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The added mass, Basset, and viscous drag coefficients in nondilute bubbly 
liquids undergoing small-amplitude oscilla ory motion 
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The motion of bubbles dispersed in a liquid when a small-amplitude oscillatory motion is 
imposed on the mixture is examined in the limit of small frequency and viscosity. Under these 
conditions, for bubbles with a stress-free surface, the motion can be described in terms of added 
mass and viscous force coefficients. For bubbles contaminated with surface-active impurities, 
the introduction of a further coeflicient to parametrize the Basset force is necessary. These 
coefficients are calculated numerically for random configurations of bubbles by solving the 
appropriate multibubble interaction problem exactly using a method of multipole expansion. 
Results obtained by averaging over several configurations are presented. Comparison of the 
results with those for periodic arrays of bubbles shows that these coefficients are, in general, 
relatively insensitive to the detailed spatial arrangement of the bubbles. On the basis of this 
observation, it is possible to estimate them via simple formulas derived analytically for dilute 
periodic arrays. The effect of surface tension and density of bubbles (or rigid particles in the 
case where the no-slip boundary condition is applicable 1 is also examined and found to be 
rather small. 

I. INTRODUCTION 

Flows involving bubbles dispersed in a liquid are impor- 
tant because they occur in a variety of processes. The rigor- 
ous analysis of such flows is, in general, quite complicated as 
the overall properties of the flow depend on the details of the 
microstructure of the medium (i.e., the size, shape, spatial, 
and velocity distribution of the bubbles) which, in turn, de- 
pend on the nature of flow. In view of the rather complex 
nature of the problem and its dependence on a large number 
of variables, such as the Reynolds number, the Weber 
number, the Froude number, and the volume fraction of the 
disperse phase, a simple theory capable of describing accu- 
rately the behavior of bubbly liquids in a wide variety of 
physical situations may not be possible. It is therefore desira- 
ble to devise suitable numerical simulation techniques that 
can be used to determine how the microstructure of the bub- 
bly liquid evolves in various specific flow situations and how 
it affects the overall behavior of the bubbly liquid. It is hoped 
that by studying a number of different physical situations in 
a rigorous manner, it may be possible to develop a 
framework and a qualitative understanding that could be 
used further for modeling more complex flows. 

We consider here the problem of determining the flow in 
a bubbly liquid produced by a small oscillatory motion im- 
posed on it. Our motivation for studying this problem comes 
from the fact that it is probably the simplest situation in 
which the microstructure of the medium can be determined 
relatively easily as each bubble is simply executing a small- 
amplitude oscillatory motion around its mean position. 
Thus the spatial and size distributions of the bubbles are 
unaffected by the imposed oscillatory flow and the problem 

reduces to that of determining the velocity and deformation 
of-bubbles given their size and spatial distribution. The situa- 
tion is also of great practical significance because of its rele- 
vance to the acoustic properties of bubbly liquids. 

Because of the linearity of the governing equations, in 
the special case of small-amplitude oscillatory motion pro- 
portional to exp(iwt), the mean amplitude of the bubbles’ 
velocity is proportional to the mean amplitude of the mix- 
ture velocity and, therefore, for macroscopically homogen- 
eous and isotropic bubbly liquids, we write 

(9) =A,(G,>, (1) 
where (G) and (G,,, ) denote spatial (or ensemble) averages 
of the amplitudes of bubble and mixture velocities, respec- 
tively, and R, is a constant of proportionality that depends 
on the frequency w of the oscillations, the volume fraction fi 
of the bubbles, the nondimensional surface tension u *, vis- 
cosity ,u*, and density p* defined by 

u (T*=-------, p*=.+.-- 
pR 3fTd2 

pRp2m, p* 2”. 
P 

Here, R is the radius of the bubbles, all taken to be equal, and 
p is the density of the liquid. 

We shall restrict our attention to the case where the 
frequency of oscillation w is much smaller than the natural 
frequency w0 of the bubbles, approximately given by 

io(: = 3yPJpR ‘, (3) 

where y is the ratio of the constant pressure and constant 
volume specific heats of the gas and P, is the equilibrium 
pressure in the bubbles. When w 4 wO, the amplitude of the 
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voluine: pulsations tends to zero faster than that of the trans- 
latory displacement and shape deformation so that, inex- 
amining the interactions among the bubbles, we may regard 
each bubble to preserve its volume as it undergoes displace- 
ment and shape oscillations. * 

The case of small volume fraction p of gas bubbles free 
of surface-active contaminants has been analyzed recently 
by Sangani* using the method of pairwise interactions. His 
result can be expressed as 

A, = A, + PA”1 + c3.B ‘1. (4) 
The coefficient A, is independent of a * and, forp* = 0, it is 
given by 

A,=3 l- 
( 1 + 3a f 18&I’ + 

$) = ( - &*)‘/2. (5) 
We note that the nondimensional viscosity? which is the 

inverse-of the Reynolds number based on Rw as the charac- 
teristic velocity, may also be expressed in terms of w,, as 
p* =,u/(3yP,pR “o:) *At with w, = w/w,. For an air- 
water system, p* CC 10 - ‘/(2Rw, ) , R being in cm, and there- 
fore its numerical value is small compared to unity even 
when w, is small, We shall therefore restrict our discussion 
to the case of small per-* and small 0,. More specifically, we 
shall be interested in the evaluation of A; correct to O(y*) 
and to the leading order in w,, i.e., to O(wT) . The pairwise 
interaction calculations of Sangani’ for acoustic wave pro- 
pagation in dilute bubbly liquids suggest that such a limit is 
useful whenever w, is less than about 0.4. Thus the calcula- 
tions for small ,u* and o, are, in fact, not very restricted in 
their applicability. 

The O(p) coeihcient in (4) as a function of LT * for 
p*. = 0 and small ,IA* is given in Ref. 1. In particular, it was 
found that, for the two special cases of @ * = IX and c~ * = 0, 
this coefficient is. given by 

;i 3[ - 1.84-t 39.5ft2fO(R3)], CT* = CXI, 
UI 3[ - 1.50 + 22.80,” + O(fi3)], u * = 0. (6) 

For intermediate values of Q *, the coefficient A,, does 
not vary smoothly between these two extreme values but 
rather undergoes large fluctuations whenever (T * is less than 
about 0.11 .owing to the shape deformation resonances that 
are excited by the pairwise interactions among the bubbles.’ 

The main purpose of the present study is to compute R, 
for nondilute bubbIy liquids to examine how sensitive this 
quantity is to the details of the microstructure and the var- 
ious physical properties. The resultsare presented for or- 
dered as well as random dispersions of bubbly liquids. In the 
latter case, other statistical properties, such as the variance 
of the bubble velocity from its mean, are also computed. The 
results for AL, can be used directly to estimate the attenuation 
and speed of sound waves through the use of the following 
relation valid for small o, (Ref. 1) 

lcr = @p/yP, > ( 1 - n,p,. (7) 
Here, C,, is the effective wave speed in the medium. The 
viscous effects make /2,, and hence C,,, a complex quantity, 
indicating an attenuation of sound waves. The latter can be 

computed from the imaginary part of the effective wave 
number given by the relation k,r = cy)/C~. 

Clearly, the quantity A, defined in C 1) is related to the 
added mass and other forces acting on the disperse phase. 
We can render this connection explicit with the following 
arguments. 

As already stated, in this paper we confine ourselves to 
the case of small-amplitude oscillatory motion. Under these 
conditions, one may write the following expression for the 
total force actmg on a single bubble immersed in a unidirec- 
tional liquid flow at high Reynolds number, 

IT- i&xJb (Ii, -i? -i- lZnpR(u, - v? +pu,li,. (8) 

Here, v is the velocity of the bubble, v6 = 4~R 3/3 is its 
volume, and u, is the liquid velocity far from the bubble. 
The first term in the right-hand side is the added mass force, 
the second one is the drag at high Reynolds number, and the 
last one is theapparent inertia force due to the fact that the 
bubble partakes the motion of a liquid particle subject to the 
acceleration ii, ” The previous expression suggests the fol- 
lowing parametrization for the average force per bubble in 
the case of a mixture: 

{F) = ~Capuh(ti, -_ f} 

-I-pu,@,! + 12qLRC,@, - v), (9) 
where C, and C, are the added mass and viscous drag coei% 
cients normalized so that they both approach unity as /3-O. 
Pt should be recalled that, in (:9), u, denotes the mixture 
velocity. Equation (9) can be expressed in terms of the aver- 
age liquid velocity {II) by using the relation 

b,) =~c1--8~cu~-+p(v). (10) 
If the disperse phase can be considered massless, an exact 
relationship between A, and the coefficients C, and C, can 
be derived by simply setting the force given by (9) to zero 
and substituting multiplication by iw for time differenti- 
ation. With ( 1 ), we thus find 

A a = (2 --I- c*,/c, - 36@(C,/C:) ip” =O). (11) 
The calculation of C, for dilute bubbly liquids has been 

the subject of investigations by van Wijngaarden,’ Riesheu- 
vel and van W&gaarden3 and Biesheuvei and Spoelstra.A 
van WiJngaarden’-determined the average velocities of the 
bubbles and the liquid immediately after they are set impul- 
sively into motion and found the rest& 

e, = 1 f 2.76@+ o(pZ). (121 
He assumed the mixture to be initially at rest and the disper- 
sion homogeneous and dilute. This result is the same as 
would be found by use of Eqs. (4-f-(6) and ( 11) for 0 = 0 
and CT * F= ao. This is because the average velocities of the 
bubbles and mixture in the situation considered by van Wijn- 
gaarden are also related by --I,, as the resulting boundary 
value problem is identical to the one that arises in the small- 
amplitude oscillatory motion examined here. Although 
( 12 ) was derived for the specia1 case ofhubbly liquids initial- 
ly at rest, it is also valid, as shown by Biesheuvel and Spoel- 
stra,* for a situation in which an “equilibrium” flow (i.e., a 
uniform, steady, homogeneous flow) is given a smal1 instan- 
taneous velocity change. In this case, the small changes in 
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the average bubble and mixture velocities, ( AY) and (Au, ) , 
are once again related by the same il, provided that the pair 
probability distribution function for the spatial position of 
the bubbles is uniform in the equilibrium state. 

Following Biesheuvel and Spoelstra, an alternative de- 
finition of the added mass coefficient can be given by imagin- 
ing the actual state of motion of the dispersion generated 
impulsively from a state in which the liquid and particles 
move with the same velocity.‘*’ They calculate the incre- 
ment of the liquid momentum under the action of these im- 
pulsive forces and then average over an ensemble of realiza- 
tions. The added mass coefficient is obtained by division of 
the increment in the mean liquid momentum by the mean 
relative velocity between the particles and fluid. Unlike the 
previous definition, the added mass coefficient calculated in 
this way depends not only on the relative position ofall the 
bubbles, but also on their prescribed relative velocity in the 
final state that is’to be generated impulsively. Biesheuvel and 
Spoelstra assumed uniform velocity and spatial distributions 
and showed that, for a dilute dispersion, this alternative de- 
finition leads to a different estimate of C, given by 

c, = 1 -t 3.32fl+ O(p2>. (13) 

The reason why the two procedures for the calculation 
of C, lead to different results is a consequence of the fact that 
the added liquid inertia depends on the distribution function 
of the particles’ velocity. In the first case, this is determined 
implicitly by allowing the particles to acquire, as a conse- 
quence of the impulse, a velocity in accordance with their 
individual equation of motion. In the second case, the velo- 
city distribution must be prescribed at the outset, and differ- 
ent choices will give different values of the numerical coeffi- 
cient of the O(p) term. When the particles in the tlnal state 
all move with the same velocity, a Galilean transformation 
will bring them to rest. The same result ( 13) would then be 
found by computing the average force needed to keep the 
particles stationary when the mean liquid velocity is pre- 
scribed. This is indeed the case, as we have shown in Ref. 6. 

In view of the effect of the velocity distribution on the 
computed value of C,, one can expect that, for a periodic 
arrangement of particles, the two different approaches will 
give the same result. This has indeed been found by Biesheu- 
vel and Spoelstra. It may be noted that, although the numeri- 
cal results for the C, of nondilute periodic arrays presented 
by these authors on the basis of their expression (35) are 
correct, the subsequent expression (36) that purports to give 
an approximate formula for the C, of nondilute random ar- 
rays is incorrect as it suggests that this quantity will diverge 
as p approaches its maximum packing value. 

An important question raised by the previous considera- 
tions evidently concerns the magnitude of the differences in 
the values of C, that can be expected depending on the pro- 
cedure used for its calculation. In this paper, we examine this 
point by using the first approach described above to calcu- 
late C,, but allowing the particles’ density to range from 0 to 
00. For pb = 0, our result generalizes then van Wijngaar- 
den’s ( 12) to finite volume fraction. On the other hand, for 
pb + 00, all the particles remain fixed and therefore, as noted 
above, we find a generalization of the result ( 13). Interme- 

diate values of pb will evidently be equivalent to yet other 
velocity distributions. Our numerical results sugget that the 
differences in C, are relatively insignificant with results, in 
fact, not too different from those for periodic arrays. Our 
findings for the different pb are not merely a device to exa- 
mine the effect of the velocity distribution, as they can be 
expected to be relevant for the study of oscillatory flows of 
suspensions of rigid particles whenever inertial effects are of 
primary importance. 

The expressions (12) and ( 13) for C, in the case of 
dilute arrays were derived only for spherical bubbles. We 
have examined the effect of small deformation of the bubbles 
due to finite interfacial tension u *. However, in view of the 
fact that the shape-dependent resonance effects make h, a 
rather sensitive function of c * below 0 * of about 0.11, as 
shown by Sangani,’ we have determined ;1, only for larger 
values of g *. For these larger values, our calculations once 
again show that il, and, hence C,, is a rather insensitive 
function of (T *. 

In summary, our detailed calculations for the added 
mass coefficient under a variety of different conditions show 
it to be a rather insensitive function of most of the para- 
meters includitlg the detailed spatial and velocity distribu- 
tions of the bubbles, density, and surface tension, suggesting 
thereby that the estimates of C’ as a function of,@ obtained 
here may be used in the modeling of more complex flows 
with a reasonable degree of confidence. 

The above discussion was confined to the case of bubbles 
free of surface-active impurities so that boundary conditions 
of zero tangential stresses apply at their surface. For small 
bubbles, the surface-active impurities usually present affect 
the nature of the interface between the gas and the liquid, 
which can be treated as rigid. In this case, the appropriate 
surface boundary condition is a no-slip one and the average 
force is more aptly parametrized by 

(F(r)) =p”b(&n) + fpubc,(ti,,, -i) 

+ 6R “l,&ic, s f (li, -i)(r)dr --m &T 
+ 6lTRp(u, - Y)CS. ( 14) 

The third term in the right-hand side of this expression indi- 
cates a dependence of the force on the particle on the past 
history of the flow and corresponds to the Basset force (see, 
for example, Landau and Lifshitz7 ). For the case of oscilla- 
tory motion proportional to exp(iwt), the above expression 
can be equivalently written as 

@) = impb{(% > + &(iirn - 9) 

x [ccl + sac, + 9fizc; +.o(fi3)]}, (15) 
where carets indicate the (complex) amplitudes of the oscil- 
lating quantities. The added mass coefficient C,, being de- 
termined from the inviscid approximation, is the same as for 
bubbles free of impurities. Note that the viscous correction is 
now large, of 0( a), compared to the viscous correction of 
O(Q2> for impurities-free bubbles. While ( 14) is an exact 
expression for the force on an isolated sphere in a linearized 
Navier-Stokes flow, the expression ( 15) for the average 
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force on a bubble in a bubbly liquid has an error of O(a3). 
The viscous drag coefficient C; for rigid particles is, of 
course, different from C, for impurities-free bubbles. Final- 
ly, it should be noted that the averaged force on a bubble in 
the limit of large fz can also be represented in terms of vis- 
cous, Basset, and added mass forces, as in ( IS), but the~de- 
pendencemof the coefficients C,, C,, and C, on the volume 
fraction in the two cases will be quite different. The results to 
be presented in the present work apply only for small a. 

The analysis for the determination of the viscous correc- 
tions to ;k, by properly taking into account the presence of a 
Stokes layer on the surface of each impurities-free bubble as 
presented by Sangani’ is modified here to treat the case of a 
nq-slip boundary condition. Although the thickness of the 
Stokes layer is small, the viscous corrections cannot be deter- 
mined directly from an application of the usual boundary 
layer type of analysis for flat surfaces because dis&cement 
thickness effects are important. It is convenient instead to 
use expansions for the velocity field in terms of Legendre 
polynomials around the center of each bubble. An interest- 
ing result ofthe analysis for the no-slip particles is that, if the 
angular velocity is expanded in powers of a, the coefficient 
of each term is identically zero, indicating thereby that the 
mean angular velocity of rigid particles placed in a simple 
oscillatory flow must approach zero faster than any power of 
n as c&o. 

same as in potential flow: The consideration of thin Stoke? 
layers near the surface of each particle only modifies the 
boundary condition to be satisfied by the potential fiow ap- 
proximation. In Sec. III, we present analyses for dilute perio- 
dic and random arrays. Only the case of rigid surfaces is 
treated in detail as this represents a significant modification 
from the previous work of Sangani.’ Section IV addresses 
the relationship between the added mass coefficient and the 
elective thermal or electrical conductivity of a composite 
consisting of spheres in a matrix. Numerical results are pre- 
sented in Sec. V. 

II. FQRMULATION OF THE PROBLEM 
AND THE METHOD OF ANALYSIS 

The calculations of the first viscous effects, i.e., the de- 
termination of C, for rigid particles and C, for impurities- 
free Ibubbles, involve similar boundary value problems and, 
in fact, it can be shown that C, for massless particles is exact- 
ly the same as C, for impurities-free bubbles with cr + = CO 
andp* = 0. Our detailed numerical calculations for nondi- 
lute periodic and random arrangements of bubbles show, 
once again, that these coefficientsare relatively insensitive to 
the details of the spatial distribution of the bubbles. The drag 
coefficient (2’2 for no-slip particles, on the other hand, ap- 
pears to be somewhat sensitive to the spatial distribution for 
higher values of @. 

For numerical simulations of many-bubble interactions 
in a random dispersion that is homogeneous and infinitely 
extended, we have recourse to a widely used artifice consist- 
ing in, first, randomly placing N bubbles in a cubic-cell and 
then filling up the entire space with copies of this cell. The 
desired quantities;such as A,, are calculated for this confi- 
guration of the dispersion and the process is then repeated 
for several different configurations of the iV bubbles in the 
basic cell until the averages of the quantities over a number. 
of configurations do not changeappreciably. Actually, such 
configurations need not be isotropic, and hence 2, is a tensor 
bf rank two. For suiiiciently Iage N, however, the off-dia- 
gonal elements of the tensor are generally small and a-scalar 
estimate of a, can be obtained by taking the average of the 
three diagona1 components of the tensor. The calculations 
are then repeated for larger Nuntil the averaged quantities as 
a function of N do not change significantly either. Thus the. 
problem reduces to determining the velocity field when the 
positions ofNbubbles within the basic unit cell are specified. 

,Pinally, we also present calctilations for the analytical 
determination of the varions force coefficients for dilute per- 
iodic and random arrays. -The expressions for the periodic 
arrays are correct to O(j? 1o’3 ) and, in the light of the finding 
th& the various force coefficients are insensitive to the spa- 
tial distributions of the bubbles, serve as useful simple for- 
muIas that could be used iti modeling more complex flows of 
bubbly liquids in which the inertial effects are of primary 
inip;oytance and in which the bubbles remain approximately 
sphdi’iral. In particular, it is found that the asymptotic for- 
mula for C, for dilute periodic arrays gives predictions that 
are within 5% of the computed values for random and body- 
centered cubic arrays for O@r;O.S, An anaIysis is also pre- 
senfcd for the mean-squared fluctuation or variance of the 
amplitude of the bubble velocity from its mean. Such calcu- 
latio,ns-&re expected to be useful in investigations of the stabi- 
lity of homogeneous flows of bubbly liquids when subjected 
to small nonuniform perturbations in fi. 

We shall assume that the liquid may be regarded as in- 
compressible and Newtonian and that the magnitude of the 
velocity is small everywhere. When the nonlinear and gra- 
vity terms in the equations of motion are negligible, the velo- 
city field in the fluid is governed by the following equations: 

v*u = 0, (16) 
al p-t$--= ‘. ‘~ vp + pv5. (171 

We shall assume that the velocity and pressure vary sinusoi- 
daily with time as exp(iwt) with the corresponding ampli- 
tudes denoted by a caret. The solution of the above equations 
can be expressed in terms of three scalar functions (see Kim 
and Russel’ > : 

a’= - VP 4” x cvxvx [~(X - x”PD”] 
Q 

The organization of the paper is as follows. In Sec. i1, we 
present the method to determine the viscous corrections. 
The interaction between all the particles is essentially the 

4- vx 1 (x - x”lfl3, (18) 
where xa is the position vector of the &nter of the bubble LY, 
P = &‘(iwp), and a” and ;Y~ are, respectively, the toroidal 
and poloidal fields due to the bubble Q. The summation is 
taken over all the bubbIes in the dispersion. The functions P, 
cDa, and x” satisfy the following equations: 
v=p = 0, n2R 2v2tp x2 f.p, n2R 2V2y” = y”, / t-19) 
where fl is defined in (5). These functions are to he deter- 
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mined from the boundary conditions on the surface of each 
bubble. For this purpose, it is convenient to express them in a 
series of spherical harmonics. Thus, in a polar coordinate 
system (r,&$) centered at the center of the bubble a, we 
express P in the neighborhood of that bubble as 

P = 2 J$ [Ptm((r) COSm$+F~~(r) sinm4] 
n-0 m-0 

. 

XP:: (cos @, 

where 
(20) 

Pk = Czmr”+ E;,,,r --n-‘, (21) 

with a similar expression for P &, . We are interested in the 
case of small a, for which it can easily be seen that Cp” and ,ya 
decay to zero exponentially within a distance 0( flR) from 
the surface of the bubble a. Thus the poloidal and toroidal 
fields of a bubble y, ( y+a), will have a vanishing contribu- 
tion to the velocity field around the surface of the bubble a, 
provided that OR is small compared to the minimum dis- 
tance between the surface of the two bubbles, which we shall 
assume to be the case. In a random configuration of bubbles 
there is, of course, a iinite probability that two bubbles will 
be close enough for their Stokes layers to overlap, but it will 
be shown that the inclusion of overlapping Stokes layer is 
necessary only in determining corrections to orders higher 
than R2 [cf. the discussion following (74) 1. The pressure, 
on the other hand, varies on length scales comparable to the 
radius ofthe bubbles and their separation distances, and thus 
its computation requires that interactions among all the bub- 
bles be accounted for. The scheme for solving this problem 
therefore consists of two steps. In the first step, we determine 
the condition satisfied by the pressure at the surface of a 
bubble by taking into account the presence of the adjacent 
Stokes layer and then, in the second step, we ignore the 
Stokes layer in the vicinity of each bubble and determine the 
pressure by solving the appropriate multiparticle interaction 
problem with the boundary conditions at the surface of the 
bubbles derived from the first step. 

We now consider the first step, i.e., the determination of 
the boundary conditions for P :m and F zm at r = R, the sur- 
face of the generic bubble. Ignoring the exponentially decay- 
ing poloidal and toroidal fields due to other bubbles, the 
velocity field near a bubble can be written as 

ii,= -$4?~@, (22) 

(23) 

(24) 

where, for brevity, we have dropped the superscript a on @ 
and x, and Vt is the surface Laplacian, i.e., the Laplacian 
operator in spherical coordinates without the radial deriva- 
tives. The components of the force and torque acting on the 
bubble can be shown to be given by 

2l = (4n-R 2/3)iqo(2@‘lo -P,,), 

g2 = (4rrR ‘/3)iop(Pll - 26>,, ), (25) 

2, 2!cp~ xl0 , &+!qzL), 
3 ( > r2 r* 

(26) 
with tJhe expressions for ?s and 2, similar to those for ?Z 
and 2, with P,,, , Q,,,,, , andx,, replaced by .p,,,,, , G’,,,, , and 
,cm 7 respectively. Here, Q>,, (r), xnrn (r), etc., are the coeffi- 
cients of the expansions of Q> and ,y in Legendre polynomials 
analogous to (20). In the above expressions, 
D( * ) =Rd( . )/dr, and all of the quantities are to be evaluat- 
ed at the surface of the bubble a, i.e., at r = R. 

We shall consider separately the two cases of boundary 
conditions at the interface mentioned previously. 

A. No-slip boundary condition 

The first case is that of rigid spheres for which the no- 
slip boundary condition applies at the surface. As mentioned 
in the Introduction, this case is appropriate for surface-con- 
taminated small bubbles for which the molecules of impuri- 
ties form a tight monolayer over the entire surface of the 
bubble. This case is also applicable to rigid particles and, for 
the sake of generality, we shall therefore takep,, the density 
of the particles, to be finite. It may be noted that, unlike the 
more usual situation of boundary layers on bluff objects, the 
Stokes layer remains attached to the surface of the particle 
due to the linearization approximation. 

The velocity on the bubble surface is given by 
ii=G+i?xr, at r=R. (27) 

The amplitudes of the translational G  and rotational % speeds 
of the particle are to be determined as part of the solution 
from the two additional equations 

$ =pbvbi&, ?v? = +I~v~R *id, (28) 
with $ and 2 the force and torque given by (25) and (26). 
The unknowns 8 and 6 are also related to PI,, (PI,, etc., 
through the kinematic boundary condition. For example, it 
can be shown that 

RD, = - D(P,,) + 24>,, 

= (l/R) [Nfi,,) - RP,,], (29) 
R*6, =xlo. (30) 
Now we expand P,,, , CD,,,,, , andx,, in a series of powers 

of Cn. Thus, for example, we write 

P,,(r) = g P”,,(rW 
s=o 

-(31) 

and solve for the coefficients Pi,,,; etc., by comparing the 
coefficients of O(nS) in the governing equations. Since @ 
and x satisfy ( 19)) the functions Qp’,, and fnm are propor- 
tional to the modified spherical Bessel functions k, that, for 
small a, are proportional to exp[ - (r - R)/( fiR) l/r. 
Thus the radial derivatives of Cp andx are much greater than 
the values of these functions at r = R. From (26)) (28), and 
( 30)) we then see that the angular momentum condition is 
satisfied only if xi0 = 0 for all s. The same result applies to 
the other two components of the angular velocity, and thus 
we deduce that 6-0 as a--+ 0 faster than any algebraic 
power of a. As a consequence, the toroidal field ,y vanishes 
and the problem reduces to determining the relation between 
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Cp and P. Now, the no-slip boundary condition for the angu- 
lar components of the velocity is satisfied by choosing 

RPZZ, -5(rQ,) =0, pt>2, r=R, (32) 
and substitution for Q>,, in the no-slip condition for the ra- 
dial component of the veIocity yieIds another relation 
between these functions, 

D(P,,) = n(n + l)rP,,, 02, y--l R. (33) 
To eliminate <p,, from the above two equations, we make 
use of the fact that QVrn, being proportional to the modified 
spherical Bessel function k, , near F= R behaves as 
[w%,)]r~R = - cl/a -I- [n(n i- IV210 

+ 01Q2)b%,, fRb (34) 
From (32)-(34), we see that Qnrn is O(Q) and, upon solv- 
irig for the first three corrections, we find 

ZXP,,) = --(n-f- I)gtP,,, n>2, r=R, (35) 
correct to O(R’). These equations are also satisfied by Fnm .~ 
The conditions for ti = 1, i.e., for P;, at r = R, are obtained 
next by combining the no-slip and the force balance condi- 
tions and solving the resulting equations for each power in l1 
separately. The results of the analysis up to O(a2) can then 
be recast in the following compact forms: 
@ Im = (a - 2fi2) [WP,,, 1 ‘- P,,], r= R, (36) 
P Im - P*mph ) 

= 2(1 -p*)qm 
=211 -P*)G(l-za)[D(P,,) -P,,], (37) 

wherep* =pJ,,. Finally, the velocity of the particle can be 
calculated to O( a’) from 

RB, = - D(P*,) + 2@,, 

= [Pm - D(P,,) 141 -pv. (38) 

The expressions for - 8, and - 0, can be obtained by re- 
@acing P,, in the above expression by, respectively, P,, and 
p,,- 

Equations (35) and (37) represent the boundary condi- 
tions for the pressure coefiicients at the surface of the rigid 
particles obtained by accounting for the pressure interaction 
among the particles while neglectingthe viscous interaction. 
Note that the quantities in the right-hand sides are multi- 
plied by fi and therefore P +n,,, , the coeflicient of the W term 
in the expansion (3 1) of P,, fr), can be calculated by 
successive approximations for s up to 2. 

. Free-slip boundary conditiqns , 
This case is more suitable for larger, but approximately 

spherical, bubbles or bubbles in Iiquids less prone to amphi- 
philic contamination than water. Now the boundary condi- 
tions are the usual kinematic and’dynamic conditions at a 
free-slip surface. For the present analysis, we shall take the 
density of the bubbles to be zero, but we will allow them to 
deform. The poloidal field Q> is now O(@) and, unhke the 
previous case, the toroidal field is not exponentially small in 
0, but rather O(Q3). Appropriate forms of the boundary 

conditions valid to O(@) have been derived by Sangani,’ 
and are 

ctr nm = xi* [Dvi, ) - P,, 1% (39) 
P am “F Qz- l)Cn+2b*DCP,,zJ 

= - 2s1zc5 “(P,, ) 

-f n(n” - l)(E +m2)o*[Pn, - 5(P,, 1 ]‘I, (W 
where Q * = cr/(pdR 3, denotes the nondimensional inter- 
facial tension. The velocity component in thex, direction in 
this case is given by ;I 

RD, = - 5(P,,) + 2*,, = - (1 - 4512)5(P,,), 
c41j 

where we have made use of the fact that P‘& T 0 at r - R 
since the surface tension term in (40) vanishes for n = 1, , 

It may be noted that there is a relationship between the 
problems of determining P z, of rigid particles with.@ = 0 
and for PE, of impurities-free bubbles -with D * = 01). For 
large surface tension, the term involving two derivatives of 
I’,,, in (40) can be neglected for n>Z and, from (21), we 
find that D(P,,) - Pi, = - 3E,,N -’ = -.- D2(P,,)/2. 
Consequently, comparing the two problems, we see that 
CL for impurities-free bubbles with rr * F ,x, is exactly 
twiceP L, of rigid particles with p* = 0. This observation 
subsequently yields C, (p* .= 0) ~= Cd (o * = CO ). 

C. The multibubble interact/on calculations 
for the pressure 

Having derived the appropriate boundary conditions 
for P, at the surface of each bubble for the above two spe- 
cial cases, the next step is to incorporate them into the mnlti- 
bubble interactions. The procedure for this is similar to the 
one described in Sangani and Vao.’ Briefly, since P satisfies 
the Laplace equation, and since the problem ofN randomly 
placed bubbles in the basic unit cell repeated throughout the 
entire space is equivalent to a superposition of N randomly 
@aced periodic lattices, we express P in terms of periodic 
singular solutions of the Laplace equation” as 

P(2) =-.---6;~x+ 2 2 m~“2m-1;);-m(A;mAh, 
a=ln=tm=o 

-+2&ixm)St (x _ KU), (421 
where ~;~:3 /‘dn, , x” denotes the position of the center of 
the bubble a in the basic unit celI, 

(43) 

~=x;+ix,, q=x* --ixs7 (4.4) 
and S, is defined in Ref. 10. In the low-frequency acoustic 
application we are considering here, the wavelength of 
sound is large compared with the size of the basic cell and it 
is therefore appropriate to approximate the mean pressure 
field by a linear variation with position. For this reason, in 
the above expression for P, we have assumed that there exists 
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a mean gradient G. It should be noted that Eq. (42), as 
written, is exact and is equivalent to a simultaneous multi- 
pole expansion around each bubble. 

To determine the unknown coeficients A &, and 2 $,, in 
(42) from the boundary conditions on the surface of the 
bubbles, we equate the representation (42) with the repre- 
sentations (20) valid in the neighborhood of each bubble. It 
is found9 that the coefficient E Em appearing in the expres- 
sion (21) for P E,,, is related to A zrn by 

E;,,, = ( - I>“-“(?2 - m)l4 zm:,, (45) 
with a similar expression for E Em and 2 L. Similarly, from 
Ref. 9, 

%I - [c--2Y/(1+~,,)] 

x[l/(n + m)!l @;-“A,,, P(r)lx=xcz, (46) 
where P w is the part of P regular in the neighborhood of xa, 
i.e., 

Per)= -tSx+ f 2 i 2’-‘(A&Aj+~7Ci&) 
y=l !f=lj=O 

- sya 
> ye-q- 

(47) 

A method for the efficient evaluation of the derivatives of S, 
appearing in this equation is described in the Appendix. The 
following step is to expand A & , etc., in a series in powers of 
(II and, using the boundary conditions on P,,,, obtain the 
relations among the coefficients C’:E and E :z of O( ti) 
with s = 0, 1, and 2. The resulting set of equations is linear 
and can be solved after truncation to a finite number of equa- 
tions containing A,, andI,, with nc;N, in (42). The trans- 
lational velocity of each bubble is evaluated by making use of 
relations (38) and (41). The calculations are then repeated 
for larger values of N, until the results converge. To calcu- 
late ;1,, we also need to evaluate the average velocity of the 
mixture. This is described next. 

D. The average velocity of the mixture 

To determine the average velocity of the mixture, we 
need to evaluate the integral of the velocity field over the 
volume occupied by the liquid within the basic unit cell. Let 
us decompose the velocity in two components, Q = lip + ti* 
with tip= -VP and Q@=ZVXVX[(x-xx”)@“]. The 
integral of QP over the liquid volume can be shown to be 

I VL 
tFdV= GV+ 2 

s 
PndA, 

a=1 .s= 
(48) 

where V, is the volume occupied by the liquid, Y is the 
volume of the basic cell, S”is the surface of the bubble a, and 
n is the unit outward normal at the surface of the bubble. The 
surface integral in (48) can be related to P,, and thus the 
contribution to the average velocity due to this part can be 
readily evaluated. Next, we note that the contribution due to 
Q” is important only near the surface of the bubble a. The 
Stokes layer is 0( 8R) and the tangential velocity contribu- 
tion due to a” in this layer is 0( 1). Thus the integral of fi@ 
contributes an O( .Q) quantity in the case of bubbles~ with a 
rigid interface. The corresponding contribution for the case 

of impurities-freebubbles is O(fi2) as the tangential velocity 
correction in this case is O(a), the Stokes layer being 
O(Rfi) thick in both cases. The contribution due to this 
poloidal field near the bubble a can be shown to be 

s C:dV =2?r (r@To ) sin” 0 + 2@y0 cos2 0 

XrsinOdOdr 

Combining now the contributions from both parts, we ob- 
tain 

f VL 
ii, dV= G, V+ % i (Pyo - 2+yob) + o(fi3). 

a 1 

(50) 
On using (36)-(38), it can be shown further that 
PFo - 2@& = -p*RD:. 

Since the average velocity inside the bubble a is 6”, the 
average mixture velocity can now be evaluated from 

OLz) ==G+P(l -p*)(8). (5 1.) 
This result, with p* = 0, also applies to the case of impuri- 
ties-free bubbles. 

111. SPECIAL CASES 

Before presenting the results for nondilute bubbly mix- 
tures, let us examine a few special cases. The simplest one is, 
of course, that of an isolated bubble. If we take Gi = S, , then 
only P,, is nonzero and we can write 

P,,(r) = - r+A,,/r2. (52) 
For the no-slip boundary condition case, the successive ap- 
proximations satisfy [cf. (37) 1, at Y = R, 

Pyo -p*D(Pyo > = 0, 

P:o --p*D(P;o) =X1 -p*)[DU’i’o) -P’?o]? 

P:o -p*D(P:o) =X1 -p*){[W’:o) -P;o] 

- 2[D(P?o) - P’fo]), (53) 
whereby A,, can be readily evaluated to be 

40 1 --p* -=- 
R3 

14ja2 
1+2p* 1+2p* 

+ 12fi2 (4 -p*1c1 -p*> 
(1 +2p*)2 > . 

(54) 

Actually, the O(n3) and all of the subsequent co&ections 
vanish identically, so that (54) is an exact result for an iso: 
lated sphere. Now, il, for an isolated rigid particle can be 
readily evaluated to be 

A 3 -- 
u- 1+2p* 

1-(jfil-p* 
1+2p* 

+ 12fi2 (4-pp”)(l -p*> (55) 

Setting I? =p,iov,il,il, in ( 15)) we see that the above 
expression for an isolated rigid sphere agrees with ( 15) if we 
take C, = C, = C> = 1. 
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Similarly, the calculation of il, for an isolated impuri- C ~6, .-j- 18stzCd + O(f13) -~ 
ties-free bubble with p* = 0 gives 

n,=3[1-12ft*+O(f13)]. (56) = 
(t-+2,&/(1 -8) -I- l&[ti’/(l --fit”] 

+ cm? lo/s?. 664) 
This result is in agreement with ( 11) if we take 
C,=C,=l. 

This result is independent of surface tension, which onIy afl 
fects the boundary conditions for P,, with n)2. The consi- 

A. Dilute periodic arrays 
deration of this parameter is therefore only important in the 
calculation of terms of order OtB *e13) and hiaher. . . I 

Let us now obtain results for dilute cubic periodic ar- 
rays. In this case, the basic cell contains only one bubble so 
that N= 1 and Eq. (42) for P is B. Dilute random arrays 

as, P= -x1 -+A,, - 
c?x +Am 

a 3s* 
i- x **+* (571 

1 
It can be shown that A,, contributes to /2, only at O(/? 1o’3) 
and, therefore, we need only retain A,, to determine the first 
few approximations to ;1,. Now, S, can be expanded near the 
center of a bubble in the basic unit cell asro 

S, = I/r-c+2m2/3V+O~r4)~ (58) 
where c is a constant that depends on the geometry. Since we 
are presently interested only in the derivatives of S,, the 
magnitude of this constant is not important. Thus Pr, can be 
approximated now by 
P,, = r[ - I +P(A,,/R 3, f 0(/5”“3) ] -A,o,‘rmL. (59) 
Substituting for P,, in (53)) solving for A,, to 0( a’), and 
determining the velocity of bubbles and mixture from (38) 
and (5 1 ), we obtain the following. estimate of ;1, for the 
special casep* = 0: 

Let us now determine the O(B) correction to C for di- 
lute random arrays. The procedure for calculating this cor- 
rection from the pairwise interaction of particles is now well 
established. ln principle, it consists of determining the velo- 
city of a particle (referred to as the test particle) placed at, 
say, the origin, in the presence of a second particle situated at 
S and then muhiplying it by the probability of finding the 
particle at S and integrating over all possible values of S. 
Since the disturbance created by the second particle modiiies 
the velocity of the test particle by an amount proportional to 
(R L’S)” for large S, this direct method of calculating the 
O(p) correction leads to a nonabsolutely convergent inte- 
gral. hlethods to overcome such difficulties have been de- 
scribedin the literature (see, for example, Refs. 12-15). Fol- 
lowing Hinch’s method, we split the calculation of the 
average velocity of the test particle into two parts and write 

A, = 3/[1 +2fl+6n(l -20)] +O(~3,~‘o~). (6W 
This result can be alternatively expressed in terms ofa force 
coefficient C defined, on the basis of ( 15), via 

c SC, + 961c, + i-w:, 

w = @,I -I- tQ,>, (651 
where (+?#p> represents the contribution from pairwise inter- 
actions and (9,) corresponds to the velocity of the particle 
placed in an effective medium with a uniform distribution of 
dipoles (see Sangani’ ). The strength of these dipoles is the 
same as the dipole induced in an isolated particle and is reIa& 
ed to Are given by ( 54 j. Thus (9, > can be shown to be given 

+ o(a3) = 2cp*A+, - l)/(l -/2,). (61) by 
Thus, upon substituting (60) into (61) and taking p* = 0, (9,) =%zvo(l -k-fiA,,R --“)G, CW 
we obtain where G is the value of - ~VPat infhiity and A 10 and A, ) the 

c= l-i-Wf6fU~-2~, coefficient of O(fie) in R,, are given by (54) and (55), re- 
I-/--3Q(i-20) spectively. The quantity G can be related to the average velo- 

1 -,I+W; go 
l-8 (1 -P>” 
7’” 9R2 1 + 2p -f- O(fi 1°j3 523) 

(1-B)” ’ * 
Although the above expression for C, which can readily be 
related to C,, C, , and C 2 via (6 1) , is derived here for the 
special case ofp* = 0, it can be shown that the result is ac- 
tually valid for arbitrary p*. The result for the added mass 
coefficient, i.e., 

cn = (1 -I- W)/(l -8) -I- ocP’“‘3), (631 
agrees with the widely used expression first given by Zuber” 
who derived it using a cell model, which is thus exact for 
periodic arrays to O(fi ‘On).- 

The above results for C apply to periodic arrays of rigid 
particles. For bubbles free of surface-active impurities, it can 
similarly be shown that 

city of the mixture from the ensemble-averaged momentum 
equation by 

GL,> = [I -t&,(1 -p*)]G. (671 
The part (ff;,) corresponds to the contribution from 

pairwise interactions and can be written as ~ 

f-*(O[S)P(S[O)dV, 

where P(S]O) is the probability of finding a particle at a 
separation vector S from the test particle and f* ( 0 [S ) is the 
velocity of the test particle in the presence of the second 
particle minus the first two reflections of 0 [ (R /S)*] and 
0 [ (R /S}3] in the interaction of the two particles. The rea- 
son for subtracting these reflections is that the calculation of 
(?..} already accounts for them (see Sangani’ and Acrivos 
and Chang14 ). Now, because of the linearity of the govern- 
ing equations, we can write 
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t*(O/S) =g,,G+ (go, -gg,, )[(~-=WW, (69) 
where g,,, and g,, are scalar functions of S/R to be deter- 
mined by solving separately two problems with the separa- 
tion vector between the two spheres aligned parallel and per- 
pendicular to G; Both functions decay to zero as (R /S) 6 as 
,S‘-+ ~0. The force coefficient C, given by [cf. ( 6 1) ] 

C,2P*w - @4?l> 
0-L) - (0) ’ (70) 

can now be determined correct to O(p) by substituting for 
(8) and (a,,) from (65)-(69) to find 

c==c;, +fP(2+co)2- co +2p* g), 
2(1-p*) G (71) 

where C, E 1-t 9Q, + 9Q2 is the 0(/3 ‘) term in C. In writing 
(70) and (7 1 ), we have used the fact that, due to the isotropy 
of the pair probability distribution function P( S 10 ) , ( fi, ) , 
(qP), and (9) are all parallel to G. 

We note that, for periodic arrays P(S]O) = 0 for 
S/R <O(p 1’3) so that (qP) = 0 and the above result (71) 
agrees with that derived in the previous subsection [cf. 
(62) ] to O(p). In fact, the result for periodic arrays is cor- 
rect to O(p) for all well-separated random arrays, i.e., ar- 
raysinwhichP(S]Q) =OforS=O(R). 

For well-stirred random arrays of nonoverlapping 
spheres, we take P( S]O> = fi /a, (S>2R) and, upon substi- 
tutingC,=1+91R+9fi2in(71)andmakinguseof(69), 
we obtain 

c=c +snc +9fi2cr a b d 

=1+90+9fi2+3fl(1+6113+15Qz) 

- og,, fg,, xms. (72) 

The functions go1 and g,, can be determined by solving the 
two sphere problems using the boundary conditions for P,,, 
as given by (37) [or (53) ] and for the two extreme values of 
p*, the detailed calculations give 

C,=1+2.76,8, Cb==1+2.11p, 
CT:,= 1 + 3.91fi, p* = 0, (73) 

c, = 1 + 3.32fi, c, = 1 + 2.28fi, 
c;=1+5.94p, p*-cQ, (74) 

As explained in the previous section, in these calculations we 
have assumed that the Stokes layers of the two particles do 
not overlap. Although this is incorrect for separation dis- 
tances given by S - 2R = O(ClR), it can be shown that the 
error associated with this approximation is smaller than 
O(a2). Indeed, the integrand in (72) is affected by an 
amount smaller than O(n) when the Stokes layers of the 
two particles overlap and this incorrect estimate is used only 
for distances of O( i2R). 

The result for C can be expressed as 
c=1+3flc,, +9fi(l+wCb,)+9Q2 

xcl+wc:,) +mf-13,D’) (75) 
so that C,, , C, I , and C: 1 are all unity for periodic arrays. 

FIG. 1. The O(B) coefficients [cf. (75)] in C,, C,,,and C;as functions of 
the nondimensional density p* of particles. Here, fl denotes the particle 
concentration by volume.. 

These coefficients for well-stirred random arrays as func- 
tions ofp* are shown in Fig. 1. 

The analysis for dilute random arrays of bubbles free of 
surface-active impurities is presented in Sangani’ and the 
result is given by (6). The coefficients of O(8) in this case 
change very little as u * is varied from infinity to about 0.15. 
Below this value, large fluctuations appear owing to shape- 
dependent resonances. In terms of C, (6) for c* = CO can be 
written as 
C,=1+2.76/3, C,=1+2.11p ((~*=a). (76) 
As mentioned earlier, Cd for impurities-free bubbles with 
0 * = or) equals C, for rigid particles withp* = 0 and thus it 
is not surprising that the O(p) coefficients in (73) and (76) 
are identical. 

C. Velocity variance in dilute random arrays 
In the situation envisaged here, the bubbles execute 

steady oscillatory motions around a fixed center. The ampli- 
tude and direction of these oscillations depend on the ar- 
rangement of the other bubbles in each particular realization 
and are therefore different for each bubble in general. It is 
therefore interesting to calculate the variance in the ampli- 
tude of the velocity of the bubbles from its mean. For dilute 
random arrays, this quantity can be estimated from pairwise 
interactions. The presence of a second particle situated at a 
separation vector S from the test particle placed at the origin 
changes the velocity of the latter by 

$*(OlS) -3/(1 ++*)G=t$lG+ (go: -8,) 

x [ (GSSVS’I, (77) 
where 

8, =go, +6(1 -/I*)R~/[U+~~*)~S~I 
and 

8, =g,, -33(1--p*)R3/[(1+2p*)2S31 
are scalar functions ofS/R including the 0 [ (R /S) “1 reflec- 
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tion In the two-particle interaction problem. Now, variance 
can be estimated to O(B) from 

yar = @*@ - w 
@)” 

= J I&% G + b& --ST1 >G+WS212P(S[WK S>2R 
(78) 

where the vertical bars denote the magnitude ofthe enclosed 
vector and the mean amplitude of the bubble velocity is ap- 
proximated by its O(p ‘1 estimate corresponding to the velo- 
city of an isofated particle. For well-stirred random arrays, 
the above expression for the variance simplifies to 

J$7ar=p(1 s m (2$X$ 
9R3 2~ 

+@,W2 ds f OW2). 

Detailed numerical calculations then yield 

(79) 

var = 0.27W + O(&‘“,n>, p” = 0, 

0.059fi+O(p”,n), p*= co. 
(80) 

It is interesting to note that the contribution from the leading 
0( R /S> 3 terms in g?l and g$ to the O(B) coefhcient equals 
(l-p*)2/[4(1 +2p*)*~~or1/4and1/24for~*equaltoO 
and CO. The contribution from higher reflections .is thus 
rather small in magnitude. It should also be noted that, while 
the mean velocity ofthe particles approaches zero asp* -+ CO, 
the variance defined above remains finite because both the 
numerator and the denominator of (78) tend to zero at the 
same rate. 

IV. ADDED MASS AND EFFECTIVE CONDUCTIVITY 
There have been attempts in the literature to relate the 

added mass coefficient G, in the inviscid case to the effective 
conductivity of a composite material consisting of a matrix 
containing inclusions with a different thermal (or electrical) 
conductivity. 1*4~*e While the calculation of both quantities 
requires the solution of the Eaplace equation, the boundary 
conditions in the two problems are, in general, different, In 
this section, we study this issue and we prove that, although, 
no universal relationship exists in general, there are some 
special situations for which an exact connection can be es- 
tablished. The first one, as noted by Biesheuvel and Spoel- 
stra, 4 is when all the particles have-equal velocities. In a 
dispersion this would either occur in a periodic array or in 
.the limit in which the density of the particles is very large 
compared with that of the suspending fluid. Both cases, if for 
different reasons, are somewhat artificial for the application 
of present concern Another case is that of small-amplitude 
oscillatory flow-around bubbles with vanishingly small sur- 
face tension. 

Consider the steady temperature field in a system con- 
sisting of a homogeneous matrix containing equal spherical 
inclusions of a different material. This temperature field 
satisfies the Laplace equation and can therefore be written in 
a inanner analogous to (42) as 

X(B&A,,, cir&&,,>S,(x-xp,, WI 
where GT is the average temperature gradient. Similarly, 
near the surface ofa particle a, a representation analogous to 
(20) is available 

T== 9 $ [T&(rj cosm4 
n-50 &to 
-+ ‘tF& ($1 sin mfjS]PE (tis 8), i@) 

with T& and F:m having the form (2 1 ), e.g., 

c?I =P;*r”+N~J --n--l. (83) 
It is readily shown that the continuity of temperature and 
heat fluxes at the surface r = R of the generic inclusion ra 
quires 

F;mR”-/-T,H~mR -a-1=0* 
with 

(84) 

T,-(mr+n-t1j/(K-ljn, it351 
and K = k,/k, the ratio of the conductivities of the disperse 
and continuous phases. As before, all the coefficients B Em, 
2 E,,, , F&, and Hg are IinearIy related and, in particular, a 
relation similar to (46) holds, namely 

F;;, = (a, Tyx=.pl 
with 7’@’ the regular part of I’ detined as in (47). 

The dimensionless effective conductivity k * = k,,/k, 
can be obtained from the coefficients HyO according to” 

k *W = 1-3B(H,,)R -3, {H,ojd-~H~o, (871 
a 

in which, due to the linearity and isotropy of the problem, 
the HP, are evaluated with a mean temperature gradient of 
unit magnitude in the X, direction, (6, f E = S, . 

Let us ngw turn to the flow problem. If the particles’ law 
of motion {Fj = i#,o&, (8) is substituted into the expree~ 
sion (9), we thud 

@“+gJw = (1 -i-~cer<n*>* 0381 
or, from (fil), 
p*$.gc -=-PC1 -p”)(l -i-qc,qw 

= Cl -l-~c,m. * (8,9J 

Furthermore, with the neglect of viscous effects, we have 
from (38) 

0: = 3E;“,R -3r’( 1 -p”), (90> 

so that, for Gi = - tiir [where the minus sign is introduced 
to-compensate for the difference between the first terms in 
the right-hand sides of (42) and (81) f, (89) gives 

[ 
y-+$ +3(1’-+)]3R --j&J 

= -(l++c,). (91) 

It is clear that, if a connection between (EIo ) and (H,. ) can 
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be established, comparison of (87) and (91) will lead to a 
relation between k * and C,. 

We consider the case of rigid particles first. Upon appli- 
cation of the boundary conditions (35) and (37)) the follow- 
ing relation between the coefficients C Em and E E,,, appear- 
ing in the expansion (21) of P & is found 

CEmR” -+ 7’,E;,,,R -‘--l = 0, (92) 
where 

7-i = (1 + qJ*>/(l -p*1, 
71, = - (n+ 1)/n, n>2. (93) 

For K = 0, r:, = 7, for all n>2. In addition, forp* 4 CO (i.e., 
for particles much heavier than the suspending fluid), also 
7-; M-, so that, in this limit, 7-L = r’n for all n’s and 
Eye = H&. Hence, from (87) and (91), we find 

[l +p(1 ++>I -y= 1 ++c., (94) 
from which 

C,(p*=-+co) =2{[1 -k*(O)]@k*(O) - 1). (95) 
This relationship can readily be verified for the case of 

dilute random arrays, for which Jeffrey” obtained 
k*(O) = 1 - $@ + 0.588p2 + O(p3>. (96) 

Upon substitution into (95)) one finds 
C,(p*-+co) = 1 +3.324p+O(p2), (97) 

in agreement with (13) and (74). 
It is rather remarkable that Eq. (95) also holds for per- 

iodic arrays irrespective of the value of p*. This result rests 
on the fact that, in the periodic case, the coefficients B z,,, and 
B Em are all proportional to B yO, which is itself proportional 
to H y,, (Ref. 9). The proof of this property requires the use 
of Eqs. (84) with n)2. From (86), one can then write 

F;o = 1 + TH&R -3, (98) 
with the specific expression of the proportionality constant 7 
immaterial for the present purposes. A parallel argument 
can be carried through for the flow problem to obtain- 

Cyo = 1 +qE$R --. (99) 
The crucial point here is that, since rn = r; for n>2 and 
K = 0, the two constants 77 in (98) and (99) are identical. 
From (84) with K = 0 and (92), we also have 

C;l, = [(2p* + l)/(p* - l)IE&R -3, 

F’& = 2H$,R - 3, 

so that 
(100) 

R -3E& = @* - 1)/[2p* + 1 - q(p* - l)], 
R -3H;b = 1/(2-r]). (101) 
Upon substitution of these expressions into (87) and (9 1 ), 
one fmds 

C,=2[(1+3P+7;1)/(2--3p--rl)l, 
k*=l--p/(2--), (102) 

and, upon elimination of 7, the relationship (95) is found, 
now independently of the value ofp*. 

We now turn to the other situation mentioned before, 
namely the small-amplitude oscillatory flow around mass- 
less bubbles with vanishing surface tension. In this case, the 
bubbles deform so as to maintain a constant pressure-and 
therefore also a constant potential-over their surface. 
Equation (40) can then be cast into the form (92) with 

7:,=[l-((nZ-l)(,+2)a*]/ :’ 

[l+n(n’-- l)(n+2b*l, (103) 
n>l. 

Thus, when (T * = 0 and K-+ 03, once again we find 
Ekl = Hz,,,. Upon setting p* = 0, we then obtain from 
(87) and (91) 

c,((T*=o) =2{[k*(cx,) - l]/pk*(,) - 1)-l. 
(104) 

Again, for dilute random arrays, Jeffrey i2, obtained 
k*(w) = 1 +3b+4.51/72+0(83). (105) 

Upon substitution into ( 104), we then find 
C, (a * = 0) = 1 + 2.245/3 + O(p’>, (106) 

in agreement with the results obtained using (6) in ( 11) . 
While this limit case is fairly realistic for relatively large 
bubbles, it should be remarked that the limit CT * = 0 is not 
approached smoothly as /2, goes through an infinite number 
of discontinuities as shown in Ref. 1. 

V. NUMERICAL RESULTS FOR NONDILUTE MIXTURES 
A. Simulation of random arrays and convergence tests 

To obtain estimates of il, or, equivalently, C, we gener- 
ate a random configuration of N bubbles within a unit cell 
making sure that there is no overlap between any of the bub- 
bles in the cell nor with those in the adjoining cells that are its 
exact replicas. Figure 2 shows the radial distribution func- 

‘“4 

r/d 

FIG. 2. The radial distribution function g for random arrays with a particle 
volume concentration /3 = 0.3 simulated with N = 16 particles (dashed 
curve) and N = 32 (solid curve). The open circles are the corresponding 
results from the Percus-Yevick equation as obtained by Throop and Bear- 
man (Ref. 17). Here, r is the distance from the test particle, dis the diameter 
of the particles, and g is normalized such that it approaches unity for large r. 
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tion for a few seiected configurations with j? = 0.3 and N 
equal to I6 and 32. The corresponding cell’sizes are, respec- 
tively, 3.0 and 3.8 times the diameter of the bubbles. The 
numerical solution of the we&known Percus-Yevick equa- 
tion for the pair distribution function of a random distribu- 
tion of nonoverlapping particles as obtained by Throop and 
Bearman”’ is shown in Fig. 2 by the open circles. Their re- 
sultsiare approximated quite well with only 16 or 32 parti- 
cles, particularly for the smaller separation distances, which 
are likely to be the most important ones in determining the 
behavior of nondilute suspensions. 

As mentioned earlier, the randomly generated configur- 
ations of bubbles are not isotropic in general and therefore&, 
is actually a tensor of rank two. For each configuration, the 
nine components of & were determined for a mean mixture 
acceleration or, more precisely, G, in three mutually perpen- 
dicular directions. The off-diagonal elements of the tensor 
were generally found to be much smaller (typically two 
orders of magnitude) than the diagonal elements and a mean 
of the three diagonal components was taken as the estimate 
of a scalar value of /%, applicable to isotropic configurations. 
The results for it, thus obtained were checked for conver- 
gence for various values ofN and of the highest order N’ of 
singularity retained in Eq. (42). The total number of un- 
knowns used in the computations is given by iV, (N, + 2)N. 
The convergence of the numerical results for a random con- 
figuration with N= 16jp’ = 0, and/3 = 0.3 is ihustrated in 
Fig. 3, which shows the percent deviation of /2,, il,, and R, 
from their converged value as a function of N,. These coeffi- 
cients are defined by 

R, = A, + c?& -I- l-F&. (107) 
As shown in Fig. 3, the results have virtually converged for 
N, of about 7. The percent deviations from the converged 
values are. quite low (a few percent) even for N, = 1. All 

subsequent calculations were therefore carried out with 
IV, = 5 (where the deviations are less than 0.1% ) , except for 
some calculations for higher ,!7 values for which N, = 6 was 
used. 

6. Details of the computations 
The computation consists of first determining the ele- 

ments of a square matrix of size N Iv, (N$ $ 2), which are 
related to various derivatives of S, [cf. (42) I, for all the 
separation vectors between the N(N - 1)/2 pairs of bub- 
bles. The derivatives are evaluated by using an Ewald sum- 
mation representation of,!?, as given by Hasimoto” together 
with an improvement over the method described in Sangani 
and BehI” (see the Appendix). The total CPU time for the 
determination of all of the nine components of the tensors 
A,, &, and il, on the supercomputer at Cornell Theory Cen- 
ter with rV, = 5 and N = 16 (a total of 560 unknowns) was 
about 28 set, of which 1 I were used in the vectorized mode. 
The calculation of the multiparticle interaction matrix ele- 
ments required about 12.7 set, while solving a system of 
3 x 560 linear equations required about 5 sec. (Here, the fac- 
tor 3 corresponds to the calculation of the components of R, 
in correspondence of the three mutually perpendicular di- 
rections of G. ) This system of equations must be solved suc- 
cessively three times corresponding to the calculation of 
O(@), Q(R’), and Q(fi’), making the overall time of 
12.7 + 3 x 5 ti28 sec. More specifically, the system of equa- 
tions to be solved can be written in the form B-X = Y, where 
B is the aforementioned multiparticle interaction matrix, X 
is the unknown 3 X 560 matrix of J,, and z,, [cf. (42) 1, 
and Y is a 3x560 matrix determined from the boundary 
conditions on the bubbles. Since we are expanding the un- 
knownsd nm, etc., in powers offl up to O( Sz’), we must salve 
these systems of equations separately three times. The com- 
putations of A i, and 2 f,,, are used in determining the ele- 
ments of YE and those of A k, I 2 A,,, , etc., in determining the 
elements of Uz. The matrix B remains unchanged. 

In view of the rather modest computational require- 
ments, we did not utilize the highly efficient software for 
solving systems of linear equations that are now available on 
supercomputer libraries, but we estimate that the present 
computational time can be reduced further, roughly by a 
factor of 2, by taking advantage of such software and by 
making the vectorization code for determining the coeffi-~ 
cients ofthe matrix B more efficient. (Of the 12.7 set used in 
computing the coefficients of 23, only 2 set were utilized in 
the vector mode. ) Finally, we note that the CPU time in the 
calcmation scheme presented here will roughly increase as 
NZ for Iarger N. 

C. Numerical results 
Figure 4 shows /1, as a function of N for p* = 0 and 

FIG. 3. Convergence ofthe numerical results for&, iz,, and& [cf. ( 107) ] 
p = 0.3 as determined by averaging over g-10 tiontlgura- 

as a function of the order N, of shigularities retained in the expansion (42). tions. The computed values of the mean for N= 8, 16, and 
The percentage deviation for each quantity is calculated from its value at 32 are shown by circles. These mean values are, of course, 
NT = 7. Here, @= 0.3, N = 16, and a* = 0. The total number of unknowns related to the mean of8 for each bubble: the standard devia- 
used in the computation is N,(N, 4 2)N tion of 0 from its mean is shown by vertical bars. More pre- 
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2.4 I I= 
I 

FIG. 4. The leading-order term A, of the velocity ratio A,, [cf. (1) and 
( 107) ] as a function of the number of particles in the basic cell N. Each 
vertical bar represents two standard deviations ofthe amplitude of the bub- 
ble velocity from its mean [cf. ( 108) 1. Here, the particles are massless 
(p* = 0) and their concentration by volume is /3 = 0.3. 

cisely, the vertical bars are two standard deviations with the 
standard deviation (s.d.) def ined by 

(s.d.)2rVar*(0)2 =N-’ 2  (6”*$“) - ($)*(G). (108) 
CC=1 

FIG. 5. The added mass coefficient C, as a function of the particle volume 
concentrationp forp* = 0. The results for body-centered cubic arrays, ran- 
dom arrays, and the cell theory approximation of Zuber (Ref. IO) are all 
represented by the solid curve. The dashed curve is for simple cubic arrays. 

It should be  noted that this standard deviation is primarily a  
function of p  for random arrays and  should only weakly 
depend on  N. Since the results for A, and  its standard devia- 
tion change very little with N, all the subsequent  results were 
made  with IV = 16. 

F igure 5  shows C, for p* =‘O as a  function of 8. The  
results for a  random array are obtained by averaging over 
12-15 configurations with N = 16, with each configuration 
providing three estimates of C, corresponding to the three 
mutually perpendicular directions of G . The  results for the 
body-centered cubic array are virtually indistinguishable 
from those for the random arrays. For sufficiently small 
p( -0.03), the coefficient of O(p) in C, as determined 
from the numerical calculations for periodic arrays is slight- 
ly greater than that for random arrays, in agreement  with 
our dilute-array theoretical results described in the previous 
section. The  difference in the values of C, for the two arrays, 
however, remains very small for all values ofp up  to 0.5. (At 
small j3 values, C, for the body-centered cubic array is 
slightly larger whereas at larger fi values the random arrays 
have a  slightly larger value. ) Furthermore, it is interesting to 
note that the analytical formula (63) for C, for dilute peri- 
odic arrays also remains within 2% of the C, values for ran- 
dom arrays forpup to 0.5. Since this formula agrees with the 
well-known estimate given by Zuber” using a  cell approxi- 
mation, we conclude that this approximation is excellent. 
The  difference between C’ for simple cubic and  random ar- 
rays is also relatively small, so that we may conclude that C, 
is a  very insensitive function of the geometry of the array (at 
least for well-separated particle distributions). 

dependence of C, onp* is also very weak, as shown in F ig. 6. 
For small fi values (/?=0.03), the C, for random arrays 
withp* = co was found to be  greater than that of a  periodic 
array, and  C, for random arrays withp* = 0  was found to be  
smaller than that of the periodic array, in accordance with 
our dilute theory analysis [cf. (62)) (73)) and  (74) 1. The  
difference in C, values, however, remained small for larger fl 
values. The  difference between the C, values for p* = 0  and  
CO at fi = 0.3 is less than 8% and that at /3 = 0.5 is even 
smaller, 2.5%. Since different values of p* imply different 
relative velocity distributions among the bubbles, we con- 
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elude that C, is’s rather insensitive function of the velocity 
distribution as well. 

The magnitude of the fluctuations in the velocity of the 
bubbles from its mean plays an important role in the stability 
of bubbly flows. Figure 7 shows the variance of this quantity 
[cf. (78) ] as a function of/? for random arrays withp* = 0. 
These results have been obtained with N = 16 and are aver- 
aged over about 15 configurations for each fl. Unlike the 
case of C,, which exhibited only small variations among dif- 
ferent configurations with the same/j, deviations in the var- 
iance by as much as 50% among different configurations 
were, found to be common. Hence; it is important to average 
over a sufficiently large number of configurations in order to 
obtain reliable estimates of variance. The expression for the 
varidnce of dilute random arrays derived in Sec. III [cf; 
(80) J was verified from the detailed numerical calculations 
with:@ equal to 0.01 and 0.02. At such smalI@ values, the 
variations among different configurations is particularly 
large. In fact, we observed large fluctuations in the variance 
even with Nas great as 80 (with iV, = 1 and 3 ) . The calcula- 
tions for the variance were carried out oniy up to 8 = 0.5. 
The dashed curve in Fig. 7 is an extrapolation based on the 
assumption that the variance will become zero for fl close to 
0.62. 

The effect of surface tension on C, and the variance for 
random arrays withp = 0.3 is shown in Fig. 8. There is very 
iittle variation in C, or the variance as the nondimensional 
surface tension CT * is decreased from 00 to about 0.2. For 
smaller values of CT *, C, begins to increase slowly and there 
is a very rapid increase in the variance. In fact, the variance 
becomes comparable to unity by c * of about 0.12 so that the 
very notion of an. average added mass coefficient of the dis- 
tribution becomesmeaningless, As mentioned in the Intro- 
&&ion, such large variations in the bubble velocities arise 
due to shape-dependent resonances in the pairwise interac- 
tions of bubbles. 

0.03 k I I I I I I 

a.0 

FIG. 7. The velocity va?ianCe [cf. (78) ] as ii function offl for massless 
particlea (p* = 0). The solid line represents the computed values, the 
dashed line shaws the theoretical results for small p, and the dot-dashed 
curve is an extrapolation based on the assumption that the variance ap- 
proaches zero as ,&0.62. 

ETG. 8. The added mass coefficient and variance in the amplitude of the 
bubble velocity as a function of the nondimensional surface tension c * for 
impurities-free bubbhzs with/S = 6.3. 

The results for the Basset force coefficient C, for rigid 
particles withp* = 0 are shown in Fig. 9. In accordance with 
(73), the values for random arrays are slightly larger than 
for periodic arrays for small @. However, the difference 
between the body-centered cubic array and the random ar- 
ray is not great and, in fact, the formula Cb = l/( 1 -j3)” 
[cf. (62) ] for dilute periodic arrays gives better than 10% 
accurate estimates for&O.5. For simple cubic arrays, C, is 

I 1 I 
0.1 0.3 0.5 

P 

FIG. 9. The Basset force coefikient C, as a functionof.B for massless parti- 
cles (p* = II). The solid curve is for random arrays, the dashed curve is for 
the body-centered cubic array, and the dashed and dotted curve is for the 
simple cubic array. Note that these results for C, also apply to the viscous 
drag coethcient of impurities-free bubbles with (r * greater than about Q.2. 
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slightly lower than for random arrays at smaller fi values 
and begins to increase more rapidly for p > 0.4. We note that 
the difference in C, among all the arrays is rather small for p 
values of up to 0.4. The variation of C, with p* was also 
found to be very small. For example, the largest variation in 
C, values, which occurs for p = 0.5 andp* = 0 and CO, was 
found to be less than 5%. Finally, it should be noted that the 
results for C, with p* = 0 also apply to the viscous drag 
coefficient C, of impurities-free bubbles with ff * greater 
than about 0.2. 

The results for the viscous drag coefficient C: of rigid 
particles withy* = 0 are shown in Fig. 10. The CL of ran- 
dom arrays is slightly lower than for periodic arrays for P 
less than about 0.03. (The difference, however, is too small 
to be seen in the figure.) For p greater than about 0.05, CL 
for random arrays becomes greater than for simple and 
body-centered cubic arrays. Finally, C i for the simple cubic 
array begins to increase more rapidly for fi greater than 
about 0.35, beyond which point CL for random arrays be- 
comes smaller than for the simple cubic case. The estimate 
C; = ( 1 + 2@)/( 1 - ,@’ for dilute periodic arrays gives 
correct estimates within 10% for simple cubic arrays for 
/3<0.3 and for body-centered cubic arrays for j3~0.45. 

Vi. CONCLUSIONS 
In summary, our detailed calculation of the coefficient 

of added mass C, , Basset force C, , and viscous drag C, and 
CL suggests these quantities to be relatively insensitive func- 
tions of the geometry of the array (at least for well-separated 
particle distributions), the density ratio p*,- and the surface 
tension parameter o * (provided the latter is larger than 

FIG. 10. The viscous drag coefficient C ; for rigid particles withp* = 0 as a 
function ofp. The solid curve is for random arrays, the dashed curve is for 
the body-centered cubic array, and the dashed and dotted curve is for the 
simple cubic array. 

about 0.2). In particular, the simple estimates of these quan- 
tities for dilute periodic arrays given by Eqs. (61)-( 64) in 
Sec. III can be used with a reasonable degree of accuracy. 

After the original submission of this paper, a paper by 
Felderhof was published in which the added mass and drag 
coefficients of suspensions of particles undergoing small-am- 
plitude oscillatory motion are also studied.2” Felderhof s 
expressions for C, and C, depend, in addition to the volume 
fraction, on a single parameter ‘y, which he evaluates analyti- 
cally to order p for the case of dilute arrays by using the 
pairwise interaction theory. For the nondilute case, esti- 
mates of y are obtained by relating it to two statistical para- 
meters, the three-point correlation function & introduced 
by Berar? and recently evaluated by Torquato and LadoU 
and Sangani and Yao,’ and a constant s2 related to the Kirk- 
wood-Yvon integrals recently calculated by Cichocki and 
Felderhof.23 With these estimates of I& and s,, Felderhof 
calculates approximate values of C, for O<p<O.S and 
O<p* < 00. His results for the O(B) correction to C, are in 
perfect agreement with our Fig. 1. The numerical results for 
nondilute arrays are also in good agreement. For example, at 
p= 0.5, the difference is 8%. This agreement, however, 
does not constitute a very stringent proof of the correctness 
of Felderhof s approximations since, as was mentioned ear- 
lier, even the simple cell model of Zuber (which amounts to 
taking gz = s, .= 0) also gives estimates of C, within a few 
percentage points of our exact results. 

Felderhofs results for the viscous drag coefficient, on 
the other hand, appear to be inconsistent with ours. Unfor- 
tunately he does not present many details and it is therefore 
difficult to determine the source of this discrepancy. As a 
matter of fact, we believe that it is unlikely that C, and C, 
can both depend on the single parameter y. As our analysis 
shows, the presence of the Stokes layer around the surface of 
a particle affects the viscous pressure contribution on all the 
other spheres in the suspension and thus the determination 
of C, is rather involved. Felderhof s paper does not mention 
this important effect and we believe that this might be the 
origin of the difference. 
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APPENDIX: THE DERIVATIVES OF S, 
The function S, and its derivatives appearing in Eq. 

(42) are most efficiently evaluated by the use of the Ewald 
sum representation as given by Hashimoto,’ 

S,(x) =g-1’2Cy 1 n-(x---XL)2 j -T, 
> 

-- 
L fir V 

cos ( 2rk.x)) (Al) 
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where V is the volume of the basic cell, x,~~are the lattice putations. In Eq. (A I ) , P is an incomplete gamma function 
vectors, k the vectors of the reciprocal lattice; and { is an defined by 
arbitrary constant. Neither the value of S, nor those of its Q1 
derivatives depend, of course; on any particular choice of 

P*(p,x) = 
s 

exp( - .@jgfidg-, (AZ) 
1 

th& parameter. The value 5 = h ‘, ii being the side of the The above expression for S, may be differentiated in a 
basic cell, is found to be convenient for the numerical com- manner similar to that given in Ref. 19 to obtain 

.g,2v - 257d %os[27T(k.x+$)] r*(0,frgz2)ky-mKm cos ma?,, 

where [ (n - trz)/2] denotes the integral part of (n - m l/2 
and ylL, R, , Q, , K, and ep, are defined by 

YlL --Xl -XlLI R, cos (PL = x, - xzL, 

R, sin Cp, =x3 -x3,, k, = Kcos (pk, (A41 
k3 = KsincP,. 

The formula for differentiation according to the operator x, 
is similar except that the cosine terms are repiaced by sine 
terms. We have found that these relations&e computation- 
afly more efficient than those used in Ref; 9. 

With the use of the above expression, we can also deter- 
mine more komplicated derivatives of S1 . For example, 

4Az~1 =Am+n 1 S +a; c~‘~A,-, SI for m>n 

= A ,,,S, -I- (-a>~(a~-~a:~-‘V’)A,-nS~, 

where use has been made of 
= ;b(V’ - ~3: > and that V”S, = 0. 

(A51 
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