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William C. Purdy*
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Abstract

Montague’s linguistic theory provides a completely formalized account of lan-
guage in general and natural language in particular. It would appear to be espe-
cially applicable to the problem of natural language understanding by computer
systems. However the theory does not deal with meaning at the lexical level.
As a result, deduction in a system based on Montague semantics is severely
restricted. This paper considers lexical extension of Montague semantics as a
way to remove this restriction. Representation of lexical semantics by a logic
program or semantic net is complex. An alternative representation, called a se-
mantic space, is described. This alternative lacks the expressiveness of a logic
program but it offers conceptual simplicity and intrinsically parallel structure.

*School of Computer and Information Science, Syracuse University



1 INTRODUCTION

The purpose of this paper is to examine an approach to lexical semantics in relation to
Montague’s linguistic theory [12]. The discussion is informal, making use of examples
to illustrate the material. More precise treatment may be found in the references
provided.

Although developed in the context of Montague semantics, the approach is compatible
with recent work in the tradition of Montague such as that of Dowty [4], Keenan
and Faltz [8] and Hausser [7]. In any practical application, lexical semantics would
be integrated with morphological analysis such as that advanced by Dowty and by
Hausser.

1.1 A Brief Overview of Montgue Semantics

Montague’s linguistic theory, developed during the 1960’s, culminated in two defini-
tive papers: “Universal Grammar” [12], referred to as “UG”, and “The Proper Treat-
ment of Quantification in Ordinary English” [12], known as “PTQ.” In UG, Montague
characterizes his approach:

There is in my opinion no important theoretical difference between natu-
ral languages and the artificial languages of logicians; indeed, I consider
it possible to comprehend the syntax and semantics of both kinds of lan-
guages within a single natural and mathematically precise theory.

As such a radical premise would suggest, Montague’s approach differed sharply from
that of most natural language theorists. First, as with formal languages, the “surface”
structure of a natural language, rather than a hypothesized “deep” structure, is the
object of analysis. Second, adherence to the principle of compositionality dictates
a strict parallel between syntactic and semantic analysis. Third, all aspects of the
theory are completely formalized.

In PTQ Montague defined an English fragment to illustrate the theory. This fragment
also became known as “PTQ.” Although small, PTQ) was designed to embody many of
the hard problems that a theory of language must account for. Montague also defined
an intermediate language, the Intensional Logic (IL), to which PTQ is translated. IL
provides higher order logical operators, tense and modal operators and a possible-
worlds interpretation. The interpretation of IL, along with the translation of PTQ to
IL, induces an interpretation of PTQ).



This two-step interpretation of PTQ is not required by Montague’s theory. Direct
interpretation has equal status in the theory. However, a two-step interpretation does
provide certain advantages. Montague considered it important enough to give (in
UG) a general theory of translation and of interpretation mediated by translation.
Therefore, it is not inappropriate to characterize Montague’s linguistic theory as
comprising (see Figure 1)

1. structural (syntactic) analysis of expressions of the surface language
2. translation of these expressions to an intermediate language in accordance with

(a) the structural analysis
(b) formal translation rules selected by the structural analysis

(c) the principle of compositionality

3. interpretation of the intermediate language in a possible-worlds model

As Montague points out, use of an appropriate intermediate language such as IL pro-
vides a perspicuous semantic characterization of expressions in the object language.
Even more important, it seems clear that some such intermediate representation is a
necessary construct in a theory of a natural language faculty of either organism or
machine.

The semantics of PTQ can be understood by examining its translation rules. This
brief overview will consider only extensional constructs, thus ignoring a most im-
portant part of Montague’s contribution. However, it is adequate to motivate the
discussion of lexical semantics, which is the topic of this paper.}

Expressions of PTQ are classified according to syntactic category. Each category con-
tains basic expressions and phrases. The basic expressions are lexical items. Phrases
are combinations of lexical items. Among the simplest of basic expressions is the
common noun. A basic common noun translates to a unary predicate of IL, denoted
by the common noun with a prime appended. The unary predicate is interpreted
as a subset of individuals, i.e., an attribute. For example, the basic common noun
man translates to man’.? This is denoted man =7 man’. man’ is interpreted as a
particular subset of the universe.

Basic common nouns are syntactically primitive expressions from which more com-
plex syntactic structures (phrases) are formed. As a consequence of the treatment

1This discussion of Montague’s theory follows Dowty [5], using the modification of Bennett. To
simplify the presentation, intensional operators are eliminated.

2To reduce the use of quotation marks, words and strings in the surface language are written in
boldface. The corresponding IL expressions are boldface and primed.
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of semantic evaluation as parallel to structural analysis, basic common nouns are
semantically primitive as well. They are not decomposed by translation, but trans-
late to unanalyzed predicates of IL. Basic expressions treated in this way are called
nonlogical constants.

By contrast, logical constants are decomposed by translation. Determiners provide
examples. A determiner translates to an IL expression that is interpreted as a relation
between sets of individuals. For example, the determiner every translates to the IL
expression APAQVz[P(z) — Q(z)]. Since unary predicates are interpreted as sets
of individuals, it is easy to see that the translation of every is interpreted as the
inclusion relation.

The other determiners of PTQ are a and the. a is translated:
a =1 APAQ3z[P(z) A Q(z)).

the is translated:

the =1 APAQ3z[Vy[P(y) < y = z] A Q(z)],

or,?

the =1 APAQ[3z![P(z)] A Fz[P(z) A Q(=)]]-

The expressions to which determiners translate are examples of functors, expres-
sions that combine with other expressions to form more complex expressions. De-
terminers combine syntactically with common nouns to form noun phrases, called
term phrases in PTQ. In compliance with the principle of compositionality, transla-
tions of determiners combine with translations of common nouns to form translations
of term phrases. For example, the determiner every combines with the common
noun man to form the term phrase every man. Parallel to this structural op-
eration, APAQVz[P(z) — Q(z)] combines with man’ to form (APAQVz[P(z) —
Q(z)])(man’). The latter expression is interpreted as a set of sets of individuals, viz.,
the set of attributes possessed by every man.

Another important category of logical constants is the proper nouns and pronouns.
Since they are term phrases, playing the same syntactic role as every man, they
translate to IL expressions of the same type, viz., sets of sets of individuals. For
example,

John =1 AP[P(j)]

which is interpreted as the set of attributes possessed by the individual named by the
IL constant j. Similarly,*

hel =T AP[P(ZL‘l)]

A simple example to summarize the presentation thus far is given in Figure 2. The
surface string, Every man talks, has the structural analysis shown in Figure 2a.

33z![R(z)] is defined 3z[R(z) A Vy[R(y) — y = z]].
4Pronouns are subscripted in the structural analysis of a surface string to make the pronominal
reference unambiguous.



Each node of the tree corresponds to a formation rule. Figure 2b shows the parallel
formation of the translation.

1.2 Deduction and Montague Semantics

The previous example illustrates the important point that Montague’s theory is a
model theory, not a proof theory. IL is a term algebra: it has no axioms or identities®
that permit expressions to be established as equivalent. Equivalence and truth are
established in the model.

However, it is possible to provide IL with axioms that will permit inference in IL
[6]. This is a further advantage of an intermediate language. Provided with the
axioms of A-reduction, the expression of Figure 2 can be shown to be equivalent to

Vz[man'(z) —talk’(z))].

A more impressive example is the following. Mary loves every man who loves her,
which in PTQ takes the form Mary loves every man such that he loves her,
has a translation that is equivalent to Vy[man'(y)Alove'(y,m) — love'(m,y)]. (See
Appendix A for details of this and the following translations.) The PTQ sentences
John is a man and John loves Mary have IL images equivalent to 3z[man’(z) A
j = z] and love'(j, m), respectively. With the help of standard axioms of logic, the
conclusion love'(m, j) can be deduced.

1.3 Deduction and Lexical Semantics

Deductive capability seems a necessary part of a natural language faculty. Suppose
S is a set of English sentences which translate to the set S’ of IL formulas. The set
S’ determines a set W of contexts or world states in which each member of &’ is true.
Let £ be the set of all formulas that are true in W, i.e., the set of formulas entailed
by &’. The capability to recognize or generate (as the occasion demands) members
of £ is prerequisite to any useful response. Indeed the extent of those formulas of &’
that can be recognized or generated might be taken as an operational definition of
the extent to which the natural language faculty “understands S.”

One might conclude therefore that the mathematically precise theory of Montague
offers a most promising approach to realization of a natural language faculty in a
machine. But this optimistic conclusion is not wholly justified because deduction in

SIL does have a small number of “meaning postulates” (for an example, see Appendix A). How-
ever, these meaning postulates are simply terms that must be true in any interpretation and thus
restrict the possible interpretations of IL.



English
expression

syntactic
analysis

structural
analysis

Figure 1: Characterization of Montague linguistic theory
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IL is severely limited.

Continuing the previous example, consider the PTQ-like sentences An actor loves
Mary and Bill adores Mary with translations in IL equivalent to 3z[actor’(z)Alove’
(z,m)] and adore’(b, m), respectively. What can be deduced from these new sentences
in conjunction with the previous ones? One would wish that 3z[actor’(z)Alove’(m, z)]
(image of Mary loves an actor) and love'(m, b) (image of Mary loves Bill) could
be deduced since this is surely within the capability of a competent English speaker.

But clearly, since actor, man, adore and love are nonlogical constants, translat-
ing to actor/, man’, adore’ and love’ respectively, the desired deductions can-
not be made in IL with only the axioms of logic and A-reduction. Expressions
Vz[actor(z) — man’(z)] and VzVy[adore'(z,y) —love'(z,y)] are also needed.

This problem will be referred to as the problem of lezical semantics. The typical, if not
the only, solution to this problem has been the creation of a relational database into
which implicit definitions of lexical items, such as those of the previous paragraph,
are placed. The same database usually contains also any other knowledge thought to
be required by the system. The database may be called a semantic net, a relational
hierarchy, or a production system. In any case, this solution is less than ideal because
the structure is computationally unwieldy.



2 Approaches to Lexical Semantics

To illustrate the representation of lexical semantics by a relational database and to
introduce an alternative approach to lexical semantics, a running example will be
used. This example deals with English words for kinship.

The initial definition of the kinship vocabulary, shown in Figure 3, is taken from
Eugene Nida’s book, Compositional Analysis of Meaning [10).

The elements of the vocabulary are listed at the top of the table. “Diagnostic com-
ponents,” properties that distinguish elements of the vocabulary each from the other,
appear along the left side of the table. The body of the table indicates which diag-
nostic components characterize each vocabulary element.

Consideration will at first be restricted to consanguineal kinship (c-kinship). In a
later section, partial consanguineal relations will be added. Finally affinal kinship
will be considered.

2.1 Logic Programs

Considering kinship as a binary relation, c-kinship can be viewed as a relational
structure. Axioms of the structure define elements of the vocabulary. For example,
father' is defined by the axiom® father(z,y) « male(z) A prec(z,y) A LO(z,y) where
prec(z,y) asserts that z is of the generation preceeding that of y and LO(z,y) asserts
a direct lineal relation between z and y. If male(z,y) is taken to assert that z is
male, and application is defined to distribute over Boolean operations, the above can
be written more compactly father(z,y) « (male A prec A LO)(z,y). The axioms can
also be viewed as a logic program, viz., a logic definition of the lexical items of the
c-kinship vocabulary. Definition of c-kinship as a logic program is given in Figure 4.

A relation R; is said to be contained by or included in a relation R, if for all pairs
(z,y), Ri(z,y) = Ry(z,y). To illustrate this, c-kinship has been extended in Fig-
ure 4 to include definitions of the lexical items self, parent, child, sibling and
immediate family. From the definitions of these new lexical items it can be deduced
for example that sister(z,y) — sibling(z,y) and sibling(z,y) — immediate family(z, y).

This suggests an approach to deduction involving lexical items. Nida [10] shows how
linguistic analysis can identify diagnostic components for a given set of related lexical
items (a “semantic domain”). The kinship relations are an example. The derived
relational structure or logic program can then supplement the Intensional Logic to

SPredicates are written in sans serif type.



father mother uncle aunt brother sister son dagg,hter nephew niece cousin

male X X X X X

female X X X X X
X

prec.gen. X X X

same gen. X X

b o ke o Ko

succ.gen.

>4 >4

X
dir.lin. X X X

once rem.

twice rem.

>4

X A X

g M |4
Mxq >4 |4

consang. X X X
X

X
affinal X

Figure 3: Definition of Kinship Relations (from Nida)

male (z,y) V female (z,y)

male (z,y) — - female (z,y)

prec (z,y) V same (z,y) V succ (z,y)

prec (z,y) — - same (z,y) V - succ (z,y)

same (r,y) — = succ (z,y)

LO (z,y) V L1 (z,y) V L2 (z,y)

L0 (z,y) = -~ L1(z,y) A= L2(z,y)

L1 (z,4) — = L2 (2,7)

father (z,y) « male (z,y) A prec (z,y) A LO (z,y)
mother (z,y) «> female (z,y) A prec (z,y) A LO (z,y)
uncle (z,y) < male (z,y) A prec (z,y) A L1 (z,y)
aunt (z,y) + female (z,y) A prec (z,y) A L1 (z,y)
brother (z,y) « male (z,y) A same (z,y) A L1 (z,y)
sister (z,y) + female (z,y) A same (z,y) A L1 (z,y)
son (z,y) « male (z,y) A succ (z,y) A LO (z,y)
daughter (z,y) « female (z,y) A succ (z,y) A LO (z,y)
nephew (z,y) + male (z,y) A succ (z,y) A L1 (z,y)
niece (z,y) « female (z,y) A succ (z,y) A L1 (z,y)
cousin (z,y) « L2 (z,y)

self (z,y) « same (z,y) A LO (z,y)

parent (z,y) « prec (z,y) A LO (z,y)

child (z,y) « succ (z,y) A LO (z,y)

sibling (z,y) « same (z,y) A L1 (z,y)

immediate family (z,y) « LO (z,y) V (same (z,y) A L1 (z,y))

Figure 4: C-kinship as a Logic Program



extend the deductive capability. To illustrate, c-kinship is given in clausal form in
Figures 5 and 6. Examples of deduction using resolution are shown in Figures 7 and

8.

The obvious advantage of a logic program as a representation of lexical semantics is
its expressiveness. For example, it can be asserted that the parent relation is inverse
to the child relation:

parent(z,y) « child(y, z)

Or, it can be asserted that the uncle relation entails a brother relation:

uncle(z,y) — 3z[brother(z, z))

There are also disadvantages. Some are illustrated by the examples of deduction. In a
resolution based system, special procedures are required to avoid infinite loops when
if and only if definitions are used. When the system is restricted to Horn clauses,
assertion of disjunctions is awkward.

In any case, deduction is computationally quite complex, even for simple vocabularies,
as shown by the examples.

2.2 Semantic Networks

Another representation of lexical semantics should be mentioned: the semantic net-
work. There is not a consensus on exactly what constitutes a semantic network. A

number of definitions are found in the literature [1]. One representation for c-kinship
is the AKO (a-kind-of) network.

AKO networks are limited in what they can represent. However, Deliyanni and
Kowalski [2] have shown that an appropriately extended form of semantic network
has all the expressive capability of clausal form logic. Indeed, they show that their
extended semantic network can be regarded as a syntactic variant of clausal form
representation.

It is reasonable to assume that more restricted forms of semantic networks will be
equivalent to similarly restricted clausal form logic. Therefore, semantic networks,
while enjoying a certain graphic appeal, share the computational complexity of clausal
form representations of lexical semantics.
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male (z,y), female (z,y)

-male (z,y), -female (z,y)

prec (z,y), same (z,y), succ (z,y)

-prec (z,y), -same (z,y)

-prec (2, 1), -succ (z, )

-same (z,y), -succ (z,y)

LO (z,y), L1 (=,y), L2 (z,y)

-L0 (:C, y)v -L1 (x,y)

L0 (2,9), -L2 (2,9)

-L1 (a:,y), -L2 (:c,y)

-father (z,y), male (z,y)

-father (z,y), prec (z,y)

-father (z,y), LO (z,y)

father (z,y), -male (z,y), -prec (z,y), -LO (z,y)
-mother (z,y), female (z,y)

-mother (z,y), prec (z,y)

-mother (z,y), LO (z,y)

mother (z,y), -female (z,y), -prec (z,y), -L0 (z,y)
-uncle (z,y), male (z,y)

-uncle (z,y), prec (z,y)

-uncle (z,y), L1 (z,y)

uncle (z,y), -male (z,y), -prec (z,y), -LL (2,)
-aunt (z,y), female (z,y)

-aunt (z,y), prec (z,y)

-aunt (z,y), L1 (z,y)

aunt (z,y), -female (z,y), -prec (z,y) -L1 (z,y)
-brother (z,y), male (z,y)

-brother (z,y), same (z,y)

-brother (z,y), L1 (z,y)

brother (z,y), -male (z,y), -same (z,y), -L1 (z,y)
-sister (z,y), female (z,y)

-sister (z,y), same (z,y)

-sister (z,y), L1 (z,y)

sister (z,y), -female (z,y), -same (z,y), -L1 (z,y)

Figure 5: C-Kinship in Clausal Form (First Half)
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-son (z,y), male (z,y)

-son (z,y), succ (z,y)

-son (z,y), LO (z,y)

son (z,y), -male (z,y), -succ (z,y) -L0 (z,y)
-daughter (z,y), female (z,y)

-daughter (z,y), succ (z,y)

-daughter (z,y), LO (z,y)

daughter (z,y), -female (z,y), -succ (z,y), -LO (z,y)
-nephew (z,y), male (z,y)

-nephew (z,y), succ (z,y)

-nephew (.’L‘, y)' L1 (1"’ y)

nephew (z,y), -male (z,y), -succ (z,y), -L1 (z,y)
-niece (z,y), female (z,y)

-niece (z,y), succ (z,y)

-niece (z,y), L1 (z,y)

niece (z,y), -female (z,y), -succ (z,y), -L1 (z,y)
-cousin (z,y), L2 (z,y)

cousin (z,y), -L2 (z,y)

-self (z,y), same (z,y)

-self (z,y), LO (z,y)

self (z,y), -same (z,y), -L0 (z,y)

-parent (z,y), prec (z,y)

-parent (z,y), LO (z,y)

parent (z,y), -prec (z,y), -L0 (z,y)

-child (z,y), suce (z,y)

-child (z,y), LO (z,y)

child (z,y), -succ (z,y), -LO (z,y)

-sibling (z,y), same (z,y)

-sibling (z,y), L1 (z,y)

sibling (z,y), -same (z,y), -L1 (z,y)
-immediate family (z,y), same (z,y), LO (z,y)
-immediate family (z,y), LO (z,y), L1 (z,y)
immediate family (z,y), -L0 (z,y)

immediate family (z,y), -same (z,y), -L1 (z,y)

Figure 6: C-Kinship in Clausal Form (Second Half)
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Example 1. Father’ entails parent’

(1) father (a,b)

(2) -parent (a,b)

(3) -father (z,y), prec (z,y)

(4) -father (z,y), LO (z,y)

(5) parent (:c,y). -prec (a:,y), -LO (xiy)
(6) -prec (a,b), -LO (a,bd)

(7) -parent (z,y), prec (z,y)

(8) -parent (a,b), -LO (a,b)

(9) -prec (a,b), -LO (a,bd)

(10) -parent (a,b), -LO (a,d)

(loop)
(7') prec (a,b)
(8") LO (a,d)
(9) -LO (a,d)
(10O

Example 2. Child’ entails immediate family’

(1) child (a, b)

(2) -immediate family (a, b)

(3) ~child (z,7). L0 (z,3)

(4) LO (a,bd)

(5) immediate family (z,y), -LO (z,y)
(6) immediate family (a, d)

(7) o

Figure 7: Deduction Using Resolution

denial
denial
given
given
given
from (2,5)
given
from (6,7)
from (5,8)
from (7.,9)

from (1,3)
from (1,4)
from (6,7')
from (8',9)

denial
denial
given
from (1,3)
given
from (4,5)
from (2,6)



2.3 Semantic Spaces

Consider the interpretation implied by Nida’s definition of c-kinship. Let H be a set
of individuals. The power set 2¥*H represents the set of all binary relations on H.
Indeed, a binary relation is typically identified with the set of pairs that satisfy it.
For example, prec is identified with the set {(z,y) € H x H|prec(z,y)}.

Let S C H x H be a subset of consanguineal pairs such that {prec,same,succ} parti-
tions S. That is,

1. precUsameUsucc =S

2. prec N (same U succ) =
same N succ = §

3. prec£ 0
same # 0
succ # 0

Let {L0,L1,L2} and {male,female} also partition S.

S can be diagrammed as in Figure 9a, or to suggest a multidimensional space, as in
Figure 9b. In this multidimensional space, subspaces or subsets are denotations of
c-kinship relations. For example, the subspace parent = precN L0 is the denotation of
parent’. Some examples of subspaces are given in Figure 10.

Thus a subspace can be viewed as the extension or meaning of the associated lexical
item. Moreover, relations between subspaces can be viewed as relations between
meanings. Let R; and R; be any c-kinship lexical items, R,’ and R’ their respective
translations, and R; and R, their respective denotations (subspaces). (Cf. Figure 1.)
Then R, entails R, if and only if V(z,y) : R"1(z,y) — R’2(z,y) if and only if R, C R,.
Thus subspace inclusion can be viewed as entailment or meaning inclusion. Similarly,
subspace exclusion (disjointness) can be viewed as contradiction. The intersection of
two subspaces can be viewed as the meaning common to the corresponding lexical
items.

In the c-kinship space, inclusion, exclusion, intersection and the like can be determined
quite directly. The examples of Figure 11 illustrate this. Since these examples were
used as illustrations of deduction with the logic program for c-kinship, they also afford
a comparision of the two representations.

The partitions that subdivide the multidimensional space in the preceeding example
have an important property that was not made explicit. Residence in any given block
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of the partition {prec,same,succ} in no way restricts residence in any block of the
partition {LO,L1,L2}. A similar assertion holds for any subset of the three partitions.
This property is called independence.

More precisely, let B = {P;]i € I} be a set of partitions of a set S, where P, = {p!|j €
J:}. Then B will be said to be independent if and only if for any finite I' C I and for
any j; € Ji, Nier P! is nonempty.”

An independent set of partitions of a set S will be called a basis of S. The partitions
of a basis of S define dimensions of S. Their blocks correspond to the coordinate
values. Thus each partition can be viewed as a dimension of meaning. The blocks
can be viewed as mutually antonymous “primitive” meanings.

Geometrically each block can be thought of as a hyperplane orthogonal to a coordinate
axis. These hyperplanes are the simplest subspaces. Next in order of simplicity are
those subspaces that can be expressed as the intersection of such hyperplanes, one or
the union of several from each dimension.

In the c-kinship space defined previously, prec corresponds to a plane orthogonal
to the “generation” axis. The intersection of prec, L0 (a plane orthogonal to the
“lineality” axis) and male U female (union of planes orthogonal to the “gender” axis)
is the subspace previously identified as the extension of parent’. Such subspaces are
analogous to convex subspaces. They will be called “elementary subsets.”

More precisely, if B = {P;|i € I} is a basis of S where P; = {p|j € J;}, then an
elementary subset of S relative to the basis B is a subspace z that can be represented
z = Nier Uje s pl where J? C J;.

The smallest nonempty elementary subsets are the intersections of hyperplanes where
exactly one hyperplane is orthogonal to each coordinate axis. These elementary
subsets are called atoms. For example, father = prec N L0 N male is an atom.

7In this paper it will be assumed that all partitions are finite and all sets of partitions are finite.
Therefore B is independent if and only if for any selection of j; € J;, for each § € I, ﬂ,-e [Pl is
nonempty.
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Example 3. Uncle’ entails - immediate family’

(1) uncle (a,b) denial

(2) immediate family (a,b) denial

(3) -uncle (z,y), prec (z,y) given

(4) -uncle (z,y) L1 (z,y) given

(5) prec (a,b) from (1,3)
(6) L1 (a,b) from (1.4)
(7) -immediate family (z,y), same (z,y), LO (z,¥) given

(8) same (a,bd), LO (a,b) from (2,7)
(9) -prec (z,y), -same (z,y) given

(10) -same (a, b) from (5,9)
(11) LO (a,bd) from (8,10)
(12) -LO (z,y), -L1 (z,y) given

(13) -L0 (a,b) from (6,12)
(14) o from (11,13)

Figure 8: Deduction Using Resolution (continued)
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male female
LO | father self son mother self daughter
L1 uncle brother nephew aunt sister niece
L2 cousin cousin cousin cousin cousin cousin
prec same succ prec same succ
(a) Planar Representation
LO /
L1
/’emale
L2 male
prec same succ

(b) Spatial Representation

Figure 9: C-Kinship as a Multidimensional Space
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Figure 10: Subspaces of the C-Kinship Semantic Space
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Example 1. Father’ entails parent’

(1) father’ — prec N LO N male
(2) parent’ — prec N LO

3) prec N LO N male C prec N LO
(

Example 2. Child’ entails immediate family’

(1) child’ + succ N LO
(2) immediate family’ — L0 U same N L1
(3) succN L0 C LO C LOUsameN L1

Example 3. Uncle’ entails - immediate family’

(1) uncle’ — prec N L1 N male
(2) immediate family’ — L0 U same N L1

(3) (prec N L1 N male) N (LO U same N L1)
= (prec N LO N L1 N male) U (prec N same N L1 N male)
=0

Figure 11: Entailment as inclusion
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3 A Normal Form

Any arbitrary subspace is a union of elementary subsets. Trivially, any subspace is a
union of atoms. In general, there are many distinct sets of elementary subsets each
having as its union the same subspace. For example,

{prec N LO,same N L0, succ N LO,same N L1}

{(prec Usucc) N L0,same N (LOU L1)}

{LO,same N L1}

{L0,samen (LOU L1)}

are each a set of elementary subsets whose union is immediate family.

If z is an arbitrary subspace and y is an elementary subset contained in z, then y is
mazimal in z if no other elementary subset z in x properly contains y. That is, if for
every elementary subset z C z, y C z C = implies z = y, then y is maximal in z.

An elementary subset was defined as a subspace that can be represented as an inter-
section of unions, where each union consists of blocks from a given partition and the
intersection ranges over all partitions in the basis. That is, elementary subset z can
be represented = = (Y;¢; Ujess . It can be shown [11] that this representation, called
the standard form for elementary subset z, is unique. An equivalent representation
that would be convenient for machine implementation is the sequence (J¥);e;.

It can also be shown [11] that if z is an arbitrary subspace the set of elementary
subsets that are maximal in z is unique to z. Thus any subspace is the union of a
unique set of maximal elementary subsets, each of which has a unique standard form.
The set of maximal elementary subsets of a subspace therefore constitutes a unique
representation or normal form for that subspace. Consequently each extension or
meaning has a normal form.

Continuing the running example, immediate family has the normal form

{LO,same N (LOU L1)}

or, putting each elementary subset in standard form,®

{(prec U same U succ) N LO N (male U female),same N (LO U L1) N (male U female)}.
Notice that no elementary subset in immediate family properly contains either of
the elementary subsets in the normal form. Moreover, every elementary subset in
immediate family is contained in one of the elementary subsets in the normal form.

The normal form of a subspace z will be denoted NV (z).

8The expression {L0,same N (LOU L1)} provides all the information that the expression {(precU
same Usucc) N LO N (male Ufemale),same N (LO U L1) N (male Ufemale)} does. The first form will be
called the abbreviated standard form. The definition is as follows. Let i € I* if and only if JF # Ji.
Then z = (= Uje s 7. is the abbreviated standard form for z.
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Having defined a normal form for subspaces of the multidimensional space of lexical
meaning, the next task is to identify useful operations under which the set of normal
forms is closed.

In the simple case of elementary subsets, geometric intuition may be invoked. Let
z and y be elementary subsets with standard forms (e Ujess p} and NerUje 7 P
respectively. One is easily convinced by geometrical considerations that z Ny is also
an elementary subset and moreover that its standard form is (ie; Ujeszngy 1. (See
Figure 12 for an example.) That is, intersection of elementary subsets is computed
componentwise. This result will not be proved here. However, this and all subsequent
results leading to a Boolean algebra of normal forms are proved in [11].

Now consider the elementary subset z; = Uj¢(;- Jz) pf . From the previous result, it
follows that z N z; = 0 (the null subspace) for each ¢ € I, since J¥ N (J; — J¥) = 0.
Since the distributive law holds for the multidimensional space, z N (U;er ;) = 0 as
well. Further, z U (U;¢; z:) = 1 (the unit subspace). Thus, ;s 2 is the complement
of subspace z. (See Figure 13 for an example.) The complement will be denoted
—z. Of course, —z is not in general an elementary subset. But notice that the z; are
maximal in —z and are irredundant. Therefore, {z;|i € I} = N(—z). For the special
case where z is an elementary subset, define ~ A (z) = {U;g;-ss) P!1i € I}. Then if
T is an elementary subset, N'(—z) =~ N (z).

Next consider arbitrary subspaces r and y with M (z) = {z;,23,...,Zn} and N (y) =
{v1,¥2,--.,w}. Since by definition z =z Uz2U:-- Uz, and y = 3 Uy U-- Uy, it
follows by distributivity that Ny = M<r<m1<9<1 Tr N ¥g. Each of the z, Ny, is an
elementary subset. Moreover, the set {z, Ny,|]1 < r < m,1 < g <1} contains all the
maximal elementary subsets in z Ny. It does not, however, contain only the maximal
elementary subsets. Therefore, letting irr be the operation that removes subsumed
elements, M(z Ny) = irr{z, Ny,|l < r < m,1 < ¢ < [}. Define N(z)AN(y)
= irr{z, Ny,|1 <r <m,1 < ¢ <!}. Then the set of normal forms is closed under A
and N(z Ny) = N(z)AN(y).

By De Morgan’s law, —z = —z,N—2z,N- - -N~2,,, where each —z, is the complement of
an elementary subset. Applying the result for intersection of normal forms, N (—z) =
N(=z1)A: - AN (=z4) or ~ N(z) =~ N(21)A- A ~ N(2). Thus ~ is defined

for arbitrary subspaces as well as elementary subsets.

The set of normal forms is closed under a complement operation ~ and an intersection
operation A. A direct union operation for normal forms cannot be obtained. However,
it can be shown that N(z Uy) =~ (~ N(z)A ~ N (y)). Therefore a union operation
for normal forms is defined M(z)¥N (y) = ~ (~ N(z)A ~ N (¥)).

These results may be summarized as follows. Given a multidimensional space of
lexical meaning defined by some basis, the set of normal forms along with operations
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A, Y and ~ form a Boolean algebra.

Inclusion between normal forms can be defined: M (z) < N (y) if and only if N'(z) AN (y)
= N(z). Thus M (z) < N(y) is equivalent to z C y.

Two examples based on c-kinship will illustrate these results. (See Figure 14.) Each

demonstrates computation of a union of subspaces. In both cases the resulting sub-
space is immediate family.
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Figure 12: Example of Intersection of Elementary Subsets
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Example 1.

Let M(z) = {L0} and NV (y) = {samen L1}
Then ~ M(zUy) = {L1U L2}A{prec U succ,LOU L2}
= irr{L2, (prec Usucc) N (L1U L2)}
Hence M(zUy) = {LOUL1}A{LO,same}
= irr{L0,same N (LOU L1)}
= {L0, (L0 U L1) N same}

The result is the set of maximal elementary subsets of the subspace
immediate family.

Example 2.

Let M(z) = {(prec Usame) N LO,same N (LOU L1)} and N (y) = {succ N LO}
Then ~ N(z Uy) = {succ,L1 U L2}A {prec Usucc,L2}A {prec Usame,L1U L2}

= irr{L2, (prec U same) N L2, (prec U succ) N (L1U L2),

prec N (L1 U L2), suce N L2,succ N (L1U L2)}

= {L2, (prec Usucc) N (L1UL2)}
Hence M(zUy) = {LOUL1}A {same, L0}

= irr{L0,same N (LO U L1)}

= {L0,sameN (LOU L1)}

Again the result is the normal form of subspace immediate family.

Figure 14: Boolean Operations on Normal Forms
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4 The Lexicon

Given a set of lexical items, such as the words denoting c-kinship, distinguishing
properties (i.e., diagnostic components) can be determined by linguistic analysis.
These distinguishing properties can then be organized into sets that partition the
entities modeling the lexical items. It is possible to select a subset of these partitions
that has the property of independence. Such a set is called a basis. It structures
the universe to yield a multidimensional space. Subspaces of the multidimensional
space are uniquely represented by normal forms, for which a Boolean algebra can be
defined. The multidimensional space so formed will be called a semantic space.

Linguistic analysis provides definitions of the lexical items in terms of (specifically,
as Boolean functions of) the distinguishing properties. These definitions can be used
to define a mapping from basic expressions of IL to the Boolean algebra of normal
forms. This mapping will be called a lezicon for the vocabulary of lexical items.

Let the mapping be denoted v. Then the following definitions can be made. Rel-
ative to the basis that defines the semantic space, basic expressions z’ and y’ are
synonymous if and only if v(z') = v(y'); 2’ and y’ are contradictory if and only if
v(z')Av(y") = 0; z' entails y’ if and only if v(z') < v(y’), that is, if and only if
v(z')Av(y’) = v(z') or equivalently, v(z’)A ~ v(y’) = 0.

The mapping v can be extended to nonlogical constants of PTQ by defining v(z) =
v(z’) if z is a nonlogical constant of PTQ and ¢ =7 z’. The definitions of synonymy,
contradiction and entailment are similarly extended.

Definition of a lexicon for c-kinship is given in Figure 15.

It is to be noted that the basis selected for construction of the semantic space of
lexical meaning will determine the precision of the meanings associated with the
lexical items. Therefore, meaning equivalence and meaning inclusion are understood
relative to the basis. Equivalence or inclusion relative to a given basis may not hold
relative to a refinement of that basis. Thus a notion of learning or development is
inherent in this theory.

This approach to lexical semantics seems to have some advantages over the relational
structure described in Section 2. Because unique normal forms can represent mean-
ings, determination of synonymy, contradiction and entailment is computationally
more straightforward. Even the inverse process of selecting a lexical item or an ex-
pression in lexical items, given a meaning, might be facilitated. It would also appear
that this advantage will be more pronounced the larger the set of lexical items (i.e.,
semantic domain) becomes.

An inherent disadvantage of this approach relative to that employing logic pro-
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B= {P11P2,P3}

P, = {prec, same, succ}

P, ={L0, L1, L2}

P; = {male, female}

v: father’ — prec N LO N male
mother’ — prec N LO N female
uncle’ — prec N L1 N male
aunt’ — prec N L1 N female
brother’ — same N L1 N male
sister’ — same N L1 N female
son’ — succ N LO N male
daughter’ — succ N LO N female
nephew’ — succ N L1 N male
niece’ — succ N L1 N female
cousin’ — L2
self’ — same N LO
parent’ — prec N LO
child’ — suce N LO
sibling’ — same N L1
immediate family’ — L0 U same N L1

Figure 15: Lexicon for C-Kinship
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grams is its limited expressiveness. While a logic program permits assertions such as
parent(z,y) « child(y,z) and uncle(z,y) — 3z[brother(z, z)}, a semantic space can-
not explicitly represent such knowledge. However, as the next definition of c-kinship
demonstrates, it is sometimes possible to implicitly represent such knowledge.

Consider a set S C H x H comprising three generations of blood kin. For : = 1,2,3,
define:

Li = {(z,y) € S|the join of z and y in the family tree is a distance i from z}

Ri = {(z,y) € S|the join of z and y in the family tree is a distance 7 from y}

It will be assumed that S is partitioned by P, = {L0,L1,L2}, P, = {RO,R1,R3} and
P; = {male,female}. As a consequence, B = {P,, P2, P3} is a basis of S. The semantic
space is shown in Figure 16.

This basis defines a structure that is better than the first one in several ways. First,
the meanings are grouped more simply: cousin occupies just two atoms; immediate family
is now an elementary subset, viz., (LOU L1) N (RO U R1). Second, Li N Rj is inverse
to Lj N Ri. For example, L1 N R2 is the extension of uncle or aunt. The inverse
c-kinship relation is nephew or niece which has the extension L2ZNR1. Thus knowl-
edge about inverse c-kinship relations is implicit in this semantic space. Third, LiNRj
where 1 # 0 # j implies the existence of a sibling relation.

The basis defining this space and the underlying linguistic analysis seem to more fully
represent the meanings of c-kinship relations. It is likely that a similar circumstance
will obtain in most semantic domains. Therefore, the empirical linguistic analysis
underlying construction of a lexicon seems to be a procedure requiring experience
and good judgment.

28



male female

Lo self father | gfather self mother | gmother

L1 son brother uncle | daughter | sister aunt

LO | grandson | nephew | cousin ]gdaughter| niece cousin
RO R1 R2 RO R1 R2

Figure 16: A Second Basis for C-Kinship
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5 Further Development of the Theory of Seman-
tic Spaces

The theory of semantic spaces will be developed further with the help of two exten-
sions of the running example. The first involves partial consanguineal relations. The
second deals with affinal relations.

5.1 Extension to Partial Consanguineal Kinship

Relative to both of the bases considered thus far, half blood relationships would be
synonymous with full blood relationships. For example, half-brother and full-brother
would both have the extension sameNL1Nmale. The extension of c-kinship to include
new lexical items denoting half blood relationships will be referred to as extended con-
sanguineal kinship or ec-kinship. A new basis will be defined with sufficient detail
to differentiate between half and full blood relationships. This will be accomplished
by specifying not only the length of the path from individual z to a nearest common
ancestor of individuals z and y, but also the kinds of ancestors on that path. For
example,

LMP = {(z,y) € S|the path from z to a nearest common ancestor of z and y contains
z, the mother of z and the maternal grandfather of z; and there is no other path of
length 2}

LMB = {(z,y) € S|the paths from z to nearest common ancestors of  and y contains
z, the mother of z and both maternal grandparents of z}

LP = {(z,y) € S|the path from z to a nearest common ancestor of z and y contains
z and the father of z; and there is no other path of length 1}

L = {(z,y) € S|the join of z and y is z}

The complete partition is P, = {L,LM,LP,LB,LMM,LMP,LMB,LPM,LPP,LPB}. The
partition P, = {R,RM,RP,RB,RMM,RMP,RMB,RPM,RPP,RPB} is defined analogously
for the right member y. The third partition is P; = {male,female}. The subdivision
of S produced by these partitions is shown in Figure 17.

It is apparent from the figure that these partitions are not independent and therefore
do not form a basis of S. While P, and P; are independent, neither P, and P, nor P,
and P; are. As a result, distinct standard forms do not represent distinct elementary
subsets. For example,

father = L N RP N male

= (LULM) N RP Nmale

= (LULM) N (RPURB) N male
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LP

LB

LMM

LMP

LMB

LPM

LPP

LPB

male
t
self @ |father| 0 0 ::grer; 0 0 :f:tehr:, 0
half half half
son brother 0 0 uncle 0 0 uncle 0 0
half half half
son 0 lbrother 0 0 uncle 0 0 uncle 0
0 0 0 |brotherq @ O luncle| 0 0 uncle
half half half
gson nephew| 0 0 cousin 0 0 cousin 0 0
half half half
gson 0 Inephew| 0 0 cousin 0 0 cousin 0
0 0 0 [nephew 0 @ |cousin| 0 @ |cousin
half half half
gson nephewl 0 0 cousin 0 0 cousin 0 0
half half half
gson 0 [nephew 0 0 cousin 0 0 cousin 0
0 0 0 nephev1 ] @ |cousin| @ @ |cousin
R RM RP RB RMM RMP RMB RPM RPP RPB

Figure 17: Partitions of the Ec-Kinship Universe
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Consequently, equality is not the same as identity.

To remedy this, a basis is formed from P, and P;. B = {P,, P;} will be called the
first level basts. Next each subdivision defined by B is examined. These subdivisions
are called the atoms defined by B. Consider the atom a; = LB Nfemale. Blocks of P,
that have nonempty intersection with this atom are RB, RMB and RPB. Moreover,
{RB,RMB,RPB} partitions a7. B; = {{RB,RMB,RPB}} will be called a second level
basis. Each of the atoms defined by B may have a basis. In the present example
the second level bases are denoted By, B,,...,B;,. There are only two levels. The
subdivision produced by this system of bases is shown in Figure 18.

The collection {B, By, By, ..., By} will be referred to as an eztended basis of S. An
extended basis can be indexed by a tree domain. That is, the bases may be viewed
as labels on the nodes of a tree whose root has the first level basis as its label.

Such an embedding of semantic spaces is typical. A simple example is the following.
The domain of physical entities might be partitioned by P; = {animal,vegetable,mineral}
and again by P, = {count,mass}. Assuming that every combination is possible,
{P,, P2} is a first level basis of the domain, defining nine atoms: animal N count,
animal N mass, ..., mineral N mass. Each atom is itself a domain and can be parti-
tioned by attributes appropriate to it. Hence each atom has a (in general distinct)
basis. This subdivision can continue through a number of levels.

While the extended basis shown in Figure 18 does indeed yield a multidimensional
space, it does not structure the subspaces neatly. For example,

half-cousin = [(LMM N (male U female)) N (RMM U RPM)] U [(LMP N (male U female)) N
(RMPURPP)JU[(LPM N (male Ufemale)) N (RMM URPM)] U [(LPP N (maleUfemale)) N
(RMP U RPP)).

A similar deficiency was found in the first basis for c-kinship:

{{prec,same,succ}, {LO,L1,L 2}, {male,female}}.

The alternative basis

{{L0,L1,L2}, {RO,R1,R2}, {male,female}}

yielded a neater structure. This latter basis can be taken as a first level basis and
refined by second level bases to distinguish between half and full blood relationships.
The resulting extended basis for ec-kinship is:

B = {{L0,L1,L2}, {RO,R1,R2}, {male female}}

B; = {{RMP,RPP}}

By = {{LM,LP,LB}}

Bs = {{LM,LP,LB}, {RMX,RPX}}

Bg = {{LMM,LMP,LMB,LPM,LPP,LPB}}

By = {{LMM,LMP,LMB,LPM,LPP,LPB}, {RMX,RPX}}

where RMX = RMM URMP URMB and similarly for RPX. The modified multidimen-
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LMP

LMB

LPM

LPP
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male female

R RP RMP RPP R RM RMM RPM
atern |patern matern | patern
self | father bather LVather self | mother gmothergmother
R RM RMM RPM R RM RMM RPM
son | half | half | half daughtel half | half | half
brother | uncle | uncle sister | aunt aunt

R RP RMP RPP R RP RMP RPP
son | half | half | half Haughteq half | half | half
brother | uncle | uncle 1 sister | aunt aunt

RB RMB RPB RB RMB RPB

brother uncle uncle sister aunt aunt
R RM RMM RPM R RM RMM RPM
gson | half | half | half gdauter] half | half | half
nephew | cousin | cousin niece | cousin | cousin

R RP RMP RPP R RP RMP RPP
gson | half | haif | half Jgdau'te, half | half | half
nephew | cousin | cousin niece | cousin | cousin

RB RMB RPB RB RMB RPB
nephew cousin cousin niece cousin cousin
R RM RMM RPM R RM RMM RPM
gson | half [ haif | half [gdau'ter] half | half | half
nephew | cousin | cousin r niece |cousin | cousin

R RP RMP RPP R RP RMP RPP
gson | half 1 half | half |gdau'ter] half | half | half
nephew | cousin | cousin niece | cousin | cousin

RB RMB RPB RB RMB RPB
nephew cousin cousin niece cousin cousin

Figure 18: Ec-Kinship as a Multidimensional Space
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sional space is shown in Figure 19.

Relative to this basis,

half-cousin = (L2 N R2 N (male U female)) N (LMM U LMP U LPM U LPP).

It should be pointed out that all the results stated earlier for a simple basis hold as
well for an extended basis. Each subspace has a normal form. The Boolean operations
(suitably extended to observe the embedded structure of the multidimensional space)
and the set of normal forms yield a Boolean algebra. (See [11] for definitions and
proofs.)

5.2 Extension to Affinal Kinship

Consideration has been restricted to consanguineal or blood kinship, extended to
recognize half blood kinship. Affinal relationships, established by marriage of persons
unrelated by blood, have not been considered. Affinal kinship will be referred to as
a-kinship.

It is possible to define any affinal relationship between individuals z and y by speci-
fying two consanguineal relationships:

1. that between z and the relative w involved in the affinal bond, and

2. that between w’s marriage partner z and y.

Some examples will clarify this.

father-in-law(z, y) if parent(z, w) A spouse(w, z) A self(z,y) A male(z,y)
step-brother(z, y) if child(z, w) A spouse(w, 2) A parent(z,y) A male(z,y)
wife(z, y) if self(z,w) A spouse(w, z) A self(z,y) A female(z,y)

Either of the definitions for c-kinship could be used to construct a basis for a-kinship.
For example, the basis B = {P,, P,, P3, Py, Ps} where P, = {LLO,LL1,LL2}, P, =
{LRO,LR1,LR2}, P; = {RLO,RL1,RL2}, P, = {RRO,RR1,RR2} and P; = {male,female}
yields the 5-dimensional space shown in Figure 20. Notice that many of the relation-
ships represented have no English words denoting them. They are all possible rela-
tionships, however, and could be expressed by paraphrase. For example, the subspace
LLINLRINRLINRR1INmMale is the denotation of the phrase sibling’s brother in law.
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RVP RPP
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Figure 19: Another Basis for Ec-Kinship
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Figure 20: A-Kinship as a Multidimensional Space
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6 The Role of the Lexicon

A semantic space will in general contain many levels of embedding. For example,
a general kinship space comprising extended consanguineal and affinal relationships
might combine the previously defined spaces as follows.

B = {P,, P,} where P, = {cons,affin} and P, = {male,female}

B1 = {Pu, Plz} where Pn = {LO,Ll,L2} and Pn = {RO,Rl,R2}

B13 = {Plal} Where P131 = {RMP,RPP}

B15 = {P151} where P151 = {LM,LP,LB}

B16 = {P161,P162} where P161 = {LM,LP,LB} and P162 = {RMX,RPX}

B,g = {Pys,} where Pig; = {LMM,LMP,LMB,LPM,LPP,LPB}

Blg = {PIQI) P192} where P191 = {LMM,LMP,LMB,LPM,LPP,LPB} and P192 = {RMX,
RPX}

B3 = {P31,P32,P33, P34} where P31 = {LLO,LLI,LL2}, P32 = {LRO,LRI,LR2}, P33 =
{RLO,RL1,RL2} and Ps, = {RRO,RR1,RR2}

B, is similar to B; and Bj is similar to B;. (That is, the “female” atoms are parti-
tioned like the “male” atoms.)

The tree indexing for this extended basis for the kinship space is shown in Figure 21.

Some idea of the embedding in a complete space of lexical meaning is conveyed by the
semantic domains defined by Nida for classification of lexical meaning of Koine Greek
[10]. This classification may not be ideal data for construction of an extended basis. It
is possible that it would yield a poorly structured space as did the initial classification
of c-kinship. It does however illustrate the embedding of semantic domains starting
with the most general.

The following list includes only the highest levels. For more detail one can consult
[10] and further references given there.

1. Entities

(a) Inanimate

i. Natural
A. Geographical
B. Natural substances
C. Flora and plant products
ii. Manufactured or constructed
A. Artifacts
B. Processed substances
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Bl B2 B3

Bl3 BIS B16 BIB B19 B23 B25 BZG B28 BZQ

Figure 21: Tree Indexing of the Extended Basis for Kinship
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C. Constructions
(b) Animate
i. Animals, birds, insects

ii. Humans
A. Generic and distinctions by age and sex
B. Kinship
C. Groups
D. Body, body parts and body products

iii. Supernatural powers or beings

2. Events
3. Abstracts
4. Relationals

Of course even a space of lexical meaning of the scope suggested by this classification
will not be able to express certain kinds of knowledge about lexical entities. Much
of this additional knowledge might be called “encyclopedic” information. But if the
basis is adequate to distinguish the meanings denoted by the lexical items in the
vocabulary, then the unique representations for these meanings can provide links to
further (encyclopedic) knowledge which could be represented in, say, a logic program.

It seems reasonable to assume that the lexicon, as defined here, will be only one
component of the total knowledge of a natural language faculty. An encyclopedic
knowledge base and a facility to accept and process contextual information will also
be necessary components.

To see the role of the lexicon, consider again the sentences Mary loves every man
such that he loves her and An actor loves Mary. Their translations in IL are
Vz[man'(z) A love'(z,m) — love'(m, z)] and 3z[actor/(z) A love'(z, m)).

For this discussion the denotation mapping ¥ is assumed to be extended in the usual
way to a homomorphism of arbitrary expressions of IL. If z and y are IL expressions,
z <y1 y is defined to be equivalent to %(z) C ¥(y). Since for basic expressions of
IL z <j1, y is equivalent to v(z) < v(y), and in all usage the domain will be clear,
z <yr y will be written simply z < y. Similarly if PTQ expressions z and y have
translations z’ and y’ and ¥(z') C ¥(y'), then = <prg y. Again since no confusion
can result, z <prq y will be written simply z < y.

Assume a lexicon v such that v(actor’) < v(man’). In general, it follows from
the definition of < that if z < y then (1) z and y are functors® of the same type,

9For conciseness, individuals and formulas will be considered functors of zero arity.
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and (2) for all 2 € dom(z) (= dom(y)), z(z) < y(z). For example, actor’ and
man’ are functors that take individuals as argument and yield a formula. Therefore
actor’ < man’ implies that for every individual 2z, actor’(z) < man’(z). That is,
actor’(z) entails man’(z) or Vz[actor/(z) — man’(z)).

From Vz[actor’(z) —+ man’(z)], 3z[actor'(z)Alove'(z,m)] and Vz[man'(z)Alove'(z,
m) — love’(m, z)], the desired result 3z[actor’(z) A love’(m, z)] can be deduced in
IL using the axioms of first order logic. (See Appendix B for details.)

Similarly, assuming adore’ < love’, Bill adores Mary can be shown to entail
Bill loves Mary. Thence the translation of Mary loves Bill can be deduced using
the axioms of first order logic.

The above illustrates deduction when z and y are in the role of functors and z < y.
Now consider z and y in the role of arguments. Let z < y and let w be a functor such
that z,y € dom(w). Then w is said to be isotone if and only if w(z) < w(y) for all
such z and y; w is said to be antitone if and only if w(y) < w(z) for all such z and
y. For example, a translates to an isotone functor. By contrast, every translates to
an antitone functor.’® a man translates to an isotone functor and in fact, it can be
shown that all PTQ terms translate to isotone functors (see [11]).

The role of the isotone/antitone property in deduction can be simply illustrated. From
the corresponding lexicon entries, it would follow that actor entails man. Given that
the translation of a is isotone, it follows immediately that an actor entails a man.
Again, given that the translations of Mary and love are isotone, it is deduced that
Mary loves an actor entails Mary loves a man. Similar logic yields the result
that Mary loves every man entails Mary loves every actor.

It would be important then to make the partition {isotone,antitone,neither} a part of
a basis of any space of functors.

10For a discussion of English determiners see [9]
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7 Conclusion

The completely formalized nature of Montague’s language theory makes it particularly
applicable to the problem of natural language understanding by machine. However,
deduction in a system based on Montague’s theory is severely limited by the absence
of lexical semantics. A relational structure, for example a logic program, can be used
to specify lexical semantics. However it is computationally unwieldy. An alternative
(or, more precisely a partial alternative) called a semantic space is described in this
paper. A lexicon is defined to be a map from a vocabulary of lexical items to a
semantic space.

Unique representations called normal forms are defined for the subspaces of a seman-
tic space. A Boolean algebra of normal forms is then defined. Since subspaces of
a semantic space correspond to lexical meanings, inclusion between subspaces corre-
sponds to meaning inclusion or entailment.

The lexicon that results from this approach can provide a lexical extension to Mon-
tague semantics based on the Intensional Logic. Further it seems that this lexical
semantics is compatible with other semantic theories similar to that of Montague.

It is conjectured that the conceptual simplicity of such a lexicon will result in com-
putational simplicity. Further, and perhaps more important, the independence of the
dimensions of a semantic space permits a high degree of computational parallelism.
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A Details of the Example of Section 1.2

Montague provides an IL meaning postulate which asserts that, in an extensional
context,

i.e., Mary loves an individ-
love' (m, AP[P(z,))), ual of whom a set of predi-
cates is true,

i.e., one of the predicates true of
this individual is being loved by
Mary.

if and only if
AP[P(z1)] (Az [love /(m, z))),

By A-reduction, such an expression can often be simplified:

Az [love' (m,z)](z1) = love' (m,z,).

More generally, for predicate @,
Q(y, AP[P(z)]) « (AP[P()])(Az[Q(y, 2)))-

This will be referred to in the following as “MP1.” It corresponds to Dowty’s MP1
with the intensional operators eliminated.

The structural analysis of Mary loves every man such that he loves her is given
in Figure 22. The translation is as follows. The numbers in parentheses refer to trans-
lation rules and correspond to the numbers of the formation rules shown in Figure
22.

love him; =>1 love' (AP[P(z,)]) (5)

heg loves him; =1 AQ[Q(zo)](love’ (AP[P(z,)])) = (4)
love’ (AP[P(z,1)])(z0) =
love' (zo, AP[P(z,)]) =
AP[P(z1)](Ay[ love' (zo,y)]) = (MP1)
Ay[love' (zo,y))(z1) =

love' (zo, ;)

man such that he loves him; =1 Az [man’ (zo)A love' (zo,2,)] (3,0)

every man such that he loves him; =
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Mary loves every man such that he loves her, 10,1

i

Mary he, loves every man such that he loves him,, 4

/

he; love every man such that he loves him,, 5

P

love every man such that he loves him,, 2

T

every man such that he loves him,, 3,0

[——

man he, loves him,, 4

/

he, love him,, 5

=

love he;

Figure 22: Structure of Mary loves every man such that he loves her
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APAQVyY[P(y) = Q(¥)](Azo [man’ (zo)A love’ (zo,2,1)]) =
AQVy[Azo[man’ (zo)A love' (zo,21))(y) = Q(y)] = (2)
AQVy [man’(y)A love' (y,z:) — Q(y)]

love every man such that he loves him; =7
love' (AQVy [man’(y) A love' (y,z1) = Q(y)]) (5)

he, loves every man such that he loves him, =7
AP [P(z,)](love’ (AQVy [man’ (y) A love’ (y,z1) = Q(¥)]))) = (4)
love’ (AQVy [man’ (y) A love' (y,z,) = Q(¥)])(z1) =
love' (z1, A\QVy [man’ (y) A love’ (y,21) — Q(y)]) =
AQVy [man’ (y) A love' (y,z1) = Q(¥)](Az [love’ (z1,2)])= (MP1)
Vy [man’ (y) A love'(y,z;,) = Az [love’ (z,,2)](y)] =
Vy [man’ (y) A love’ (y,z,) —love’ (z4,y)]

Mary loves every man such that he loves her=1r
AP [P(m)](Az1[Vy [man’ (y) A love' (y,z1) —love’ (z,,3)]]) = (10,1)
Az, [Vy [man’ (y) A love’ (y,z1) —love' (z1,y)]](m) =
Vy [man’ (y) A love’ (y,m) —love’ (m,y)]

The structural analysis of John is a man is given in Figure 23. The translation
follows.

a man; =7 APAQ3z[P(z) A Q(z)](man’) = (2)
AQ3z [man’'(z) A Q(z)]

be a man =1 APAz[P(\w|[z = w])](AQ3z[man’(z) A Q(z)]) = (5)
Az [AQ3z[man’(z) A Q(z)](Aw[z = w])] =
Az3z [man’ (z) Aw[z = w](z)] =
Az3z man’ (z) Az =z]

John is a man=>1 AP[P(j)](A23z[man’(z) A z = z]) = (4)
Az3z[man' (z) Az=1z|(j) =
Jdz[man’(z) A j = z]

Finally, the structural analysis of John loves Mary is given in Figure 24 and its
translation is given below.

love Mary =7 love'(AP[P(m)]) (4)
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John is a man, 4

\

John be a man, 5

\

be a man, 2

\

]

man

Figure 23: Structure of John is a man

John loves Mary, 4

/

John love Mary, 5
love Mary

Figure 24: Structure of John loves Mary
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John loves Mary =1 AQ[Q(5)] (love'(AP[P(m)])) = (5)
love'(\P[P(m)))(7) =
love'(j, AP[P(m)]) =
AP[P(m)](Ay[love'(5,y)]) = (MP1)

Ay[love'(j,y))(m) =
love'(j, m)

Similarly, Mary loves John =7 love'(m, ).

This results in the IL expressions:

(1) Vy[man'(y)Alove'(y, m) —love'(m,y)]
(2) 3z[man’(z) Aj = z]

(3) love’ (j,m)

(4) From (2) one can deduce man'(y)

(4) From (1), (3), and (4) one can deduce
man’(j)Alove’(j,m) —love'(m,j)
man’(5)
love'(j,m)

hence love'(m, j)

i.e., Mary loves John

In clausal form:

(1) -man’(z), -love'(z,m), love'(m,z)

(1) man’(a)

B)j=a

(4) love'(j,m)

(5) man/(j) (substitution)

(6) love'(m,z) (unification and resolution)
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B Details of the Example of Section 6

Given: Vz [actor/(z) — man'(z)]
3z [actor’(z)A love'(z, m))
Vz [man’(z)A love'(z,m) — love'(m, z)]

Clausal form: (1) -actor’(z), man’(z)
(2) actor'(a)
(3) love'(a,m)
(4) -man’(z), -love'(z,m), love'(m, z)
(5) -actor'(z), -love'(z,m), love'(m,z) (resolution)
(6) love'(m,a) (unification and resolution)

By existential generalization on a:

3z [actor/(z)A love'(m, z)]
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