; and 3) install a user-specified handler for outgoing messages,
e.g., hsend used in iPSC.

e Synchronous/Asynchronous Data Exchange: There are at least two advantages for providing such
primitives. First, user is freed from having to decide which node should read first and which node

should write first. Second, it allows optimizations to be made for both speed and reliability.

e Non-contiguous or Vector Data: One example of transferring a non-contiguous message is sending
a row (or column) of a matrix that is stored in column-major (or row-major) order. For example,

exvsend/exvreceive used in EXPRESS.



Group Communication

Group communication for parallel or distributed computing can be further classified into three categories,

1-to-many, many-to-1, and many-to-many, based on the number of senders and receivers.

e l-to-Many Communication: Broadcasting and multicasting are the most important examples of this
category. Some systems do not explicitly use a separate broadcast or multicast function call. Instead,
a wild card character used in the destination address field of point-to-point communication primitives,
provides multicasting functions. It is important to note that in ISIS broadcast primitives with different
types and order are available to users. Users can choose the proper broadcast primitives according to

the applications.

e Many-to-1 Communication: In many-to-1 communication, one process collects the data distributed
across several processes. Usually, such function is referred to as reduction operation and must be
an associative, commutative function, such as, addition, multiplication, maximum, minimum, logical

AND;, logical OR, or logical XOR. For example, gfop]0 and g[type][op] in PICL and iPSC, where op

denotes a function and type denotes its data type.

e Many-to-Many Communication: There are several different types of many-to-many communications.
The simplest example is the case where every process needs to receive the result produced by a reduction

operation. The communication patterns of many-to-many operations could be regular or irregular.
Synchronization

A parallel and distributed program can be divided into several different computational phases. To prevent
asynchronous message from different phases interfering with one another, it is important to synchronize all
processes or a group of processes. Usually, a simple command without any parameters, such as, ezsync, sync0,
gsync in EXPRESS, PICL, and iPSC respectively, can provide a transparent mechanism to synchronize all
the processes. However, there are several options that can be adopted to synchronize a group of processes.
In PVM, barrier, which requires two parameters barrier_name and num, blocks caller until a certain number
of calls with the same barrier name made. In PICL, barrierd synchronizes the node processors currently in
use. In iPSC, waitall and waitone allow the caller to wait for specified processes to complete.

Another type of synchronization is that one process is blocked until a specified event occurred. In PVM,
ready and wattuntil provide event synchronization by passing the signal. In ISIS, the order of events is
used to define wirtual synchrony and a set of token tools (e.g., t_sig, t_wait, t_holder, t_pass, t_request, etc.)
are available to handle it. In fact, event detection i1s a very powerful mechanism for exception handling,

debugging, as well as performance measurement.
Configuration, Control, and Management

The tasks of configuration, control, and management is quite different from system to system. A subset
of the configuration, control and management primitives supported by the studied software tools are such
as to allocate and deallocate one processor or a group of processors, to load, start, terminate, or abort
programs, and for dynamic reconfiguration, process concurrent or asynchronous file /O, nad query the

status of environment.



Exception Handling

In a parallel or distributed environments, it is important that the network, hardware and software failures
must be reported to the user’s application or system kernel in order to start a special procedure to handle
the failures. In traditional operating systems such as UNIX, exception handling is processed by event-based
approach, where a signal 1s used to notify a process that an event has occurred and after that a signal handler
is invoked to take care of the event. Basically, an event could be a hardware condition (e.g., bus error) or
software condition (e.g., arithmetic exception). For example, in the iPSC library, a user can attach a user-
specified routine to respond to a hardware exception by the handler primitive. In ISIS; a set of monitor
and watch tools are available to users. EXPRESS supports tools for debugging and performance evaluation.

PICL supports tools for event tracing.

3.2 Message-Passing Primitives

Based on the characterization of message-passing techniques used in parallel /distributed computing presented
in Table 1, we 1dentify the set of primitives which can efficiently implement the primitives supported by most
software tools for parallel and distributed computing. The services can be broadly classified as data transfer
services, synchronization services, system management/ configuration services and error handling services.
Data transfer services include point-to-point services for sending, receiving and exchanging messages and
group communication services for broadcasting and multicasting data (hep_send, hep_receive, hep_exchange,
hep_beast). Synchronization services allow a processor to lock resources so that no other processor can access
them(hep_barrier). This service enables mutually exclude access of resources shared between processors.
The hcp_barrier primitive enables a specified number of processor to synchronize at a logical barrier befo
re proceeding. System management/ configuration services (hep_probe, hep_msgstat, ...) include calls to
monitor sent and arriving messages, the current status of the network and hosts and to configure the hosts
into logi cal groups and for adding/ deleting hosts from/to these logical groups. Special error handling
services include the hep_signal primitive which sends a high priority message to all hosts to propagate any
error status and the hep_log/chkpt primitive to enable checkpointing and logging of previously specified data
for debugging purposes. When the hep_log/chkpt signal is sent, all processors dump this data into a lo g file
and proceed with their computation. In what follows, we describe how some of the services shown in Table 2

are implemented in HCP.

4 HCP Implementation Issues

In this section, we briefly describe the design of HIP to offload the protocol processing from the host and
the operation of HCP.

4.1 Host Interface Processor

HIP is a communication processor capable of operating in two modes of operation such that either or both
of these modes can be active at a given time. Figure 6 shows the block diagram of the main functional units

of the proposed HIP. The HIP design consists of five major subsystems: a Master Processing Unit (MPU),


















GA will read the frame. The FS field is used for acknowledgment; when a node receives erroneous frame, it
sets the FS field and the source will respond accordingly. In order to prevent duplicate frames being received

by a station, the one-bit field F/D is used to denote whether the received frame is new or duplicated.

4.4 Performance Results

We analyzed the performance of the proposed HLAN environment; in this paper, we summarize the main
results and the detailed analysis can be found in [5]. The results show that the application-to-application
bandwidth over the D-net is about 40-45 % of medium bandwidth, which is a significant improvement
compared with the performance of standard protocol implementation (which provides application with a
small fraction of medium speed, for example, about 10 % [12]). In addition, the networkwide bandwidth
provided by the D-net, which we define as the ratio of the total number of bits transmitted over the D-net
to the time taken for the transmission, can be even more than the medium bandwidth due to the concurrent
communication capability of HCP and HIP. Furthermore, for the case where interprocess communication is
directed only to neighboring node such that application processes are arranged to communicate in pipelined
manner, we can obtain even better performance. The networkwide bandwidths for this case are approxi-
mately proportional to the number of computers; the more computers we use, the more parallel connections
can be established. The networkwide bandwidth available for this case is much higher than the medium
bandwidth provided. For example, for a network with 15 computers, the effective application-to-application
transfer rates are approximately 690 Mbit/sec and 3.4 Gbit/sec for 100 Mbit/sec and 1 Gbit/sec channels
respectively. We also obtained the broadcasting rate over the S-net to be more than 80 % of 100 Mbps
channel and 35 % of 1 Gbps medium.

5 Application Example

In this section, we analyze the performance of the LU decomposition problem when it runs on the proposed
HPDC environment. LU decomposition problem forms an integral part of many scientific and engineering
problems to solve systems of linear equations takes advantage of the broadcast communication capability of

HCP.

5.1 Algorithm

Host-node programming model can be used, where the host program partitions the input data and distributes
it to node processors and collects the results from each node. We use the same node algorithm reported in

[4, 6] for our analysis as shown below:

if my_num =0  /* for the first block */
Factorize block 0 and obtain result A;
Broadcast A;
Update the remaining blocks;

Forstep i = 1 to N-n—1  /* for the subsequent blocks */
if my_num = i mod N
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Factorization Update

b(b+1)(3(m;(i—1)b)—b) b5 4+ 262(m — ib)

Table 3: Number of floating-point operations at each step of the LU algorithm

Table 3 shows the number of floating-point operations per block at step i for each computer. Using this
analysis, we can estimate the effective MFLOPS as follows:

(2/3) - m?

MFLOPSLy = T
LU

(1)

where the numerator represents the approximate number of floating-point operations involved in whole
computation, which can be approximated from Table 3 or can be found in [6]. Speedup performance can be

represented as

(2/3) - m® - (1/MFLOPSeomputer)
Tru

Speedupry =

where the numerator is the single computer execution time.
The speedup and effective MFLOPS are shown in Figures 13 and 14. In this analysis, 4 computers are

used with 20 and 40 MFLOPS respectively and channel bandwidths of 100 Mbps and 1 Gbps are assumed.

3 LU Decomposition on HLAN -- 4 nodes (20 MFLOPS) 60 LU Decomposition on HLAN -- 4 nodes (40 MFLOPS) 120
Speedur K Effective Speedlﬁ‘. )
DN MFLOPS Effective
2. TN 56 MFLOPS
! i 1 Gbit channel
26 ! *, 1 Gbit channel 50 25 ! TR 100
2.4f- 48 L
i I / 100 Mbit chan D S e -
220 e S By i e N 2r 00 Mbl chanel 80
5 100 Mhit channel I 40 //
i
1. /f 36 1.5 60
1.6] 32
1.4 / Block size =5 28 1 Block size =5 40
1.2] / 24 /
1 0.5
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Matrix size Matrix size

Figure 13: Effective MFLOPS for LU decomposition Figure 14: Effective MFLOPS for LU decomposition

(20 MFLOPS computers) (40 MFLOPS computers)
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6 Conclusion

The evolution of processor and networking technology has made the high-performance distributed computing
(HPDC) attractive and cost-effective. We envision that high-speed network will allow its users to treat
multiple computing resources as a single system rather than a network of computers.

In this paper, we proposed an architecture of high-speed local area network (HLAN) that capitalizes on
the current advances in processor technology, software and networking technology. The HLAN supports two
modes of operation: Normal-Speed Mode (NSM) where standard transport protocols are used to transmit
and/or receive data over a channel allocated to this mode; and High-Speed Mode (HSM) where processes
can access directly the HIP software layer to achieve the application-level transfer rates comparable to the
medium speed.

We analyzed the primitives, supported by existing parallel and distributed software tools and characterize
them into five categories; point-to-point communication, group communication, synchronization, configuration
/ control / management, and exception handling. Based on the analysis, we identified a set of primitives for
the proposed message passing interface.

We also demonstrated the performance gain of an application example running on the HLAN and showed
that the proposed HPDC environment is capable of providing supercomputing performance.

We are currently studying to implement the HCP protocol over the emerging ATM (Asynchronous Trans-

fer Mode) networks incorporating the D-net, S-net and the normal speed network into one network.
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