
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

1982

A finitary retract model for the polymorphic lambda-calculus A finitary retract model for the polymorphic lambda-calculus

Nancy McCracken
Syracuse University, njmccrac@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
McCracken, Nancy, "A finitary retract model for the polymorphic lambda-calculus" (1982). Electrical
Engineering and Computer Science - Technical Reports. 1.
https://surface.syr.edu/eecs_techreports/1

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/1?utm_source=surface.syr.edu%2Feecs_techreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

83-2

A finitary retract model for the polymorphic lambda-calculus

Nancy Jean McCracken

SCHOOL OF COMPUTER
AND INFORMATION SCIENCE

This paper is a preprint of a paper submitted for publication to Infonnation and

Control.

A finitary retract model for the polymorlilic lambda-calculus

Nancy Jean McCracken

Syracuse University

1982

This work wa spar ti all y supported by National Science Foundation grant

MCS80-04219.

1

I. Introduct ion

There has been great interest 10 recent years in designing programming

languages which permit functions which may accept types as parameters

(polymorphic functions) and types with type parameters (type Kenerators).

Unfortunately. the semantics of such functions and types has not been as well

understood as their practical use in software design. In [McCracken 1979]. a

denotational semantics was given for a simple programming language with these

features. The semantics used closures. which are a special case of the more

familiar retractions. over the Scott universal domain. p~. to represent types.

It was then possible to interpret polymorphic functions as continuous functions

from types to objects in p~ and the type generators as continuous functions from

types to types. However. the model depends heavily on the fact that p~ and the

types over it are all complete lattices. while in many cases it seems that the

less restrictive complete partial orders are more natural for programming

language semantics.

An attempt to construct a model using retracts over complete lattices was

made in [Donahue 1979]. but it has been shown that the construction is not valid

[McCracken 1980J. Structures that may solve this problem have been suggested by

Scott [Scott 1980J. In this paper. we use Scott's suggestion of finitary

retracts over a finitary complete partial order. We show that Scott's

conjecture that these structures will provide a model for the polymorphic

functions is true. In addition. we show that this also provides a model for the

type generators and that recursive types can be interpreted in the model.

In this paper. we first define a prototype language as a typed i-calculus

extended with polymorphic functions and type generators. Next. we present the

finitary cpo's and the various functions and operators necessary in the

semantics. And finally. we show how to use the cpo's to give a model for the

language.

2

We are using type generators here for essentially the same construct that

has also been called parameterized types or generic types. We prefer the term

type generators because it emphasizes both the functional nature of our

semantics and the generality of the construct. In particular. we wish to

emphasize that a type generator is not a type itself. In our semantics. a type

generator will have a denotation as a function from types to types. in contrast

to the algebraic approach [ADJ 1979J. where a parameterized data type (in their

terminology) is a specification ··scheme·· or a class of specifications.

II. The Prototype Lan~ua~e

Syntactically. polymorphic functions and type generators can be

introduced into a programming language by including type variables. which are

distinct from ordinary variables. and by allowing abstraction with respect to

type variables both in the programming language expressions (to give polymorphic

functions) and in the type expreSSIons (to give type generators). Since our goal

is to have type abstraction be as general a mechanism as possible. the question

naturally arises ··Can type abstractions be applied to any type expression

whatsoever?··. For polymorphic functions the answer is essentially ··yes··; if the

type abstraction is formed with respect to a type variable that avoids certain

special bound variable clashes. then a polymorphic function can be applied to

any type expression.

For parameterized types. though. the answer is
..

no • Since we are

representing them as functions from types to types. unrestricted type

abstraction and application would make the type language into an untyped

A-calculus. This is undesirable since we want every programIaing language

expression to have a type expression which can be interpreted as a ··base·· type

and does not represent some unlimited sequence of type computations. The

solution is to introduce a type structure for the type language. i.e. it itself

becomes a typed it-calculus. We will call the types of types ··kinds
u

to

3

distinguish the two levels of type structure.

The prototype language, then, is actually a hierarchy of three lan&uages,

where the programming language has for type structure a language of type

expressions. which itself has a type structure of kinds. As we define the

expressions in these languages, their type structure, and computation rules. we

will assume that the reader is familiar with many of the' standard definitions and

terminology from the traditional ~-calculus.

The kinds of type expressions. Kexp

We make the simplifying assumption here that there is just one collection

of types. the base types B, which can be used as types of programming language

expressions, i.e. only type generators are not base types. This is certainly

sufficient for our simple applicative language - for a more extensive analysis

of the different roles of types in a programming language, it may be necessary to

subdivide the base types (see e.g. Reynolds' use of ··data types·· and ··program

types in [Reynolds 1978]). Consequently, the kinds of type expressions only

classify the type expressions as to their functionality, i.e. whether they are a

type benerator or not.

Definition: Kexp is the least set satisfying

~. B £ Kexp

ii. if k,nl € Kexp. then k=>m € Kexp

We will use k and m to denote arbitrary elements of Kexp.

The type expressions,~

The language of type expressions will provide the type structure for the

programming language and is also a typed A-calculus itself. The typed

~-expressions are to be interpreted as type generators and will have the usual

~ -reduction to generate a type, given a type parameter. Several other type

constructors are introduced.

Let TV be a countably infinite set of type variables: s,t, •••

4

Let Te be a set of type constants (which may include things like lnt and

Boo1).

Let a type assignment TQ be a function from a finite subset of TV to Kexp.

Then we define Texp to be a family of minimal sets of expressions for every type

assignment TQ and every k in Kexp. We use the notation Texp[TQ.k] to denote the

set of type expressions whose kind is k with respect to the type assignment TQ:

In this definition. let tE:TV. tCE:TC. afTexp[TQ.k]. be:Texp[TQ.m]:

expression E:Texp[TQ._]

tc B

t TQ(t)

a~b B

axb B

a+b B

,...t. a B

6t:k.a B

other conditions

type constants:

type variables:

types of functions:

types of products:

types of unions:

recursive types:

types of polymorphic fns:

type generators:

YbfTexp[(TQlt:k),m]

Vge: Texp[TQ, k= >m]

At:k.b

g[a]

k=>m

m

Not e: (TQ It:k) is the type ass ignment ASf TV. if s=t .the.n k~ TQ (5).

As in a typed A-calculus. we can define substitution and use it to define

the computat ion rules of the language, ex and /J -converSIons. For a full

description of substitution and other syntactic details. see [}:cCracken 1979].

The language that appears there differs only by syntactic abbreviations for

recursive types and the types of polymorphic functions.

We use {b/t}a to denote the substitution of a type expression b in

Texp[TQ.m] for all free occurrences of the type variable t in the type

expression a in Texp[(TQlt:m),k]. We can show that {b/t}a is in

Texp[TQ.k].

Definition; Computation (Reduction) rules

5

where s '- dom(TQ) u {t}«(I) At:k.a ~ ~s:k. {s/t}a

(~) (At:k.a)[b] c> {b/t}a

Conversion, denoted a cnv b. 1S the least substitutive equivalence

relation that contains the computation rules. If a cnv b and a is in Texp[TQ.k],

then b is in Texp[TQ,k). Since Texp is a typed A-calculus. every type expression

has a normal form unique up to a -conversion.

The proirammini laniu3&e expressipns, Plexp

(or polymorphic A-calculus expressions)

The programming language Plexp is an extension of the ordinary typed

A-calculus. where A-abstraction and application represent functions with

ordinary arguments. To represent polymorphic functions with type arguments. we

add another abstraction operator. ~ • which binds type variables. The addition

of type abstraction and application does not completely parallel ordinary

abstraction and application in this language since type expressions cannot occur

directly as objects in the language. i.e. they are not ··first-class·· objects.

The role of type expressions is to indicate the types of ordinary objects in the

language and the effect of type application is to compute the types of objects.

Let V be a countably infinite set of variables x. y. z •••

Let C be a set of constants with type expressions assigned by a function

QC. where V C€C, QC(c) is in Texp[0,B].

Let an ordinary assignment Q be a function from a finite subset of V to

Texp.

In the following definition of well-typed expressions. it is necessary that the

types in the image of Q be themselves correctly typed according to a particular

type assignment TQ. We will call this property the "compatibility of Q with TQ··

and define it formally:

6

compat(Q.TQ) iff Vx£dom{Q).Q(x)€ Texp[TQ.B]

Then we define Plexp to be a family of minimal sets of expressions for every type

and for every compatible pair of type and ordinary assignments. We denote by

Plexp[TQ.Q.a] (abbreviated P[TQ.Q.a] in this definition) the set of expressions

with type a in Texp[TQ. BJ with respect to the assignments TQ and Q:

Let C€C. X€V. MEP[TQ.Q.a]. NEP[TQ.Q.b]. a.b£Texp[TQ.B]:

other conditions expressions E: Plexp[TQ.Q._]

constants: c QC(c)

variables: x Q(x)

products: <M.N> axb

¥ L E: P[TQ.Q. axbJ L.1 a

L.2 b

functions:

'Y L E P[TQ I (Q I x: a) •b]

'Y L€P[TQ.Q,a'+b]. a cnv a'

po lymorphic funct ions:
VL € P [(TQ It: k) • Q' ,a]

where Q'=Q , {xIQ(x)e: Texp[TQ-t.B]}

VL ~ [TQ,Q,L1t:k.a]. bfTexp[TQ.k]

disjoint unions:

VLE P[TQ.Q.a+b].
f E: P [TQ • Q• a-+ r] I g E: [TQ I Q•b~ r]

recursive types: YLe:P[TQ,Q. ,.a.t.a]

VLE: P [TQ • Q. {".. t • a / t } a

recursive functions: Y L€P[TQ.Q.a+a]

conditional:

~x:a.L a~b

L(M) b

.!\.t:k.L 8t:k.a

L[b] { bIt} a

mlU(?-1.b) a+b
mlu: (a,N) a+b

~ L.Q.f (f.g) r

J.lllI...e.k L {)A-t.a/tJa

~L)-&-t.a

Y(L) a

Y PE P[TQ.Q.Bool]. L€P[TQ,Q.a] if. P .tJum 1-1~ L a

The most important language constructs to consider 1n defining the

se~antics will be products. functions. and polymorphic functions. The other

7

constructs are included here for completeness and to show. briefly. that they

can also be given semantics in a straightforward manner.

The two most important places in this definition where expressions are

required to be "correctly-typed·· are in the two forms of application. In

ordinary application, the type of the argument must match the type of the bound

variable. up to normal form in the type language. In the interests of

generality. we decided not to restrict type applications to just base types, so

that polymorphic functions can be applied to any types. including type

generators. Here. then. for correctly-typed expressions. we require that the

kind of the type argument match that of the bound type variable.

It is important to note how type abstraction and application provide the

typechecking features necessary for user-defined types. In this language. a

correctly typed expression (A t :k.l-t)[b] has the property that :K is correctly

typed outside of the context in which the type b is known. Essentially, we can

consider t to be the name of a user-defined type and b to be the concrete

representation of t. Althoubh this expression will be computationally

equivalent to the expression ~1 with b substituted for t. it is WLt. assumed that b

is equivalent to t in the definition and correct typing of 1'1.

In a type abstraction. A t:k.~1 • we require a condition. called the ··safe··

condition. that the body of the abstraction is correctly typed with respect to a

restricted assignment Qt. Qt has its domain restricted to only those variables.

x. whose type expressions are correctly defined without the type variable t. The

consequence of this condition is that to form an expression At :k.l'l. it must be

that t is not free in the type Q(x) of any free variable x in ~t. This ensures that

we do not bind a type variable occurring in the type of a free variable.

As in Texp. the domains of the type as signment TQ and the ordinary

assignment Q must include all the free variables of any expression in Plexp

correctly typed with respect to those assignments.

8

Plexp has both type and ordinary variables. and we define substitution for

both sorts of variables. These substitutions will be used to define reduction

for the two sorts of abstraction and application.

First we need a notation for a type substitution applied to every type

expression in the image of an ordinary assignment:

{a/t} Q is the assignment: Yx£ dom(Q). ({ a/t} Q) (x) = {a/t} Q(x).

We denote by {a/tJM the substitution of a type expression a in Texp[TQ.k]

for all free occurrences of the type variable t in the expression M in

Plexp[(TQlt:a).Q.b]. Wee a n s how t hat { a / t } Jtl i S l. n

(~) AX: a. ~1 I> ~y:a.{y/x}}1

(a) At :k.l-! t> As: k. { s / t }}l

(~) (~ x : a • 101) (N) t> {N/ x }}1

(~) (4. t : k. r-l) [b] C> {hi t }1-1

("t') <r-l. N>.1 C> ~1

(,..) <M.N>.2 ~ N

Plexp[TQ.{a/t}Q.{a/t}b]. (Note the effect of this substitution on the

type structure in the assignment Q.)

We denote by {N/x}M the substitution of an expression N in Plexp[TQ.Q.a]

for all free occurrences of a variable x in the expression M in

Plexp[TQ.(Qlx:a').b]. where a cnv at. We can show that {N/x}1-1 is in

Plexp[TQ.Q.b t
]. where b cnv b'.

Definition; Computation (Reduction) rules

where yt. dom(Q) u {x }

where sf. dom(TQ)u{t}

(There are other computation rules for the other language constructs that

are not included here since they are not crucial in defining the part of

the semantics that is newly treated with finitary retracts.)

If}1 £> N and l~€Plexp[TQ.Q.aJ. then N€Plexp[TQ.Q.a'J. where a cnv a'. It

is known that every expression in this language does have a normal form. see

[Stenluna 197 2].

9

10

III. The finitary domains and their continuous functions

The construction of mathematical structures appropriate for our model

starts with a nonempty partially ordered set (poset). The important

distinguishing characteristics will be which upper bounds Cub's) and least upper

bounds Club's) are present, whether the elements of the poset are ··algebraic··

with respect to some set of elements. and which bounds are preserved by the

functions. These definitions and most of the material in this and the succeeding

section are taken from [Scott 1980]. For this reason. the proofs are given in

the appendix.

We will denote the partial ordering on a poset. D. by~. If the lub of a

subset X£D exists. it is denoted by uX.

Definition; An element efD is finite iff for any subset X£D. if e~uX then there

exists a finite set XfSX such that eSUXf.

Notation; The set of finite elements of D is denoted by E.

Definition; A subset X£D is cpnsistent iff every finite subset has an ub in D.

Definition; A subset X£D is directed iff every finite subset has an ub in X. (or

equivalent ly. if X is nonempty and every x. y€ X has an ub in X).

Now we can define finitary domains to be nonempty poset's where all the

consistent lub's exist and where all the elements are ··algebraic·· with respect

to the finite elements:

A nonempty poset is a finitary domain iff

i) every consistent subset has a lub

and ii) every element is the lub of Some finite elements.

As a consequence of the second condition of the definition. we have that

YXE:D. x=u{efEleSx}.

This is the condition that we will often refer to by saying that a finitary

domain D is algebraic. Note that every finitary domain has a least element. ~.

11

S1nce the empty set is consistent and ut'=J..

For the functions over the finitary domains. we take the usual notion of

cont inuous functions. i. e. the functions preserve the lub t s of all directed

sets. We also establish other properties of the functions. including the

crucial one that the set of continuous functions between two finitary domains is

also a finitary domain.

Definition; A continuous function from D to D' is a function f such that

for all directed sets S£D. f(uS)=uf(S).

Proposition; A function f from D to D' is continuous iff

Ye'€E' .xeD: e'Sf(x) iff }efE. e~x and eSf(e) •

It follows from this proposition. that a continuous function f is completely

determined by the set of finite pairs (e.e') such that e'~f(e). (Since D' is

finitary. f(x) =u fe' J e'S;f(x)} = u le' J jefE. eSx and e1~f(e)}.)

Definition; The poset D+D' has as elements all continuous functions. f. from D to

D' with the pointwise ordering: fSg iff YXE:D. f(x)~g(x).

Theorem: If D and D' are finitary domains. then D+D' is also.

In defining a model in a later section. we will be exploiting the close

connection between models of a typed ~-calculus and cartesian closed categories.

This connection will be explained in detail later. but for now. we find it useful

to define this idea of cartesian closed category and show how the finitary

domains form one.

First of all. we take the finitary domains to be the objects of a category

and their continuous functions to be the morphisms. These objects and morphisms

do form a category since identity functions are continuous and function

composition preserves continuity.

The first rule of a cartesian closed category (c.c.c.) is ~hat it have

finite products. We define products here for the case with two objects.

12

Definition; Categorical product

For every pair of objects D and D'. there is an object DxD' and mcrphisms

p:DxD'~D and p':DXD'~D' such that for any object C and morphisms f:C+D

and f':C+D'. } a unique morphism <f.f'> such that the following diagram

commutes:

p

c

<f.f'>

-------.... D'
p'

Furthermore. from the product on objects. one always obtains a product on

morphisms: for all morphisms f:C.... C' and g:D+D'. there is a morphism

fxg;cxC'+DxD' such that VZ€CxC', (fxg)(z) = <f(p(z).g(p'(z»> •

Now in our case. we can define DxD' to be the usual pairs of elements:

Definition; DXD'={<x.x'> I x€D.x'€D'}. where <x.x'>s<y.y'> iff xSx' and ySy'.

Proposition; If D and D' are finitary domains. then so is DxD'. where the set of

finite elements is EXE'.

Theorem; Let <x.x'>€DxD'. Define p«x,x'»=x and p'«x.x'»=x'.

If C is any other finitary domain, and f:C-+D and f':C-+D' are continuous

functions. define YX€C. <f,f'>(x)=<f(x).f'(x». Then DxD' is the categorical

product.

This 2-ary product can easily be extended to an n-ary product and to a

possibly infinite product indexed by the elements of a countable set. The O-ary

product is just {l.}. the terminal object in this category.

Now the second rule of a cartesian closed category is that function spaces

are also objects in the category and that they interact with the product spaces

in such a way that ··currying·· of function arguments works properly.

Definition; A category is cartesian closed iff it has finite products and for

every pair of objects D and Df. there is an object D=>D' and a morphism

13

ap:(D=>D')XD+D' such that for every object C and morphism f:CxD+D'. 1 a unique

morphism h:C.... (D=>D') such that the following diagram commutes:

CxD ---------..., (D= >D') xD

jap
D'

The morphism h is usually defined as ab(f) for a function ab: (CxD+D') + (C ;.

(0= >D')) •

In our case, we can use the continuous functions both for morphisms in the

category and to construct the function spaces D=>Ot. We will continue to use the

double arrow in the c.c.c. whenever we wish to distinguish the two roles of the

continuous functions. Furthermore, we have already shown that the continuous

functions, now D=>D'. form a finitary domain.

TheQrem; Let C, D. and D' be finitary domains.

Let ffD=>D' and XE:D. Define ap«f.x»=f(x).

Let fe:CxD-+D',xe:C.ye:D. Define ab(f)(x)(y)=f«x,y».

Then the finitary dorllains and their continuous functions form a c.c.c.

As a final property of the general mathematical construction of finitary

domains and their continuous functions, we observe that a finitary domain. D.

does have a least fixed point operator. Y:(D+D)~D. That is. if f:D+D, then the

least fixed po int of f is given by

Y(f) =
I»
U

n:o

The proof of this depends on the continuity of f and the existence of lub's of

directed sets in D.

IV. The finitary retract ions

In constructing the model for our language. the interpretaton of a type

will be a function which picks out a certain subcollection of elements, i.e. the

eleInents of that type will be those in the image of the function representing the

14

type. In defining just which functions will represent types. we need to use the

following two related ideas:

Definition; For finitary domains D and D'. D is a retract of D' iff there exist

continuous functions i:D+D' and j:D'~D such that joi=I on D (the identity

function on D).

Definition; A retraction on a finitary domain D is a continuous function r:D+D

such that ro r=r.

Proposition; If the image of the retraction r on D. denoted r(D). is a finitary

domain. then it is a retract of D.

If the image r(D) of a retraction is a finitary domain. we will call r a

finitary retraction. The entire collection of finitary retractions on a

finitary domain D will be denoted FRet (D). The model of our programtling

language will consist of a finitary domain to represent programming language

expressions and finitary retractions to represent types. The remainder of this

section will describe various properties of finitary retractions and of FRet(D)

itself. including the crucial property that FRet(D) is a finitary domain and

itself the image of a finitary retraction. This property fails for ordinary

retractions but holds for closures (retractions r such that r~I on D+D). The

model given in Section VI depends on this property to give meanings to the types

of polymorphic functions.

Although the image of an arbitrary retraction is not necessarily finitary.

it does have lub's of all consistent subsets. The condition that fails is that

not all elements of the image of a retraction may be algebraic (see [Scott 1980]

for an example of this).

If r is a retraction on a finitary domain D. then

Lemma; r(D) = Fix(r) =. {x(Dlr(x)=x}.

Lemma: reD) has lub's of all consistent subsets. Furthermore. reD) is directed

complete. i.e. if X is a directed set. X£r(D). then uX in r(D) = uX in D.

15

In establishing the principal characterization of finitary retractions.

we must first investigate the functions that turn out to be the finite elements

of FRet (D).

Definition; A retraction of a finitary domain D 18 a finite retraction iff it 18

a finite element of 1>+D.

Note that a finite retraction also must be finitary. since the image of a finite

function is always finite.

Definition; A continuous function f 18 a preretractioQ iff fSfof.

Lemma;

a. If f is a finite preretraction. then the least retraction that it

approximates. denoted Vf. is also finite.

b. The finite retractions appromimating a giv€c retraction form a directed set.

Theorem; Let r:fHo-D be a retraction. Then the following are equivalent:

i) r is finitary.

i i) r (x) =u { r (e) I fe t: E. e ~ r (x) and e:S r (e) 1•

(Note that this lub is the same in r(D) as ~n D SlDce reD) 1S

directed complete.)

iii) r is the lub of some finite retractions.

Conditions i) and iii). of course. are crucial 10 showing that FRet(D) is

algebraic with respect to the finite retractions. We also wish to show that

FRet (D) is the image of a retraction on the finitary domain D+D.

Definition; Let p: (D..... D) (~D) be defined as the function such that Vg€D-+D:

p(g)=u{vflfe:E+E.fSg and f::;fof}.

Lemma; If rfFRet(D). then p(r)=r.

Theorem; FRet(D) is a finitary domain with the finite retractions as its finite

elements and FRet (D) is a retract of D-+D by the function p.

16

v. A calculus of finitary retracts

The next step in constructing a model for the language is to show how to

calculate finitary retracts that will represent the type constructors. We will

assume that the basis of the model is a finitary domain U that at least has the

property that it solves a recursive domain equation with its own function and

product spaces. Then we will show how to construct semantic types as finitary

retracts over the domain U.

Definition; Let U be a finitary domain with U-+U and UXU as retracts:

u

U+U

uxu

where

j o i=lonU-+U

k o 1=1 on UXU

That U+U and UXU are retracts of U means that U contains isomorphic copies of

these clomains. (Actually. as long as U has at least two finite elements, it

would be sufficient to have U+U as a retract of U. Then U is known as a reflexive

domain. and it can be shown that UXU is also a retract of U.)

Under these assu~ptions about the domain U. FRet(U) is also a retract of U.

since it is contained in U....U via the retraction p.

l.

V ~
~

..... ,..,
j

I
U....U~ FRet (U)

p

Actually. we will use the isomorphic copy of FRet{U) that is contained in U for

our domain of types. Denote this domain by IRet(U) and ~:U+U for the finitary

retraction on U whose image is .£Ret(U). (.Q. can be defined by: YXfU. ~(x) =

i(p (j (x»).) Note that whenever we want to encode a funct ion f :U~U as an element

of U, we take i(f). and whenever we want to use an element x of U as a function. we

take j(x). The meanin~ of the retract equation is. of course. that j(i(f»=f.

17

However. in order to simplify many equations. if rfIRet(U). we will not

always write j(r) when the context shows that r is being using as a function.

namely in function application or composition and in showing that j(r) is a

finitary retraction. Also. we will denote the image of j(r) as r(U). instead of

j(r(U». Note that since ~ is not only an element of LRet(U) but also

LRet(U)=~(U). we have ~(~)=~. That ~ is in its own image (up to isomorphism) is

what we mean intuitively by -·the type of all types is a type-e.

First. we make explicit the remark that a retract of a donlain D is

isomorphic to a subdomain of D. and we show a useful resul t for def ining

continuous functions on the images of retractions by restricting the domain and

corestricting the codomain of a continuous function on the whole domain.

Proposition; If D and D' are finitary domains and D is a retract of D' via the

functions i :D+D' and j :D'+D. then D :: i(D).

ProQf; We already have that joi=I on D. Let xED' such that x € ·i(D). We must

SoBut x=i(y) for some yE:D.show that i(j(x»=x.

i(j(x)=i(j(i(y»))=i(y)=x.O

Lemma; Let Rand S be directed complete subdomains of U. Let f:U+U be such thQt

for all x€R, f(X)fS. Then f'=f lRrs € R+S. i.e. the function f

restricted to Rand corestricted to S is a continuous function with domain

Rand codoulain S.

Proof; The only problem is whether ft is continuous. 50 we must show that for all

directed sets X£R. f'(uX) = uf'(X). where the lub's are in Rand 5.

respectively. But since Rand S are directed complete, these are the same

lub's as in U. and since f' has the saI:'le definition as f on the subdomain R,

the equat ion holds. D

\'le now turn our attention to interpreting all type constructors as

elements of L~tl(U). We begin by showing that functions and products can be

18

constructed as finitary retracts. and by showing that rRet(U) forms a cartesian

closed category. The objects in the category will be elements rand 5 inLRet(U)

and morphisms ro+s will be continuous functions froln r(U) to s(U).

Product Definition; Let r.s € rRet(U). Let res be the encoding by i of the

function that YXE:U gives l«r(p(k(x». s(p'(k(x»»). This function is a

cent inuous one in U+U from the definition. (Recall that <_._> is the

tupling operator on arbitrary finitary domains, and that p and p' are the

projection functions.)

Proposition; r8s(U) :: r(U)xs(U).

Proof;
1

Recall the retraction pair k.l from U !':~__......~ UxU. (So ko 1=1 on UxU.)
k

Let k' :rCis(U)+r(U)xs{U) =klras(U)fr(U)xs{U).

For this to be a proper restriction and corestriction. we must have that Vx

in r&s (D). k(x) is in r(D»(5 (D). A priori. k(x)=<y. z>. for some pair

<y.z> inUxU. But x€ rCis(U). so

k (x) =k (r& s (x » =k (1(<r (p (k (x))) , s (p , (k (x))) >))

=<r (p (k (x))) • s (p , (k (x))) > •

So the first cOInponent is in reV) and the second is in s(U).

Let l':r(U)xs(U)+r&s(U) = l1r(U)xs(U)rrGt s(U).

For this to be a proper restriction and corestriction. we must have that Yz

in r(U)xs(U). l(z) is in r&s(U).

r~s(l(z» =l«r(p(k(l(z»»,s(p'(k{l(z»»»

=l«r(p(z».s(p'(z»)»

But if z is in r(U)xs(U) then p(z) is In r(U). so r(p(z»=p{z), and

similarly. s(p'(z»=p'(z). So the above equations are

=l«p(z),p'(z»)

=1(z) •

19

We have shown that k' and l' are continuous functions with the right domains and

codomains. Finally. we observe that k'ol' =I since kol =I. Then to show

that l'ok' = I. let x~r&s(U):

l(k(x» = 1(k(r8s(x») = l(k(l«r(p(k(x»).s(p'(k(x»»») = x. [J

Proposition; If r.s€rRet(U). then r8s€I.Ret(U).

Proof:

I. Show that r8s lS a retraction by showing (r8s)o(r8s)=r8s. Let XEU:

r8s(r8s(x»=l«r(p(k[1«r(p(k(x».s(p'(k(x»»)]).s(p'(k[•••]»»

=l«r(r(p(k(x»».s(s(p'(k(x»»)

=r~s(x)

II. The image of res is finitary since it is isomorphic to the finitary domain

r(U)xs(U).

Proposition; r8s is a categorical product.

Proof; lie have already shown that for any r. s€I.Ret (U). we can define on object

r8s€iRet{U). Now we have to define projection morphisms. ~:r8s"r and jl' :r8s+s

such that if qErRet(U). f:q~rt and ft:q~s. there is a unique morphism h:q+r8s

such that the following diagrar.l commutes:

h

ff

(\ole have used the name of a retraction in place of its image. e.g. r instec:d of

r(D). to simplify the diagram). But, given the isomorphisw between r8s(U) and

r(U)xs(U). for SOI:'le isonJorphisrn functions k' and 1'. (there is actually a

different k' and l' for every rand s), this can all be defined in terms of

products on finitary domains:

r

r8s

5

20

so that if ~ and 12.' are defined by ~=pokt. ~f=ptOk'. then h 15 defined as

h=l'o<f.f'>. which is unique up to isomorphism. 0

We will also denote by 8 the product of continuous functions. which is (as

noted before) defined pointwise using the projection functions. 1L and ~' in this

case.

Typed FUDet ions

Definition; Let r,s€LRet(~). Let ro~s be the encoding by i of the fu~ction th~t

'Yz in U gives i(so j(z)or).

Proposition; r°-"s(U) :: r(U)-+s(U)

Proof;
i

Recall the retraction pair 1, J from U~ U+U. (So jo i=I on U+.U)

],

Let j'e:(rc+s)(U)+(r(U)-+s(U» be the function such that Yz € ro s(U). j'(z) =

j (z)1 r (U) r s (U) •

To show that this is a proper restriction and corestriction. we must show

that 'Ix in r(V), j(z) (x) is in s(U):

s(j{z)(x» = s(j(i(soj(z)or»(x»

=s(s(j(z)(r(x»»

=s(j(z)(r(x»))

= j(z)(x) •

The definition of the other isomorphislL function lS more complicatec than G.

21

simple restriction and corestriction of i. since r(U)+s(U) is not a subset

of U+U. These two sets of functions don't have a subset relation because

any function in r(U)+s(U) has a different domain and codomain than the

functions in U-+U.

Let if E: (r(U)-+s(U» -+ (ro-+s)(U) = hrro s(U). where h:(r(U) s(U»U lS

the function such that

Yg£r(U)-+s{U). h{g) =i(Ils(U)ogorfr(U».

(Note that (Ils(U)ogorrr(U» is a function in U+U.)

The restriction of I to s(U) and the corestriction of r to r(U) are

obviously both proper. We must show that the corestriction of h is proper

by showing that Y g in r(U)+s(U). beg) is in ro+s(U):

ro s(h(g» = i(so j(h(g»o r)

= i(soj(i(Ils(U)ogorrr(U»)or)

=i(soIls(U)ogorrr(U)or)

= i(lls(U)ogorrr(U»

= h(b) •

To show t hat j' ° i' = Ion r (U) -+ s (U). 1e t g be in r (U) 5 (U) :

j'(i'(g» = j(i(Ils(U)ogorrr(U)) lr(u)rs{U)

= (Ils(U)ogorfr(U) lr(u)r s(U)

=g. 5 inc e YXE: r (U). b (x) =g (r (x)) •

To 5 how t hat i' ° j' = Ion r ° -+ 5 (U). 1e t z be in r 0 -+ s (U) :

i' (j' (z» = i(Ils(u)o (j(z)lr(U)r s(U»orrr(U»

= i(so j(z)or)

= r°-+s(z)

= z. LJ

Proposition: If r.s E I.Ret(U). then rO s f I.Ret(U).

Proof:

I. Show that r°-+s is a retraction by showing (ro+s) ° (ro+s) = (ro-+-s).

22

Let ZE:U: ro~s(ro+5(z»=i(so j[i(so j(z)or}]or)

=i(so SO j(z)o r o r)

=ro-+s(z) •

II. The image of ro+s is finitary since it is isomorphic to the finitary domain

r(U) s(u) •

Theorem; rRet(U) with continuous functions is a cartesian closed category.

Proof; 1) It has finite products: n-ary products are easily extended from r8s.

and the O-ary product is the encoding of the constant function

that always gives 1.. which is a finitary retraction.

2) We have already 5ho~n that Yr,s£LRet(U), we can define an object ro+s £

E.Ret(U). Now we have to define a continuous function ap:«ro+s)8r)+s

such that Yq€LRet (D) and functions f :q8r+s. there exists a unique

function h:q+(ro+s) such that the following diagram commutes:

h8l
----------.-..) (r 0 s)8 r

lap
q8r

s
where there is a continuous function a.b:«q8r)o ... s) (ro+s) such that h=.a.b(f).

But. given the isomorphism functions i and j between ro s(U) and r(U) s(U). this

can all be defined in terms of the functions ab and ap on ordinary finitary

domains:

s

ab(f o l')xI (j'XI)ok··
---------~)(r..... s) x r "._....__..... ~-..,... (r 0 -+ s)~ r

So the funct ion a.p can be clef ined by ap=apo (j' x I) 0 k' •

We are using k' and l' for the isomorphisUl functions between q8r and qXr. and k··

and 1·· for those between (ro+s)~r and (ro+s)xr. Now. for any function g €

23

q-+(ro-+s) and g' E r-+r. g€lg' = l··o(gxg')ok'. So ,a,b(f) must be defined as

i'oab(fol'), since ther. for h = ab(f). we have hel = l··o«i'oab(fol'»xI)ok'.

which is the composition of the functions that make this diagranl commute. 0

24

"Every c.c.C. is a model of the typed l-calculus··

Although this theorem has been widely quoted. there is not uniform

agreement about what the typed ~-calculus is and what a model for it should be.

(The main differences over the former are about the relationship of types to

ordinary variables and the changing of bound variables during substitution. The

main differences over the latter are essentially over what forms of

extensionality should be 1.D the model; see [Berry 1980] for a discussion of

this.) Therefore. we want to make explicit how a c.c.c. is a model for our typed

~-calculus subset of Plexp. This version of the theorem is taken from [01 &5

1982] and is presented here as a special case of a more complicated semantics

involving states as well as environments.

For convenience. we use the following subsets of Texp and Plexp as syntax for the

typed ~-calculus with products:

type constants:

products:

functions:

tc E:

axb £

a....b €

Texp[TQ.B]

Texp[TQ.B]

Texp[TQ.B]

X f Plexp[TQ.Q.Q(x)]

<M,N> E: Plexp[TQ.Q.axb]

L.l e: Plexp[TQ.Q.a]

L.2 E Plexp[TQ.Q.b]

Ax:a.L f Plexp[TQ.Q.a+b]

L(1-1) E: Plexp[TQ.Q.b]

functions:

There are no type variables in this subset so we can assume that the type

assignment TQ is arbitrary.

variables:

products:

These definitions are all made under the same assumptions for a. b. L. ~1. and N as

in the previous definition in section II.

Assume that we have a c.e.c •• K. using the notations x. p. p'. <_._>. api

and ab as defined in section III. First. we give a meaning function for type

25

expressions:

Mt: Texp[TQ. B] -+ objects in K.

Ht[[tc]] = kc. some object in K

Ht[[axb]] = Mt[[a]] x l-1t[[b]]

Ht[(a-+b]] = Nt[[a]] => Ht[[b]]

Then. we give a family of meaning functions for P1exp. one for every set of

typed expressions for some type a:

He: P1exp[TQ.Q.a] -+ (E -+ Ht[[a]])

where E is the set of environment functions whose domain is the domain of Q such

that ¥x€dom(Q). e(x) € Mt[[Q(x)]]. It is required that E also be an object in

the c. c. c.

He[[x]]e = e(x)

* Me[[<M.N>]]e = <Me[[M]]e. Me[[N]]e>

Me[[L.l]]e = pCMe[[L]]e)

Me[[L.2]]e = p'(Me[[L]]e)

He[[~x:a.L]] = ab(£). where f is that function Cmorphism)

from Exm[(a]] to Mt[[b]] • such that

He.u) = Me[[L]](e Ix-+u).

Ne[[LCM)]] = apCMe[[L]]e. He[(H]]e)

Equation * has been simplified using the pointwise nature of our definition of

function tup1ing. "Celx-+ur" denotes the enviroIlIlient such that ¥y€domCQlx:a).

(e Ix-+u){y) = if y=x then u else e(y).

The proof that these semantic equations give a model for the typed

A-calculus uses the following instance of the c.c.c. abstraction and application

diagram:

ap

E x Ht[[a]]
abC£) x I

----------+. l1t[(a o -+b]] x Ht[[a]]

/
ill [[b]]

26

This shows why the set of enviroIl&lents E must be an object in the c.c.c.

That the c.c.c. is a model for this typed A-calculus means that the

semantics is correctly typed:

if. L E: Plexp[TQ.Q.a] .t..b.en for all environments whose domain is Q and whose

codomain is correctly typed as defined above. Me[[L]]e E: ~1t[[a]].

We can also verify that the computation rules are preserved for this subset.

which means that for a and

product reductions. we have:

f' -reduction for ordinary functions and the two

if. J.l.N £ Plexp[TQ,Q.a] such that ~1 t> N.~ Me[[ltl]J =Me[(l\]].

(It is also the case that the c.c.c. semantics preserves the computation rule for

ll-reduction:

(1\) ~I E> ~x : a • ~1 (x), wherex doe 5 not 0 Ccur f r e e i n ~i.)

Another reason for introducing this theorem about c.c.c.'s is that we can

now, without further argument. use ,,-expressions to denote typed continuous

functions over I,ret CD).

Polymorphic Functions

Definition; Let a€rRet(U). ae:U+U such that if x€a(U), then a(x)E:rRet(U). Then

let h(a,a) be the encoding of the function: Az:U.i(~t:U.a(a(t»(j(z)(a(t»).

The intuitive interpretation of this retraction is that z is being using as a

polymorphic function, the retraction a makes the argument to z into a

(correctly-typed) type. and the function a makes the result of the polymorphic

function have some type which is also dependent on the type argument. We can

for&lalize this as a kind of infinite cartesian product.

Definition; Let T be a countable set and let F be a function which maps an element

of T into a set, then

TI F(t)={functions f I domain of f is T and VtfT. f(t)e:F(t)}.
tE: T

(This is a cartesian product indexed by the possibly infinite set T. where each

27

function can be interpreted as an infinite product of all the second components

of the graph of the function. and for each t £ T. f(t) is the projection mapping

for the component at t.)

The crucial property of this model - that LRet(U) itself be the image of a

retraction - is used in the definition of polymorphic functions in the

assumption that there is a retraction a which makes the argument of a polymorphic

function into a type. For example. when base types are modeled by rRet(U). a

polymorphic function that can accept any base type will use ~ for a. since

ERet (U) is the image of ,,-.

Proposition; ~(a.a)(U):: fra(t)(U).
t€ a (U)

Proof:

Within this proof. we will denote the product over all t€a(U) by just 'tra(t)(U).

1

Recall the retraction pair uc:;. U-+U. where joi=I on U+U.
j

As with type functions, we can't define the isomorphism function from lTo.(t)(U)

to t(u,a)(U) by a siQple restriction and corestriction of i since the functions

in lTet(t)(U) have domain a(U) and codomain U and are thus not a subset of U....U.

Let I: 1r'a(t)U) b(a.a)(U) = (Ag: 1To.(t)(U).i(goafa(U))rLi(a,a)(U).

Le t 't: II (a • a) (U) 1r Ci, (t) (U) = ~ z : A (C1 • a) (U) • j (z)' a (U) •

1. First. we must show that the definition of I fits the restriction and

corestriction lemma. The corestriction of a to a(U) is obviously properi

to show that the other corestriction is proper. we must show that

VgE1rCL(t)(U) that (Ag:1r~(t(U).i(goara(U»(g) £ li(a.a)(U).

8 (a .a)(i(go ar a(U») = i(~t ;U.a (a(t» (j(i(goar a(U») (a(t»)

=i(At:U.a(a(t»(goara(U»(a(t»)

= i(~t:U.(goara(U)oa)(t». since gE:1'ra(t)(U)

= i(goara(U». bYll-conversion.

28

2. The corestriction in the definition of 'f is obviously proper.

3. Show that ~el = I on 1r'a(t)(U). Let g E: 'fra(t)(U):

ef(l(g» = (j(i(goara(U»»la(U)

= (gear a(u»1a(U)

= g. since YtE:a(U). g(a(t»=g(t) and dom(g}=a(U}.

4. Show that I 0 i" = I on b(a.a)(U). Let zE:~(a.a)(U):

I(i-(z» = i«j(z)la(U»oara(U»

= i(j(z)oa)

= i(j(a(a.a)(z»oa)

=i(j(i(~t:U.a(a(t»(z(a(t»»)oa)

=i(At:U.a(a(t»(z(a(a(t»»)

= i(At:U.a(a(t»(z(a(t»»

=z.

Proposition; Let a€LRet(U) and aE:U~U such that if x€a(U) then a(x)€£Ret(U).

Then b (a .a)e:f.Ret (D).

Proof:

I. Show that b(a.a) is a retraction by showiob Li(a.a)o~(a.a) = A(a.a).

Let Z!U. li(a.a)(l1(a,a)(z»

=i(~t:U.a(a(t»(j[i(At:U.a(a(t»(j(z)(a(t»»](a(t»»

=i(At:U.a(a(t»(~(a(a(t»(j(z)(a(a(t»»

=A(a.a)(z)

II. The proof that products indexed by 2 objects is finitary can easily be

extended to show that products indexed by an arbitrary set is finitary.

Then the image of 0 (a .a) is finitary because it is isomorphic to the

infinite product indexed by the set a(U): tr a(t)(U).
t€ a(U)

29

i£~tirsiye definitions;

Due to the special properties of ERet(U). we can interpret both recurSlve

function definition and recursive type definition as a least fixed point

operator on the image of a retract ion (both function spaces and types are

represented as the imabes of retractions). Actually. since these domains are

directed complete. we can prove that these fixed points are given by the usual

least fixed point operator on the whole domain. U:

•Y: (U+U)-..U = Af :U+U .. uf"(i) •
•••

Proposition; Let reIRet(U). Let f€U+U such that i(f)€ro+r{U). Let

f'=flr(u)rr(U). Then Y(f) is the least fixed point of it over r(U).

ProQf; Kate that ft is continuous by the restriction and corestriction lemma. We

prove that f and f' have the same least fixed point by showing that every fixed

point of f is a fixed point of ft. and vice versa.

a. If ze:r(U) is a fixed point of f'. then f=f' on r(D) so

f(z)=f'(z)=z.

b. If ZED is a fixed point of f. first we must show that zEr(U):

r(z)=r(f(z»=r(ro+r(f(z»)=ro+r(f(z»=z.

Then, again f=f' on r(U). so f'(z)=f(z)=z. 0

We omit here the definition of semantic constructs for disjoint unions and

conditional. since the details of these work out similarly as on other c.p.o.'s

or complete lattices and are not particularly dependent on the finitary retracts.

30

VI. The Mode 1

A model for our language will consist of giving meanings for every

expression in the three languages - Plexp. Texp. and Kexp. and showing that the

semantic meanings obey the same typing and computation rules that the syntactic

expressions do. The basic structure of the model is that expressions in Plexp

will be interpreted as elements of the domain U. expressions in Texp as finitary

retracts on U. i.e. elements of £Ret(U). and expressions in Kexp as finitary

retracts on IRet (U).

Since Plexp is an extension of the typed A-calculus. the proof that this

structure is a model will be based upon the theorem that ·-every cartesian closed

category is a model of the typed ,,-calculus·· and the fact that the finitary

retracts on the finitary domain U form a cartesian closed category (c.c.c.).

Furthermore. the main extension to the type language. Texp. was to include type

generators by making it a typed ~-calculus also. Thus. we can use the c.c.c.

theorem again to use the finitary retracts on the finitary domain rRet(U) as a

model for Texp. Finally, we must show thCit we can model the main extension to the

programming language - polymorphic functions and application.

31

one constant and the type of typed funct ions:

l-Ik[[B]] = ~

Mk[[k=>m]J = Mk[[k]] 0 Mk[[m]].

The meaning function for type expressions requires an envirorunent function

from a finite subset of type variables to finitary retracts. If we make a finite

subset of type variables into a --flat" paset by attaching a 1. element. then it is

a finitary donlain. Let Te[TQ] be the set of type correct type environment

fu~ctions. These functions all have finite images and are thus finite functions

on Te[TQJ. so that it is also a finitary domain and can be defined as the image of

a finitary retract on I.Ret (U).

Te[TQ] = {teEdom(TQ)" £Ret(U) I YtE:dom(TQ). te(t) € Mk[[TQ(t)JJ1.

So the rnean.ing function for types is a function

r'lt[TQ.k]: Texp[TQ,kJ -+- (Te[TQ] -+- llk[[k]]):

(l1e write I·It for l-:t[TQ.k]. since TQ and k are obvious from the context.)

I-I t [[t]] t e = t e (t)

~lt[[ta]]te = some finitary retract assigned to the constant ta

1·1t [[a"b]] t e =1'1 t [[a]] teo..... 11 t [[b]] t e

tIt [[a x b]] t e = r·1 t [[a]] t e 8 l~ t [[b]] t e

}1t [[)J t • a]] t e = Y(~d : Q. • t·'! t [[a J] (tel t d)))

l-lt[[ot :k.a]]te = ~ (l~It[[At :k.a]]te, }lk[[kJJ)

}It[[At :k.aJJ = ab(,,<te,d>: Te[TQ I t:k]& J.lk[[k]]. }it[[a]](te I t-"d))

l·lt[[a[b]]]te =ap(l,lt[[aJJte, ~lt[[bJ]te)

Note that }jt is. in fact. type correct by definition. The equations for

the four constructors X, , and 6 do g,ive meanings in ~1k[[BJ]. which is just

[Ret(U). We should also remark that Mt[[a]] exists for all types a. since it is

a family of functions with a mutually recursive definition over domains Te[TQ] ..

l·lk[[k]J. which are finitary daDoins.

The a:. and ~ -reduction rules are preserved due to the theorem that every

32

c.c.c. is a model of the typed A-calculus.

Semantics for the pro.rammin~ laniua~e

The programming language is an extension of the typed A-calculus. and we

will use the c.c.c. of finitary retracts on the finitary domain U to model the

typed A-calculus subset. including products in this case. We add to the semantic

function meanings for polymorphic functions and application and must then prove

that their a and ~ -reduction rules are preserved.

In the last section. we b8ve the appropriate finitary retracts on U as

meanings of x and ~ in the type language to be the types of products and ordinary

functions in this language.

The meaning function requires not only an environment for type variables

but one for ordinary variables as well. Let E[TQ.Q] = {ee:donl(Q) -.. I.Ret(U) I

Y:-~E dora (Q). VteE TE [TQJ. e (x) E }1 t [[Q(x)]] t e} beth e set 0 f t y pee 0 r r e c t

enviroI1L"'~ent funct ions. Then the meaning funct ion is

}~e[TQ.Q.aJ: Plexp[TQ.Q.a]" (Te[TQ]'" (E[TQ.Q] l-1t[[a]Jte))):

(Abain. we \t;rite 1·1e for l:e[TQ.Q.a] when TQ. Q. and.s. are obvious.)

I Ie [[x]] tee = e (x)

t'fe[[cJJte e = SaIne constant in l-~t[[GC(c)JJte

l·ie [[<I·i. 1~ >]] tee = <I"le [[}:]] tee. }le [[l'~]] tee>

t·ie [[L. 1]] tee =~ (}le [[L]] tee)

r·1e [[L. 2]] tee =~'(l~e [[LJ] tee)

l~e [[Ax: a. LJ] t e =,a,b (~<e t u>: E[TQ t Q I x: a] 8 lit [[a J] t e. lIe [[LJ] t e (e I x-+u))

l-Ie [[L (l~;)]] tee =ap (I-Ie [[LJ tee. r·Ie [[1·:]] tee)

l-le[TQ.Q.ot :k.aJ [[At :k.L]]te e= ("d:l·lk[[k]].

l·le [TQ It: 1(• Q'. a] [[LJ] (t e I t -to- d) e ')

where e' =eldom(Qt). and Q' 'Was defined in Section I.

l-le [[L[aJ JJte e = (l~le[[L]Jte e)(l'lt[[a]]te)

33

Again. we note that the semantic function is type correct by definition

and exists because it is a family of mutually recursive functions defined over

finitary retracts. The typed A-calculus subset fits the semantic definition for

an arbitrary c.c.c. because for a fixed type environment teo Mc[[M]]te is just a

function from environments to oeanings.

To complete the proof that this semantic function gives a model for the

language. we must show that the computation rules for polymorphic functions are

preserved. First. we present a lemma that extension of environment functions

correctly interprets substitution. This lemma is actually the crux of the

modelling of computation rules. but we omit the proof here since it is a rather

straightforward structural induction on terms. The full proof of a similar

theore~ appears in [McCracken 1979].

LeIj1fjla: Let b € Texp[TQ.k] and M € Plexp[TQlt:k.Q.a] so that {blt}M is a

well-defined substitution. If te € Te[TQ] and e € E[TQ.Q]. then

Me [[{ b/ tl 11]] (t e)(e) = He [[M]](tel t -+- M[[b]] t e)(e) •

(Note that two other lemnlas would have been necessary for the other conputation

rules: nauely. one of the forr., Mt[[{b/t}a]](te) = Mt[[a]](telt-+-Mt[[bJ]te) for

reduction of type generators. and one of the form Me[[{N/x}M]](te)(e)=

He[[M]] (te)(e)x-+-Me [[N]](te)(e)) for ordinary reduct ion in Plexp.)

\-lith this important lerama. we can cooplete the proof of the modeL

Theorer.:: Let M € Plexp[TQ.Q.a] and N € Plexp[TQ.Q.a']. where a cnv a'. such

that M e- N. Then Me[[M]] = Me[[N]].

Given our theorem about cartesian closed categories. we need only show

that (1 and ~ -reduction for polymorphic functions are preserved. Let te E:

Te[TQ]. e E: E[TQ.Q]:

(a) Let ,At:k.M € Plexp[TQ.Q.Lit:k.a]. Then As:k.{s/tlM € Plexp[TQ.Q.

Lit:k.a']. where a cnv a'. and s t dom(TQ)u{tl. By the definition.

Me[[hs:k. {s!tlM]](te)(e) = f(Ad:Hk[[k]].He[[{ s/tlH]](te I s-+-d)(e')).

34

Then by our substitution lemma. this is

1(~d:Mk[[kJ].Me[[M]J«tels~d)lt+Mt[[s]](tels+d»(et»

=I (Ad : l·fk [[k]] • l-Ie [[M]] ((tel s+d) I t +d) •

Now we must be explicit that in this equation we are using l-le[(TQJs:k)

t:k),Q.a]. but since s does not occur free in M. we can also use

~le[(TQI t:k).Q.a]. and then it is obvious from the definition of lrie that the above

equation

=1 ("d:}lk[[k]].Me[[lv:]](te f td») = Me[[At :k.l-t]](te). 0

(~) Le t (At: k • 11) [a] € PIe x p [TQ• Q, b] and afTe x p [TQ, k] •

Z·ie[[(A t :k.z·r) [a J]] (te) (e) =fo(Me[[A t :k. }.1] J(te) (e» (loft [raJ] (te»)

=~(I(~d:Mk[[k]].Me[[M]](telt+d)(e'»)(Mt[[a]](te»

(Note that this is a correctly formed application of a function on

finitary retracts.)

=Me[[MJJ(teltMt[[a]]{te»(e)

=Me[[{a/t}M]](te){e), by the substitution lemma. [I

Discussion

This type of model for polymorphic functions has the advantage that it_s

setting is in domains which can model a useful variety of language features,

including mutually recursive definitions (which were not included in this paper

but can easily be added.) The main drawback is that the partial order among

types modelled by finitary retracts (and also closures) doesn't seem to have any

useful function. In particular, it doesn't lend itself to the definition of

··representation relations··, see [Reynolds 1974J. that would help prove Reynolds t

representation theorem. The present version of the model has more ··polymorphic··

functions than would satisfy such a theorem.

Other language features which have yet to be worked out in this kind of a

language are coercions among types, ··inheritance·· of defined types. overloading

of operators. and type deducing.

References

[Berry 1980]
Berry. Gerard. On the definition of lambda-calculus models. INRIA report
no. 46. December 1980.

[Donahue 1979]
Donahue, James, On the semantics of ··data type··. Siam J •.Comput •• Vol. 8.
No.4. November 1979.

[JticCracken 1979J
McCracken, N.J ••
polymorphic type
1979.

An investigation of a programming language with a
structure. Ph.D. dissertation. Syracuse University.

[McCracken 1980]
1'lcCracken. N.J •• Private correspondence. 1980.

[Kilner 1978]
~lilner. R•• A theory of type polymorphism in programming. University of
Edinburgh. 1978. revised.

[DIes 1982]
Oles. Frank. A category-theoretic approach to the semantics of programming
languages. Ph.D. dissertation. Syracuse University. 1982.

[Reynolds 1974]
Reynolds, J. C.. Towards a theory of type structure.
Programming. Paris. 1974.

Colloquium of

[Reynolds 1978J
Reynolds. J.C •• Syntactic control of interference. Fifth Annual Symposium
on Principles of Programming Languages. January 1978.

[Scott 1980]
Scott. Dana, A space of retracts. Manuscript. Merton College. Oxford.
April 1980.

[Stenlunci 197 2]
Stenlund. Soren. Combinators. lambda terms. and proof theory. D. Reidal.
Dordrecht. Hollano. 197 2.

36

Appendix

This appendix contains the proofs of all the ~aterial of Sections III and

IV, including a statement of definitions and of supporting lemmas omitted from

the text of the paper. I·Iost of the proofs are taken from [Scott 1980J. However.

although the main ideas are from Scott. the amount of detail and wording may be

different in this presentation. Therefore. the author takes full responsibility

for any errors or ornissions.

Proofs for Section III

Definition; An elenlent e€D is finite iff for any subset X£D. if e~uX then there

exists a finite set Xf£X such that e~uXf.

Notation; The set of finite elements of D is denoted by E.

Definition; ,A subset X£D is consistent iff every finite subset has an ub in D.

Definition; A subset xsn is directed iff every finite subset has an ub in X. (or

ec;uivalent ly. if xis nonempty and every x. y£ X has an ub in X).

3.1 LeUlLia; If e is a finite element of a poset D and XED is a directed set. then

if e::; ux. lx EX such that e ~ x.

Proof; If e ~ uX. then there is a finite set Xf £. X such that e S uXf. But if X

is directed. uXf is an eleI:\ent of X. II

Definition: A nonempty paset D is a finitary domain iff

i) every consistent subset has a lub and

ii) every elewent is the lub of SOr.1e finite eleffients.

As an alternative to the first condition. we have:

3.2 Proposition; Every consistent subset of a poset D has a lub iff

ia) every directed subset hos a lub and

ib) every bounded subset has a lube

Proof:

(=» Directed subsets and bounded subsets are consistent.

37

«=) Let X be a consistent subset of D. Show uX exists in D. Every finite subset

of X is bounded. so it has a lube Consider the union of X with the lub's of

finite subsets of X. This is a directed set. so it has a lub. which is also

an ub of X. Let z be this ub of X. Suppose y is another ub of X and y S z.

But if y lS an ub of X" then y ~ the lub of every finite subset of X (and y ~

every element of X). So y is also an ub of the union of X with the lub's of

all finite subsets of X. so that y ~z. the lub of this set. Therefore z is

also the lub of X.

3.3 Proposition; A lub of a finite set of finite elements in a finitary domain D

is also finite.

Proof; Let X be a finite set of finite elements such that uX exists. To show that

uX is a finite element, we aSSUIr,e that there is some set Y £ D such that ux

~ uY. We must show that there exists a finite set Yf £ Y such that uX ~

uYf.

If ux ~ uY. then for all x in X. x :S uY. The elements of X.a.t..e finite. so

for each x, 3- a finite set Yx £. Y such that x ~ uYx.

Let Yf be the union of all the Yx's. This set is finite and is contained in

Y. uYf exists since Yf is a bounded set. And. Yxt::X. x s uYi. so LiX s; uYf.

Notation; From now on, D and D' will denote finitary dOffiains. unless otherwise

stated.

Definition; A continuous function from D to D' is a function f such that

for all directed sets SSD. f(uS)=uf(S).

3.4 Proposition: A function f fronl D to D' is continuous iff

Ye' f: E'. XED: e'S f(x) iff 3-e€E. e ~ x and e' ~ f(e).

Proof; Note that f continuous implies f ~onotone. (Since x ~ y implies that

{x. y} is a directed set.)

38

(=» Assume that Y directed sets S So D • f(uS) =uf(S). Let etE:E. xED:

a • (=» Ass urn e e' ~ f (x). Show 3-e€ E. e S; x and e' ~ f (e) •

Now D is finitary. so x = u{e E Ele S x}. f 15 continuous and the set

{ee:Ele:5;x} is directed. so f(x) = u{f(e)lee:E and e S x}. Then since e' is

finite in D' and e' ~ u{f(e)lee:E and eSx} then e' ~ fCe) for some e such

that e~x.

b • (<=) Ass Wi"1 e 3- e.c:: !:.. t:: S; X and e'::; f (e). Show e' ~ f (x) •

f is monotone so e~x implies fCe) ~ f(x). So e':S;f(e)~f(x).

«=) Assume that YeffE'. xfD. e'Sf(x) iff 3'ee:E. e~x and e'Sf(e). Sho".:r f is

continuous.

a. Show f is r:ionotonic.

Let y.zED be such that y~z. Now Df is finitary (algebraic) so fey) =

u {e ' E E' Ie':; f (y)} and f (z) = u {e ' E E' Ie'S f (z) } • To show f (y) ~ f (z). we

show letEE' le'sf(y)} £ {e'fE'le'::;f(z)}. So we must sho\\" that Ve'EE', if

e';5;f(y), then e'$ fez).

So let e' E E' be such that e' :S f(y). Then there is an e in E such that

e ~ y and e' ~ f (c) • l~0\0/ e ~ y s z • sowe k n0\0; t hat 3'e E: E. e ~ zande' ~ f (e) •

Then Vw"'e can use our oriC;;inal assur;..ption to concluC:e that e' ~ f(z).

b. To sho\,; f is continuous, let S£D be a directed set anC: sho\\' f(uS) $

uf(S). rlow Dis a 1ge br a ie, so f (u S) = u {e ' E: E' le':S f (uS) } • To sbo\·.~

u {e ' E: E' Ie' $ f (uS)} s u f (S), show t hat ever y e 1 eT:'~e n t e' in the fir s t 5 e t

approximates SOw€ elenent of the second set. £(5). Let e' E E' be such

that e t ~ f(uS). Now 3e€E. e~uS and e'::;f(e), by our original assuT:lption.

Now e is finite and approxi~ates the lub of a directed set, so ~ XES such

that e~x. IJo\t.· we kno~ that jeE:E. e~x and e':Sf(e). so we can conclude that

e'~f(x), for some XES. LJ

3.5 Proposition: For any set of functions F £. D+D', whenever. VXED, u{f(x)lfEF}

39

exists, then uF exists as a continuous function and is defined by uF(x) =

u { f (x) Iff F1. VXE: D.

Proof; Let g be the function such that Y xfD. g(x) = u{f(x)lffF}. If g exists in

O+D'. it is already continuous. Therefore. we must show that g is the lub

of F.

1. g is an ub of F. since VfE:F. f ~ g. (since YXED. f(x)Sg(x».

2. Suppose there is another ub of F. say h, and h ~ g. But if h is an ut of

F. \lfEF. Yx€D. f(x) ~ hex). But then YXE:D. u{f(x)lf€F} :s; hex). So b is

the lub of F. 0

In order to show that D+D' is a finitary domain whenever D and D' are. we

introduce ··step functions·· whose finite lub's will be the finite ele~ents of

D-+D r. whenever they exist.

Definition; A stei' function [e.e']:D+D' is defined by:

Vxe:D. [e.e'](x) = e t if e~x

= 1.' otherw ise.

This is a cant inuous funct ion ~"ith a two-point image in D' •

3.6 Lerillt1q,; Let f be a continuous function from D to D'. Then

(1) [e.e'J:5 f iff e t $ fee)

(2) f = u{[e.e'J le'sf(e)}

and (3) The [e.e'] are all finite in D-+D'.

Proof;

(1)(=» Let[e.e']::; f. 1;0\\; [e.e'](e) = e' by the definition of a step function.

Then. since [e.e'](e) ~ fee). e' ~ fCe).

«=) Let e'~f(e). Let x~D. Show [e.e'](x)~f(x).

Either e~x and [e,e'](x) = e' ;5; fee) ~ f(x) or

e~x and [e.e'](x)=l' :S f(x).

(2) a. Th~ t lJ { [e , e t] Ie' ~ f (e)} ~ f is 0 bv i au s f roo pa r t (1).

b • Sh O~.. t hat f ~ L' { [e ,e'] Ie' ~ f (e) } •

40

Since D' is finitary, Yx€D. f(x) = u{e'€E' le'~f(x)}. By lemula 3.4, we

then havE:: f(x) = u{e'e:E' l3-ee:E. e~x and e'Sf(e)}. Then for each e' in this

set (i.e. }e€E. e~x and e'~f(e). 3-efE such that [e.e'](x) = e'.

So {e'€E'~!eEE. e~x and e'~f(e)} £. {[e.e'](x)le'~f(e)}. Then f $

u{[e.et](e'~f(e)}.

(3) Suppose that [e.e']SuF for sorae set Fs.D+D'.

By part (1). e'~ uF(e) = u {fee) I ffF}. by the definition of uF. NO\\T e' is

finite in Df. so there is some finite set Ff £ F such that e' :s;

u {f (e) If E Ff } • Now Fi is a bounded set, so its lub exists, and e' ~

UFf(e). Then by part (1). [e.e'] ~ uFf, so that (e,e'] is finite in D+D'.

Parts (2) and (3) of this lemraa show that the step functions are sufficient to

establish the algebraic nature of D+D'. In addition, we can see that. since

finite lut's of finite elements are finite.

E~E' = {[el.el']u ••• u[en.en'JJthe lub exists for all el •••• ,en€E and for all

e 1 t ••••• en ' € E' J •

3.7 IheoreL1j If D and D' are finitary domains. then D-+D' is also.

(i) Let F £. rH-D' be a consistent set of functions.

If uF does exist. then VXED. uF(x) will be u{f(x)lfEF}. Now consider any

finite subset of {f(x) IfEF}. say {f(x) IffG}. where G is a finite subset of

F. But an ub of G exists since F is consistent in D+D'. so an ub of

{f(x) IfEG} exists and {f(x))ffF} is consistent in D'. l:o,,*~ consisteI:t sets

in Df hav~ lubs. so u {f(x) I fE:F} exists in D' for all xfD. so uF exists in

D+D'. Lj

(ii) That every functions f is the lub of finite elements is shown by lemma 3.6.

par t (2). L

Definition: Categorical product

41

For every pa1r of objects D and D'. there is an object DxD' and morphis@s

p:DxD'+D and p':DxD'~D' such that for any object C and morphisms f:C+D

and f':C+D'. 1 a unique morphism <f.f'> such that the following diagram

commutes:

C

1<£·£1>
~-------- DxD'

p p'

How in our case, we can define DxD' to be the usual pairs of eleI:1ents:

Definition; DxD'={<x,x'> Ixe:D,x'e:D'}. where <x,x'>~<y.y'> iff x~x' and y'5:y'.

3.8 LeIDInai Let Z S Dxn t
• Let X = {xl3-x'.<x,x'>eZj and X' = {X t l'X.<x,X'>EZ}.

Then

(1) <z.z'> = uZ iff z = uX and z' =uX'.

(2) Z is a consistent (directed) set iff X and X' are consiste~t

(directed) sets.

Proof; (1) This is obvious froC1 the definition of ~ in DxD'.

(2) a. Let Z be a consiste~t set.

Let Xi be a finite subset of X and x' be an element of X'. Consider the set

{<x,x'>EzlxEXf}. This set is a finite subset of Z and Z is consistent in

DXD', so it has an ub, say <z.z'>. Then Vxe:Xf. x ~ z. so z is an ub of Xf,

so Xis consist ent in D.

A sinilar argurrJent showS that X' 15 consistent in D' •

b. Let X and X' be consistent sets.

Let Z£ be a finite subset of Z. Let Xf = {XI'X'.<X,x'>€Zf}. This set is a

finite subset of X. which is consistent in D, so it has an ub, say z. Now

let Xf' = {x·I3'x.<x.x'>€Zf}. By similar re~soninb' it has an ub in D'. say

z'. Then <z. z' > is an ub of Zf, so Z is consistent in DxD' •

The arbUI:"tent for directed sets is siI;}ilar. 0

Now D and D' are finitary, so ~=u{e€Elesx)and

42

3.9 Proposition: If D and D' are finitary domains. then so is DxD', where the

set 0 f fin i tee 1erae n t sis Ex E t •

ProQf;

A. The elements of ExE' are finite elements in DxD'.

Let <e,e'>E:ExE'. Suppose <e,e'>::; uZ = <uX.uX'>. for some set Z S DXD'.

Then e~uX. e'~uxt and e.e' are finite in D and D', so there exist finite

sets Xf £ X and Xf' So XI such that e ~ uXf and e' ~ uXf'. But then

{<x.x'»x€Xf, x'€Xf'} is a finite subset of Z and its lub is <uXf,uXf'>

and <e. e '> ~ <U Xi • u Xf ' >• [j

B. Every element of DxD' is the lub of finite eleraents.

Let <x.x'>E:Dxn'.

x'=u {e'E:E f I ef:sx t
}.

The r: <x. x ' >=u { <e • e ' > I e ~ x , e ' ~ x t }. Ll

C. That all consistent sets have lubs is obvious from ler.1~la 3.8.

3.10 TheareR; Let <x,x'> E: DXD'. Define p«x,x'»=x and p'«x.x'»=x'. If C is

any other finitary domain, and f:C+D and f':C-"D' are continuous

functior~s. define VXEC. <f.f'>(x)=<f(x).f'(x». Then DxD' is the

categorical ~roduct.

Proof;

A. That pane p' are continuous is immediate frorn leIrJIla 3.8.

n. Show that <f,f'> is continuous.

Let X be a directed set in C. Then <f.f'>(uX)=<f(uX), f'(uX»

=<uf(X),uf(X)'>, ftSaf' are continuous.

= u<f (X) , f ' ()~) > t Ler.1ma 3. 8 •

= u<f.f'>(X).

C. Show tha t the d iatir ar.... COii'JilU te s :

Sh O\\~ f (x) =p 0 (<f , f ' » (x) (and s i TIl i 1a r 1y for f'. p ,) •

43

p (<f , f ' >(x» = p (<f(x) , f ' (x) » = f(x). [j

D. Show that <f,f'> is unique:

From the calculations in part C., we can see th=-t the first cOI:1ponent of

<f,f'>(x) must be f(x), and the second must be f'(x), so that <f,f'> is

unique. L

Definition: A category is cartesian closed iff it has finite products and for

every pair of objects II and D', there is an object D=>D' and a I:1orphisr"

ap:(D=>D')xD~D' such that for every object C and morphism f:CxD~D', ~ a unique

morphism h:C~(D=>D') such that the follo,-'ing diagram commutes:

CxD --------..,> (D=>D')xD

jap
D'

The raor phi SIT! h 1 sus u a 11 y de fin e d a s a b (f) for a fur: c t ion

ab:(CxD~D')~(C~(D=>D'».

3.11 Tbeorer,;: Let C, D, and D' be finitary dor.iuins.

Let f E: D=>D' and x EO D. Define ap«f,x» = f(x).

Let f E: CxD-+-D' , XE:C, and yE:D. Define ab(f)(x)(y) = f«x,y».

Then the finitary domair.s and their continuous functions forrr. a cartesion

closeJ cate~ory.

Proof:

1. \;e have already sho\m that all finite products exist.

2. ShO\v that ap is a continuous function. Let Z S (D=>D')xD be a directec set.

Then

ap(uZ) = ap(u{<f.a>l<f,a>E:Z}), \vhere fE:D=>D' and aE:D,

= ap«u{f!<f,a>e:Z}, u{a' l<f',a'>E:Z}», lub's distribute over products,

= uU!<f,a>E:Z}(U{a' l<f',a'>E:Z}). by the definition of ap,

= u{f(u{a' l<f',a'>E:Z})!<f,a>E:Z}), by the def. of lub's of functions.

44

=u{u{f(a') l<f'.a'>E:Z} l<f,a>fZ}. since each f is continuous.

=u{f (a ') I <f • a >€ Z and <f', a ' >e: Z} •

No\·] the set {f(a) I <f,a>€Z} is contained in the last set above, so

u{f(a')I<f,a>€Z and <f'.a'>E:Z} £ u{f(a)l<f.a>E:Z}. On the other hand.

Z is directed so that for all <f.a> in Z and <f',a'> in Z. there is an

element <f--,a--> in Z that is an ub of <£.a> and <f',a'>. Application

is ITI 0 not 0 r! i c • sou { f (a ') I <f • a >e: Zand <f', a ' >e: Z} ~ u { f (a) I <f • a >E: Z} •

Then the last equation above lS

= U { f (a) I <£ • a >€ Z }

=u{ap«f,a>l<f.a>€Z}. U

3. Show that if f € CxD-"D' is continuous, then ab(f) is continuous. (This shO\-iS

that h is a raorphisw in the catebory.)

Let X£C be a directed set. Let y E D. Then

ab(f)(uX)(y) :: f«uX,y»

= f (IJ { <x, Y> Ix€ X }) , since Xis not em p t Y•

= u{f«x.y»lxE:X}, since f is continuous,

=u {ab (f) (x) (y) Ix€ X}

= u {ab (f) (x) IX€ X} (y) • LJ

4. Show that if f € CXD-+D' is continuous, then for all x in C, ab(f)(x) 15

continuous. (This shows that hex) is a IriorphisrJ in D=>D'.)

Let Ys D be a directed set. Then

a b (f) (x) (u y) = f (<x, U y>)

= f (u { <X. Y> Iy € Y }) t since Y i s not en'lp t Y,

= u{f«x,y»!y€Y}. since f is continuous,

=u{ab(f)(x)(y)IYE:Y}. U

5. Sho~" that the diagrarl; COrllI:lutes.

Let <x.y> € CXD. Sho\"~ that f«XtY» =ap«hxI)«x.y»):

ap«nxI)«x,y») = ap«ab(f)xI)«x,y»

45

=ap«ab(f)(x).y»

=ab(f)(x)(y)

= f (<x. y>) • G

6. The above equations show that h 15 the unique function that cakes the diagram

COIDTIlute.

46

Proofs for Section IV

Definition: For finitary domains D and D'. D is a retract of D' iff there exist

continuous functions i:~D' and j:D'+D such that joi=r on D (the identity

function on D).

Definition; A retra~Lion on a finitary domain D is a continuous function r:D+D

such that r O r=r.

4.1 Lemma: reD) = Fix(r). where Fix(r).=. {xfD)r(x)=x}.

Proof: If x f Fix(r). then obviously x is in the image of r.

If x E: reD). then there is some y£D such that r(y) = x. Then rex) = r(r(y»

=r(y) ::x. U

4.2 Proposition; If the image of a retraction r on D is a finitary domain. then it

is a retract of D.

Proof; Consider the continuous functions i:r(D)+D. where Yx€r(D). i(x)=x, and

r ' : D-+-r (D). whe r e r f =r rr (D) • The n f or a 11 x€ r (D). (i ° r ') (x) = i (r f (x » =

r' (x) = rex) =x. LJ

4.3 Leraruai reD) has lub's of all consistent subsets. Furthennore. reD) 1S

directed complete. i.e. if X is a directed set. Xsr(D). then uX in r(D) =

uX in D.

Proof;

i) Sho~- that r CD) has IUD's of all directed sets and is directed complete.

Let Xsr(D) be a directed set. Show that uX in D is gn element of reD) by

sho~" inc; r (u X) =u x.

r(uX)=u {rex) I X€X}. since r is continuous.

= u{xlxExl. since Xs.r(D) implies r(x)=x. YXE:X.

= ux. L

ii) Show that reD) has lub's of all bounded sets.

Let X~r(D) be a bounded set. D is finitary. so uX exists in D. Let y =

47

r(uX). which is an element of r(D). and Yxe:X. x =rex) S y. so y is an ub of

x in reD). Suppose there is some other ub of X. in reD). say z. Then ix€X.

xS z. Then Z 15 also an ub of X in D. where uX is least. Since r 1.5

monotonic. r(uX) S; r(z). Then y = r(uX) and z =r(z). so y S z and must be

the lub of X. [j

Definition; A retraction of a finitary domain D is a finite retraction iff it 15

a finite elenlent of Ir+D.

Note that a finite retraction also must be finitary, since the image of a finite

fucction is always finite.

Definition; A continuous function f 15 a preretractioD iff f:::;£o£.

4.4 Lemma:

a. If f is a finite preretraction. then the least retractior: that it

approximates. denoted Vf. is also finite.

b. The finite retractions appromimating a given retraction form a directed set.

Proof; Let D be an arbitrary finitary dOll1ain.

a. Let f :D~D be a finite preretractiont

f =:; fa ::; f'? • • • • ~ f t\:$ • • •• •

l..e. f:S f L =.f 0 f • Then by monotonicitYt

Does this sequence go on forever? Recall that f=[el.el 'Ju ••• u[en.en'J for

some el, •••• ene:D. el' ••••• en'eD'. and that since f is finite all the lubts

of the ei's exist. Let F£D be the finite poset generated as all lub's of

{el' ••••• en'}. (F is finitary since it is finite in size and all lub's

exist.) Let j:D+D be such that Vxe:D, j(x)=u{eE:Fle~x}. Now j is a finit~ry

retraction of D since j(D)=F. NO\",T jof=f since j is a retraction and

f(D)sj(D). 1;0\\1 (fo j) is a pretraction of F:

Let ee:F. f(j(e) $ f(f(j(e))). since f 1S a preretraction on D.

Thefi f(j(e)) =f(j(f(j(e)). since f=jof.

. f~· fS· . FAl so. f 0 J ~ 0 J ~ 0 J ~ •••• 10 F+ ' • Now F+F 15 finite 10 SiZE. since F

48

lS, so this sequence cannot strictly increase forever. Let n be first

in t e ge r 5 U c h t hat f" 0 j =f fl.. 0 j. Bu t then f '" 0 j 0 f = f f\.+,' 0 j 0 f • so f~"" =

f"·l(using jof=f). Similarly. f"+i= f"+~ •••• and finally ftl.l =£"+'0 £ "...t.

So f~' is a retraction on D.

No~ let r be any retraction such that fSr. Then YIn. f""Sr. (f& Sr& =r.

etc.). So f"+'is the~ retraction containing f. We will henceforth

denote it by Vf. Furthermore. V£ is finite since the composition of

finite functions is finite.

b. Let r :D-+n be any retraction. Let f and g be finite retractions such that f::;r

and g~r. Now fug exists since {f.g} is bounded by r. and fugSr and fug is

finite. Then f = fot ~ (fug)o{fug) and g =gog:S (fug)o(fug). so fug ~

(fug)o(fug). Thus fug is a preretraction. and by part a there is a least

finite retraction V(fug) such that fug ~ V(fug). So Vfug S r. Thus any

two finite retractions approximating r have an ub approximating r. so that

the set of finite retractions approximating r is directed. [j

4. 5 Theorem; Let r: n-+-n be a retract ion. Then the following are equivalent:

i) r is finitary.

ii) r(x)=u {r(e) I e€ E. e::;r(x) and e~r(e)}.

(Note that this lub is the sakle in r(D) as in D since reD)

is dire cted comp1ete.)

iii) r is the lub of some finite retractions.

Proof; In this proof, we will write U[D] and u[r(D)] to distinguish the lub's 10

D and reD). and E[D] and E[r(D)] to distinguish their finite elements.

(i=>ii) Assume r is finitary.

Lemma; Let X={r(e)le~r(e). e€E[D]}. Show X=E[r(D)], the finite elements

of r(D).

a. Let dEE[r(D)]. D is finitary so d = u[n]{e€E[nJleSd}. Then d =red) =

u[r(D)J{r(e)fe~d.e£E[D]}. since r is continuous. r(D) is directed

49

complete, and {e£E[D]leSd} is a directed set. Now d is finite in

reD) and and d approximates the lub of a directed set, so there is an

eeE[D] such that d~r(e). But d is also equal to the lub of the set.

so r(e)~d. thus there is an ee:D such that d=r(e). Noy.~ e$d so

e~r(e). so d is in the set x.

b. Let r(e) be such that e~r(e) and ee:E[n]. l.e. r(e)EX. Show

r(e)€E[r(D)]. Let S be any set contained in reD) such that

r(e)~u[r(D)]S. We must show that there is a finite set Sf £ S such

that r(e) S; u[r(D)]Sf. Now u[D]S exists since u[r(D)]S is an ub on

S in D. and bounded sets have lub' s. Also we must have

e$r(e)~u[D]S~u[r(D)JS.since if 1Ult. r(e)Su[n]s. then r(e) 'Would be

a smaller ub on S in reD). Nowe is finite in D and e~u[D]S so there

~s a finite set Sf £ S such that e :S u[D]Sf. Then r(e) :S r(u[D]Sf),

by monotonicity. But u[d]Sf ~ u[r(D)]Sf and r(u[r(D)]Sf) =

u[r(D)]Sf, so we have r(e):S u[r(D)]Sf. [j

Now if r is finitary. YXfD. r(x)€r(D) implies rex) = u{dldSr(x) and de:E[r(D)]} =

u{r(e)le€E[D], e~r(x) and e::;;r(e)}, by the above lernma. U

(i i =>i) Ass urne Yx€: D. r (x) = U {r (e) I e € E[D J. e~ r (x) and e~ r (e) }• ShO\\T r 1 s

finitary. For all retractions, reD) has lub's of consistent sets. Now

every element in reD) is rex) for some xfD. We showed in part b. of the

lemma above that the elements r(e) such that eSr(e) and e€E[D] are all

finite in reD), so the above equation shows that every element of reD) is

the IUD of Some finite elements in r(D).

(i i =>iii) Ass urne 'YxED. r (x) = U {r (e) (e E: E[D]. e S r (x) and e ~ r (e) } •

Show r is the lub of finite retractions.

(*) For any continuous function: r = u[I}+D]{[e,e'Jle'S;r(e)}. S1nce D+D is

finitary. To show that r is the lub of Some finite retractions. we just

show that for every finite function in {[e.e'JJe':Sr(e)} there is a finite

50

retraction f such that [e,e']~f~r. So let [e,e'] be any finite function

such that et~r(e) and construct f as follows:

Consider equation ii for r(e) = u{r{eJI2.€E, ~:S;r(e) and ~Sr(£.)}. Now

e'Sr(e), which is the lub of a directed set in D and e' is a finite element

in D, so for some r(e··) in the set, e'Sr(e··), and then also e··Sr(e) and

e"~r(e··) by definition of the set. Now e' and e·· have an ub r(e). so they

have a lub: e'ue··, and we have e'ue"Sr(e'ue··). Then by equation *:

[e ' U e •. , e t u e •.] S; ran d a 1 S 0 [e • e ' U e .:] :s; r , sinc e e' u e •.~ r (e) • Let

f=[e,e'ue··]u[e'ue··,e'ue··J. This always exists since both are bounded by

r. and then f~r. Now f is a finite function, and we need to show that f lS

a retract ion.

Nov.~ f is the funct ion:

Ax.if e:Sx but e'ue"~x then e'u e

else if e~x but e'ue··Sx then e'ue··

else if e u (e'ue··)~x then e'ue·· else.1,

which is just: Ax.if e:5:x or e'ue··Sx then e'ue·· else 1..

Noy.~ if e or e'ue·· is 1., then f is the constant function e'ue··. Otherwise.

f has a two point image with £(.1)=.1 and f(e'ue··)= e'ue··. In either case. f

is a retract ion. [J

(iii=>ii) Assume r is the lub of finite retractions.

Then we can write r=u{ffE+EJfSr and f=fof}. By lemrJa 4.4. this is a

directed set. so

YXt D: r (x) =u {f (x) I f:5: rand f =f 0 f. f e: E-+E J

= r(r(x» =u {r(f(x» I f~r and £=£0£. fe:E+EJ, since r 15 continuous.

Since each f is finite in ~D, each f(x) is finite in D. No,...· each

f(x)S;r(x) and f(x) :s; r(f(x». so each f(x) is a finite element in equation

ii. U

51

Definition; Let p: (~D)~(D"D) be defined as the function such that YgE:D+D:

p(b)=u{VflfEE~E.fSg and fSfof}.

4.6 Lemma: If r e: FRet(D). then p(r):r.

ProQf; If r is finitary. then r=u{f£E"Elf~r and f=fof} by the theorew 4.5. part

iii. Noy,~ show {fe:E"'Elf~r and f::fof} = {vi IfSr and f~fof. f£E-+r.}. Let f

be in the Ihs set. But for a finite retraction f=Vf so f is in the rhs set.

Let ~f be iroQ the rhs set. Now Vf is the least retraction that f approximates

and is finite, so Vi is in the Ihs set.

So r = u { 'V f I f ~ rand f ~ f 0 f. f f E'" E} =p (r) • [j

4.7 TheoreItl: FRet(D) is a finitary domain with the finite retractions as its

finite eletlents, and FRet (D) is a retract of D+D by the function p.

Proof;

a. Show that ~ lS a retraction.

NO~l p is obviusly continous. Let r€D-+D.

p (p (r)) = p (u { V' f I f ~ rand f $ f 0 f, f E E-... E})

=u{p(V'f) If:5r and f~fof, fEE-+EJ, since P IS continuous.

But vf is finite aile thus finitary, so this equation is

= u { vf f f $ ran ~ f:S f 0 f t fEE'" E }, by 1eLLma 4. 6

= p (r) •

b • Sh oy.~ tho t FR€ t (D) =P (D'" D) •

1. FRet (D)~ p (D-+!'l), uy leuinla 4.6 since r~FRet (D)=>p (r)=r.

2• ShO\~ t hat p (D-+D).£ FRet (D) • Let r c: D-+D• SbO\-; P (r) i s a fin ita r y

retraction on D.

1. Sh0,,"' t hat ~ (r) i s are t rae t ion. Sinc e {V f I f ~ ran d f $ f 0 f. f E: E-+ E J i 5 a

d ire c ted 5etan u 0 i 5 continU 0 us: p (r) 0 p (r) =U {V f 0 ~. f I f ~ rand

£$.fof, fEE-+EJ. Then each Vf=vfo~f. 50 p(r)op(r)::p(r). [j

11. Each Vf is a finite retraction, so by theorera 4.5, p (r) is the lut of

52

some finite retractions. Therefore p (r) is finitary.

c. Show that FRet(D) is finitary, i.e. p is a finitary retraction on D-+D.

1. Fret(D) has lub's of consistent sets since it is the range of a

retraction.

2. Show that every element of FRet(D)(=p (O+D» is the lub of finite

elements of FRet (D).

1. ShoW' that if f is a finitary retraction that is a finite element of

D+D. then it is also a finite element of FRet(n). Let F£ FRet(D) be

a set of functions such that f ~ u[FRet(D)]F. Then u[FRet(D)F =

u[D+D]F, since FRet(D) is the codomain of a retraction, p. Then f

is finite in D-+D so it is also finite in FRet(D). L

ii. Let r€FRet(D). Then r is a finitary retract on D, so it is the lub of

finite retractions by theorem 4.5. But these finite retractions are

finite elerilents of FRet(n). [j

	A finitary retract model for the polymorphic lambda-calculus
	Recommended Citation

	SU-CIS-83-02_001c
	SU-CIS-83-02_002c
	SU-CIS-83-02_003c
	SU-CIS-83-02_004c
	SU-CIS-83-02_005c
	SU-CIS-83-02_006c
	SU-CIS-83-02_007c
	SU-CIS-83-02_008c
	SU-CIS-83-02_009c
	SU-CIS-83-02_010c
	SU-CIS-83-02_011c
	SU-CIS-83-02_012c
	SU-CIS-83-02_013c
	SU-CIS-83-02_014c
	SU-CIS-83-02_015c
	SU-CIS-83-02_016c
	SU-CIS-83-02_017c
	SU-CIS-83-02_018c
	SU-CIS-83-02_019c
	SU-CIS-83-02_020c
	SU-CIS-83-02_021c
	SU-CIS-83-02_022c
	SU-CIS-83-02_023c
	SU-CIS-83-02_024c
	SU-CIS-83-02_025c
	SU-CIS-83-02_026c
	SU-CIS-83-02_027c_rescan
	SU-CIS-83-02_028c
	SU-CIS-83-02_029c
	SU-CIS-83-02_030c
	SU-CIS-83-02_031c
	SU-CIS-83-02_032c
	SU-CIS-83-02_033c
	SU-CIS-83-02_034c
	SU-CIS-83-02_035c_rescan
	SU-CIS-83-02_036c
	SU-CIS-83-02_037c
	SU-CIS-83-02_038c
	SU-CIS-83-02_039c
	SU-CIS-83-02_040c
	SU-CIS-83-02_041c
	SU-CIS-83-02_042c
	SU-CIS-83-02_043c
	SU-CIS-83-02_044c
	SU-CIS-83-02_045c_rescan
	SU-CIS-83-02_046c
	SU-CIS-83-02_047c
	SU-CIS-83-02_048c
	SU-CIS-83-02_049c
	SU-CIS-83-02_050c
	SU-CIS-83-02_051c
	SU-CIS-83-02_052c
	SU-CIS-83-02_053c
	SU-CIS-83-02_054c

