
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

1988

MetaProlog User Manual MetaProlog User Manual

Hamid Bacha
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Bacha, Hamid, "MetaProlog User Manual" (1988). Electrical Engineering and Computer Science -
Technical Reports. 31.
https://surface.syr.edu/eecs_techreports/31

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/31?utm_source=surface.syr.edu%2Feecs_techreports%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

MetaProlog User Manual

Hamid Bacha

Logic Programming Research Group

Technical Report LPRG-1R88-1

Logic Programming Research Group
School of Computer and Infonnation Science

313 Link Hall - Syracuse University
Syracuse, New York 13210

hamid@logiclab.cis.syr.edu

Table of Contents

Introduction 1

Theories and Theory Natnes 2

Creating New Theories 2

Context Switching .;.............. 4

Virtual Theories ,...... 4

Nested Theories 5

Proofs 5

Proofs as First Class Objects 6

MetaP:rolog Syntax 7

Listing Clauses . 9

Meta.-Ievel Reasoning 9

Debugger 11

Miscellaneous 13

Summary of Commands 15

Acknowledgement: This version of MetaProIog was developed by the present author from the common
system designed by the Logic Programming Research Group at Syracuse University. The author wishes
to thank the many people who worked on the system over the years: Ken Bowen, Kevin Buettner, TIyas
Cicekli, Keith Hughes, Andy Turk, and Toby Weinberg.

MetaProlQg User Manual}
(First Release VI.O)

H. Bacha

1. Introduction

MetaProlog is a logic-based programming language which subsumes the full Prolog language.
This implementation is an incremental compiler (which also looks and feels like an interpreter) support
ing meta-level constructs that are usually provided by the nnderlying architecture in other systems and
are not directly available to the user. The most obvious feature of MetaProlog is the ability to handle
multiple databases (referred to as theories) at the same time. In contrast to ordinary Prolog's single
theory database, a MetaProlog database is a ~ol1ection of theories. A theory is a first-class object and
can be passed around as the value of a variable. In fact, proofs are handled through the demo predicate
which takes a theory as its first argument and a goal as its second argument: demo(Theory, Goal). The
demo predicate is a meta-level construct which witnesses the derivability of the given goal from the
given theory. Theories are collections of viewpoints (clauses and facts). The word viewpoint is used to
reflect the fact that the same relation may be present in many theories with slight or substantial varia
tions from one theory to the other.. Each theory is then seen as having its own viewpoint on that given
relation. The following example illustrates the idea:

Overall database entry for relation Ioves/2:

lovesGohn, jane).
lovesGane, jack).
IovesGane, john).

One theory Tl may view the procedure as:

lovesGohn, jane).
lovesGane, john).

IThis work was supported by grant F30602-81-C-0169 from AFOSR and administered by RADC.

- 2-

while another theoryt say TI, may view it as:

lovesGohn, jane).
lovesGane, jack).

Both theories TI and 12 coexist in the same MetaProlog database but have different viewpoints on the
love relation.

2. Theories and Theory Names

Each theory is represented internally by a theory descriptor. When a new theory is created, this
descriptor is returned as the value of the variable representing the new theoI)'. In the example:

addto(OldTheory, Clause, NewTheory)

the variable NewTheory is unified with an internal representation of the theory descriptor for the new
theory. The theory descriptor contains, among other things, the ID of the theory. The ID is just an
integer starting with zero for basetheory (described in section 3), and incremented by one for every
new theory created by the system. If the only way to get hold of a theory is through the variable unified
with its descriptor, all theories would be temporary and cease to exist the moment we loose the vari
ables representing them. Obviously, some theories need to be around pennanently (at least those loaded
into MetaProlog through consult), and we need some kind of global mechanism to refer to them. The
predicate nameof(Theory, TheoryNarne) is provided to assign the ground tenn TheoryName as a glo
bal name to the theory whose descriptor is the value of the variable Theory. TheoryName can then be
used throughout the system to refer to the corresponding" theory. Assigning a name to a theory makes
the theory pennanent. A theory with no name is lost the moment the variable holding its descriptor
becomes inaccessible and is therefore referred to as a temporary theory. For this reason, only default
theories and some major ones should be assigned names. The rest should be considered temporary
theories. The following example illustrates the idea.

testl(X) :-
addto(basetheory, loves(paul, mary), NewTheory),
demo(NewTheory, loves(paul, X)).

Assume our current context is basetheory. The goal testl(X) will first cause the creation of the theory
NewTheory, then context is set to this new theory to prove the goal loves(pauI, X), and finally it is
reset back to basetheory. At this moment, the variable NewTheory ceases to exist We have no way to
access the newly created theory. That's why it is called a temporary theory. By contrast, a theory
created from basetheory and clauses from an external file should be a pennanent one. It is created as
follows:

addto(basetheory, file(expert_shell), NewTh),
nameof{NewTh, expert)

or equivalently:

consult(expert_shell, expert).

The new theory could be an expert system shell, for example, and it is clear that it should be a per
manent one.

- 3 -

3. Creating New Theories

When the MetaProlog system is started, the current theory (or current context) is set to a top
level theory known as basetheory. This theory contains all the system built-ins. Any new theory
created should have access to all these built-ins. Therefore, any new theory is created either directly out
of basetheory (plus some other clauses)y or out of some other theory that has access to all the system
built-ins. In other words, the theories form a tree hierarchy with basetheory as the foot (see Figure 1).

Figure 1: MetaProlog Theories as a Tree Hierarchy

New theories are created either by directly specifying the clauses they contain or by modifying some
clauses of an existing theory. Top-level theories (also known as default theories) use basetheory as
their starting theory. The predicates used to create new theories are:

consult(FileName, TheoryName)
addto(OldTheory, Clauses, Ne,vTheory)
dropfrom(OldTbeory, Clauses, NewTheory)
createtheory(NewTheory)

The first predicate is used to create a top-level theory from an external file called FileName containing
MetaProlog clauses. The theory created is a pennanent theory and the second argument of the predicate
is the name to be associated with it The second and third predicates use the clauses of an existing
theory to create a new theory. Some of the clauses may be modified or deleted. OldTheory is
basetheory (for top-level theories) or any user created theory. It may be either a theory name or a
theory descriptor. NewTheory should be a variable which will be unified with an internal representation
of the newly created theory. (When OldTheory is the name of a pennanent theory, NewTheory may by
the same as OldTheory instead of a variable. This has the effect of adding or 'asserting' to an existing
theory. However, since this variation of addto has the same effect as assert in Prolog, its use should be
discouraged) The predicate nameof may be used to explicitly name the new theory. The second

- 4-

argument (Clauses) can be a clause, a name of an external file specified as fiIe(FiIeName) and contain
ing MetaProlog clauses, or a list of clauses and/or file name specifications.. The predicate
consult(FileName, TheoryName) may be redefined as:

addto(basetheory, file(FileName), NewTheory),
nameof(NewTbeory, TbeoryName) ..

Finally, the last predicate is used to create an empty theory.. The argument can be either a variable or a
ground term which will serve as the name of the new theory..

When a theory T2 is created from a theory TI, we say that 12 is a descendant of Tl, or
equivalently, that Tl is an ancestor of 12. The reason is that the clauses of TI are not copied to T2
(that would be very expensive). Instead, through a clever representation of theories and viewpoints, T2
can access the clauses it shares with Tl in a very efficient manner. We say that T2 inherits those
clauses from TI, or that T2 includes the viewpoints of Tl on those relations. Since every theory is a
descendant of basetheory, every theory has access to the system built-ins.. As an example, lees create
theory tl and its descendant t2:

addto(basetheory, [P(l), p(2)], TI), nameof(fl, tI).
addto(tl, p(3), TI), narneof(T2, t2).

If we submit the goal demo(tl, p(X), we get the answers X = 1 and X = 2. If we submit the goal
demo(t2, p(X), we get X = 1, X = 2, and X = 3~ Let's create another theory 13 as a descendant of tl:

dropfrom(tl, p(l), NT), nameof(NT, 13).

Now if we submit the demo(t3, p(X), we get only one answer X = 2~ Figure 1 shows the tree structure
for the above theories.

4. Context Switching

Proofs can be carried out in any theory known to the MetaProlog system. Moving from one
theory to another is referred to as context switching. Context switching is achieved either indirectly
through the use of the demo predicate or directly through the setcontext predicate. The most common
way of switching context is through the use of demo(NewTheory, Goal). The context is temporarily
switched from the current theory, say Cf, to NewTheory to prove Goal, then reset back to CT.
NewTheory may be either a regular theory or a virtual theory (as defined in the next section).. When
the system is started, the default context is basetheory. The predicate setcontext(TheoryName) may be
used to specify a new default context, i.e. the theory the system should be in whenever it is done car
rying out the proof of a top-level goal. TheoryName must be a pennanent theory. Context switching is
extremely fast since it only involves the setting of a register known as the Current Theory Register.

5. Virtual Theories

A context can also be a virtual theory made up of multiple theories. This can be achieved
through the demo predicate by specifying the virtual theory as TI+12+... +Tn as in:

demo(T1+1'2+T3, Goal).

The goal and all its sllbgoals are proved with respect to the virtual theory. It is a virtual theory since
no new theory is created. The virtual theory is viewed as having all the clauses from all the theories in
the order they appear (i.e. all clauses from the first theory, followed by all the clauses from the second
theory, etc...). Recall that each theory is a first-class object in its own right regardless of how it was
created.. Therefore, if a procedure is shared by say two theories that make up the virtual theory (this

- 5 -

happens if one of the theories is an ancestor of the other), that procedure will appear twice in the vir
tual theory. This is a conscious design decision since we want to view, at the conceptual level, each
theory as containing all the procedures that define it. The sharing of clauses associated with viewpoints
inheritance is an implementation issue related to efficiency.

6. Nested Theories

MetaProlog theories form a tree hierarchy with basetheory as the root. Top-level theories are usu
ally loaded directly from external MetaProlog files, while lower level theories are created using addto
or dropfrom. This This would seem to mean that no external file can contain more than one theory
since consnlt(FileName, TheoryName) is used to create one theory from one file. For a file to contain
many theories, we need to specify the name of each theory and the boundaries between theories. The
facilities provided for this purpose are theoryname(ThName) and endtheory. Many theories can now
occupy the same file, and theories may be nested by specifying one theory inside another. However, the
clauses of a theory have to be fully written down before the clauses of its descendant theories. That is,
one cannot write some clauses from tl, then some clauses from its descendant 12, then some more
clauses from t1. Also, files with explicit theories are loaded with the predicate metaconsult(MyFile)
and not consult(MyFiIe, TheoryName). Figure 2 shows how the previously defined theories tl, Q, and
t3 can be specified in a single MetaProlog file called 'myfile'.

theoryname(t1).

p(I).
p(2).

% start theory t1

theoryname(t2). % start theory t2, within t1
p(3).

endtheory. % end theory t2

theoryname(t3). % start theory 13, within tl
-P(1).

endtheory. % end theory 13

endtheory. % end theory t1

Fig. 2: Nested MetaProlog Theories

The ' -' sign in front of p(l) in 13 is used to indicate that 13 is obtained from tl by dropping the clause
p(l). Note that all the clauses of t1 are written down before any clause from its descendant theories t2
and t3. To load this file, we type metaconsult(myfiJe). The result is the same as if we created tl, then
used addto and dropfrom to create t2 and 13 as in the previous example.

7. Proofs

The two or three place predicate demo is used to specify the goal to be proved as well as the
theory in which the proof is to be carried out The specified theory becomes temporarily the current
theory or current context The predicate context(CT) is used to check what the current context is. It
binds the variable CT to an internal representation of the current theory. The current context can be
either a regular theory or a virtual theory. Given the goal demo(T2, Goal) in theory Tl, the context is
set to T2 and the proof of Goal starts. If Goal succeeds, the context is reset back to Tl. If Goal fails,
the context is reset back to the theory which contains the goal we resume from after backtracking. All
sub.goals of Goal are evaluated in 12 except those that explicitly specify another context If one of the
subgoals is demo(fi, Gi), Gi is evaluated in the context of Ti, then the context switches back to 1'2.

- 6-

8. Proofs as First Class Objects

The proof tree can be requested when MetaProlog is presented with a goal to solve. A three place
demo predicate is used for this purpose:

demo(Theory, Goal, Proof).

A representation of the proof tree will be unified with the third argument. If this argument is partially
or fully instantiated, it will serve as a control strategy guiding the inference system through the search
space. The proof tree is represented as a list whose head is the root of the tree, and whose tail is a list
of subtrees. The root represents a goal, and each subtree is the proof tree of a clause in the body of the
goal. This representation should make it very easy to manipulate the proof tree. The following example
illustrates the use of the three argument demo.

theoryname(tl).

p(X,Y) :- q(X), rOO.

q(X) :- a(X).

r(X) :- q(X).

a(a).

endtheory.

?- demo(tl, p(X,Y), P).

X=a
Y=a
P = [p(a,a), [q(a), [a(a)]], [r(a), [q(a), [a(a)]]]]

yes.
1-

The following procedure can be used to display the proof tree using proper indentations to show the
different subtrees.

show_headeD, -l.
show_head([HIB], N) :

tab(N),
write(H), nl,
Nl is N + 2,
show_body(B, Nl).

show_body(D, -J.
show_body([HIB], N) :

show_head(H, N),
show_body(B, N).

?- demo(tl, p{X,Y), P), show_head(P2 0).
p(a,a)

- 7-

q(a)
a(a)

rCa)
q(a)

a(a)

X=a
Y=a
P = [p(a,a),[q(a),[a(a)]],[r(a),[q(a),[a(a)]])]

yes.
?

Since the proof trees contain all the subgoals that participate in the evaluation of a goal, they can
be used to justify the solutions reached. Explanation is a very important feature of expert systems. Since
MetaProlog is suitable for expert systems, proof trees are a valuable feature to provide as an integral
part of the system. Sure, one can always add the capability of building the proof tree on top of
MetaProlog. But that makes the program wired to work in only one way or another. With proof trees as
part of the underlying machinery, the same copy of the program can be run sometimes to get a result
and a proof tree, and sometimes to get just the result Take the example of a help system that takes
questions from users and gives a brief answer. Once in a while, some user may ask why a certain con
clusion has been reached. For this system, we would like all the queries to be run without the overhead
of generating the proof tree (using the two place demo). Whenever there is a 'why' question, the query
is rerun with the three place demo which generates the proof tree that can be used to justify the conclu
sion.

A pleasant surprise of the proof trees is their use as a control strategy to direct the search for a
solution. If we know of certain nodes of the search space that are required or desirable intermediate
goals, we can specify a proof tree that is partially instantiated with those nodes. This forces the system
to choose these nodes and ignore their alternatives, resulting in an early pruning, in the search space, of
some subtrees that would have lead either to failure or to correct but undesirable solutions. The exam
ple shown in Figure 3 illustrates how a partially instantiated proof tree is used to guide the search
toward a more desirable outcome. In this case, we are interested in a flight from Syracuse to New Orle
ans such that the first stop is in Atlanta. By instantiating the root of the leftmost subtree to a direct
flight from Syracuse to Atlanta (Figure 3b), we eliminate the flights where Miami or Orlando are first
stops from consideration. Figure 3c shows the complete proof trees for the 2 possible solutions.

9. MetaProlog Syntax

In addition to supporting the full Prolog syntax, MetaProlog accepts its own special syntax~ In
particular, there is no special meaning attached to identifiers based on the fact that they start either with
an upper case letter or a lower case letter. All MetaProlog clauses start with the word 'all' followed by
a list of identifiers. These identifiers represent all the variables that may appear in the clause they pre
cede. All variables must be explicitly quantified. The word 'all' together with the list and a following
colon (':') constitute a logical universal quantifier. Any other identifier appearing in the clause is either
a constant or a functor regardless whether it starts with an upper or lower case letter. Another particu
larity of the MetaProlog syntax is the replacement of the symbol ':- t by '<-' t and the symbol ','
between goals by '&.. Some examples of MetaProlog clauses follow:

- 8 -

theory info:

flight(Cl, C2) :- direct_flight(Cl, C2).
fiight(Cl, C2) :- direct_flight(Cl, Ci), flight(Ci, C2).

diIect_flight(syracllse, miami).
direct_flight(syracose, orlando).
direct_f1ight(syracllse, atlanta).
direct_flight(miami, atlanta).
direct_flight(miami, new_orleans).
direct_ftight(orlando, new_orleans).
direct_flight(atlanta, new_orleans).
direct_flight(atlanta, orlando).

a) MetaProlog Program

demo(info, flight(syracuse,new_orleans), [SI, [direct_flight(syracuse, atlanta)] I S2]).
Answerl:
51 =flight(syracuse,new_orleans)
S2 = [fl ight(atlanta,new_orleans),[direct_flight(atIanta,new_orleans]]; Answer2:
Sl = flight(syracllse,new_orleans)
52 = [flight(atlanta,new_orleans),

[direct_flight(atIanta,orlando)],
[flight(orlando,new_orleans),

[direct_flight(orlando,new_orleans)]]];

b) Query and Answers

1) [flight(syrncllse,new_orleans),
[direct_flight(syracuse,atlanta)],

[flight(atlanta,new__orleans),
[direct_flight(atlanta,new_orleans)]]];

2) [flight(syracllse,new_orleans),
[direct_flight(syracuse,atlanta)],
[flight(atlanta,new_orleans),

[direct_flight(atlanta,orlando)],
[flight(orlando,new_orleans),

[direct_flight(orlando,new_orleans)]]]];

c) Complete Proof Trees

Figure 3: Proofs as a Control Strategy

all [varl, var2, VAR3] :
p(varl, Constl, Var3) <-

Q(const2, var2) & R(CONSTI, VAR3).

all [person!, person2] :
Ancestor(personl, John) <-

Father(person2, John) & Ancestor(personl, person2).

- 9 -

In the first example, the only variables are varl, var2, VAR3. Notice that Q and R are both capital
letters, yet they play the role of predicates. Also, Const! and CONST3 both start with an upper case
letter, yet they are constants just like const2.

The Prolog if-then-else construct, as in 'a -> b; c', may be replaced by the more explicit 'if a
then b else c'. Since MetaProlog supports the full Prolog syntax, "all MetaProlog clauses have to start
with the word 'all' followed by a list of variables. If the clause is ground, an empty list should be used
(all 0 : p(A,B,C)). The prefix 'all [' indicates to the parser that a £!ause with a strict MetaProlog syn
tax follows. This allows a mixture of Prolog and MetaProlog syntax to be used in the same program.
(In the future, MetaProlog may support its own syntax as the default one, and Prolog syntax as an
option. At that point, no mixture of the two syntaxes will be allowed.)

10. Listing Clauses

Many forms of the listing predicate are supported to provide a wide range of selection of output
The output of listing is always relative to the current theory, i..e. what you see depends on the context
you are in. A summary of the different fonns of listing follows:

listing:
show all visible clauses in the current theory.

listing(Pred):
show all clauses in the current theory with predicate Pred and any arity.

listing(Pred/Arity):
show all clauses in the current theory with predicate Pred and arity Arity.

listing(Theory, Peed):
perform listing(Pred) in theory Theory. Equivalent to demo(Theory, listing(Pred)

listing(Theory, Pred/Arity):
perform listing(Pred/Arity) in theory Theory.

list(Theory):
listing{Theory, -J:

same as listing, using Theory as the current context

In all of the above, Theory is either a theory descriptor or a theory name.

11. Meta-level Reasoning

Some limited form of meta-level reasoning is supported by the MetaProlog system. Even though
the inference mechanism follows a backward chaining regime, the system can be set up to pursue
several lines of reasoning at the same time. Recall that the theories are organized in a tree hierarchy.
The idea is to consider each branch of the tree as pursuing a certain line of reasoning. Starting from a
theory T, we can add some assumptions creating a theory T.. After doing some work in T. , we can
add some more assumptions creating T.. We can repeat th~ same process until we reachlla certain
theory T. . The branch of the tree consi~ting of the theories from basetheory to T. (basetheory,... T,
T. ,... T.) is referred to as our current line of reasoning. At any time, we can suspe~d work along this
b:~ch ~nd start a different line of reasoning along another branch, say T, T. ,... T. , using a different
set of assumptions. Of course, we can also decide to freeze everything along fuis ne<Y branch and either
start a new line of reasoning, or go back to a previous one. Sometimes, we may want to abandon a line
of reasoning altogether or just retract to a previous position. Four built-ins are provided to suppon these
features: assume(Belief), reject(Belief), suspend(State), and resume(State). The first predicate states
that we want to add a certain assumption to the current context, creating a new context The new

.. 10 -

./assume(Al)

assume(A2)

6
assume(A3)

Io
suspend(statel)
(resume later)

basetheory

tl

assume(CI)

assume(C2)

suspend(state2)
resume(statel)

Figure 4: Pursuing Multiple Hypotheses at the Same Time in MetaProlog

context will be our current context The second predicate states that we want to retract to a previous
context, the one just before the specified assumption was added. Any work done between the moment
the specified assumption was added and the current context will be forgotten. The third predicate
assigns the name State (a ground term) to the current line of reasoning and instructs the system to leave
everything as is until resumed later. The fourth and final predicate directs the system to go back to a
previous line of reasoning suspended under the name State. Note that we can only reject assumptions
made along the current line of reasoning. To reject any other assumption, we must first go back to the
branch along which it was added using the built-in resume. The following example gives an idea on
how these features may be used.

starting in theory tl
assume(Al).
do some work,
assume(A2),
do some more work,

- 11 -

% back to the context just before last assumption

% we want to reconsider
% abandon current line of reasoning (back to 11)

% start over

assume(A3),
do some more work~

difficulties encountered,
suspend(state1),
setcontext(tl),
assume(B1),
do some work,
assume(B2),
do some more work,
major difficulties,.
reject(B 1),
assume(Cl),
do some work,
assume(C2),
do some more work,
assume(C3),
do some more work,
some problems,
reject(C3),
assume(C4),
do some more work,
nothing promising,
suspend(state2),
resume(statel),

% nowhere to go from here for the moment
% save what was done so far

% back to where we started from (t1)...
% ...and try another line of reasoning

% back to where we left in state!

The tree structure corresponding to this example is show in Figure 4. This example is not really a pro
gram, but rather a high level description of the different steps a program may go through. A top-level
program could recursively add some assumptions, evaluate the results, then decide whether to continue,
suspend, retract to a previous position, completely abandon a certain line of reasoning, or resume a pre
viously suspended line of reasoning.

The features just outlined, combined with MetaProlog's support of multiple contexts and fast con
text switching, should provide excellent tools for writing expert system shells and other kinds of intelli
gent systems. Though the method of inference is a goal-driven backward chaining mechanism, breadth
first reasoning can still be simulated through the use of multiple lines of reasoning. Many hypotheses
can be pursued at the same time, alternating between them through the use of the suspend and resume
mechanisms2• Each hypothesis, in tum, is explored using backward chaining. A limited from of belief
revision is provided through the use of assume and reject3• After an assumption has been made, we
may find out that it is erroneous and decide to remove it and all inferences based on it Unfortunately,
all we can do is go back to a state just prior to when that assumption was made. All inferences made
along the line of reasoning containing that assumption between the moment it was added and the con
text in which it was rejected become inaccessible. The other lines of reasoning are totally unaffected. A
true belief system would remove only the inferences associated with the erroneous assumption.

2Alternatively, a top-level program could create and carry around a list of theories representing a breadth-first develop
ment. However, such an approach would not necessarily take advantage of the underlying MetaProlog machinery.
3This machinery is neutral with regard to the reasons for revision and the goals for this revision. It can be used to im
plement specific philosophies of belief revision.

- 12-

12. Debugger

A standard four port debugger similar to that of regular Prolog is provided. For every goal
displayed, it shows the context in which it is being evaluated. The context is shown as a theory descrip
tor and the name associated with the theory if it is a permanent one. Typing trace or spy causes the
debugger to be loaded if not already in the system. The debugger is invoked with the command
trace(Goal). Spy points are set by typing spy(Pred/Arity) for predicates in the current theory, or
spy(TheoryName, PredlArity) for predicates in the theory named TheoryName. The rest of the com
mands are exactly as in the standard Prolog debugger. Note that we are always back in the original
context whether the goal succeeds or fails. In other words, if the trace(goal) command is given from
theory tI, the context may change several times during the evaluation of Goal, but will always be set
back to t1 when the goal terminates whether it succeeds or fails. However, if the trace is aborted the
context may be set to any theory when the decision to abort is made, including a temporary theory. To
avoid the problem of finding ourselves in a non-existent theory (one that was temporary), the context is
reset to basetheory. As an example, let's go back to the theories in Figure 2 and add a new theory t4 as
shown below, then trace the goal q(X). Watch carefully how the contexts change as we move back and
forth between different theories.

?- addto(t3, [(q(X) :- demo(t2, p(X), (X = 2;X = 3»], N), nameof(N, t4).

x = _6312
N = <theory 4>

yes.
?- trace(demo(t4, q(X)).
Reconsulting '/usr/accts/hamid/meta/dbg.pro'...

(1) 1: theory: <theory 0> name: BASETHEORY
Call: demo(t4,qL6449»

(2) 2: theory: <theory 4> name: t4
Call: qL6449)

(3) 3: theory: <theory 4> name: t4
Call: demo(t2,pl.6449»

(4) 4: theory: <theory 2> name: t2
Call: pL6449)

(4) 4: theory: <theory 2> name: t2
Exit pel)

(3) 3: theory: <theory 4> name: t4
Exit: demo(t2,p(I»

(5) 3: theory: <theory 4> name: t4
Call: 1=2

(5) 3: theory: <theory 4> name: t4
Fail: 1=2

(6) 3: theory: <theory 4> name: t4
Call: 1=3

(6) 3: theory: <theory 4> name: t4
Fail: 1=3

(4) 4: theory: <theory 2> name: t2
Redo: pL6449)

(4) 4: theory: <theory 2> name: t2
Exit p(2)

(3) 3: theory: <theory 4> name: t4
Exit: demo(t2,p(2»

(7) 3: theory: <theory 4> name: t4
Call: 2=2

- 13 -

(7) 3: theory: <theory 4> name: t4
Exit: 2=2

(2) 2: theory: <theory 4> name: 14
Exit q(2)

(1) 1: theory: <theory 0> name: BASETHEORY
Exit: demo(t4,q(2»

X=2;
(7) 3: theory: <theory 4> name: t4

Fail: 2=2
(8) 3: theory: <theory 4> name: 14

Call: 2=3
(8) 3: theory: <theory 4> name: t4

Fail: 2=3
(4) 4: theory: <theory 2> name: t2

Redo: pL6449)
(4) 4: theory: <theory 2> name: t2

Exit p(3)
(3) 3: theory: <theory 4> name: 14

Exit demo(t2,p(3»
(9) 3: theory: <theory 4> name: t4

Call: 3=2
(9) 3: theory: <theory 4> name: t4

Fail: 3=2
(10) 3: theory: <theory 4> name: t4

Call: 3=3
(10) 3: theory: <theory 4> name: t4

Exit 3=3
(2) 2: theory: <theory 4> name: t4

Exit: q(3)
(1) 1: theory: <theory 0> name: BASETHEORY

Exit demo(t4,q(3»

X=3;
(10) 3: theory: <theory 4> name: t4

Fail: 3=3
(4) 4: theory: <theory 2> name: t2

Fail: pL6449)
(3) 3: theory: <theory 4> name: t4

Fail: demo(t2,pL6449»
(2) 2: theory: <theory 4> name: t4

Fail: qL6449)
(1) 1: theory: <theory 0> name: BASETHEORY

Fail: demo(t4,qL6449)

no.
?-

13. .Miscellaneous

The source code to all the user defined predicates is available through some system predicates
such as listing, and during debugging. To hide the source code of a clause, the head of the clause
should be declared a system predicate using setsyspred(PredicatelArity). To reverse this effect, use
resetsyspred(PredicatelArity).

- 14 -

Another useful feature is the list_wamcode predicate. It shows the actual WAM code generated
by the compiler for the Prolog clauses. It is used as follows:

list_wamcode(pred/Arity)

where Peed and Arity are the predicate name and its arity.

- 15 -

14. Summary of Commands

In addition to the standard Prolog built-ins, MetaProlog supports the following commands:

addto(Theory, Clauses, NewTheory):
NewTheory contains all the clauses of Theory plus those specified by Clauses. Theory is either a
theory name or a theory descriptor. NewTheory must be a variable which will be unified with a
theory descriptor.. The second argument, Clauses, may be either a single clause, a file name
specified as file(filename), or a list of clauses and/or file names.. Examples:

addto(Tl, pCa), T2) ..
addto(Tl. file(fl), TI) ..
addto(Tl, [pel), p(2), file(fl), q(a), file(f2)], 1'2)..

assume(Belief):
Add the clause Belief to the current context creating a new context The new context becomes
the current context.. If the assumption Belief is ever rejected, the old context becomes the current
context again..

basetheory(B):
The variable B is set to the theory descriptor corresponding to basetheory..

createtheory(Ib):
Create an empty theory as a descendant of basetheory. If Th is a variable, bind it to an internal
representation of the new theory .. If Th is a ground tenn, assign it as the name of the new theory ..

consuIt(filel, TheoryName):

consult([filel, file2, filen], TheoryName):
Create a theory from the clauses in file! (file2, filen) and current theory and name it
TheoryName. Equivalent to:
context(CI)t addto(CT, file(filel), 1), nameof(T, TheoryName)..

and
context(CI), addto(CT, [file(filel), file(file2), file(filen)], T), nameof(T, TheoryName)..

context(1):
The variable T is set to the theory descriptor corresponding to the current theory (current con
text).

createtheory(1):
Create an empty theory and either bind T to its internal representation if T is a variable or assign
the name T to it if T is a ground atom..

demo(fheory, Goal):

demo(fl + T2 +..... +Tn, Goal):
Prove Goal in the given theory or virtual theory. TI, T2,... , Tn may be either theory names or
theory descriptors. Multiple theories Tl+T2+...... +Tn are considered as one virtual theory containing
all the clauses from TI followed by all the clauses from T2, etc.

demo(Theory, Goal, Proof):
Same as the two argument demo, except that a representation of the proof tree is unified with the
third argument. The third argument may be partially or fully instantiated.. In this case, it serve as
a control strategy guiding the inference system through the proof tree..

- 16 -

dropfrom(Theory, Clauses, NewTheory):
NewTheory has ail the clauses of Theory except for Clauses. Theory is either a theory name or a
theory descriptor. NewTheory must be a variable. The second argument is either a single clause
or a list of clauses. Built-ins provided in basetheory cannot be altered with dropfrom.

list(TheoryName):
List all clauses in the theory named TheoryName. Same as listing(TheoryName, -l.

listing:
The predicate listing comes in a variety of flavors. In its 'vanilla' form, it lists all the clauses in
the current theory. The listing can be restricted to clauses whose heads have a specific predicate
(listing(Pred)), or a specific predicate and arity (listing(pred/Arity)). Clauses in theories other than
the current one can be listed by specifying the theory name as the first argument and~J!le option
as the second argument as in listing(TheoryName, Option). Option is either Pred or Pred/Arity as
above. listing(TheoryName, -l lists all clauses in theory TheoryName and is equivalent to
list(TheoryName).

metaconsult(file1):
Consult the MetaProlog file 'filel'. 'filel' is expected to have theories enclosed between the
theory delimiters theoryname(ThName) and endtheory. This provides a very flexible way of
specifying many theories in the same file, as well as specifying their hierarchy. example:

theoryname(tl).
pel).
p(2).

theoryname(t2).
q(l).
q(2).
endtheory.

endtheory.

% start theory tl

% start theory t2, within tl

% end theory t2

% end theory tl

Theory tl is a descendant of basetheory, while theory t2 is a descendant of tl.

nameof(Theory, TheoryName):
Assign to Theory the name TheoryName, or get the theory descriptor corresponding to
TheoryName; e.g. if T is an uninstantiated variable and t1 has previously been assigned as the
name of some theory, the goal nameof(T, t1) will cause T to be unified with the corresponding
internal representation of t1.

reject(Belief):
Used in conjunction with a previously executed assume(Belief). If the program discovers that the
assumption Belief is erroneous, this goal resets the current context to the context just before the
assumption Belief was made, and discards what was done since then along the current line of rea
soning.

resetsyspred(PredlArity):
Reverse the effect of setsyspred(Pred/Arity).

resume(State):
Used to resume work along a previous line of reasoning suspended under the name State by

- 17 -

setting the current context to state.

setsyspred(Pred/Arity):
Tum the predicate defined by Pred!Arity into a system predicate, i.e. prevent the source code
from being displayed.

setcontext(1):
Make T the current theory, i.e. switch the context to the new context represented by theory T. T
may be a theory name or a theory descriptor.

sllspend(State):
Used to freeze the current line of reasoning as is for possible resumption later on. The ground
term State is applied as a name of the current context Later use of resume(State) will get back
to the current context

	MetaProlog User Manual
	Recommended Citation

	LPRG-TR-88-1_001c
	LPRG-TR-88-1_002c
	LPRG-TR-88-1_003c
	LPRG-TR-88-1_004c
	LPRG-TR-88-1_005c
	LPRG-TR-88-1_006c
	LPRG-TR-88-1_007c
	LPRG-TR-88-1_008c
	LPRG-TR-88-1_009c
	LPRG-TR-88-1_010c
	LPRG-TR-88-1_011c
	LPRG-TR-88-1_012c
	LPRG-TR-88-1_013c
	LPRG-TR-88-1_014c
	LPRG-TR-88-1_015c
	LPRG-TR-88-1_016c
	LPRG-TR-88-1_017c
	LPRG-TR-88-1_018c
	LPRG-TR-88-1_019c

