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I. Introduction

There has been great interest in recent years in designing programming
languages which permit functions which may accept types as parameters
(polymoxphic functions) and types with type parameters (type geperators).
Unfortunately, the semantics of such functions and types has not been as well
understood as their practical use in software design. In [McCracken 1979], a
denotational semantics was given for a simple programming language with these
features. The semantics used closures, which are a special case of the more
familiar retractions, over the Scott universal domain, Pw, to represent types.
It was then possible to interpret polymorphic functions as continuous functions
from types to objects in Pw and the type generators as continuous functions from
types to types. However, the model depends heavily on the fact that Pw and the
types over it are all complete lattices, while in many cases it seems that the
less restrictive complete partial orders are more natural for programming
language semantics.

An attempt to construct a model using retracts over complete lattices was
made in [Donahue 1979], but it has been shown that the construction is not valid
[McCracken 1980]. Structures that may solve this problem have been suggested by
Scott [Scott 1980]. In this paper, we use Scott's suggestion of finitary
retracts over a finitary complete partial order. We show that Scott's
conjecture that these structures will provide a model for the polymorphic
functions is true. In addition, we show that this also provides a model for the
type generators and that recursive types can be interpreted in the model.

In this paper, we first define a prototype language as a typed A-calculus
extended with polymorphic functions and type generators. Next, we present the
finitary cpo's and the various functions and operators necessary in the
semantics. And finally, we show how to use the cpo's to give a model for the

language.



We are using type generators here for essentially the same construct that
has also been called parameterized types or generic types. We prefer the term
type generators because it emphasizes both the functional nature of our
semantics and the generality of the construct. In particular, we wish to
emphasize that a type generator is not a type itself. In our semantics, a type
generator will have a2 denotation as a function from types to types, in contrast
to the algebraic approach [ADJ 1979], where a parameterized data type (in their
terminology) is a specification “scheme” or a class of specifications.

I1I. The Prototype Language

Syntactically, polymorphic functions and type generators can be
introduced into a programming language by including type variables, which are
distinct from ordinary variables, and by allowing abstraction with respect to
type variables both in the programming language expressions (to give polymorphic
functions) and in the type expressions (to give type generators). Since our goal
is to have type abstraction be as general a mechanism as possible, the question
naturally arises Can type abstractions be applied to any type expression
whatsoever? . For polymorphic functions the answer is essentially “yes ; if the
type abstraction is formed with respect to a type variable that avoids certain
special bound variable clashes, then a polymorphic function can be applied to
any type expression.

For parameterized types, though, the answer is no . Since we are
representing them as functions from types to types, unrestricted type
abstraction and application would make the type language into an untyped
A-calculus, This 1is undesirable since we want every programming language
expression to have a type expression which can be interpreted as a base’ type
and does not represent some unlimited sequence of type computations. The
solution is to introduce a type structure for the type language, i.e. it itself

becomes a typed A-calculus. We will call the types of types kinds to



distinguish the two levels of type structure.

The prototype language, then, is actually a hierarchy of three languages,
where the programming language has for type structure a language of type
expressions, which itself has a type structure of kinds. As we define the
expressions in these languages, their type structure, and computation rules, we
will assume that the reader is familiar with many of the standard definitions and
terminology from the traditional A-calculus.

The kinds of type expressions. Kexp

We make the simplifying assumption here that there is just one collection
of types, the base types B, which can be used as types of programming language
expressions, i.e. only type generators are not base types. This is certainly
sufficient for our simple applicative language - for a more extensive analysis
of the different roles of types in a programming language, it may be necessary to
subdivide the base types (see e.g. Reynolds' use of 'data types and program
types’ in [Reynolds 1978]). Consequently, the kinds of type expressions only
classify the type expressions as to their functionality, i.e. whether they are a
type generator or not.

Definition : Kexp is the least set satisfying

i. B € Kexp

ii. if k,m € Kexp, then k=>m € Kexp
We will use k and m to denote arbitrary elements of Kexp.
Ihe type expressions, Iexp

The language of type expressions will provide the type structure for the
programming language and is also a typed A-calculus itself. The typed
M-expressions are to be interpreted as type generators and will have the usual
B -reduction to gemerate a type, given a type parameter. Several other type
constructors are introduced.

Let TV be a countably infinite set of type variables: sists...



Let TC be a set of type constants (which may include things like Int and

Bool).

Let a type assignment TQ be a function from a finite subset of TV to Kexp.
Then we define Texp to be a family of minimal sets of expressions for every type
assignment TQ and every k in Kexp. We use the notation Texp[TQ,k] to denote the
set of type expressions whose kind is k with respect to the type assignment TQ:

In this definition, let teTV, tceTC, aeTexp[TQ,k], be Texp[TQ,m]:

other conditions expression  €Texp[TQ,___]

type constants: tc B
type variables: t TQ(t)

types of functions: a~*b B

types of products: axb B

types of unions: atb B

recursive types: wtea B

types of polymorphic fns: Attk.a B

type generators:

¥be Texp[(TQIt:k),m] At:k.b k=>m

¥ge Texp[TQ,k=>m] glal m

Note: (TQlt:k) is the type assignment Ase TV. if s=t then k else TQ(s).

As in a typed A-calculus, we can define substitution and use it to define
the computation rules of the language, « and /5 -conversions. For a full
description of substitution and other syntactic details, see [McCracken 1979].
The language that appears there differs only by syntactic abbreviations for
recursive types and the types of polymorphic functions.

We use {b/t}a to denote the substitution of a type expression b in

Texp[TQ,m] for all free occurrences of the type variable t in the type

expression a in Texp[(TQlt:m),k]. We can show that {b/t}a is in

Texp[TQ.,k].



Definition: Computation (Reduction) rules
() Mt:k.a ® ks:k. {s/t}a where s ¢ dom(TQ)u{t}
(8) (Aesk.a)[b]l o {b/t}a

Conversion, denoted a cnv b, is the least substitutive equivalence
relation that contains the computation rules. If a cnv b and a is in Texp[TQ,k],
then b is in Texp[TQ,k]. Since Texp is a typed A-calculus, every type expression

has a normal form unique up to o -conversion.

Ihe programming language expressions, Plexp
(or polymorphic A-calculus expressions)

The programming language Plexp is an extension of the ordinary typed
A-calculus, where MA-abstraction and application represent functions with
ordinary arguments. To represent polymorphic functions with type arguments, we
add another abstraction operator, [\ , which binds type variables. The addition
of type abstraction and application does not completely parallel ordinary
abstraction and application in this language since type expressions cannot occur
directly as objects in the language, i.e. they are not "first-class™ objects.
The role of type expressions is to indicate the types of ordinary objects in the
language and the effect of type application is to compute the types of objects.

Let V be a countably infinite set of variables X,y¥s2...

Let C be a set of constants with type expressions assigned by a function

QC, where ¥ ceC, QC(c) is in Texp[@,B].
Let an ordinary assignment Q be a function from a finite subset of V to
Texp.
In the following definition of well-typed expressions, it is necessary that the
types in the image of Q be themselves correctly typed according to a particular
type assignment TQ. We will call this property the “compatibility of Q with TQ”

and define it formally:



compat (Q,TQ) iff ¥xedom(Q),Q(x)e Texp[TQ,B]
Then we define Plexp to be a family of minimal sets of expressions for every type
and for every compatible pair of type and ordinary assignments. We denote by
Plexp[TQ,Q,a] (abbreviated P[TQ,Q,a] in this definition) the set of expressions
with type a in Texp[TQ,B] with respect to the assignments TQ and Q:

Let ceC, x€V, MeP[TQ,Q,a], NeP[TQ,Q,b]l, a,beTexp[TQ,B]:

other copditions expressions € Plexp(TQ.Q,___]
constants: c QC(c)
variables: x Q(x)
products: <M, N> axb
¥L € P[TQ,Q,axb] L.1 a
L.2 b
functions:
¥Lle P{TQ,(Qlx:a),b] Ax:a.L a»b
¥ LeP[TQ,Q,a'+b], a cnv a' L(M) b
polymorphic functions:
¥L € P[(TQlt:k),Q',al] A i:k.L At:k.a
where Q'=Q 7 {x/Q(x)e Texp[TQ-t,B]}
¥L ¢ [TQ,Q,b6t:k.al, beTexp[TQ,k] L[b] {b/tla
disjoint unions: mkl (M,b) atb
wkr (a,N) atb
¥Le PLTQ.Q,a+b],
feP[TQ,Qsa+r]s ge[TQsQsb+r] case L of (f.g) r
recursive types: VLeP[TQ,Q, pt.al unrec L { wtoa/t}a
VLePLTQ.Q. {pt.a/t}a mkrec L ptea
recursive functions: ¥ LeP[TQ,Q,a+a] Y(L) a

conditional:

¥ Pe P[TQ,Q,Bool], LeP[TQ,Q,a]

The most important language constructs

semantics will be products, functions, and polymorphic functions.

if Pthen Melse L

to consider

a

in defining the

The other



constructs are included here for completeness and to show, briefly, that they
can also be given semantics in a straightforward manner.

The two most important places in this definition where expressions are
required to be "correctly-typed" are in the two forms of application. In
ordinary application, the type of the argument must match the type of the bound
variable, up to normal form in the type language. In the interests of
generality, we decided not to restrict type applications to just base types, so
that polymorphic functions can be applied to any types, including type
generators. Here, then, for correctly-typed expressions, we require that the
kind of the type argument match that of the bound type variable.

It is important to note how type abstraction and application provide the
typechecking features necessary for user-defined types. In this language, a
correctly typed expression (A t:k.M)[b] has the property that X is correctly
typed outside of the context in which the type b is known. Essentially, we can
consider t to be the name of a user-defined type and b to be the concrete
representation of t. Although this expression will be computationally
equivalent to the expression M with b substituted for t, it is pot assumed that b
is equivalent to t in the definition and correct typing of M.

In a type abstraction, J\ t:k.M, we require a condition, called the "safe”
condition, that the body of the abstraction is correctly typed with respect to a
restricted assignment Q'. Q' has its domain restricted to only those variables,
X, whose type expressions are correctly defined without the type variable t. The
consequence of this condition is that to form an expression JAt:k.M, it must be
that t is not free in the type Q(x) of any free variable x in M. This ensures that
we do not bind a type variable occurring in the type of a free variable.

As in Texp, the domains of the type assignment TQ and the ordinary
assignment Q must include all the free variables of any expression in Plexp

correctly typed with respect to those assignments.



Plexp has both type and ordinary variables, and we define substitution for
both sorts of variables. These substitutions will be used to define reduction
for the two sorts of abstraction and application.

First we need a notation for a type substitution applied to every type

expression in the image of an ordinary assignment:

{a/t}Q is the assignment: V¥xedom(Q), ({a/t}Q)(x) = {a/t}Q(x).

We denote by {a/t}M the substitution of a type expression a in Texp[TQ.k]
for all free occurrences of the type variable t in the expression M in
Plexp[(TQlt:a),Qsbl. We can show that {a/t}M is 1in
Plexp[TQ,{a/t}Q,{a/t}b]l. (Note the effect of this substitution on the

type structure in the assignment Q.)

We denote by {N/x}M the substitution of an expression N in Plexp[TQ,Q,al
for all free occurrences of a variable x in the expression M 1in
Plexp[TQ,(Qlx:a'),b]l, where a cnv a'. We can show that {N/x}M is in
Plexp[TQ,Q,b'], where b cnv b'.

Definition: Computation (Reduction) rules
(a) Ax:a.M » hy:a.{y/x}IM where y£€ dom(Q)u{x }
(a) At:k.M o As:k.{s/t}M where s¢ dom(TQ)u{t}
(B) Ox:a.M) (N) o {N/x]M
(A) (At:k.M) [b] o {b/tlM
(v) <M,N>.1 b M
(v) <MyK>.2 » N
(There are other computation rules for the other language constructs that
are not included here since they are not crucial in defining the part of
the semantics that is newly treated with finitary retracts.)
If M P N and MePlexp[TQ,Qs,al, then NePlexp[TQ.,Q,a'l, where a cnv a'. It

is known that every expression in this language does have a normal form, see



[Stenluna 197 2],
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1II. The fini . { thei . £ .

The construction of mathematical structures appropriate for our model
starts with a nonempty partially ordered set (poset). The important
distinguishing characteristics will be which upper bounds (ub's) and least upper
bounds (lub's) are present, whether the elements of the poset are algebraic
with respect to some set of elements, and which bounds are preserved by the
functions. These definitions and most of the material in this and the succeeding
section are taken from [Scott 1980]. For this reason, the proofs are given in
the appendix.

We will denote the partial ordering on a poset, D, by <. If the lub of a
subset XcD exists, it is denoted by uX.

Defipition: An element e€D is finite iff for any subset XcD, if e<uX then there
exists a finite set XfcX such that esuXf.

Notation: The set of finite elements of D is denoted by E.

Definition: A subset XcD is consistent iff every finite subset has an ub in D.

Definition: A subset XcD is directed iff every finite subset has an ub in X, (or

equivalently, if X is nonempty and every X,yeX has an ub in X).

Now we can define finitary domains to be nonempty poset's where all the
consistent lub's exist and where all the elements are algebraic’ with respect
to the finite elements:

A nonempty poset is a finitary domain iff
i) every consistent subset has a lub
and ii) every element is the lub of some finite elements.
As a consequence of the second condition of the definition, we have that
¥xeD, x=U{ecE|e<x}.
This is the condition that we will often refer to by saying that a finitary

domain D is algebraic. Note that every finitary domain has a least element, .,
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since the empty set is consistent and uf=1.

For the functions over the finitary domains, we take the usual notion of
continuous functions, i.e. the functions preserve the lub's of all directed
sets. We also establish other properties of the functions, including the
crucial one that the set of continuous functions between two finitary domains is
also a finitary domain.

Definition: A continuous function from D to D' is a function f such that

for all directed sets ScD, f(uS)=uf(S).
Proposition: A function f from D to D' is continuous iff

Ve'€E',xeD: e'sf(x) iff }e€cE, e<x and esf(e) .
It follows from this proposition, that a continuous function f is completely
determined by the set of finite pairs (e,e') such that e'sf(e). (Since D' is
finitary, f(x) =u{e']le'sf(x)} =u{e']3IecE. esx and e'<sf(e)}.)
Definition: The poset D*+D' has as elements all continuous functions, f, from D to
D' with the pointwise ordering: f<g iff ¥xeD. f(x)sg(x).
Theorem: If D and D' are finitary domains, then D»D' is also.

In defining a model in a later section, we will be exploiting the close
connection between models of a typed A~calculus and cartesian closed categories.
This connection will be explained in detail later, but for now, we find it useful
to define this idea of cartesian closed category and show how the finitary
domains form one.

First of all, we take the finitary domains to be the pbjects of a category
and their continuous functions to be the morphisms, These objects and morphisms
do form a category since identity functioms are continuous and function
composition preserves continuity.

The first rule of a cartesian closed category (c.c.c.) is that 1t have

finite products. We define products here for the case with two objects.



Definition: Categorical product
For every pair of objects D and D', there is an object DxD' and morphisms
p:DxD'+D and p':DxD'+>D' such that for any object C and morphisms f:C+D
and f':C+D', 3 a unique morphism <f,f'> such that the following diagram

commutes:

<f,f'>

D e DxD' - = D'
P P'

Furthermore, from the product on objects, one always obtains a product on
morphisms: for all morphisms f:C+C' and g:D+D', there 1is a morphism
fxg:CxC'+DxD' such that ¥zeCxC', (fxg)(z) = <f(p(z).g(p'(z))>.

Now in our case, we can define DxD' to be the usual pairs of elements:

Defipition: DxD'={<x,x'>|xeD,x'e€D'}, where <x,x'><<y,y'> iff x<x' and y<y'.
Proposition: If D and D' are finitary domains, then so is DxD', where the set of
finite elements is ExE',

Iheoren: Let <x,x"'>eDxD'., Define p(<x,x">)=x and p'(<x,x'>)=x".

If Cis any other finitary domain, and f:C+D and f':C»D' are continuous
functions, define ¥xeC, <f,f'>(x)=<f(x),f'(x)>. Then DxD' is the categorical
product.

This 2-ary product can easily be extended to an n-ary product and to a
possibly infinite product indexed by the elements of a countable set. The O-ary
product is just {1}, the terminal object in this category.

Now the second rule of a cartesian closed category is that function spaces
are also objects in the category and that they interact with the product spaces
in such a way that “currying” of function arguments works properly.

Defipnition: A category 1is cartesian closed iff it has finite products and for

every pair of objects D and D', there is an object D=>D' and a morphism
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ap:(D=>D')xD+D' such that for every object C and morphism f:CxD+D', } a unique

morphism h:C+(D=>D') such that the following diagram commutes:

hxI

— (D= >D')><D

The morphism h is usually defined as ab(f) for a function ab:(CxD+D') + (C -
(D=>D")).

In our case, we can use the continuous functions both for morphisms in the
category and to construct the function spaces D=>D'., We will continue to use the
double arrow in the c.c.c. whenever we wish to distinguish the two roles of the
continuous functions., Furthermore, we have already shown that the continuous
functions, now D=>D', form a finitary domain.

Iheorem: Let C, D, and D' be finitary domains.

Let feD=>D' and xeD. Define ap(<f,x>)=f(x).

Let feCxD+D',xeC,yeD. Define ab(f)(x)(y)=f(<x,y>).

Then the finitary domains and their continuous functions form a c.c.c.

As a final property of the general mathematical construction of finitary
domains and their continuous functions, we observe that a finitary domain, D,
does have a least fixed point operator, Y:(D+D)»D. That is, if f:D+D, then the
least fixed point of f is given by

v(£) = T £Nu).

no
The proof of this depends on the continuity of f and the existence of lub's of

directed sets in D.

IV. Ihe finitary retractions

In conmstructing the model for our language, the interpretaton of a type
will be a function which picks out a certain subcollection of elements, i.e. the

elements of that type will be those in the image of the function representing the
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type. In defining just which functions will represent types, we need to use the

following two related ideas:

Definition: For finitary domains D and D', D is a retract of D' iff there exist
continuous functions 1:D+D' and j:D'+D such that joi=I on D (the identity
function on D).

Definition: A retraction on a finitary domain D is a continuous function r:D+D
such that rer=r.

Proposition: If the image of the retraction r on D, denoted r(D), is a finitary
domain, then it is a retract of D.

If the image r(D) of a retraction is a finitary domain, we will call r a
finitary retraction. The entire collection of finitary retractions on a
finitary domain D will be denoted FRet(D) . The model of our programming
language will consist of a finitary domain to represent programming language
expressions and finitary retractions to represent types. The remainder of this
section will describe various properties of finitary retractions and of FRet(D)
itself, including the crucial property that FRet(D) is a finitary domain and
itself the image of a finitary retraction. This property fails for ordinary
retractions but holds for closures (retractions r such that r2I on D+D). The
model given in Section VI depends on this property to give meanings to the types
of polymorphic functions,

Although the image of an arbitrary retraction is not necessarily finitary,
it does have lub's of all consistent subsets. The condition that fails is that
not all elements of the image of a retraction may be algebraic (see [Scott 1980]
for an example of this).

If r is a retraction on a finitary domain D, then

Lemma: r(D) = Fix(r) = {xeD|r(x)=x}.

Lemma: r(D) has lub's of all consistent subsets. Furthermore, r(D) is directed

somplete, i.e. if X is a directed set, Xer(D), then UX in r(D) = uX in D.
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In establishing the principal characterization of finitary retractions,
we must first investigate the functions that turn out to be the finite elements
of FRet (D).

Definition: A retraction of a finitary domain D is a finite retractiop iff it is
a finite element of D»D.

Note that a finite retraction also must be finitary, since the image of a finite
function is always finite.

Definition: A continuous function f is a preretraction iff f<fof.

Lemma;
a. If f is a finite preretraction, then the least retraction that it
approximates, denoted Vf, is also finite,

b. The finite retractions appromimating a given retraction form a directed set.

Theorem: Let r:D-D be a retraction. Then the following are equivalent:

i) r is finitary.

ii) r(x)=u{r(e)| 3eeE.esr(x) and esr(e)}.

(Note that this lub is the same in r(D) as in D since r(D) is
directed complete.)

111) r is the lub of some finite retractions.

Conditions i) and iii), of course, are crucial in showing that FRet(D) is
algebraic with respect to the finite retractions. We also wish to show that
FRet (D) is the image of a retraction on the finitary domain D+D.

Definition; Let p:(D+D)+(D+D) be defined as the function such that ¥geD>D:

p(g)=u{Vf|feE~+E.fsg and f<fef}.

Lemma; If reFRet (D), then p(r)=r.

Theorem; FRet(D) is a finitary domain with the finite retractions as its finite

elements and FRet (D) is a retract of D+D by the functionp.
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V. Acalculus of finitary retracts

The next step in constructing a model for the language is to show how to
calculate finitary retracts that will represent the type constructors. We will
assume that the basis of the model is a finitary domain U that at least has the
property that it solves a recursive domain equation with its own function and
product spaces. Then we will show how to construct semantic types as finitary
retracts over the domain U.

Definition: Let U be a finitary domain with U+U and UxU as retracts:
where

joi=I on U+U

/ v
U /
1
k ke 1=I on UxU

UxU
That U+U and UxU are retracts of U means that U contains isomorphic copies of
these domains. (Actually, as long as U has at least two finite elements, it
would be sufficient to have U+U as a retract of U. Then U is known as a reflexive
domain, and it can be shown that UxU is alsc a retract of U.)
Under these assumptions about the domain U, FRet(U) is also a retract of U,

since it is contained in U-U via the retraction p.

1 1

U5 usU 2 5 FRet (V)

J p
Actually, we will use the isomorphic copy of FRet(U) that is contained in U for
our domain of types. Denote this domain by FRet(U) and p:U+U for the finitary
retraction on U whose image is FRet(U). (g can be defined by: W¥xeU. p(x) =
i(p(j(x))).) Note that whenever we want to encode a function f:U>U as an element
of U, we take i(f), and whenever we want to use an element x of U as a function, we

take j(x). The meaning of the retract equation is, of course, that j(i(f))=f.
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However, in order to simplify many equations, if reFRet(U), we will not
always write j(r) when the context shows that r is being using as a function,
namely in function application or composition and in showing that j(r) is a
finitary retraction. Also, we will denote the image of j(r) as r(U), instead of
j(r(U)). Note that since g is not only an element of ERet(U) but also
FRet(U)=p (U), we have p(g)=p. That g is in its own image (up to isomorphism) is
what we mean intuitively by "the type of all types is a type .

First, we make explicit the remark that a retract of a domain D is
isomorphic to a subdomain of D, and we show a useful result for defining
continuous functions on the images of retractions by restricting the domain and
corestricting the codomain of a continuous function on the whole domain.
Proposition: If D and D' are finitary domains and D is a retract of D' via the

furnctions i:D+D' and j:D'+D, then D~ i(D).

Proof: We already have that j°i=I on D. Let xeD' such that x € i(D). We must
show that 1(j(x))=x. But x=i(y) for some yeD. So
103(x))=1(3(i(y)))=i(y)=x.[

Lemma: Let R and S be directed complete subdomains of U., Let f:U+U be such that
for all xeR, f(x)eS. Then £'=f TR[S € R+S, i.e. the function f
restricted to R and corestricted to S is a continuous function with domain
R and codomain S.

Proof: The only problem is whether f' is continuous, so we must show that for all
directed sets XcR, f'(uX) = uf'(X), where the lub's are in R and S,
respectively. But since R and S are directed complete, these are the same

lub's as in U, and since f' has the same definition as f on the subdomain R,

the equation holds. [

We now turn our attention to interpreting all type constructors as

elements of Elet(U). Ve begin by showing that functions and products can be
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constructed as finitary retracts, and by showing that FRet(U) forms a cartesian

closed category. The objects in the category will be elements r and s in FRet(U)

and morphisms re+s will be continuous functions from r(U) to s(U).

Product Definition: Let r,s € ERet(U). Let r8s be the encoding by i of the
function that ¥xeU gives 1(<r(p(k(x)), s(p'(k(x)))>). This function is a
continuous one in U+U from the definition. (Recall that <_,_> is the
tupling operator on arbitrary finitary domains, and that p and p' are the

projection functions.)

Proposition: r8s(U) ~ r(U)xs(U).

Proof:
1

Recall the retraction pair k,1 from U & > UxU. (So ke 1=I on UxU.)
k

Let k':r@®s(U)+r(U)xs(U) = klr@s(U)[x(U)xs(U).
For this to be 2 proper restriction and corestriction, we must have that ¥x
in r®s(U), k(x) is in r(U)xs(U). A priori, k(x)=<y,z>, for some pair
<y,z> in UxU, But x € r®s(U), so
k(x) = k(res(x)) = k(1(<r(p(k(x))),s(p'(k(x)))>))
= <r(p(k(x)))ss(p'(k(x)))> .
So the first component is in r(U) and the second is in s(U).
Let 1':r(U)xs(U)»r@s(U) = 1Tr(U)xs(U)r@s(U).
For this to be a proper restriction and corestriction, we must have that ¥z
in r(U)xs(U), 1(z) is in res(U).

1(<r(p(k(1(2))))ss(p'(k(1(2))))>)

res(1(z))

1(<x(p(z))ss(p'(2))>)

But if z is in r(U)xs(U) then p(z) is in r(U), so r(p(z))=p(z), and
similarly, s(p'(z))=p'(z). So the above equations are

= 1(<p(z),p'(2)>)

= 1(2).
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We have shown that k' and 1' are continuous functions with the right domains and
codomains. Finally, we observe that k'e1l' = I since kel = I. Then to show
that 1'ek' = I, let xer®s(U):

L(k(x)) = 1(k(r8s(x))) = L(k(1(<xr(p(k(x)))ss(p*(k(x)))>))) =x. [

Proposition: If r,seFRet(U), then r@seFRet (U).

Proof:

I. Show that r8s is a retraction by showing (r8s)e(r8s)=r®s. Let xeU:
r8s(r8s(x))=1(<r(p(k[1(<r(p(k(x))ss(p®(k(x)))>)1)ss(p'(kl...]1))>)

=1 (<r(r(p(k(x))))ss(s(p*(k(x)))>)
“r@s(x)

II. The image of r®s is finitary since it is isomorphic to the finitary domain

r(U)xs(u).

Proposition: r8s is a categorical product.

Proof; Ve have already shown that for any r,seERet(U), we can define an object

r8seFRet(U). Now we have to define projection morphisms, p:r8s+r and p':r8s-+s

such that if qeFRet(U), f:q»>r, and f':q+s, there is a unique morphism h:q+r@s

such that the following diagram commutes:

h

I e I8 5 —————————p 5
2 2!

(Ve have used the “name of a retraction in place of its image, e.g. r instezd of
r(U), to simplify the diagram). But, given the isomorphism between r®s(U) and
r(U)xs(U), for some isomorphiswm functions k' and 1', (there is actually a

different k' and 1' for every r and s), this can all be defined in terms of

products on finitary domains:
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q

£ f'

<f,f'>
P P'
T g rxs ~? s

1' | k!

2 2'
r8s

so that if p and p' are defined by p=pek', p'=p'ck', then h is defined as
h=1'e<f,f'>, which is unique up to isomorphism. [I

We will also denote by ® the product of continuous functions, which is (as
noted before) defined pointwise using the projection furnctions, p and p' in this
case.
Iyped Functions
Definition: Let r,seFRet(U). Let ro-+s be the encoding by i of the function that
¥z in U gives i(se j(z)er).

Proposition: ro+s(U) ~ r(U)+s(U)

Proof: .
i

Recall the retraction pair i,j from U{,___, U+U. (So j°i=I on U-.U)
3

Let j'e(re+s)(U)+(xr(U)+s(U)) be the function such that ¥z € re+s(U), j'(z) =

j(z)Te(u)s(u).

To show that this is a proper restriction and corestriction, we must show

that ¥x in r(U), j(z)(x) is in s(U):

"

s(j(2)(x)) = s(j(i(se j(z)er))(x))

s(s(j(2)(r(x))))

s(j(z)(x(x)))
jlz)(x) .

The cdefinition of the other isomorphism function is more complicated than &
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simple restriction and corestriction of i, since r(U)+s(U) is not a subset
of U>U. These two sets of functions don't have a subset relation because
any function in r(U)+s(U) has a different domain and codomain than the
functions in U~+U.
Let i' € (r(U)»s(U)) + (re+s)(U) = hfre+s(U), where h:(r(U)+»s(U))>U is
the function such that
Voer(U)»s(U), hlg) = i(IVs(U)egor[z(U)).
(Note that (I1s(U)eger[r(U)) is a function in U-U.)
The restriction of I to s(U) and the corestriction of r to r(U) are
obviously both proper. We must show that the corestriction of h is proper
by showing that ¥ g in r(U)+s(U), h(g) is in re-+s(U):
ro+s(h(g)) = i(s° j(h(g))er)
= i(s°3(i(I¥s(U)egerlz(U)))or)
= i(s°ITs(U)egerlr(U)er)
= i(ITs(U)egerlr(U))

= h(g) .

To show that j'ei' = I on r(U)+s(U), let g be in r(U)+s(V):

' (i'(g)) = j(i(IT1s(U)egoxlr(U))) Fr(UIs(U)
= (I1s(U)egexrlr(U)) T (U s(U)

=g, since ¥xer(U), g(x) =g(r(x)).

To show that i'ej' = I on re+s(U), let z be in roe+s(U):

i'(3'(2)) = i(1¥s(U)e (3(2)Ve (U s (U))exlx(UV))
= i(sej(z)er)
= r0+s(z)

=z. U

Proposition: If r,s € ERet(U), then re+s € ERet(U).

Proof:

II

Show that re+s is a retraction by showing (re+s) © (re+s) = (re=+s).
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Let zeU: re-+s(re+s(z))=i(sojli(scj(z)er)]er)
=i(sese j(z)orer)
=ro+s(z) .
II. The image of re+s is finitary since it is isomorphic to the finitary domain

r(U)>s(U).

Theorem: FRet(U) with continuous functions is a cartesian closed category.

Proof: 1) It has finite products: n-ary products are easily extended from r@®s,
and the O-ary product is the encoding of the constant function
that always gives L, which is a finitary retraction.

2) We have already shown that ¥r,seFRet(U), we can define an object re=+s ¢
FRet(U). DMNow we have to define a continuous function ap:((re+s)8r)-s
such that V¥qeFRet(U) and functions £f:q8r+s, there exists a unique
function h:q*(re+s) such that the following diagram commutes:

hel
q8r 3 (re+s)8r

ap
f

s
where there is a continuous function gb:((g8r)e+s)+(re=+s) such that h=gb(f).

But, given the isomorphism functions i and j between re+s(U) and r(U)+s(U), this

can all be defined in terms of the functions ab and ap on ordinary finitary

domains:

1! ab(fel')xI ]'¥I)°k
q8r ¢ - gxr —d(r+s)xr —5 (ro=»s)8r

k 1 °(1'XI)
£ fol! z{i""”__,,——""”,””’//

So the function ap can be defined by ap=ape (j"xI)ek',

We are using k' and 1' for the isomorphism functions between q®r and gxr, and k~

and 17 for those between (re+s)8r and (re+s)xr. Now, for any function g €
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q*(re+s) and g' € r+r, g8g' = 1 o(gxg')ek'. So ab(f) must be defined as
iteab(fel'), since ther for h = gb(f), we have h@8I = 17e((iteab(fel'))xI)ek?’,

which is the composition of the functions that make this diagram commute., [
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Although this theorem has been widely quoted, there is not uniform
agreement about what the typed A-calculus is and what a model for it should be.
(The main differences over the former are about the relationship of types to
ordinary variables and the changing of bound variables during substitution. The
main differences over the latter are essentially over what forms of
extensionality should be in the model; see [Berry 1980] for a discussion of
this.) Therefore, we want to make explicit how a c.c.c. is a model for our typed
A-calculus subset of Plexp. This version of the theorem is taken from [Oles
1982] and is presented here as a special case of a more complicated semantics
involving states as well as environments.

For convenience, we use the following subsets of Texp and Plexp as syntax for the
typed A-calculus with products:
type constants: tc € Texp[TQ,B)
products: axb € Texp[TQ,B]
functions: a*b € Texp[TQ,B])
There are no type variables in this subset so we can assume that the type
assignment TQ 1s arbitrary.
variables: x € Plexp[TQ,Q,Q(x)]
products: <M, N> € Plexp[TQ,Q,axb]
L.1 € Plexp[TQ,Q,al
L.2 €  Plexp[TQ,Q,b]
functions: Mx:a.L € Plexp[TQ,Qsa+b]
L(M) €  Plexp[TQ,Q.b]
These definitions are all made under the same assumptions for a, b, L, M, and N as
in the previous definition in section II.
Assume that we have a c.c.c., K, using the notations X, p, p's <_,_>, ap,

and ab as defined in section III. First, we give a meaning function for type
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expressions:
Mt: Texp[TQ,B] + objects in K.

Mt[[tc]] = kc, some object in K

Mt[[axb]] = Mt[[al] x Mt[[b]]

Mt[[a+b]] = Mt[[al] => Mt[[b]]

Then, we give a family of meaning functions for Plexp, one for every set of

typed expressions for some type a:

Me: Plexp[TQ,Q,a] =+ (E -+ Mt[[a]l)
where E is the set of environment functions whose domain is the domain of Q such
that ¥xedom(Q), e(x) € Mt[[Q(x)]]. It is required that E also be an object in
the c.c.c.

Mel[[x]le = e(x)

*  Mel[[<M,N>]]e = <Me[[M]le, Me[[N]Je>

Me[[L.1]Je = p(Me[[L]le)

p'(Me[[L]]e)

Me[[L.2]]e
Me[[Mx:a.L]] = ab(f), where f is that function (morphism)
from Ex¥t[[a]] to Mt[[b]] , such that
f(esu) = Mel[[LI](elx>u).
Me[[L(M)]] = ap(Me[[L]]e, Me[[M]]e)
Equation * has been simplified using the pointwise nature of our definition of
function tupling. ~(elx*u)” denotes the environment such that ¥yedom(Qlx:a),
(elx+u)(y) = if y=x then u else e(y).
The proof that these semantic equations give a2 model for the typed
A-calculus uses the following instance of the c.c.c. abstraction and application
diagram:

ab(f) x I
E x Mt[[a]] —» Mt[[ae-+b]] x Mt[[a]]

S

tin [[b]]
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This shows why the set of environments E must be an object in the c.c.c.

That the c.c.c. is a model for this typed A-calculus means that the

semantics is correctly typed:

if L € Plexp[TQ,Q,al then for all environments whose domain is Q and whose

codomain is correctly typed as defined above, Me[[L]Je € Mt[[al].
We can also verify that the computation rules are preserved for this subset,
which means that for ¢ and A -reduction for ordinary functions and the two
product reductions, we have:

if M¢N € Plexp[TQ,Q,a] such that M © N, then Me[[M]] = Me[[N]].
(It is also the case that the c.c.c. semantics preserves the computation rule for
N-reduction:

(®) M P> hx:a.M(x), where x does not occur free in M.)

Another reason for introducing this theorem about c.c.c.'s is that we can

now, without further argument, use A-expressions to denote typed continuous

functions over Fret(U).

] . .
Definition; Let aeFRet(U), aeU+U such that if xea(U), then a(x)eFRet(U). Then
let 4(a,a) be the encoding of the function: Az:U.i(h\t:U.a(a(t))(j(z)(a(t))).

The intuitive interpretation of this retraction is that z is being using as a
polymorphic function, the retraction a makes the argument to z into a
(correctly-typed) type, and the function a mekes the result of the polymorphic
function have some type which is also dependent on the type argument. We can
formalize this as a kind of infinite cartesian product.

Definition: Let T be a countable set and let F be a function which maps an element
of T into a set, then

T F(t)={functions f | domain of £ is T and ¥teT, £(t)eF(t)}.
teT

(This is a cartesian product indexed by the possibly infinite set T, where each
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function can be interpreted as an infinite product of all the second components
of the graph of the function, and for each t € T, f(t) is the projection mapping
for the component at t.)

The crucial property of this model - that FRet(U) itself be the image of a
retraction - 1s used in the definition of polymorphic functions in the
assumption that there is a retraction a which makes the argument of a polymorphic
function into & type. For example, when base types are modeled by FRet(U), a
polymorphic function that can accept any base type will use p for a, since

FRet (U) is the image of Q.

Proposition: A(a,a)(U) =~ TTa(t)(U).
tea(U)

Proof:
Within this proof, we will denote the product over all tea(U) by just TWa (t)(U).
i

Recall the retraction pair U¥__5 U-U, where jei=I on U-+U.
j

As with type functions, we can't define the isomorphism function from Wo (t)(U)
to £t(a,a)(U) by a simple restriction and corestriction of i since the functions
in TMa(t)(U) have domain a(U) and codomain U and are thus not a subset of U~+U.

Let 8: MWa(t)U) » 6 (a,a)(U) = (hg: Wa(t)(U).i(geala(u)))a(a,a)(U).

Let ¥:4(a,a)(U) » Ta(t)(U) = hz:a(a,a)(U).j(z)Ta(u).

l. First, we must show that the definition of ¥ fits the restriction and
corestriction lemma., The corestriction of a to a(U) is obviously proper;
to show that the other corestriction is proper, we must show that
Vge Ma (t)(U) that (hg: Ma(t(U).i(geala(U))(g) € &(a,a)(U).
b(a,a)(i(geala(U))) = i(At:U.a(a(t))(j(i(geala(U)))(a(t)))

i(dt:V.a(a(t))(geala(U))(alt)))

i(At:U.(geala(U)eal)(t)), since geWa(t)(U)

i(geala(U))s byn-conversion.
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2. The corestriction in the definition of % is obviously proper.
3. Show that ¥¢¥ = I on Toa(t)(U). Let g € Mau(t)(U):
#(2(g)) = (j(i(geala(u))))la(u)
= (geala(u))la(u)
= g, since Vtea(U), g(a(t))=g(t) and dom(g)=a(u).
4. Show that ¥ ¢ # =1 on A(a,a)(U). Let zeA(a,a)(U):

2(%(z)) = i((j(2)Ta(u))eala(u))

i(j(z)ea)
i(j(a(asa)(z))ea)

1(j(i(At:U.a(a(t))(z(a(t)))))ea)
i(ht:U.a(a(t))(z(aa(t)))))

i(At:Usa(a(t))(z(a(t))))

s(a,a)(z)
= z.
Proposition: Let aeFRet(U) and aeU+U such that if xea(U) then a(x)eFRet (U).
Then 4{(a,a)eFRet (U).
Proof:
I. Show that 4(a,a) is a retraction by showing A(a,a)eA(a,a) = &4(a,a).
Let zeU, b(a,a)(a(a,a)(z))
zi(At:V.a(a(t)) (jLit:U.a(alt))(3(2)(a(t))))I(a(t))))
=i(At:U.a(a(t)) (a(alalt))(j(z)(ala(t))))
=8 (a,a)(z)
II. The proof that products indexed by 2 objects is finitary can easily be
extended to show that products indexed by an arbitrary set is finitary.

Then the image of w(a,a) is finitary because it is isomorphic to the

infinite product indexed by the set a(U): M a(t)(V).
tea(U)
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rirsi Ciniti )
Due to the special properties of FRet(U), we can interpret both recursive

function definition and recursive type definition as a least fixed point
operator on the image of a retraction (both function spaces and types are
represented as the images of retractions). Actually, since these domains are
directed complete, we can prove that these fixed points are given by the usual
least fixed point operator on the whole domain, U:

Y: (U+U)>U = Af:U~+U. Ten(u).

ad
Proposition: Let reFRet(U). Let feU-+U such that i(f)ere-r(U). Let
f'=f1e(U) r(U). Then Y(f) is the least fixed point of f' over r(U).
Proof: kote that f' is continuous by the restriction and corestriction lemma. We
prove that f and f' have the same least fixed point by showing that every fixed
peint of f is a fixed point of f', and vice versa.
a. If zer(U) is a fixed point of f', then £=£' on r(U) so
f(z)=£"'(z)=z.

b. If zeU is a fixed point of f, first we must show that zer(U):

r(z)=r(f(z))=r(re+»r(f(z)))=re>r(f(z))=2.

Then, again f=f' on r(U), so £'(z)=f(z)=z. [

We omit here the definition of semantic constructs for disjoint unions and
conditional, since the details of these work out similarly as on other c.p.o.'s

or complete lattices and are not particularly dependent on the finitary retracts.
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V1. Ihe Model

A model for our language will comsist of giving meanings for every
expression in the three languages - Plexp, Texp, and Kexp, and showing that the
semantic meanings obey the same typing and computation rules that the syntactic
expressions do. The basic structure of the model is that expressions in Plexp
will be interpreted as elements of the domain U, expressions in Texp as finitary
retracts on U, i.e. elements of FRet(U), and expressions in Kexp as finitary
retracts on FRet (U).

Since Plexp is an extension of the typed A-calculus, the proof that this
structure is a model will be based upon the theorem that “every cartesian closed
category is a model of the typed A-calculus and the fact that the finitary
retracts on the finitary domain U form a cartesian closed category (c.c.c.).
Furthermore, the main extension to the type language, Texp, was to include type
generators by making it a typed A-calculus also. Thus, we can use the c.c.c.
theorem again to use the finitary retracts on the finitary domain FRet(U) as a
model for Texp. Finally, we must show that we can model the main extension to the

programming language - polymorphic functions and application.

Semantics for the type language

The type language is itself a typed A-calculus, and we will use the c.c.c.
of finitary retracts on the finitary domain FRet(U). The type language does not
actually have products so that we just need the c.c.c. for semantics for
functions from types to types. We add to the semantic function some finitary
retracts for other type constructors which have no computation rules and thus
require no more proof. Recall that we used °+ to denote function spaces of
finitary retracts and gp and ab for the c.c.c. functions on those spaces.

The meaning function for types of types is a function Mk:Kexp + FRet(U),

since finitary retracts on FRet(U) are also embedded in FRet(U). Kexp has only
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one constant and the type of typed functions:
Mk[[B]] = p
Mk[[k=>m]] = Mk[{k]] o+ Mk[[m]].

The meaning function for type expressions requires an environment function
from a finite subset of type variables to finitary retracts. If we make a finite
subset of type variables into a “flat™ poset by attaching a L element, then it is
a finitary domain. Let Te[TQ] be the set of type correct type environment
furnctions. These functions all have finite images and are thus finite functions
on Te[TQJ, so that it is also a finitary domain and can be defined as the image of
a finitary retract on FRet (U).

Te[TQ] = {teedom(TQ) + ERet (U) | ¥tedom(TQ), te(t) e Mk[[TQ(t)]]}.

So the meaning function for types is a function
Me[TQ,k]: Texp[TQ,k] + (Te[TQJ -~ Mk[[k]]):
(We write Mt for Nt[TQ,kJ, since TQ and k are obvious from the context.)
He[lt]lte = te(t)

Mt[[tallte = some finitary retract assigned to the constant ta

Mt[[a+bllte = Mt{[allte o=+ Mt[[bllte

1t[{allte 8 1t[[bl]te

Mt[[axbllte
Mtllpt.allte = Y(Nd:p. Mt[[all(telt+d)))

Mt[lat:keallte = a(Mt[[At:k.allte, Mk[[kI])

Mt[[At:k.a]] = ab(A<te,d>: Te[TQlt:k]1® ¥k[[k1]. Mt[[all(telt+d))
Mt[[alblllte = ap(tit[[allte, Mt[[bllte)

Note that Mt is, in fact, type correct by definition. The equations for
the four constructors +, X, , and & do give meanings in Mk[[B]], which is just
FRet (U). We should also remark that Nt[[al] exists for zl1 types a, since it is
a family of functions with a mutually recursive definition over domains Te[TQ] -
1k[[k1], which are finitary domzins.

The o and § -reduction rules are preserved due to the theorem that every
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CeC.ce is a model of the typed A-calculus.

The programming language is an extension of the typed A-calculus, and we
will use the c.c.c. of finitary retracts on the finitary domain U to model the
typed A-calculus subset, including products in this case. We add to the semantic
function meanings for polymorphic functions and application and must then prove
that their @ and g -reduction rules are preserved.

In the last section, we gave the appropriate finitary retracts on U as
meanings of x and + in the type language to be the types of products and ordinary
functions in this language.

The meaning function requires not only an enviromment for type variables
but ore for ordinary variables as well., Let E[TQ.Q] = {eedom(G) = ERet(U)]|
vVxedon(Q), ¥teeTE[TQ), e(x) e MNt[[G(x)]]Jte} be the set of type correct
environrent functions. Thern the meaning function is

1elTQsQsal: Plexp[TQsQ,al ~ (Tel[TQ] + (E[TQ,Q] » Mt[[allte))):

(Again, we write Me for Me[TQ,Q,a] when TQ, Q, and a are obvious.)

e(x)

it

telfx]lte e

Hel[clJte e = some constant in Mt[[QC(c)]]te

Me[[<,i>]]te e = <Me[[M]lte e, Me[[li]]te e>
Me[[L.1]1te e = p(Me[[L]]te e)
Me[[L.2])]Jte e = p'(Mel[L]]te e)
¥el[[Ax:a.L]]te = ab(h<e, u>:E[TQ,Qlx:a] 8 Mt[[allte., He[[L]]te (elx+u))
Me[[L(¥)]lte e = gp(tie[[L]te e, Me[[F]]te €)
Me[TQsQsat:keal [[At:k.Ll]te e= (Ad:Mk[[k1].

e [TQit:ik, Q's a] [[L1] (telt>dle')

where e' = eldom(Q'), and Q' was defined in Section I.

e [[ LLal JJte e = (Me[[L1Jte e)(tit[[allte)
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Again, we note that the semantic function is type correct by definition
and exists because it is a family of mutually recursive functions defined over
finitary retracts. The typed A-calculus subset fits the semantic definition for
an arbitrary c.c.c. because for a fixed type enviromment te. Mc[{M]]te is just a
function from environments to meanings.

To complete the proof that this semantic function gives a model for the
language, we must show that the computation rules for polymorphic functions are
preserved. First, we present a lemma that extension of environment functions
correctly interprets substitution. This lemma is actually the crux of the
modelling of computation rules, but we omit the proof here since it is a rather
straightforward structural induction on terms. The full proof of a similar
theorem appears in [McCracken 1979].

Lemma: Let b € Texp[TQ,k] and M € Plexp[TQlt:k,Q,al] so that {b|t}M is a

well-defined substitution. If te € Te[TQJ and e € E[TQ,Q], then
Me[[{b/t}M]I(te)(e) = Me[[MI](telt>M[[bIIte)(e).

(Note that two other lemmas would have been necessary for the other computztion

rules: namely, one of the form Mt[[{b/t}all(te) = Mt[[all(telt+Mt[[bllte) for

reduction of type generators, and one of the form Me[[{N/x}M]](te)(e)=

Me[[M]I(te)(e)x>Me[[N]]I(te)(e)) for ordinary reduction in Plexp.)

With this important lemma, we can complete the proof of the model.

Theoren : Let M € Plexp[TQ,Q,al) and N € Plexp[TQ,Q,a'], where a cnv a', such
that M & N. Then Me[[M]] = Me[[N]].

Proof : Given our theorem about cartesian closed categories, we need only show
that @ and A -reduction for polymorphic functions are preserved. Let te €
Te[TQJ, e € E[TQ,QI:

(¢) Let A t:k.M € Plexp[TQ,Qsbt:k.al. Then S\ s:k.{s/t}M € Plexp[TQ,Q,
At:k.a'], where a cnv a', and s ¢ dom(TQ)u{t}. By the definition,

Me[N\s:k.{s/t}M]](te)(e) = E(Ad:Mk[[k]].Me[[{s/t}M]II(tels+d)(e")).
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Then by our substitution lemma, this is

T(Ad:Mk[[k]]J.Me[[MII((tels+d) it+Me[[s]](tels>d))(e"))

= §(Ad:Mk[[k1].Me[[M]]((tels+d)|t+d).
Now we must be explicit that in this equation we are using Me[(TQls:k]|
t:k),Qs,al), but since s does not occur free in M, we can also use
Me[(TQlt:k),Qsal, and then it 1s obvious from the definition of Me that the above

equation

=3 (Ad:Mk[(k]J.Me[[¥]I(telt+d)) = Me[[At:k.M]](te). O

(p)Llet ( At:k.M)[al € Plexp[TQ,Q,b] and a € Texp[TQ,k].
Mel[(At:k.M)[alll(te)(e) = #(Me[[At:k.M]I(te)(e)) (MelLall(te)))
= #(8(Ad:Mk[[k]].Me[[M]](telt+d)(e')))(Mt[[all(te))
(Note that this is a correctly formed application of a function on

finitary retracts.)

Mel[[¥]1(telt+Mt[[all(te)) (e)

Me[[{a/tIM]](te)(e), by the substitution lemma. [

. .

This type of model for polymorphic functions has the advantage that it_s
setting is in domains which can model a useful variety of language features,
including mutually recursive definitions (which were not included in this paper
but can easily be added.) The main drawback is that the partial order among
types modelled by finitary retracts (and also closures) doesn't seem to have any
useful function. In particular, it doesn't lend itself to the definition of
“representation relations’, see [Reynolds 1974], that would help prove Reynolds'
representation theorem. The present version of the model has more polymorphic”
functions than would satisfy such a theorem.

Other language features which have yet to be worked out in this kind of a
language are coercions among types, inheritance of defined types, overloading

of operators, and type deducing.
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Adppendix
This appendix contains the proofs of all the material of Sections III and
IV, including a statement of definitions and of supporting lemmas omitted from
the text of the paper. Host of the proofs are taken from [Scott 1980]. However,
although the main ideas are from Scott, the amount of detail and wording may be
differernt in this presentation. Therefore, the author takes full responsibility

for any errors or omissions.

Proofs for Section III

Definition: An element eeD is finite iff for any subset XcD, if esuX then there
exists a finite set XfcX such that esuXf.

Lotation: The set of finite elements of D is denoted by E.

Definition; A subset XcD is consistent iff every finite subset has an ub in D.

Definition: A subset XcD is directed iff every finite subset has an ub in X, (or
equivalently, if X is nonempty and every X,ye X has an ub in X).

3.1 Lemma: If e is a finite element of a poset Dand X D is a directed set, then
if e £ UX, 3#x €X such that e S x.

Proof: If e £ uX, then there is a finite set Xf € X such that e s uXf. But if X
is directed, UXf is an element of X. [J

Defipition: A nonempty poset D is a finitary domain iff
i) every consistent subset has a lub and
ii) every element is the lub of some finite elements.

As an a2lternative to the first condition, we have:

3.2 Proposition: Every consistent subset of a poset D has a lub iff
ia) every directed subset has a lub and
ib) every bounded subset has a lub.

Proof:

(=>) Directed subsets and bounded subsets are consistent.
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(<=) Let X be a consistent subset of D. Show UX exists in D. Every finite subset
of X is bounded, so it has a lub. Consider the union of X with the lub's of
finite subsets of X. This is a directed set, so it has a lub, which is also
an ub of X. Let z be this ub of X. Suppose y is another ub of X and y s z.
But if y is an ub of X, then y 2 the lub of every finite subset of X (and y 2
every element of X). So y is also an ub of the union of X with the lub's of
all finite subsets of X, so that y 2z, the lub of this set. Therefore z is
also the lub of X.

3.3 Proposition: A lub of a finite set of finite elements in a finitary domain D
is also finite.

Proof: Let X be a finite set of finite elements such that uX exists. To show that
uX is a finite element, we assume that there is some set Y € D such that uX
£ UY. We must show that there exists a finite set Yf € Y such that uX <
uYf.

If uX £ uY, then for all x in X, x £ UY. The elements of X gre finite, so
for each x, } a finite set Yx & Y such that x € uYx.

Let Yf be the union of all the Yx's. This set is finite and is containecd in
Y. uYf exists since Yf is a bounded set. And, ¥xeX, x £ UYf, so UX £ uY{f,

L

Notation: From now on, D and D' will denote finitary domains, unless otherwise
stated,
Definitiop: A continuous function from D to D' is a function f such that
for all directed sets ScD, f(uS)=uf(S).
3.4 Proposition: A function f from D to D' is continuous iff
Ve' € E', x € D: e'S f(x) iff 3e€cE. e < x and e' £ f(e).
Proof: Note that f continuous implies f monotone. (Since x € y implies that

{x,y} is a directed set.)
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(=>) Assume that ¥ directed sets Sc D, £(uS) = Uf(S). Let e'€E, xeD:
a.(=>) Assume e' < f(x). Show }e€eE. e < x and e' < f(e).
Now D is finitary, so x = U{e € Ele € x}. f is continuous and the set
{eeEle<x} is directed, so f(x) = u{f(e)le€E and e < x}. Then since e' is
finite in D' and e' £ u{f(e)lecE and e<x} then e' < f(e) for some e such
that es<x.
b.(<=) Assume Je<T. ¢<x and e'<f(e). Show e'<f(x).
f is monotone so esx implies f(e) £ £(x). So e'<f(e)<f(x).

(<=) Assume that V¥e'eE', xeD, e'sf(x) iff 3Je€E. e<x and e'<f(e). Show f is
continuous.
a. Show f is monotonic.
Let y,2eD be such that y<z. Now D' is finitary (algebraic) so f(y) =
Uf{e'eE'|e'sf(y)} and f(z) = ufe'eE'le'sf(z)}. To show f(y)<f(z), we
show {e'€E'|e'sf(y)} c {e'€E'je'$f(z)}. So we must show that Ve'eE', if
e'<sf(y), thene's £(z).
So let e' € E' be such that e' < £(y). Then there is an e in E such that
e<y and e'sf(e). Lowe € y < z, s0 we know that }e€E., e £ z and e' < f(e).
Ther we can use our original assunption to concluce that e' < f(z).
b. To show f is continuous, let ScD be a directed set anc show f(uS) <
uf(S). liow D is algebraic, so f(uS) = ufe'eE'le'sf(uS)}. To show
U{e'eE'"le'<€£f(usS)} < uf(S), show that every element e' in the first set
approximates some element of the second set, f(S). Let e' € E' be such
that e' € f(US). Now Je€E. esu$ and e'<f(e), by our original assunption.
Now e is finite and approximates the lub of a directed set, so } xeS such
that esx. How we know that 3e€E. e<x and e'sf(e), so we can conclude that

e'<sf(x), for some x€S. U

3.5 Proposition: For any set of functions F ¢ D+D', whernever, ¥xeD, u{f(x)[feF}
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u{f(x)IifeF}, ¥xeD.
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defined by UF(x) =

Proof: Let g be the function such that ¥ xeD, g(x) = u{f(x)|{feF}. If g exists in

D+D', it is already continuous. Therefore, we must sho

of F.

w that g is the lub

1. g is an ub of F, since ¥feF, f < g, (since ¥xeD, f(x)sg(x)).

2, Suppose there is another ub of F, say h, and h £ g.

But if h is an ut of

F, ¥feF, ¥xeD, f(x) < h(x). But then ¥xeD, U{f(x)IfeF} < h(x). So g is

the lub of F. [

In order to show that D»D' is a finitary domain whenever D and D' are, we

introduce “step functions whose finite lub's will be the
D+D', whenever they exist.
Definition: A step function [e,e']:D+D' is defined by:
¥xeD, [e,e'l(x) =e' if esx
=1' otherwise.
This is a continuous function with 2 two-point image in D'.
3.6 Lemma: Let f be 2 continuous function from D to D', Then
(1) [ese'l = fiffe' < f(e)
(2) £f=u{lese'lle'sf(e)}
and (3) The [e,e'] are all finite in D»D'.
Proof:
(1)(=>) Let[ese'] < f. low [ese'l(e) = e' by the definition of
Ther, since [e,e'](e) < f(e), e' < f(e).
(<=) Let e'<f(e). Let xeD. Show [e,e'](x)sf(x).
Either esx and [e,e'](x) = e' < f(e) £ £(x) or
efx and [e,e'J(x)=1" < f(x).
(2) a. Thet U{le,e'lle'<f(e)} < f is obvious from part (1).

b. Show that f £ v{[e,e'lle'sf(e)l}.

finite elements of

a step function.
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Since D' is finitary, VxeD, f(x) = u{e'eE'|e'sf(x)}. By lemma 3.4, we
then have f(x) = u{e'€E'|3ecE. e<x and e'<f(e)}. Then for each e' in this
set (i.e. }ecE. e<x and e'<f(e)), }eeE such that [e,e'](x) = e'.
So {e'e€E'l3ecE. e<x and e'sf(e)} c {le,e'l(x)le'<f(e)}. Then f <
u{le,e'Jle'sf(e)l.
(3) Ssuppose that [e,e'"]SUF for some set FED+D'.
By part (1), e's uF(e) = u{f(e)lfeF}, by the definition of UF. Now e' is
finite in D', so there is some finite set Ff ¢ F such that e' <
vi{f(e)lfeFf}. Now Ff is a bounded set, so its lub exists, and e' <
uFf(e). Then by part (1), [e,e'] =« UFf, so that [e,e'] is finite in D»D'.
Parts (2) and (3) of this lemma show that the step functions are sufficient to
establish the algebraic nature of D»D'. 1In addition, we can see that, since
finite lub's of finite elements are finite,

E+E' = {[el,el'Ju...u[len,en'])the lub exists for all el,...,eneE and for all

el's...,en'eE'}.

3,7 Theorew: If D and D' are finitary domains, then D+D' is also.

Proof

(1) Let F ¢ D+D' be a consistent set of functions.
1f UF does exist, then ¥xeD, UF(x) will be u{f(x)|feF}. Now consider any
finite subset of {f(x)|feF}, say {f(x)|feCG}, where G is a finite subset of
F. But an ub of G exists since F is consistent in D=»D', so an ub of
{f(x)|f{eG} exists and {f(x)|feF} is consistent in D'. Now consistert sets
in D' have lubs, so u{f(x)|feF} exists in D' for all xeD, so UF exists in
D»D'. L

(i1) That every functions f is the lub of finite elements is shown by lemma 3.6,
part (2). L

Definition: Categorical product
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For every pair of objects D and D', there is an object DxD' and morphisms
p:DxD'+D and p':DxD'+D' such that for any object C and morphisms f:C+D
and f':C+D', } a unique morphism <f,f'> such that the following diagram

commutes:

<f,f'>

D Se— DxD' - D'
P p'

low in our case, we can define DxD' to be the usual pairs of elements:

Definition: DxD'={<x,x'>|xeD,x'eD'}, where <x,x'><<y,y'> iff x<x' and y<y'.

3.8 Lemma: Let Z € DxD', Let X = {x]3Ix'.<x,x">€2} and X' = {x"[3Ix.<x,x"'>€Z}.
Then
(1) <z,2z'>=uZ iff z = uX and z' = uX'.
(2) 2 is a consistent (directed) set iff X and X' are consistert
(directed) sets.

Proof: (1) This is obvious from the definition of < in DxD',

(2) a. Let Z be a consistent set.

Let Xf be a finite subset of X and x' be an element of X'. Consider the set
{<x,x'>eZ|xeXf}. This set is a finite subset of Z and Z is ccnsistent in
DxD', so it has an ub, say <z,2z'>, Then ¥xeXf, x £ z, so z is an ub of Xf,
so X is consistent in D.
A sinmilar argument shows that X' is consistent in D',

b. Let X and X' be consistent sets.
Let Zf be a finite subset of Z. Let Xf = {x]3¥x'.<x,x"'">€¢Zf}., This set is a
finite subset of X, which is consistent in D, so it has an ub, say z. Now
let Xf' = {x'|3x.<x,x">eZf}. By similar rezsoning, it has an ub in D', say
z'. Then <z,2'> is an ub of 2f, so Z is consistent in DxD',

The argument for directed sets is similar. [
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3.9 Proposition: If D and D' are finitary domains, then so is DxD', where the
set of finite elenents is EXE"',

RProof:

A. The elements of ExE' are finite elements in DxD',
Let <e,e'>¢ExE'. Suppose <e,e'> < UZ = <uX,uX'>, for some set Z £ DxD',
Then esuX, e'SuX' and e,e' are finite in D and D', so there exist finite
sets Xf € X and Xf' ¢ X' such that e £ UXf and e' < uXf'. But then
{<x.x">|xeXf, x'eXf'} is a finite subset of Z and its lub is <UXf,uXf'>
and <e,e'> < <UXf,UXf'>. [

B. Every element of DxD' is the lub of finite elements.
Let <x,x'>eDxD', DNow D and D' are finitary, so x=u{ee¢E|le<x}and
x'=uf{e'€E'[e'sx'}.

Ther <x,x'>=u{<e,e'>lesx,e'sx'}, U

C. That all consistent sets have lubs is obvious from lemmza 3.8.

3.10 Theorem; Let <x,x'> € DxD', Define p{<x,x'>)=x and p'(<x,x'>)=x'. If C is
any other finitary domain, and f:C+D and f':C+D' are continuous
functions, define ¥xeC, <f,f'>(x)=<f(x),f'(x)>. Then DxD' is the
categorical preduct.

Proof:

A. That p anc p' are continuous is immediate from lemma 3.8,

BD. Show that <f,f'> is continuous.

Let X be a directed set in C. Then <f,f'>(uX)=<f(uX), £'(uX)>
=<y f(X),uf(X)'>, f&f' are continucus.

u<f(X),f'(X)>, Lerma 3.8.

u<f,£'>(X).

tl

C. Show that the diagramn comnutes:

Show f(x)=pe (<f,f'>) (x) (and similarly for f',p').
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p(<f,£'>(x)) = p(<f(x),f'(x)>) = £(x). L[
D. Show that <f,f'> is unique:
From the calculations in part C., we can see thcot the first component of
<f,£'>(x) must be f(x), and the second must be f'(x), so that <f,f'> is
uriique. [
Definition: A category is cartesian closed iff it has finite products and for
every pair of objects D and D', there is an object D=>D' and a morphism
ap:(D=>D')xD+D' such that for every object C and morphism f:CxD+D', } a unique
morphism h:C+>(D=>D") such that the following diagram commutes:

hxI
CxD —>» (D=>D"')xD

f

Dl

The morphism h 1s wusuzlly defined as ab(f) for a furctionm

ab:(CxD+D')+(C>(D=>D")).

3.11 Theorem: Let C, D, and D' be finitary domains.
Let £ € D=>D" and x € D. Define ap(<f,x>) = f(x).
Let f € CxD»D', xeC, and yeD. Define ab(f)(x)(y) = £(<x,y>).
Then the finitary comains and their continuous functions form a cartesion
closed category.

Proof:

1. Ve have zlready shown that all finite products exist.

2. Show that ap is z continuous function. Let Z £ (D=>D')xD be a directec set.
Then

ap(uz) = ap(u{<f,a>|<f,a>€2}), where £eD=>D"' and a€D,

ap(<uf{fl<t,a>ez}, uf{a'l<f',a'>€Z}>), lub's distribute over products,

ulf|<f,a>ez}(uf{a'l<f',a'>eZ}), by the definition of ap,

u{f(u{a'l<f',a'>eZ})|<f,a>€Z}), by the def. of lub's of functions,
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v{uv{f(a')|<f',a'>eZ} |<f,a>€Z}, since each f is continuous,

u{f(a')|<f,a>€Z and <f',a'>eZ}.

Now the set {f(a)l<f,a>€Z} is contained in the last set above, so
uf{f(a')|<f,a>eZ and <f',a'>eZ} 2 v{f(a)|<f,a>eZ}. On the other hand,
Z 1s directed so that for all <f,a> in Z and <f',a'> in Z, there is an
element <f ,a > in Z that is an ub of <f,a> and <f',a'>. Application
is monotonic, so u{f(a')l|<f,a>eZ and <f',a'>eZ} < u{f(a)|<f,a>eZ}.

Then the last equation above is

ui{f(a)l<f,a>e2}

u{ap(<f,a>l<f,a>ez}. U

3. Show that if f € CxD-+D' is continuous, then ab(f) is continuous. (This shows
that h is a morphism in the category.)
Let XcC be 2 directed set. Let y € D. Then
ab(f)(uX)(y) = f(<uX,y>)

= f(u{<x,y>|x€X}), since X is not empty,

Uu{f(<x,y>)IxeX}, since £ is continuous,

u{ab(f)(x)(y)IxeX}

ufab(f)(x)IxeX}(y). L

4, Show that if f € CxD+D' is continucus, then for all x in C, ab(f)(x) is
continuous. (This shows that h(x) is a morphism in D=>D'.)
Let Ye D be a directed set. Then

ab(f)(x)(uY) = £(<x,uY>)

f(u{<x,y>|lyeY}), since Y is not eripty,

u{f(<x,y>)lyeY}, since f is continuous,

viab(£)(x)(y)lyeY}. L

5. Show that the diagram commutes.
Let <x,y> € CxD. Show that f(<x,y>) = ap((hxI)(<x,y>)):

ap((nxI)(<x,y>)) = ap((ab(£)xI)(<x,y>)
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ap(<ab(f)(x),y>)

ab(f)(x)(y)

f(<x,y>). L
6. The above equations show that h is the unique function that makes the diagram

commute.
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Proofs for Section IV

Definition: For finitary domains D and D', D is a retract of D' iff there exist
continuous functions i:D>D' and j:D'+D such that j°i=I on D (the identity
function on D).

Defipition: A retra-~iion on a finitary domain D is a continuous function r:D+D

such that rer=r.

4.1 Lemma: r(D) = Fix(r), where Fix(r) = {xeD|r(x)=x}.

Proof: If x € Fix(r), then obviously x is in the image of r.
I1f x € r(D), then there is some yeD such that r(y) = x. Then r(x) = r(r(y))
=r(y) =x. L

4,2 Proposition: If the image of a retractionr on D is a finitary domain, then it
is a retract of D.

Proof: Consider the continuous functions i:r(D)+D, where ¥xer(D), i(x)=x, and
r':D>r(D), where r'=r[r(D). Then for all xer(D), (ier')(x) = i(x'(x)) =
r'(x) =r(x) =x. U

4,3 Lenma; r(D) has lub's of all consistent subsets. Furthermore, r(D) is
directec complete, i.e. if X is a directed set, Xcr(D), then uX in r(D) =
UX in D,

Proof:

i) Show that r(D) has lub's of all directed sets and is directed complete.

Let Xcr(D) be & directed set. Show that uX in D is an element of r(D) by

showing r(uX)=uX,

r(uX)=u{r(x)|xeX}, since r is continuous,

u{xlxeX}, since Xcr(D) implies r(x)=x, ¥xeX.
= uX. L
ii) Show that r(D) has lub's of all bounded sets.

Let Xcr(D) be a bounded set. D is finitary, so UX exists in D. Let y =
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r(uX), which is an element of r(D), and ¥xeX, x = r(x) € y, soy is an ub of
X in r(D). Suppose there is some other ub of ¥ in r(D), say z. Then ¥xeX,
x<z, Then z 1s also an ub of X in D, where UX is least. Since r is
monotonic, r(uX) < r(z). Theny = r(uX) and z = r(2), so y € z and nust be

the lub of X. [

Definition: A retraction of a finitary domain D is a finite retractiop iff it is
a finite element of D»D.
Note that & finite retraction also must be finitary, since the image of a finite

function is always finite.

Definition: A continuous function f is a preretraction iff f<fof.

4.4 Lenma:
a, If f is a finite preretraction, then the least retractiorn that it
approximates, denoted Vf, is also finite.
b. The finite retractions appromimating a given retraction form a directed set.
Proof: Let D be an arbitrary finitary domain.
a. Let f:D-D be a finite preretraction, 1i.e. f<f*zfof. Then by monotonicity,
TS Al S LIS 4 S
Does this sequence go on forever? Recall that f=[el,el']u...ulen,en'] for
sore elsesaseneD, el',...,en'eD', and that since f is finite all the lub's
of the ei's exist., Let FcD be the finite poset generated as all lub's of
{el'yecepen'}l. (F is finitary since it is finite in size and all lub's
exist.) Let j:D+D be such that ¥xeD, j(x)=u{eeFle<x}. Now j is a finitary
retraction of D since j(D)=F. Now jef=f since j is a retraction and
f(D)cj(D). Now (fej) is a pretraction of F:
Let eeF. f(j(e)) < £(£(j(e))), since f is a preretraction on D.
Ther £(j(e)) = £(3(£(j(e))), since f=jof.

Also, foj < f&°j < f3°j €.essin F*F. Now F»F is finite in size, since F
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is, so this sequence cannot strictly increase forever. Let n be first

integer such that £"oj=f""'oj. But then fhojof = f'“"°j°f. S0

fﬂfl =

£"%(using jof=f). Similarly, £"™3= £"*} ..., and finally £™ = f™of ™,
So ™'is a retraction on D.
Now let r be any retraction such that f<r. Then V¥m, f"sr, (f*sr?-=r,
etc.). So £™'is the least retraction containing f. We will henceforth
denote 1t by Vf. Furthermore, Vf is finite since the composition of
finite functions is finite.

b. Let r:D+D be any retraction. Let f and g be finite retractions such that f<r
and gsr. Now fug exists since {f,g} is bounded by r, and fugs<r and fug is
finite. Then f = fof < (fug)e(fug) and g = gog < (fug)e(fug), so fug <
(fug)e(fug). Thus fug is a preretraction, and by part 2 there is a least
finite retraction V(fug) such that fug < V(fug). So Vfug <€ r. Thus any
two finite retractions approximating r have an ub approximating r, so that
the set of finite retractions approximating r is directed. U

4,5 Theorem: Let r: D+D be a retraction. Then the following are equivalent:

i) r is finitary.
ii) r(x)=u{r(e)leeE, esr(x) and esr(e)}.
(Note that this lub is the same in r(D) as in D since r(D)
is directed complete.)
11i) r is the lub of some finite retractions.

Proof: In this proof, we will write U[D] and u[r(D)] to distinguish the lub's in
D and r(D), and E[D] and E[r(D)] to distinguish their finite elements.

(i=>ii) Assume r is finitary.

Lemma: Let X={r(e)le<r(e), ecE[D]}. Show X=E[r(D)], the finite elements
of r(D).
a. Let deE[r(D)]. D is finitary so d = u[D]{e€E[D]|e<d}. Thend = r(d) =

ulr(D)J{r(e)le<d,eeE[D]}, since r is continuous, r(D) is directed
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complete, and {eeE[D]lesd} is a directed set. Now d is finite in
r(D) and and d approximates the lub of a directed set, so there is an
e€E[D] such that ds<r(e). But d is also equal to the lub of the set,
so r(e)sd, thus there is an eeD such that d=r(e). Now esd so
esr(e), so d is in the set X,

b. Let r(e) be such that esr(e) and e€eE[D], i.e. r(e)eX. Show
r{e)eE[r(D)]. 1Let S be any set contained in r(D) such that
r(e)s<ulr(D)]S. We must show that there is a finite set Sf € S such
that r(e) < ulr(D))sf. Now u[DJ]S exists since u[r(D)]S is an ub on
$§ in D, and bounded sets have lub's. Also we must have
esr(e)sul[Dls<ulr(D)]S, since if not r(e)sulDIS, then r(e) would be
a smaller ub on S in r(D). Now e is finite in D and esu[DJ]S so there

is a finite set Sf € S such that e € u[D]Sf. Then r(e) € r(ul[DJSE),

by monotonicity. But U[d]Sf < ulr(D)JSf and r(ulr(D)Isf)

ulr(D)Jsf, so we have r(e) < ulr(D)Isf. [

Now if r is finitary, ¥xeD, r(x)er(D) implies r(x) = u{d|ld<r(x) and deE[r(D)]}
uf{r(e)leeE[D], esr(x) and e<r(e)}, by the above lemma. [

(i1=>1) Assume ¥xeD, r(x) = u{r(e)leeE[D], esr(x) and esr(e)}. Show r is
finitary. For all retractions, r(D) has lub's of consistent sets. Now
every element in r(D) is r(x) for some xeD. We showed in part b. of the
lemma above that the elements r(e) such that es<r(e) and eeE[D] are all
finite in r(D), so the above equation shows that every element of r(D) is
the lub of some finite elements in r(D).

(i1=>ii1) Assume ¥xeD, r(x) = u{r(e)lecE[D], esr(x) and esr(e)}.

Show r is the lub of finite retractions.

(*) For any continuous function: r = ul[D»D]{[e,e'lle'sr(e)}, since DD is

finitary. To show that r is the lub of some finite retractions, we just

show that for every finite function in {[e,e']]e'sr(e)} there is a finite
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retraction f such that [e,e']sf<r. So let [e,e'] be any finite function
such that e'<r(e) and construct £ as follows:
Consider equation ii for r(e) = u{r(e)ie€E, esr(e) and esr(g)}. Now
e'sr(e), which is the lub of a directed set in D and e' is a finite element
in D, so for some r(e”) in the set, e'<r(e”), and then also e"sr(e) and
e"sr(e”) by definition of the set. Now e' and e” have an ub r(e), so they
have a lub: e'ue”, and we have e'ue'sr(e'ue”). Then by equation *:
[etue”, e'ue”]lsr and also [e,e'ue’s]sr, since e'ue <r(e). Let
f=[e,e'ue”Jule'ue se'ue ). This always exists since both are bounded by
r, and then f<r. Now f is a finite function, and we need to show that f is
a retraction.
Now f is the function:
Ax.if e<x but e'ue £x thene'u e”
else if e£x but e'ue <x then e'ue”
else if e U (e'ue™ )Sx then e'ue  else L,
which is just: Ax.if eSx or e'ue '<x then e'ue” else L.
Now if e or e'ue” is L, then f is the constant function e'ue”. Otherwise,
f has a two point image with f(1)=1 and f(e'ue”)=e'ue”. In either case, f
is a retraction. [J
(i11i=>ii) Assume r is the lub of finite retractions.
Then we can write r=U{feE-+E|fsr and f=fof}., By lemnz 4.4, this is a
directed set, so
vxeD: r(x) = u{f(x)|fsr and f=fef, feE+E}
= r(r(x)) = u{r(£(x))|f<r and f=fof, feE+*E}, since r is continuous.
Since each f is finite in D»D, each f(x) is finite in D. Now each
f(x)<r(x) and f(x) s r(£f(x)), so each f(x) is a finite element in equation

ii. [
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Definition: Let p:(D+D)~(D+D) be defined as the function such that ¥geD+D:

p(g)=u{Vf|feE+E.f<g and fsfef}.

4,6 Lemma: If r € FRet (D), then p(r)=r.

Proof; If r is finitary, then r=v{feE+E|f<r and f=fof} by the theorem 4.5, part
iii. Now show {feE+E|f<r and f=fof} = {Vf|f<r and fsfef, feE+L}. Let {

be in the 1hs set. Put for a finite retraction £=Vf so f is in the rhs set.

Let Vf be from the rhs set. Now Vf is the least retraction that f approximates

and is finite, so Vf 1s in the lhs set.

Sor = u{Vf|f<r and f<fef, feE+E} =p(r). [

4.7 Theorem: FRet(D) is a finitary domain with the finite retractions as its

finite elements, and FRet (D) is a retract of D+D by the functionp.
Proof:

a. Show that ¢ 1s a retraction.,
Now p 1s obviusly continous. Let reD-D,
p(p(r)) =p(u{vf] f<r and fsfef, feE+E})

=u{p(Vf)|f<r and f<fef, feE+L}, since ¢ is continuous.,

But Vi 1s finite anc thus finitary, so this equation is

"t

U{VE[f<r anc fsfef, feE+E}, by lemma 4.6

p(r).

b. Show that Flet (D)=¢ (D+D).

1. FRet (D)e p(D»D), vy lemma 4.6 since reFRet (D)=>p (r)=r.

2. Show that p{(T+D)cFRet(D). Let reD—+D. Show p(r) is a finitary

retraction on D.
i. Show that ¢(r) is a retraction. Since {Vf|fsr and fsfef, feE+E} is a

directed set and © is continuous: p(r)ep(r)=v{vVfevi|f<r and

f<fof, feE~+E}., Then each VE=VfoeVf, sop(r)ep(r)=p(r). L
ii, Each Vf is a finite retraction, so by theorem 4.5, p(r) is the lut of
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some finite retractions. Therefore p(r) is finitary.
c. Show that FRet(D) is finitary, i.e. p is a fipitary retraction on D»D.

1. Fret(D) has lub's of consistent sets since it is the range of a

retraction.

2. Show that every element of FRet(D)(=p(D+D)) is the lub of finite
elements of FRet (D).

i, Show that if f 1s a finitary retraction that is a finite element of
D+D, then it is also a finite element of FRet (D). Let Fc FRet (D) be
a set of functions such that f < U[FRet(D)]JF. Then u[FRet(D)F =
U[D+DJF, since FRet(D) is the codomain of a retraction, p. Then f
is finite in DD so it is also finite in FRet (D). L

ii. Let reFRet(D). Then r is a finitary retract on D, so it is the lub of
finite retractions by theorem 4.5. But these finite retractions are

finite elements of FRet (D). [
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