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AbstractThe availability of large scale multitasked parallel architectures introduces the following pro-cessor assignment problem: we are given a long sequence of data sets, each of which is to undergoprocessing by a collection of tasks whose inter-task data dependencies form a series-parallel partialorder. Each individual task is potentially parallelizable, with a known experimentally determinedexecution signature. Recognizing that data sets can be pipelined through the task structure, theproblem is to �nd a \good" assignment of processors to tasks. Two objectives interest us: min-imal response time per data set given a throughput requirement, and maximal throughput givena response time requirement. Our approach is to decompose a series-parallel task system into itsessential \serial" and \parallel" components; our problem admits the independent solution andrecomposition of each such component. We provide algorithms for the series analysis, and use analgorithm due to Krishnamurti and Ma for the parallel analysis. For a p processor system and aseries-parallel precedence graph with n constituent tasks, we give a O(np2) algorithm that �nds theoptimal assignment (over a broad class of assignments) for the response time optimization problem;we �nd the assignment optimizing the constrained throughput in O(np2 log p) time. Our techniquesare applied to a task system in computer vision.



1 IntroductionIn recent years much research has been devoted to the problem of mapping large computations ontoa system of parallel processors. Various aspects of the general problem have been studied, includingdi�erent parallel architectures, task structures, communication issues and load balancing [8, 13].Typically, experimentally observed performance (e.g., speedup or response time) is tabulated asa function of the number of processors employed, a function sometimes known as the executionsignature [10], or response time function. In this paper we use such functions to determine thenumber of processors to be allocated to each of several tasks when the tasks are part of a pipelinedcomputation. This problem is natural, given the growing availability of multitasked parallel ar-chitectures, such as PASM [29], the NCube system [14], and Intel's iPSC system [5], in which itis possible to map tasks to processors and allow parallel execution of multiple tasks in di�erentlogical partitions.We consider the problem of optimizing the performance of a complex computation applied toeach member of a sequence of data sets. This type of problem arises, for instance, in imagingsystems, where each image frame is analyzed by a sequence of elemental tasks, e.g., fast Fouriertransform or convolution. Other applications include network software, where packets are pipelinedthrough well-de�ned functions such as checksum computations, address decoding and framing.Given the data dependencies between the computation's multiple tasks, we may exploit parallelismboth by pipelining data sets through the task structure, and by applying multiple processors toindividual tasks.There is a fundamental tradeo� between assigning processors to maximize the overall through-put (measured as data sets per unit time), and assigning processors to minimize a single data set'sresponse time. We manage the tradeo� by maximizing one aspect of performance subject to theconstraint that a certain level of performance must be achieved in the other aspect. Under theassumptions that each of n tasks is statically assigned a subset of dedicated processors and thatan individual task's response time function completely characterizes performance (even when usingshared resources such as the communication network) we show that p processors can be assignedto a series-parallel task structure in O(np2) time so as to minimize response time while achievinga given throughput. We are also able to �nd the assignment that maximizes throughput whileachieving a given minimal response time, in O(np2 log p) time.



The assumption of a static assignment arises naturally in real-time applications, where the over-head of swapping executable task code in and out of a processor's memory threatens performance.Without this assumption, the optimization problem becomes much more di�cult.Our method involves decomposing a series-parallel graph into series and parallel componentsusing standard methods; we present algorithms for analyzing series components and use Krishna-murthy and Ma's algorithm [20] to analyze the parallel components.We assume that costs of communication between tasks are completely captured in the givenresponse-time functions. Thus, our techniques can be expected to work well on compute-boundtask systems; our example application is representative of this class, having a computation tocommunication ratio of 100. Our techniques may not be applicable when communication coststhat depend on the particular sets of processors assigned to a task (e.g., contention) contributesigni�cantly to overall performance.A large literature exists on the topic of mapping workload to processors, see, for instance[1, 3, 4, 6, 15, 17, 18, 23, 24, 26, 27, 31, 33]. A new problem has recently emerged, that ofscheduling of tasks on multitasked parallel architectures where each task can be assigned a set ofprocessors. Some formulations consider scheduling policies with the goal of achieving good averageresponse time and good throughput, given an arrival stream of di�erent, independent paralleljobs, e.g., [28]. Another common objective, exempli�ed in [2, 11, 20, 25], is to �nd a schedule ofprocessor assignments that minimizes completion time of a single job executed once. The problemwe consider is di�erent from these speci�cally because we have a parallel job which is to be repeatedlyexecuted. We consider issues arising from our need to pipeline the repeated executions to get goodthroughput, as well as apply parallel processing to the constituent tasks to get good per-executionresponse time. Yet another distinguishing characteristic of our problem is an underlying assumptionthat a processor is statically assigned to one task, with the implication that every task is alwaysassigned at least one processor.Two previously studied problems are close to our formulation. The assignment of processorsto a set of independent tasks is considered in [20]. The single objective is the minimization of themakespan, which minimizes response time if the tasks are considered to be part of a single parallelcomputation, or maximizes throughput if the tasks are considered to form a pipeline. The problemof assigning processors to independent chains of modules is considered in [7]; this assignment2



minimizes the response time if the component tasks are considered to be parallel, and maximizesthe throughput if the component chains are considered to form pipelines. Pipeline computations arealso studied in [19, 30]. In [30], heuristics are given for scheduling planar acyclic task structures andin [19], a methodology is presented for analyzing pipeline computations using Petri nets togetherwith techniques for partitioning computations. We have not discovered treatments that addressoptimal processor assignment for general pipeline computations, although our solution approach(dynamic programming) is related to those in [3] and [33].This paper is organized as follows. Section x2 introduces notation, and formalizes the response-time problem and the throughput problem. Section x3 presents our algorithms for series systems,and x4 shows how to optimally assign processors to series-parallel systems. Section x5 shows howthe problem of maximizing throughput subject to a response-time constraint can be solved usingsolutions to the response-time problem. Section x6 discusses the application of our techniques toan actual problem, and Section x7 summarizes this work.2 Problem De�nitionWe consider a set of tasks, t0; t1; : : : ; tn+1, that comprise a computation to be executed using up top identical processors, on each of a long stream of data sets. Every task is applied to every dataset. We assume the tasks have a series-parallel precedence relation constraining the order in whichwe may apply tasks to a given data set; tasks unrelated in the partial order are assumed to processduplicated copies (or, di�erent elements) of a given data set. Under these assumptions we maypipeline the computation, so that di�erent tasks are concurrently applied to di�erent data sets.Each task is potentially parallelizable; for each ti we let fi(n) be the execution time of ti using nidentical processors. fi is called a response-time function (also known as an execution signature [10]).We assume that f0 and fn+1 are dummy tasks that serve respectively to identify the initiation andcompletion of the computation; correspondingly we take f0(n) = fn+1(n) = 0 for all n. However,fi(0) = 1 for all i = 1; : : : ; n; these conditions ensure that no processor is ever assigned to t0 ortn+1, and that at least one processor is assigned to every other task.An example of the response time functions for a computation with 5 tasks on up to 8 processorsis shown in Table 1. Each row of the table is a response time function for a particular task. Observe3



Number of processorstasks 1 2 3 4 5 6 7 8t1 29 16 11 9 7 6 4.5 4t2 90 50 20 15 12 10 9 9.5t3 80 43 18 14 11 9 8 8.5t4 20 12 10 9 8 7 6 5t5 15 10 7 5 4 3.5 3 2.5Table 1: Example response time functions. Table gives tasks' execution time (in seconds) as afunction of the number of processors used.that individual functions need not be convex, nor monotonic.We may describe an assignment of numbers of processors to each task by a function A: A(i)gives the number of processors statically and exclusively allocated to ti. A feasible assignment isone where Pni=1A(i) � p, and A(i) > 0 for i = 1; : : : ; n.Given A, ti's execution time is fi(A(i)), and the maximal data set throughput is �(A) =maxiffi(A(i))�1g. The response time for a data set is obtained by computing the length R(A) ofthe longest path through the graph where each ti is a node weighted by fi(A(i)), and the edges arede�ned by the series-parallel precedence relation.Given some throughput constraint � and processor count q, we de�ne T�(q) to be the set of allfeasible assignments A that use no more than q processors, and achieve �(A) � �. The response-time problem is to �nd F�(p) the minimum response time over all feasible assignments in T�(p),that is, the response time for which there is an assignment A for which R(A) is mimimal overall assignments with p or fewer processors that achieve throughput � or greater. This problemarises when data sets must be processed at least as fast as a known rate � to avoid losing data;we wish to minimize the response time among all those assignments that achieve throughput �.Similarly, given response time constraint 
 and processor count q we de�neR
(q) to be the set of allfeasible assignments A using no more than q processors, and achieving R(A) � 
. The throughputproblem is to �nd A 2 R
(p) for which �(A) is maximized. This problem arises in real-time controlapplications, where each data set must be processed within a maximal time frame in order to meet4
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Figure 1: Example of series-parallel task system Tprocessing deadlines. We will focus on solutions to the response time problem �rst and later showhow these may be used to solve the throughput problem.Since a response-time function completely de�nes a task, elemental or composite, we will alsouse the term \task" to refer to compositions of the more elemental tasks ti. Let �i denote such acomposite task and let Fi be its optimal response time function. Our general approach is illustratedthrough an example. Consider the series-parallel task T in Figure 1 with response-time functionsgiven Table 1 (here, t0 and t6 are dummy tasks). We may think of t2 and t3 as forming a parallelsubtask|call it �1. Given the response time functions for t2 and t3, we will construct an optimalresponse time function called F1 for �1, after which we need never explicitly consider t1 or t2separately from each other|F1 completely captures what we need to know about both of them.Next, we view �1 and t1 as a series task, call it �2, and compute the optimal response time functionfor �2. The process of identifying series and parallel subtasks and constructing response-timefunctions for them continues until we are left with a single response time function that describesthe optimal behavior of T . By tracking the processor assignments necessary to achieve the optimalresponse times at each step, we are able to determine the optimal processor allocations for T . Asolution method for parallel tasks has already been given in [20]; we present algorithms for seriestasks.We will assume that every response-time function is monotone nonincreasing, since, as argued5



in [20], any other response-time function can be made decreasing by disregarding those assignmentsof processors that cause higher response times. Also, observe that response time functions mayinclude inherent communication costs due to parallelism, as well as the communication costs that aresu�ered by communicating with predecessor and successor tasks. These assumptions are reasonablewhen the communication bandwidth is su�ciently high for us to ignore e�ects due to contentionbetween pairs of communicating tasks. Our methods may not produce good results when thisassumption does not hold.3 Individual Parallel Tasks and Series TasksThe problem of determining an optimal response-time function for parallel tasks has already es-sentially been solved in the literature [20]. We describe this solution brie
y. Let t1; : : : ; tk be thetasks used to compose a parallel task � . For each ti we know u�(ti)|the minimum number ofprocessors needed so that every elemental task involved in ti has response-time no greater than1=�. We initialize by allocating u�(ti) processors to each ti. If we run out of processors �rst thenno processor allocation can meet the throughput requirement. Otherwise, the initial allocation usesthe fewest possible number of processors that do meet this requirement. We then incrementally addthe remaining processors to tasks in such a way that at each step the response time (the maximumof task response times) is reduced maximally. This algorithm has an O(p log p) time complexity.Series task structures are interesting in themselves because many pipelines are simple linearchains [19]. We �rst describe an algorithm that constructs the optimal response time function F�for a linear task structure T when each function fi(x) is convex in x. While convexity in elementalfunctions is intuitive, nonconvex response-time functions arise from parallel task compositions.Consequently, a di�erent algorithm for series compositions of nonconvex response-time functionswill be developed later.Like the parallel composition algorithm, we �rst assign the minimal number of processors neededto meet the throughput requirement. The mechanism for this is identical. Supposing that this stepdoes not exhaust the processor supply, de�ne xi to be the number of processors currently assignedto ti, initialize xi = u�(ti), and de�ne y = Pni=1 xi to be the total number of processors alreadyallocated. We then set F�(x) = 1 for all x < y to re
ect an inability to meet the throughput6



Number of processorsfunction 1 2 3 4 5 6 7 8f2 (for task t2) 90 50 20 15 12 10 9 9.5f3 (for task t3) 80 43 18 14 11 9 8 8.5F1 (for task �1) 1 90 80 50 43 20 18 15Table 2: Response time function F1 for parallel task �1requirement, and set F�(y) =Pni=1 fi(xi). Next, for each ti, compute d(i; xi) = fi(xi + 1)� fi(xi),the change in response time achieved by allocating one more processor to ti. Build a max-priorityheap [16] where the priority of ti is jd(i; xi)j. Finally, enter a loop where, on each iteration the taskwith highest priority is allocated another processor, its new priority is computed, and the priorityheap is adjusted. We iterate until all available processors have been assigned. Each iteration of theloop allocates the next processor to the task which stands to bene�t most from the allocation. Whenthe individual task response functions are convex, then the response time function F� it greedilyproduces is optimal, since the algorithm above is essentially one due to Fox [12], as reported in [32].Simple inspection reveals that the algorithm has an O(p logn) time complexity. Unlike the similaralgorithm for parallel tasks, correctness here depends on convexity of component task responsetimes.The need to treat nonconvex response-time functions arises from the behavior of composedparallel tasks. Return to our example in Figure 1 and consider the parallel composition �1 ofelemental tasks t2 and t3, with throughput requirement � = 0:01. The response-time function F1 isshown in Table 2. Note that F1 is not convex, even though f2 and f3 are. This nonconvexity is dueto the peculiar nature of the maximum of two functions and cannot be avoided when dealing withparallel task compositions. We show below that nonconvexity can be handled, with an additionalcost in complexity.We begin as before, allocating just enough processors so that the throughput constraint is met.Assuming so, for any j = 1; : : : ; n, we will denote the subchain comprised of t1; : : : ; tj as task Tj ,and compute its optimal response time function, Cj , subject to throughput constraint �. Using the7



principle of optimality[9], we write a recursive de�nition for u�(Tj) and Cj(x) :u�(Tj) = 8><>: u�(t1) if j = 1u�(tj) + u�(Tj�1) otherwiseCj(x) = 8>><>>: f1(x) if j = 1minu�(tj ) � i � x� u�(Tj�1) ffj(i) + Cj�1(x� i)g otherwise.The dynamic programming equation is understood as follows. Suppose we have already com-puted the function Cj�1. This implicitly asserts that we know how to optimally allocate any numbery � p processors to Tj�1. Next, given x processors to distribute between tasks tj and Tj�1, we tryevery combination subject to the throughput constraints: i processors for tj and x � i processorsfor Tj�1. The principle of optimality tells us that the least-cost combination gives us the optimalassignment of x processors to Tj . Since the equation is written as a recursion, the computation willactually build response time tables from `bottom up', starting with task t1 in the �rst part of theequation.This procedure requires O(np2) time. We have been unable to �nd a solution that gives a betterworst-case behavior in all cases. Some of the di�culties one encounters may be appreciated by studyof our previous example. Consider the construction of �2, comprised of the series composition oft1 and �1. As before, let F1 denote the response time function for �1. Table 3 gives the values off1(u)+F1(v) for all 1 � u; v < 8 with u+v � 8. The set of possible sums associated with allocatinga �xed number of processors x lie on an assignment diagonal moving from the lower left (assignx� 1 processors to �1, one to t1) to the upper right (assign one processor to �1, x� 1 to t1) of thetable, illustrated by use of a common typeface on a diagonal. Brute force computation of �2(x)consists of generating all sums on the associated diagonal, and choosing the allocation associatedwith the least sum. In the general case this is equivalent to looking for the minimum of a functionknown to be the sum of a function that decreases in i (e.g. f1(i)) and one that increases (e.g.F1(x � i)). Unlike the case when these functions are known to be convex as well, in general theirsum does not have any special structure we can exploit|the minimum can be achieved anywhere,implying that we have to look for it everywhere. It would seem then that dynamic programmingmay o�er the least-cost solution to the problem.We note in passing that a straightforward optimization may reduce the running time, but does8



f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)29 16 11 9 7 6 4:5F1(1) =1 1 1 1 1 1 1 1F1(2) = 90 119� 106 � 101 99 97 96F1(3) = 80 109 96 91 89 87F1(4) = 50 79� 66 � 61 59F1(5) = 43 72 59 54F1(6) = 20 49� 36 �F1(7) = 18 47Table 3: Sum of response time functions f1 and F1. The minimum value on each assignmentdiagonal is marked by *.not have a better asymptotic complexity. If both functions being summed are convex, then theminimum values on adjacent assignment diagonals must be adjacent in a row or column. Thisfact can considerably accelerate the solution time, since given the minimum on the x-processorassignment diagonal we can �nd the minimum on the (x + 1)-processor diagonal by generatingand comparing only two additional entries (this is a consequence of the greedy algorithm describedearlier). Although we cannot in general assume that both functions are convex, we can view themas being piece-wise convex. Thus, if t1 is convex over [a; b], and �1 is convex over [c; d], then t1+ �1is convex over [a; b] � [c; d] and we can e�ciently �nd minima on assignment diagonals restrictedto this subdomain. Working through the details (which are straightforward), one �nds that thecomplexity of this approach is O(rnp), where r is the maximum number of convex subregionsspanned by any given assignment diagonal. Of course, in the worst case r = O(p), leaving us stillwith an O(np2) algorithm.4 Series-Parallel TasksAlgorithms for the analysis of series and parallel task structures can be used to analyze task-structures whose graphs form series-parallel directed acyclic graphs. We show that the response9
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Figure 2: Binary decomposition treetime function for any such graph (with n nodes) can be computed in O(np2) time. A numberof di�erent but equivalent de�nitions of series-parallel graphs exist. The one we will use is takenfrom [34], in which a series-parallel DAG can be parsed as a binary decomposition tree (BDT) intime proportional to the number of edges. The leaves of such a tree correspond to the DAG nodesthemselves and internal tree nodes describe either parallel (P) or series (S) compositions. Figure 2illustrates the BDT (labeling S and P nodes by task names used in discussion) corresponding tothe task in Figure 1.The structure of a BDT speci�es the precise order in which we should apply our analyses. Theidea is to build up the overall optimal response-time function from the bottom up. Conceptuallywe mark every BDT node as being computed or not, with leaf nodes being the only ones markedinitially. We then enter a loop where each iteration we identify an unmarked BDT node whosechildren are both marked. We apply a series composition or parallel composition to those childrens'response-time functions depending on whether the node is of type S or P, and mark the node. Thealgorithm ends when the root node is marked.In the example, �1's response time function is generated using the parallel algorithm on t2 andt3, the series composition is applied to t1 and �1, (for composite task �2), which is then composed10



via another series composition with t4, creating �3; �nally, t5 is combined via a parallel compositionwith �3 to create the response time function for the overall task structure. At each step one mustrecord the actual number of processors assigned to each task in order to compute the optimalassignment; this is straightforward and needs no discussion.From the above, we see that the cost of determining the optimal assignment from a BDT isO(np2), as every response-time function composition has worst case cost O(p2) and there are n� 1such compositions performed.5 The Throughput ProblemReal time applications often require that the processing of every data set meet a response-timedeadline. At system design time it becomes necessary to assess the maximal throughput possibleunder the constraint. This is our throughput problem. In this section we show how solutions tothe response-time problem can be used to solve this new problem in O(np2 log p) time.Our approach depends on the fact that minimal response times behave monotonically withrespect to the throughput constraint.Lemma 5.1 For any pipeline computation let F�(p) be the minimal possible response time using pprocessors, given throughput constraint � and the assumption of static processor-to-task mapping.Then for every �xed p, F�(p) is a monotone nondecreasing function of �.Proof: Let p be �xed. As before, let u�(ti) be the minimum number of processors required for allelemental tasks comprising ti to meet throughput constraint �. For every ti, u�(ti) is clearlya monotone nondecreasing function of �. Recall that T�(p) is the set of all assignments thatmeet the throughput constraint � using no more than p processors. Whenever �1 < �2, wemust have T�2(p) � T�1(p), because of the monotonicity of each u�(ti). Since F�(p) is theminimum cost among all assignments in T�(p), we have F�2(p) � F�1(p).This result can be viewed as a generalization of Bokhari's graph-based argument for monotonicityof the minimal \sum" cost, given a \bottleneck" cost [4].Suppose for a given pipeline computation we are able to solve for F�(p), given any �. The set ofall possible throughput values is f1=fi(x) j i = 1; : : : ; n;x = 1; : : : ; pg; O(pn log(pn)) time is needed11



to generate and sort them. Given response time constraint 
̂, and tentative throughput �, we maydetermine whether F�(p) � 
̂. Since F�(p) is monotone in �, we use a binary search to identify thegreatest � = �� for which F��(p) � 
̂. The associated processor assignment maximizes throughput(using p processors), subject to response time constraint 
̂. There being O(log p) solutions of theresponse-time problem, the complexity for the throughput problem is O(np2 log p).6 An ApplicationIn this section we report the results of applying our methods to a motion estimation system incomputer vision. Motion estimation is an important problem in which the goal is to characterizethe motion of moving objects in a scene. From a computational point of view, continually generatedimages from a camera must be processed by a number of tasks. A primary goal is to ensure thatthe computational throughput meets the input data rate. Subject to this constraint, we desire thatthe response time be as small as possible. The application itself is described in detail in [8, 21].It should be noted that there are many approaches to solving the motion estimation problem. Weare only interested in an example, and therefore, the following algorithm is not presented as theonly or the best way to perform motion estimation. A comprehensive digest of papers on thetopic of motion understanding can be found in [22]. The following subsection brie
y describes theunderlying computations.6.1 A Motion Estimation SystemOur example problem is a linear pipeline with nine stages, each stage is a task. The data setsinput to the task system are a continuous stream of stereo image pairs of a scene containingthe moving vehicles. The tasks perform well-known vision computations such as 2-D convolution,extracting zero crossings and feature matching, similar to computations in the Image UnderstandingBenchmark [35]. All nine tasks were implemented on a distributed memory machine, the InteliPSC/2 hypercube [5]. We applied the system above to a problem using outdoor images [8]. Therelevant response-time functions are shown in Table 4 for selected processor sizes. Measurementsinclude all overheads, computation time and communication times.
12



Response Times for Individual Tasks (sec.)No. of Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9Proc.1 109.0 6.15 0.32 24.67 109.0 6.15 0.32 129.02 18.202 54.76 3.07 0.16 12.52 54.76 3.07 0.16 67.70 9.154 27.51 1.58 0.081 6.32 27.51 1.58 0.081 34.22 4.588 13.88 0.81 0.042 3.22 13.88 0.81 0.042 17.50 2.3916 7.07 0.40 0.022 1.76 7.07 0.40 0.042 10.30 1.5232 3.78 0.20 0.012 1.01 3.78 0.20 0.012 6.36 1.0164* 2.12 0.11 0.007 0.61 2.12 0.11 0.007 4.13 0.71128* 1.25 0.06 0.004 0.38 1.25 0.06 0.004 2.81 0.52256* 0.77 0.04 0.002 0.26 0.77 0.77 0.04 0.002 0.40Table 4: Completion times for individual tasks on the Intel iPSC/2 of various sizes, in seconds (*indicates extrapolated values)

13



Figure 3: Minimal response time as a function of the throughput constraint6.2 Experimental ResultsWe applied the series task algorithm using Table 4, for a range of possible throughput constraints.As an example of the output generated by the algorithm, Table 5 shows the processor assignmentfor individual tasks for various sizes of the Intel iPSC/2. The last row of the table also showsthe minimum response time, given constraint � = 0:05 frames/second. The response times shownare those predicted by our algorithms. Nevertheless, observed response times using the computedallocations were observed to be in excellent agreement with these �gures|the relative error wasless than 5% in all measurable cases.The processor allocation behavior is intuitive. Tasks t1, t5, and t8 have much larger responsetimes than the others. As increasingly more processors are allocated to the problem, these threetasks receive the lion's share of the additional processors.Figure 3 illustrates the tension between response time and throughput by plotting the minimalresponse time function for the entire pipeline computation, as a function of the throughput con-straint. For any problem there will be a throughput �min achieved when processors are allocatedentirely to minimize response time. The 
at region of the curve lies over throughput constraints� � �min. The response time curve turns up, sometimes dramatically, as the throughput constraintmoves into a region where response time must be traded o� for increased throughput.14



Multiprocessor Size (No. of Procs.)32 64 128 256Task Proc. Time Proc. Time Proc. Time Proc. TimeNo. Asgn. (Sec.) Asgn. (Sec.) Asgn. (Sec.) Asgn. (Sec.)1 8 13.88 16 7.07 32 3.78 64 2.122 1 6.15 2 3.07 8 0.81 16 0.403 1 0.32 1 0.32 1 0.32 2 0.164 2 12.52 6 4.77 8 3.22 16 1.765 8 13.88 16 7.07 32 3.78 64 2.126 1 6.15 2 3.07 6 1.19 12 0.607 1 0.32 1 0.32 1 0.32 2 0.168 8 17.50 16 10.30 32 6.36 64 4.139 2 9.15 4 4.58 8 2.39 16 1.52MRT 79.87 40.57 22.18 12.98Table 5: An example processor allocation for minimizing response time for several sizes of iPSC/2(MRT = Minimum Response Time, Speci�ed Throughput = 0.05 frames/sec., No. of processorsallocated to individual tasks are shown)
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