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Nusselt number for flow perpendicular to arrays of cylinders in the limit
of small Reynolds and large Peclet numbers

Wei Wang and Ashok S. Sangani
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse,
New York 13244

~Received 7 November 1996; accepted 31 January 1997!

The problem of determining the Nusselt numberN, the nondimensional rate of heat or mass
transfer, from an array of cylindrical particles to the surrounding fluid is examined in the limit of
small Reynolds numberReand large Peclet numberPe. N in this limit can be determined from the
details of flow in the immediate vicinity of the particles. These are determined accurately using a
method of multipole expansions for both ordered and random arrays of cylinders. The results for
N/Pe1/3 are presented for the complete range of the area fraction of cylinders. The results of
numerical simulations for random arrays are compared with those predicted using effective-medium
approximations, and a good agreement between the two is found. A simple formula is given for
relating the Nusselt number and the Darcy permeability of the arrays. Although the formula is
obtained by fitting the results of numerical simulations for arrays of cylindrical particles, it is shown
to yield a surprisingly accurate relationship between the two even for the arrays of spherical
particles for which several known results exist in the literature suggesting thereby that this
relationship may be relatively insensitive to the shape of the particles. ©1997 American Institute
of Physics.@S1070-6631~97!00606-5#
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I. INTRODUCTION

We consider the problem of determining the rate of h
or mass transfer from particles to the surrounding fluid.
though considerable work has been done on the problem
transfer from a single particle, there are very few studies
treat rigorously the case of multiparticle systems. Soren
and Stewart1 used a collocation technique to determine t
heat transfer rates in a cubic array of fixed spheres at s
Reynolds numberRe and finite Peclet numberPe. The re-
sults of numerical computations were supplemented with
asymptotic analysis for large Peclet numbers in a sepa
study.2 Here,Re5aU/n andPe5aU/D, a being the radius
of the particles,n the kinematic viscosity of the fluid,U the
superficial velocity of the fluid through the array, andD the
mass or heat diffusivity—the latter being related to the th
mal conductivity k, density r, and specific heatcp by
D5k/(rcp). Sangani and Acrivos

3 used a somewhat differ
ent collocation technique to determine the heat transfer r
in square and hexagonal arrays of infinitely long cylinde
while Acrivos et al.4 examined the case of dilute rando
arrays of spherical particles. Both of these studies were c
cerned with the case of vanishingly smallRe and small but
finite Pe.

In the present study we shall be interested in the oppo
limit of Pe, i.e., in the limit of largePe, the Reynolds num-
ber being vanishingly small. Since the Peclet number i
product of the Reynolds number and the Prandtl num
s5n/D, the above conditions are usually satisfied when
Prandtl number is large. This situation is very common
mass transfer applications, e.g., in mass transfer acros
walls of hollow membranes, but it could also occur in he
transfer applications involving viscous oils. Note that t
Prandtl and Nusselt numbers in mass transfer applicat
are sometimes referred to as, respectively, the Schmidt
Phys. Fluids 9 (6), June 1997 1070-6631/97/9(6)/1529/11/
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Sherwood numbers. In what follows we shall consider th
heat transfer problem, but the results will be equally appli
cable to the mass transfer problem.

WhenPe@1, the heat transfer by convection dominates
over that by conduction on a length scale comparable toa.
Consequently, the temperature along most streamlines
constant. Near the surface of heated particles there exists
thermal boundary layer ofO(aPe21/3) thickness in which
the heat transfer by conduction as well as convection a
comparable in magnitude and the temperature along
streamline is generally not constant. The net rate of he
transfer can then be determined from the analysis of th
thermal boundary layer. Since this analysis depends only o
the fluid stress in the immediate vicinity of the particles, the
heat transfer rates in the largePe limit can be determined
rather easily if the velocity field near each particle is avail
able. We have used the numerical technique described
Sangani and Yao5 to determine this velocity field and the

FIG. 1. A sketch of flow past a representative particle in a random array.
1529$10.00 © 1997 American Institute of Physics
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heat transfer rates from heated particles to the surroun
fluid. The results for the nondimensional heat transfer co
ficient, Nusselt numberN, are presented for both period
and random arrays of cylinders. The results for random
rays compare well with those predicted by effective-medi
approximations. A simple formula is given that accurate
relates the Nusselt number to the Darcy permeability of
arrays for a wide range of volume fractions over which t
permeability varies by several orders of magnitude. The
mula is also shown to be surprisingly accurate even w
applied to the arrays of spherical particles for which seve
known results exist in the literature.

II. THEORY

A. Role of open versus closed streamline regions

Before we begin with the detailed analysis of the pro
lem, it is useful to discuss the role of open and clos
streamline regions in determining the leading-order contri
tions toN in the limit of largePe. It is well known from the
studies of heat transfer from a single particle thatN can vary
significantly depending upon whether the flow in the imm
diate vicinity of a particle is a part of open streamlines
closed streamlines. Thus, for example, when the flow aro
a single particle is due to uniform streaming at infinit
which has no regions of closed streamlines,N increases as
Pe1/3 in the limit of largePe,6,7 while for a particle freely
suspended in a shear flow, for which there exists a regio
closed streamlines surrounding the whole particle,N ap-
proaches anO(1) constant.8,9 Since the flow around indi-
vidual particles in a random array of cylinders can be qu
complex and may include regions of closed streamlines,
must first determine if the heat transfer from the clos
streamline region will be significant.

Let us consider then a flow around a representative
ticle in a fixed array. The flow is illustrated in Fig. 1 whe
we have assumed that there are several stagnation p
along the surface of the particle and that some of these s
nation points arise from the regions of closed streamline
the vicinity of the particle. Note that the number of stagn
tion points must be an even integer. We expect the temp
ture along each streamline to be constant in the li
Pe→` except in the thin thermal boundary layer region
Let the temperature of the open streamline shown in Fig
beTo and that of a closed streamline in the immediate vic
ity of the particle beTc . The rate of heat transfer from th
particle surface maintained atTs to the fluid in the open
streamline region will be proportional to (Ts2To)Pe

1/3, and
that to the fluid in the closed streamline region will likewi
be proportional to (Ts2Tc)Pe

1/3. The heat removed by th
closed streamline must in turn be rejected into the o
streamline region whose temperature, as mentioned abov
To . Since the boundary dividing the regions of open a
closed streamlines is a free surface where the velocit
nonzero, and since the heat transfer rates across free sur
increase asPe1/2 ~see, for example, Leal10!, the rate at which
the heat is exchanged between the two regions is pro
tional to (Tc2To)Pe

1/2. Thus, at steady state we must ha
that
1530 Phys. Fluids, Vol. 9, No. 6, June 1997
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~Tc2To!Pe
1/25const ~Ts2Tc!Pe

1/3. ~1!

In other words,Tc2To5const (Ts2Tc)Pe
21/6, indicating

thereby that to leading order the temperatures of the ope
well as the closed streamlines in the immediate vicinity
the particle are equal and different from that of the parti
surface.11 As a consequence, we expectN to increase as
Pe1/3, with the next term in the expansion beingO(Pe1/6) in
magnitude.

The above argument is based on two assumptions.
first is that the number of stagnation points around each
ticle is nonzero. If this number is zero for some particles,
is the case for the freely suspended particles in a sim
shear flow, the rate of heat transfer from such particles w
beO(1) instead ofO(Pe1/3). The heat transfer contribution
from such particles must be neglected since they will
contribute to the leading,O(Pe1/3), term that is of interest to
us in the present study.

The second assumption is that the open streamline c
ing close to the surface of the heated particle has not com
contact previously with another heated particle as in the c
shown in Fig. 2. In this case the capacity to remove h
from the second particle is greatly reduced since the fl
near the surface of the second particle is already heated
to its contact with the first particle. This situation wou
occur in the case of a periodic array when the mean flow
along a principal lattice direction. Indeed, as pointed out
Sorensen and Stewart,2 the thermal boundary layer woul
continue to grow in such a case and the thickness of
thermal boundary layer would eventually become com
rable to the particle radius sufficiently downstream of t
flow. Consequently,N would beO(1) for far downstream
regions of the array. The results we shall present here th
fore apply only to heat transfer from a single active parti
in a periodic array. It should be noted that this is a partic
larly severe restriction only in the case of periodic arra
For random arrays it does not pose a serious restriction
cause the probability that a streamline emanating from
given heated particle will come in contact with anoth
heated particle in its vicinity is small. Since the volume o
cupied by the fluid is proportional to 12f, and that occu-
pied by the thermal boundary layers near each particle
proportional tofPe21/3, the probability that the heat re
moved from a heated particle and carried away along
outgoing streamline will be dispersed into the fluid
(12f)Pe1/3/f times greater than the probability that it wi
affect the boundary layer behavior of another particle. Th
N in random arrays will beO(Pe1/3) even in the far down-
stream regions of the array. The situation described her

FIG. 2. A sketch of flow around two particles oriented in the direction of t
flow. The heat transfer from the second particle is reduced due to the
that the fluid in its contact is already heated by the first particle.
W. Wang and A. S. Sangani
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analogous to that observed for heat transfer in tubes.
Nusselt number at largePe is O(1) at large distances into
the tube when the flow is laminar, for which the same flu
elements continue to stay in contact with the heated t
walls, compared withN that scales approximately asR0.8

when the flow is turbulent which continuously exposes
heated wall to fresh, unheated fluid from the bulk of the flo

B. An expression for the Nusselt number

Since the thermal boundary layers are much thinner t
the particle radii, it will suffice to consider the energy equ
tion in its simplified form,

Ytw
]T

]x
2
1

2
Y2tw8

]T

]Y
5

]2T

]Y2 1O~Pe21/3!, ~2!

whereY5(r21)Pe1/3 is the scaled distance normal to th
surface of a representative particle,r being nondimensional
ized by the particle radiusa, x is the distance measure
along the surface of the particle withx50 representing an
incoming stagnation point~defined as a point where th
streamline is along the radial direction and pointing into
particle surface, cf. Fig. 1!, T is the temperature of the fluid
tw[tw(x)5(]u/]r )w is the radial derivative of the tangen
tial componentu of the velocity evaluated at the partic
surface, and the prime denotes differentiation with respec
the argument of a function, e.g.,tw8 5dtw /dx. In writing ~2!
we have made use of the fact that for small distances f
the particle surface the velocity components parallel and n
mal to the surface of the particle are approximately given
tw(x)(r21) and2tw8 (r21)2/2, respectively.

The solution of~2! by the similarity transformation is
relatively well known. TakingT5To1(Ts2To) f (s) with
s5Y/g(x) andY5(r21)Pe1/3 yields

f 913s2f 850 ~3!

and

g2g8tw1
1

2
g3tw8 53, ~4!

together with the boundary conditionsf (0)51 and
f (`)50. The boundary condition forg will be discussed
later. The solution forf is, of course, straightforward an
given by

f5
1

G~4/3!Es
`

e2t3dt, ~5!

whereG(4/3)50.892 97 . . . is thegamma function of 4/3.
Since ~4! can be rewritten as (g3tw

3/2)859tw
1/2, we obtain,

upon integrating,

g3~x!59tw
23/2~x!E

0

x

tw
1/2~ t !dt1Atw

23/2~x!, ~6!

whereA is a constant of integration. Now the usual argum
for estimatingA consists of requiring thatg be finite at the
incoming stagnation point (x50). Sincetw50 atx50, this
argument givesA50. This result is correct provided that th
incoming fluid at the stagnation point has not come in c
tact with the particle previously as is the case with the po
Phys. Fluids, Vol. 9, No. 6, June 1997
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D shown in Fig. 3. In the situation shown in Fig. 3, the flu
detaches at point B and reattaches at point D and hence
boundary layer thickness, which is proportional tog, atD is
expected to be thicker than what it would have been if
were a stagnation point corresponding to fresh, unhea
fluid. To obtain the proper conditions for determiningA
then, we must use the overall energy balance. Since all
heat lostQ(x) by the particle up to some distancex from the
stagnation point A must be equal to the net gain in the
thalpy of the fluid, we have that

Q~x!5rcpPe
21/3E

0

`

u~T2To!dY, ~7!

where u[u(x,Y) and T[T(x,Y). Substituting
u5Ytw(x)Pe

21/3 and T2To5(Ts2To) f , and performing
the integration in the term on the right-hand side of the ab
equation, we obtain

E
0

`

u~T2To!dY5
Ts2T0

6Pe1/3G~4/3!
g2tw~x!. ~8!

Substituting in~7! we have

g2tw~x!5
6Pe2/3G~4/3!Q~x!

rcp~Ts2To!
. ~9!

Now, rewriting ~6! as

g2tw~x!5F9E
0

x

tw
1/2~ t !dt1AG2/3 ~10!

and comparing it with~9!, we see thatA can be related to the
heat gained by the fluid up to a given stagnation point. Th
we find that one must takeA50 to determineg along the arc
AB in Fig. 3, but not along the arc DB or DE. LetQAB ,
QDB , andQDE be the rate of heat transfer along the arcs A
DB, and DE, respectively. The heatQDB gained by the re-
circulating fluid along DB is rejected and hence gained
the fluid just outside the recirculating region along the a
BCD. As a result, the fluid approaching the point D from t
open region has gained a total heat equal toQAB1QDB , and
consequently,

A2/35
6G~4/3!Pe2/3~QAB1QDB!

rcp~Ts2To!
~11!

FIG. 3. A sketch illustrating detachment and reattachment of flow induc
a region of closed streamline. The heat lost by the particle along ABD
carried away by the fluid leaving the particle at E.
1531W. Wang and A. S. Sangani
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for determiningg along DE. Likewise, in determiningg
along DB we must use

A2/35
6G~4/3!Pe2/3QAB

rcp~Ts2To!
. ~12!

It may be noted thatg is not symmetric around all incomin
stagnation points. For points such as A, the thermal bound
layer thickness on either side of the stagnation point is
same, while for the reattachment points such as D the t
mal boundary layer thickness on the recirculation side
thinner than that on the open streamline side. Finally
should also be noted that while the thermal boundary la
thickness increases along the arc BCD on the open stre
line side, that on the closed streamline side decreases
result of the heat transfer across BCD.

Now it is easy to show that the net rate of heat trans
per unit depth of a representative cylindera is given by

Qa5
3

2

1

91/3G~4/3!
ka~Ts

a2To!Pe
1/3

3(
i

H E
0

Li
utwu1/2~x!dxJ 2/3, ~13!

whereTs
a is the temperature of particlea. The summation

index i in the above expression refers to thei th pair of ad-
jacent incoming-outgoing stagnation points~e.g., points A
and E in Fig. 3!, andLi is the arc length between the tw
stagnation points normalized by the particle radius. Note
the stagnation points such as B and D are not to be con
ered as the incoming or outgoing stagnation points. T
above expression is in agreement with that given by
rensen and Stewart,2 who, as mentioned earlier, consider
the case of heat transfer in periodic arrays of spheres at l
Pe. Note, however, that these investigators made no men
of the possibility that there may be more than two stagna
points per particle and that the stagnation points correspo
ing to regions of closed streamlines must be treated dif
ently than the other stagnation points.

Now the Nusselt number in an array containingNp par-
ticles ~per unit cell! is defined as

N5
1

Np
(
a51

Np Qa

2pak~^Ts&2^Tf&!
, ~14!

where^Ts& and^Tf& are the average solid and fluid temper
tures. The average temperature in the fluid phase may
defined in several ways, the two most common choices be
the spatial average of the fluid temperature and the fluid
locity weighted average temperature, the so-called mixi
cup temperature. In the limitPe→` both temperatures be
come equivalent and equal toTo with an error of
O(Pe21/6) ocurring from the temperature in the close
streamline being different from that in the open streaml
region.

Even though there is no ambiguity in defining^Tf&, we
should note that two different values ofN are possible, de-
pending upon whether we specifyQa among all the particles
to be the same or specifyTs

a to be the same for all particles
Let NQ and NT be the Nusselt numbers corresponding
1532 Phys. Fluids, Vol. 9, No. 6, June 1997
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these two different situations. It is easy to show that, in
limit Pe→`, NT<NQ with the equality sign valid for peri-
odic arrays, i.e.,Np51. In the extreme case, where some
the particles have no stagnation points,NQ will be O(1)
even thoughNT remainsO(Pe

1/3).

C. The numerical method

From the preceding discussion we see that to determ
the Nusselt numbers we need to determine the stagna
points andtw for each cylinder. We used the method
multipole expansion outlined in Sangani and Yao5 for this
purpose. The streamfunctionc expressed in terms of a pola
coordinate system with its origin at the center of particlea is
given by

c5 (
n50

`

hn
a~r !cosnu1h̃n

a~r !sin nu, ~15!

where r and u are defined by x12x1
a5r cosu and

x22x2
a5r sinu, (x1

a ,x2
a) being the coordinates of the cent

of particlea, h̃0
a(r )[0, and

hn
a~r !5H C0

a ln r1E0
a1F0

ar 2, n50

C1
ar211D1

a~r ln r2r /2!1E1
ar1F1

ar 3, n51

Cn
ar2n1Dn

ar 22n1En
ar n1Fn

ar n12, n>2.
~16!

Similar relations hold forh̃n
a(r ). The no-slip boundary con

dition at r51 gives

hn
a~1!5hn

a8~1!5h̃n
a~1!5h̃n

a8~1!50 ~17!

except forh0(1), which equals the value of streamfunctio
at the surface of the particle. The method of multipole e
pansion is outlined in detail in Sangani and Yao.5 In this
method,c at any point in the fluid is expressed in terms
derivatives of periodic singular solutions of biharmon
equations. The coefficients of these derivatives are dire
related to the coefficients of the singular terms in~16!, i.e., to
Cn

a , Dn
a , C̃n

a , andD̃n
a . When the summation in~15! is trun-

cated ton<Ns , these represent a total of (4Ns11)Np un-
knowns in this global expansion ofc. The coefficients of the
regular terms, i.e.,En

a , Fn
a , etc. in the local expansion~15!

and ~16! near each particle are related tonth-order deriva-
tives of the regular part ofc at x5xa and can therefore be
expressed in terms of coefficientsCn

a , etc., through the glo-
bal expansion ofc. Application of~17! for n<Ns then gives
a total of (4Ns11)Np linear equations in the same numb
of unknowns. These equations are solved numerically to
termineCn

a , Dn
a , C̃n

a , andD̃n
a . The coefficients of the regu

lar terms in~16! are subsequently determined using~17!.
Now since the tangential component of the velocity

given byuu52]c/]r , tw is evaluated using
W. Wang and A. S. Sangani
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tw56S ]uu

]r D
r51

56 (
n50

` F S d2hnadr2 D
r51

cosnu1S d2h̃na
dr2

D
r51

sin nuG . ~18!

The plus sign must be used in the term on the extreme ri
hand side of the above expression when the curve joining
incoming stagnation point to an outgoing stagnation poin
along the direction of decreasingu.

The stagnation points on the surface of particlea are
determined by solvingtw(u)50. The zeros oftw were de-
termined by evaluatingtw in small increments ofu and by
using linear interpolation between two successive value
u for which tw changed its sign. Now, to determine th
Nusselt number we need to differentiate between those s
nation points where either the fresh unheated fluid come
contact with the particle or the heated fluid leaves the p
ticle and those stagnation points corresponding to the reg
of closed streamlines. This is done by a two-step proced

First, we determine whether a given pair of stagnat
points lies in the open streamline region or the clos
streamline region using the following criteria:~1! If the arc
length between the two stagnation points is greater t
p/3 we treat the pair as corresponding to an open reg
because it is very unlikely that closed streamline regio
greater than this arc length would form around a particle;~2!
for pairs with arc length less thanp/3 we estimate an ap
proximate radial distanced from the surface of the particle a
which the tangential component of the velocity changes
sign for a value ofu exactly halfway between the two stag
nation points.d is estimated by assuming thatuu is ad-
equately given by the first two terms in the Taylor ser
expansion:

uu~r !52~r21!
]2c

]r 2
~1!2

~r21!2

2

]3c

]r 3
~1!. ~19!

The above expansion yieldsd522(] rrc/] rrr c) where ] r
stands for a partial derivative with respect tor . The pair of
stagnation points was regarded as corresponding to a cl
streamline region provided that 0,d,0.2.

Once each pair of stagnation points was labeled as
responding to either a closed or an open streamline reg
the next task is to determine the stagnation points such a
and E in Fig. 3 where either the fresh fluid enters or
heated fluid leaves the particle. We shall refer to these
‘‘open’’ stagnation points. We used the following procedu
to identify them:~1! If a stagnation point is surrounded o
either side by open streamline regions, then that poin
labeled as an ‘‘open’’ stagnation point;~2! if fewer than two
stagnation points meet this criterion for a given particle, th
we must have situations such as those sketched in Fig.
such cases we choose the stagnation point with an e
number of closed streamline regions around it as an ‘‘ope
stagnation point. This procedure will label A and B as t
‘‘open’’ stagnation points for the situations sketched in F
4. This is a somewhat arbitrary procedure, but it is at le
appropriate for the case of periodic arrays with the me
flow along a principal lattice direction. For most cases
Phys. Fluids, Vol. 9, No. 6, June 1997
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volving either oblique flows in periodic arrays or for rando
arrays the second scenario occurred with much less
quency and therefore we believe that this somewhat arbit
scheme used in determining the ‘‘open’’ stagnation poi
will not affect significantly the results to be presented in t
next section.

Qa was determined by evaluating the integral in~13!
over all pairs of ‘‘open’’ stagnation points using Simpson
rule. NT was determined by averagingQa over all the par-
ticles in the array whileNQ was determined by taking th
harmonic mean ofQa over all the particles,Ts2To being
taken to be unity in both cases. In what follows we sh
present results for the coefficients ofO(Pe1/3) in the expres-
sion for the Nusselt numbers,

NQ,T5CQ,TPe
1/31O~Pe1/6!, ~20!

and the coefficient of Darcy permeability,

K[
k

a2
5

pm^u&
f^F&

. ~21!

Here,k is the Darcy permeability of the array,m is the fluid
viscosity, ^u& is the superficial velocity,f is the area frac-
tion of cylinders, and̂F& is the average drag force per un
length of cylinders.

III. RESULTS

A. Periodic arrays

We first present results for periodic arrays in which t
centers of the cylinders coincide with a square lattice, wh
corresponds toNp51. The permeability is independent o
the orientationu0 of the mean flow with respect to the prin
cipal lattice direction aligned along thex1 axis. This, how-
ever, is not the case withN which is a function ofu0 . In this
rather specialized geometry one must also be conce
about the fact that if tanu0 is a rational number then th
cylinders sufficiently downstream of the flow will always b
in a thermal wake of cylinders ahead of it. As mention
earlier, the thermal boundary layers on the downstre

FIG. 4. Two representative situations for which the choice of ‘‘open’’ sta
nation points is not obvious. The points indicated by A and B were cho
as the ‘‘open’’ stagnation points in such situations.
1533W. Wang and A. S. Sangani
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heated cylinders will become comparable to the particle
dius and, consequently,N for such particles will beO(1).
The results presented here will therefore apply only to eit
the first row of cylinders or to the heat or mass transfer fr
a single active particle in a periodic array.

Table I shows the convergence ofK[(k/a2) andC as a
function ofNs for several different values of the orientatio
angleu0 and the cylinder area fractionf. The resistance to
flow increases and henceK decreases asf increases. Simi-
larly, one expects the Nusselt number, and henceC, to in-
crease withf. The results for the permeability are in perfe
agreement with those obtained using a boundary colloca
method by Sangani and Acrivos.3 We see that in genera
there is a rapid convergence of bothK andC with Ns . Also
shown in the table are the total number of stagnation po
Nstag~including the closed as well as open stagnation poin!
for various values ofu0 . We foundNstag52 for most values
of u0 , except foru0 close to 0. Interestingly, atf50.7 and
u050°, we foundNstag to be as high as 18. The number
‘‘open’’ stagnation points was 2 in all the cases conside
here, and the procedure outlined above for determining
open stagnation points ensured that the Nusselt number
ied smoothly asu0 is varied even though the total number
stagnation points varied abruptly from as high as 18 to 2
some values ofu0 andf. The fact that the total number o
stagnation points in the square arrays of cylinders is v
sensitive to the orientation of the mean flow has been no
earlier by Larson and Higdon.12 These investigators hav
illustrated the changes in the flow field through detai
streamline plots. In particular, their streamline plots at a
fraction of 0.4 clearly show six stagnation points when t
mean flow is almost parallel to one of the principal latti
directions and two stagnation points otherwise. This is
agreement with our calculations for the number of stagna

TABLE I. Convergence of numerical results for permeability and Nuss
number for square arrays of cylinders.

f Orientation Ns K C Cf1/3K1/3 Nstag

0.01 0° 9 39.36 0.50 0.36 2

0.1 0° 5 1.27 0.68 0.34 2
9 1.27 0.68 0.34 2

0.1 45° 5 1.27 0.72 0.36 2
9 1.27 0.72 0.36 2

0.5 0° 5 1.18E-2 1.27 0.23 6
9 1.18E-2 1.27 0.23 6
15 1.18E-2 1.27 0.23 6

0.5 45° 5 1.18E-2 1.59 0.29 2
9 1.18E-2 1.59 0.29 2
15 1.18E-2 1.59 0.29 2

0.7 0° 9 3.44E-4 2.38 0.15 10
19 3.32E-4 2.26 0.14 14
23 3.32E-4 2.26 0.14 18

0.7 10° 19 3.32E-4 2.69 0.17 2
27 3.32E-4 2.69 0.17 2

0.7 45° 19 3.32E-4 3.00 0.18 2
27 3.32E-4 3.00 0.19 2
1534 Phys. Fluids, Vol. 9, No. 6, June 1997
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points as a function of the orientation of the mean flow.
Since tw scales approximately linearly with the total

drag force experienced by a particle, and since the drag for
is proportional to 1/(fK), we expectCf1/3K1/3 to remain
approximately constant over a wide range off values. This
is confirmed by the results shown in Table I where
Cf1/3K1/3 is seen to vary only by a factor of about 2 asf is
varied from 0.01 to 0.7. The corresponding changes infK
andC are by factors of 104 and 5, respectively. It is easy to
show from the analysis of a thermal boundary layer around
single cylinder thatCf1/3K1/3 should approach 0.365 as
f→0. This is in reasonable agreement with the results o
numerical simulations shown in Table I.

Table II gives the detailed results forC as a function of
f for selected values ofu0 . These results for square arrays
of cylinders are also shown in Fig. 5. We see thatC, and
hence the Nusselt number, increases monotonically withu0
as the latter is varied from 0° to 45°.

B. Random arrays

Results for random arrays are shown in Table III an
Figs. 6 and 7. The random configurations of hard disks we

ltTABLE II. Results forK andC for square arrays of cylinders at various
f and mean flow orientations.

f K

C

0° 15° 30° 45°

0.01 39.96 0.50 0.50 0.50 0.50
0.05 15.56 0.60 0.61 0.62 0.62
0.10 1.27 0.68 0.70 0.71 0.72
0.20 0.30 0.80 0.85 0.88 0.90
0.30 0.10 0.91 1.02 1.06 1.08
0.40 3.60E-1 1.06 1.22 1.28 1.30
0.50 1.18E-2 1.27 1.49 1.57 1.59
0.60 2.97E-2 1.57 1.90 2.01 2.05
0.70 3.32E-3 2.72 2.79 2.95 3.00

FIG. 5. Nusselt number as a function of the orientation of mean flow fo
various area fractionsf of cylinders.
W. Wang and A. S. Sangani
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TABLE III. Results for hard-disk, random configurations.K is the permeability coefficient computed in th
present study whileKSM , KKL , andKG represent the results for the same obtained by, respectively, San
and Mo~Ref. 13!, Koch and Ladd~Ref. 14!, and Ghaddar~Ref. 12!. KSQ represents the permeability of squa
arrays of cylinders obtained by Sangani and Acrivos~Ref. 3!. CQ andCT are the coefficients of the leading
O(Pe1/3), term in the Nusselt number andNstag is the average number of stagnation points per cylinder.

f Np Ns K KSM KKL KG KSQ CT CQ Nstag

0.05 64 7 5.64 5.63 3.89 4.01 0.53 0.53 2.14
0.1 64 9 1.70 1.67 1.68 1.45 1.27 0.60 0.59 2.2
0.3 64 9 8.94E-2 9.33E-2 1.08E-1 9.70E-2 1.02E-1 0.95 0.93 2.
0.5 64 10 7.49E-3 8.28E-3 9.56E-3 7.87E-3 1.18E-2 1.50 1.40 2.
0.6 49 11 1.85E-3 1.90E-3 1.87E-3 2.97E-3 1.83 1.75 3.5
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generated by a usual molecular dynamics code. The res
shown were obtained by averaging over 20 independe
hard-disk configurations for eachf. Forf50.5 and 0.6 we
started from a square array of cylinders with random initi
velocities and allowed roughly 104 collisions per particle be-
fore selecting the arrays for computations. For smaller valu
of f, the particles were given initially nonoverlapping ran
dom positions and velocities and were allowed to under
about 5000 collisions per particle before selecting arrays f
computations. The computations were made using a sin
IBM SP2 processor, and since the equations were solv
using anO(N3) algorithm we limited calculations to moder-
ate values ofNs as indicated in Table III. Convergence test
with few representative configurations for eachf indicated
that the chosen values ofNs were adequate for determining
permeability and the Nusselt number within about 10% a
curacy.

Unlike the case of square arrays, we expect thatN will
depend on whether the flux from each particle or the tem
perature of the particle is specified. The results are presen
for bothCQ andCT . We note that the difference between th
two is relatively small for all values off. Also shown in the
table are the results forK, the permeability coefficient, and
Nstag, the average number of total stagnation points per cy

FIG. 6. A comparison of various effective medium-approximations and th
computed values of the permeability coefficientK for the random arrays of
cylinders.
, No. 6, June 1997
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inder, as a function off. The average permeability coeffi-
cient was determined by first determining the average for
exerted on cylinders over all the configurations and then u
ing K5pmU/f^F&, U being unity for all the configura-
tions. Note that this will usually give estimates ofK that are
different from those obtained by fixing the net pressure dro
across the array and determining the average ofU among all
the configurations, as has been done, for example,
Ghaddar.13

We first discuss the results forK. Table III shows a
comparison with the results obtained by previous investig
tors. Sangani and Mo14 used a low-order multipole expan-
sion (Ns52), but explicitly accounted for lubrication effects
between pairs of particles. Here, by lubrication effects w
mean the large pressure drop that occurs in the fluid as
moves through a narrow gap between a pair of particles. W
see that there is generally good agreement between the
sults obtained by that method and with those obtained in t
present study, with a notable difference occurring only fo
f50.5. Ghaddar13 used a finite element technique to deter
mine K. He kept the unit cell size approximately constan
and variedf and Np . Thus, for example, he used only
Np53 for f50.05. As a result, his results for lowf deviate
significantly from the results obtained here. For referenc

e
FIG. 7. A comparison of the effective-medium approximations and the com
puted values of theO(Pe21/3) coefficientC.
1535W. Wang and A. S. Sangani
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we have also tabulatedK for square arrays of cylinder
which correspond toNp51. It may be noted thatK deter-
mined by Ghaddar forf50.05 is closer to the result fo
square arrays than for random arrays. Koch and Ladd15 used
a lattice-Boltzmann technique for determiningK. These in-
vestigators usedNp564 for smaller f and Np532 for
f50.5 and 0.6. They obtained their results by averag
over ten configurations at smallerf and five for largerf.
We see a very good agreement between our results and
results obtained by these investigators, except forf50.5;
the reason for the observed discrepancy at thisf is unknown
to us.

Also shown in Table III are the results for the coef
cients of theO(Pe1/3) term in the Nusselt number. As men
tioned earlier, we expectCT , the coefficient based on a
assumption of sameT for all the particles, to be greater tha
CQ , the coefficient based on same heat flux for all the p
ticles. The difference, however, is small at allf. As in the
case of square arrays, we see thatCT or CQ increases with
f.

Finally, Table III also shows the average number of st
nation points per particle in random arrays. We did not o
serve a single case in which any of the particles was c
pletely surrounded by the region of closed streamlines. T
we conclude that all particles contribute significantly to t
overall heat transfer coefficient. It is interesting to note t
the maximum in averageNstag, which occurs atf50.6, is
only 3.5, indicating that there are far fewer regions of clos
streamlines in random arrays than observed in square a
with the mean flow oriented along the principal lattice dire
tion.

C. Comparison with approximate methods

It is interesting to compare the results obtained here w
those predicted by approximate methods. There are
course, numerousad hocmethods and we shall not attem
-

-
ut

s
-
s.
es
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to cover them all. Instead, we have chosen two methods
detailed comparison. The first is based on the effecti
medium approximation while the second is based on a c
cept of hydraulic diameter commonly used in the design
heat exchangers.

The effective-medium approximations attempt to es
mate various properties by analyzing a model system
which a particle of radiusa is surrounded by fluid up to a
radius aR and an effective-medium beyond it. Differen
effective-medium theories vary in their choices ofR, the
most popular choices beingR5f21/2 andR51. Recently,
Dodd et al.16 determined various hydrodynamic coefficien
~self- and collective translational and rotational mobilitie!
for random arrays of cylinders and found that the results
numerical simulations were generally in good agreem
with an effective-medium theory in whichR was defined in
terms of a zero-wave-number structure factor of the arra

R25
12S~0!

f
. ~22!

The structure factor is defined by

S~0!5nE @g~r u0!21#dVr , ~23!

wheren5f/(pa2) is the number density of particles an
ng(r u0) is the pair probability density, i.e., probability o
finding a particle with its center in the vicinity ofr given that
a particle is present at the origin. Note thatng equals a delta
function atr50 and thatg→1 asr→`. The rationale for
choosingR based on~22! may be found in Doddet al.16 and
Mo and Sangani,17 where it is shown that the conditionall
averaged velocity field far from a given particle in sedime
ing suspensions is correctly represented whenR is defined by
~22!. For random, hard-disk systemsS(0) is given by Chae
et al.:18
S~0!5
~121.9682f10.9716f2!2

110.0636f20.5446f220.4632f320.1060f410.0087f5 . ~24!
d

for

the

-

It should be noted thatS(0)→124f as f→0 so that
R→2 asf→0. According to this model then the effective
medium in very dilute arrays extends beyondR52 as com-
pared withR5f21/2→` in the usual effective-medium ap
proximation. Thus one expects that, at least for dil
random arrays, the estimates based on~22! will be more
accurate than those based onR5f21/2. This was indeed
shown to be the case in the calculations of~1! the hydrody-
namic mobilities;16 ~2! the diffusion-controlled reaction rate
in arrays of cylinders;19 and ~3! the effective elastic proper
ties of composite materials containing spherical inclusion20

Thus it is natural to inquire if this simple model also giv
reasonably accurate estimates ofK andN.

To obtain effective-medium estimates ofN and K we
e

solve the following problem for the conditionally average
velocity fieldu:

m¹2u5¹p, ¹•u50, a,r,aR, ~25!

m¹2u5¹p1a2mu, ¹•u50, r.aR. ~26!

Thus the fluid motion satisfies the Stokes equations
r,aR and Brinkman’s equations forr.aR. The Brinkman
viscosity is taken to be the same as the fluid viscosity.a2 is
the inverse of permeability to be determined as a part of
solution. The numerical scheme for determininga2, and
hencek, then consists of solving~25! and ~26! subject to
boundary conditionsu50 at r5a andu5U asr→` for an
assumed value ofa, the velocity and traction being continu
W. Wang and A. S. Sangani
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TABLE IV. Comparison with the predictions of effective-medium approximations: EM I, EM II, and EM
correspond, respectively, toR25@12S(0)#/f, R251/f, andR51. The results of numerical simulations ar
denoted by Ex.

K C Cf1/3K1/3

f Ex EM I EM II EM III Ex EM I EM II Ex EM I EM II

0.05 5.64 5.36 4.48 5.54 0.53 0.55 0.59 0.35 0.36 0.3
0.1 1.70 1.57 1.41 1.68 0.60 0.64 0.67 0.35 0.34 0.3
0.3 8.94E-2 9.21E-2 1.10E-1 8.58E-2 0.95 1.00 0.98 0.28 0.30 0.3
0.5 7.49E-3 1.07E-2 1.32E-2 -ve 1.50 1.49 1.43 0.23 0.26 0.2
0.6 1.85E-3 3.58E-3 4.13E-3 -ve 1.83 1.84 1.79 0.19 0.24 0.2
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par-
ous atr5aR. Once the velocity field is evaluated, the for
F on the particle is evaluated and a new estimate ofa is
obtained from

a2a25
fF

pmU
. ~27!

This process is repeated until the results forF anda con-
verge to desired accuracy.

Taking U to be a unit vector along thex1 axis anda
equal to unity, and expressing the velocity in terms
streamfunctionc, we have for 1,r,R,

c5@Er1Fr 31D~r logr2r /2!1Gr21#sin u. ~28!

The no-slip boundary condition at r51 gives
E522G1D and F5G2D/2. The force on the particle
and hencea, is related toD by a254fD. Now the wall
stress function is evaluated from

tw52S ]uu

]r D
r51

5S ]2c

]r 2 D
r51

5~8C22D !sin u. ~29!

Substituting in~14! we obtain

N5
61/3

2pG~4/3! S E0p~sin u!1/2du D 2/3D1/3S 4GD 21D 1/3Pe1/3
50.58D1/3S 4GD 21D 1/3Pe1/3. ~30!

The above result can be expressed in terms ofK by making
use of ~27! and relationsF54pmD and K51/(a2a2) to
obtain

N50.365~fK !21/3S 4GD 21D 1/3Pe1/3. ~31!

Table IV shows a comparison between the results
numerical predictions and the effective-medium approxim
tions. We have chosen three different values ofR:
R25@12S(0)#/f; R251/f; andR51. These are referred
to as, respectively, the EM I, EM II, and EM III approxima
tions. This comparison is also shown in Fig. 6. We see t
K is best approximated by EM III at lowf, but this approxi-
mation gives unrealistic negative values forf greater than
about 0.4. The EM I approximation, on the other hand,
reasonably accurate at smallf and remains positive for the
complete range off. It also gives a better estimate than E
II for the whole range off. Considering that it only gives an
error by at most a factor of 2 asfK varies by four orders of
, No. 6, June 1997
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magnitude, it should be regarded as reasonably accu
Also shown in Table IV and Fig. 7 are the comparisons
the coefficientC of the leadingO(Pe1/3) term inN and for
C(fK)1/3. We have takenC5CT . We see that the effective
medium approximations give very good estimates forC,
with the maximum error for the EM I approximation bein
only about 6%. The coefficientC(fK)1/3 is proportional to
(4G/D21)1/3 in ~31!. We see that EM I and EM II give
approximately the same estimate for this quantity, and he
the difference in the estimates ofC from these approxima-
tions arises due to different estimates ofK.

It is also interesting to compare the results forC ob-
tained here with those predicted by the correlations for N
selt numbers in heat exchangers available in the stan
heat transfer textbooks. For example, Weltyet al.21 suggest
the following procedure based on a concept of equival
hydraulic radius. First,N for flow transverse to a single cyl
inder is estimated from

N50.623Pe1/3 ~32!

for 0.2,Re,20. It should be noted that the lower limit o
Re does not extend to zero, because of the well-kno
Stokes paradox according to which there is no steady s
tion to Stokes flow past an infinitely long cylinder in a
unbounded medium. Next, to account for finitef, it is sug-
gested thatRe be evaluated based on an equivalent rad
determined from

aeq5
23flow area

wetted perimeter
5a

12f

f
. ~33!

Thus, according to this recipe, the coefficientC is given by

Ceq50.623S 12f

f D 1/3. ~34!

For f50.05, 0.3, and 0.6, the above expression predictC
equal to, respectively, 1.66, 0.83, and 0.54. In contrast,
calculations for smallRe give C equal to 0.54, 0.94, and
1.88, respectively. Thus we conclude that the use of
equivalent radius concept may give quite an erroneous e
mate of the effect off on the heat transfer coefficients fo
flow past cylinders in heat exchangers.

IV. AN APPROXIMATE RELATION

SinceN in the limit of largePe andK at smallRe are
governed by the stress distribution on the surface of the
1537W. Wang and A. S. Sangani
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ticles, it is useful to attempt to correlate the two. Our resu
for random arrays of cylinders may be satisfactorily cor
lated by means of a simple expression

C5~0.3720.24f!~fK !21/3. ~35!

This correlation appears to be satisfactory even for the c
of spherical particles as shown in Table V, where we ha
compared it with various known results. For spherical p
ticles, the permeability is related to the average drag fo
and mean velocity by

1

fK
5
9

2

F

6pmUa
. ~36!

For isolated particles, i.e., forf→0, ~35! with fK52/9
yields C50.61, which is in very good agreement with th
exact resultC50.6245 . . . .6 As mentioned in the introduc
tion, Sorensen and Stewart2 determinedC for simple cubic
and face-centered cubic arrays at their maximum volu
fractions off 5 0.5236 and 0.7405, respectively. For t
case of simple cubic array, they evaluatedC for two orien-
tations of the mean flow: for~0,0,1! and (1,1,1) directions
the principal lattice directions being along the three coor
nate axes. The corresponding values ofC reported by these
investigators are 1.29 and 1.46. The nondimensional d
force F/(6pmUa) for periodic arrays of spheres has be
accurately evaluated by Zick and Homsy22 and Sangani and
Acrivos.23 Using their value of 42.1 for packed simple cub
arrays~35! and~36! yieldsC51.41 in very good agreemen
with the result obtained by Sorensen and Stewart for
(1,1,1) direction. Next, we consider the face-centered cu
array withf50.7405 for which Sorensen and Stewart o
tainedC52.83. The mean flow in this calculation was alo
the ~0,0,1! direction which is oriented at 45° to a princip
lattice direction~0,1,1!, of the array. As mentioned by thes
investigators their result forC agrees to within 2 per cent o
the experimental value forC reported by Karabelaset al.24

who conducted electrochemical measurements for a si
active sphere in a packed face-centered cubic array. U
F/(6pmUa)5438 for this array, ~35! and ~36! yield
C52.41 which agrees within about 20% with the exact va
of 2.83. Finally,C for packed random arrays of spheres m
be estimated from the mass transfer correlation of Wils
and Geankoplis,25 according to which

N5
0.69

12f
Pe1/3. ~37!

TABLE V. A comparison ofC estimated from~35! (Capp) with various
known results (Cex) for arrays of spheres. Dilute, sc, random, and fcc ref
respectively, to the case of isolated particle, simple cubic, face-cent
cubic, and random packed arrays.

f Array
F

6pmUa Cex Capp

0 dilute 1 0.62 0.61
0.52 sc 42.1 1.29-1.46 1.41
0.62 random 113 1.82 1.77
0.74 fcc 438 2.83 2.41
1538 Phys. Fluids, Vol. 9, No. 6, June 1997
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The above correlation for dumped, packed beds of sphere
expected to apply forRe,55, Pe.50, and 0.25,f
,0.65. We shall use this correlation to obtainC for packed
equal-size spheres withf50.62. The well-known Kozeny
equation,

F

6pmUa
510

f

~12f!3
, ~38!

yields a nondimensional drag of approximately 113. T
compares well with the results of numerical simulations
Mo and Sangani17 and with careful experimental measur
ments of the same for monodispersed packed beds by P
ipse and Pathmamanoharan.26 Substituting this value in~35!
and~36!, we obtainC51.86, which compares very well with
C51.77 obtained from~37! with f50.62.

In summary we find that~35! appears to be remarkabl
accurate for the arrays of both cylinders and spheres fo
wide range range of values off over whichfK varies by
three orders of magnitude.
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