
Syracuse University Syracuse University

SURFACE SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and
Projects

College of Engineering and Computer Science

1995

Note on Algol and Conservatively Extending Functional Note on Algol and Conservatively Extending Functional

Programming Programming

Peter W. O'Hearn
Syracuse University

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

 Part of the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
O'Hearn, Peter W., "Note on Algol and Conservatively Extending Functional Programming" (1995). College
of Engineering and Computer Science - Former Departments, Centers, Institutes and Projects. 32.
https://surface.syr.edu/lcsmith_other/32

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=surface.syr.edu%2Flcsmith_other%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/32?utm_source=surface.syr.edu%2Flcsmith_other%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

J. Functional Programming 1 (1): ??{???, ?? 1995 c 1995 Cambridge University Press 1Note on Algol and Conservatively ExtendingFunctional ProgrammingPeter W. O'HearnySyracuse UniversityAbstractA simple Idealized Algol is considered, based on Reynolds's \essence of Algol." It is shownthat observational equivalence in this language conservatively extends observational equiv-alence in its assignment-free functional sublanguage.1 IntroductionIn \The essence of Algol," Reynolds (1981) presents a view of Algol as a call-by-name language based on the typed �-calculus, with \imperative" primitive types. Acentral feature of the design is the interaction between assignment and procedures.Side e�ects are wholly isolated in a primitive type comm of commands, and donot occur when computing a value of functional type. That is to say, side e�ectsin procedures are latent, in the sense that an e�ect occurs only by evaluating aprocedure call as a term of type comm. As a result, function types retain a genuine\functional character." For instance, the full � and � laws are valid equivalences inAlgol-like languages. This functional aspect of Algol has been emphasized stronglyby Reynolds (1981; 1988; 1992), and echoed in the works of Tennent (1989; 1991)and Felleisen and Weeks (1993).The purpose of this short note is to give a technical result further exemplify-ing this functional character. Speci�cally, observational (or contextual) equivalencein a simple Idealized Algol conservatively extends equivalence in a simply-typedassignment-free functional sublanguage. This means that two program fragmentsthat can be interchanged in all assignment-free programs without a�ecting observ-able behaviour can also be safely interchanged in any context in the full imperativelanguage. Thus, not only are �, �, and so on preserved, but so are all equivalencesfrom the assignment-free fragment of the language.The proof of conservativity utilizes denotational models. The interesting twist inthe proof is the use of a non-standard model for the Algol-like language. We wantto work with a model of the full imperative language in which semantic equalityconservatively extends equality in a standard domain-theoretic model of functionaly Research supported by NSF grant CCR-92110829.

2 Peter W. O'Hearnlanguages. It turns out that standard models of Algol-like languages are not suit-able because they contain what Reynolds calls \snapback" operations, which causebacktracking of state changes that require copying of the entire state (cf. (O'Hearnand Tennent, 1995; O'Hearn and Reddy, 1995) for discussion). These operations vi-olate the intuitive property of irreversibility of state changes, and Section 3 showsan example of where snapback invalidates an equivalence true in the assignment-free sublanguage. Thus, conservativity fails for the standard models. The mainstep in the proof is the formulation of a non-standard model for which a semanticconservativity result does hold.The result we seek concerns not only semantic equality, but observational equiv-alence; that is, equivalence in all program contexts. It can be (and is often) the casethat semantic equality and observational equivalence for a model and language donot match. In order to extend our result to observational equivalence we need towork with a fully abstract model of the assignment-free sublanguage, a model inwhich semantic and observational equivalence do coincide. For this we use Plotkin's(1977) fully abstract model of PPCF, a language with recursion and basic arith-metic constructs, and extended with a (determinate) parallel conditional. The proofdoes adapt easily to other functional sublanguages, including sequential PCF, sim-ply by working with term models. But since this adaptation should be clear fromthe form of the proof it seems reasonable, for the sake of simplicity, to show theresult utilizing the standard continuous-function model of parallel PCF. A fullyabstract model is not required for the full Algol-like language.I consider the result given here to be part of folklore. Amongst those with adetailed knowledge of \The essence of Algol," the result is I suspect either alreadyknown, or would become known soon after the question was considered. But it is apiece of folklore that deserves to be explicitly noted, especially in light of the growinginterest in integrating functional and imperative programming, e.g., (Swarup et al. ,1991; Wadler, 1990b; Wadler, 1990a; Peyton-Jones and Wadler, 1993; Guzm�an andHudak, 1990; Launchbury and Peyton Jones, 1995). Conservative extension resultsof the kind considered here have been a speci�c concern in (Odersky et al. , 1993;Odersky, 1994; Riecke, 1993; Riecke and Viswanathan, 1995).2 Idealized AlgolIdealized Algol extends simply-typed functional programming with primitive typesfor imperative features. We take the language PCF, a typed �-calculus with recur-sion and basic arithmetic constructs, as our representative pure functional language.The language IA (for Idealized Algol) extends PCF with two additional primitivetypes, the type comm of commands and the type var of storage variables. Alto-gether, the types of IA aret ::= nat j bool j var j comm j t! t :For simplicity, we only consider storage variables that hold natural-number values;variables for the booleans could easily be added. Though we will not do so here,in the presence of product types we could take comm as the only additional type,

Algol and Functional Programming 3beyond those of PCF, by de�ning var as syntactic sugar for (nat! comm)�nat(Reynolds, 1981).Many of the essential properties of IA can be immediately brought to light byconsidering a semantics for the types. In the following, each type t determines an!-complete partial order S[[t]] with a least element.S[[comm]] = S) S?S[[nat]] = S) N?S[[bool]] = S) T?S[[var]] = S) L?S[[t0 ! t]] = S[[t0]]) S[[t]]Here,) is is the continuous function space, T = ftt;�g is a two-point set (of truthvalues), L is a countably in�nite set (of locations), N is the set of natural numbers,and S is a suitable set of states.The striking point to notice is that the interpretation of the function type isexactly as in a domain-theoretic semantics of a purely-functional language. In com-parison, in most imperative languages such as Pascal, ML, or Scheme, the collectionof states would be used to interpred functions themselves. Furthermore { and thisis related to the interpretation of the function type { side-e�ects are wholly con-centrated in the type comm, since no other primitive types have the state in anoutput position. The nat and bool types are state-dependent, but in a read-onlyway. These aspects of the language are an example of what Strachey (1972) termedstructural properties, on display from the semantics of types alone, prior to consid-ering primitive operations or terms at all, let alone operational semantics.IA is an applied �-calculus with certain constants. An in�nite set of variablesxt : t, for each type t, is assumed, together with formation rules for �-abstractionand application: M : s! t N : sM N : t M : s�xt:M : t! sThe constants come in two groups. One group consists essentially of the operationsof PPCF, i.e., PCF together with a parallel conditional.succ;pred : nat! natifb : bool! b! b! bpif� : bool! � ! � ! �0 : nat0? : nat! booltt;� : boolYt : (t! t)! tIn the rule for ifb, the sequential conditional, b ranges over all primitive typesincluding var and comm. In the rule for pif�, the parallel conditional, � rangesover only nat and bool. In the rule for Yt, the recursion combinator, t ranges overall types of IA.

4 Peter W. O'HearnThe constants for the imperative fragment of IA are as follows.:= : var! nat! commderef : var! natskip : comm; : comm! comm! commnew : nat! (var! comm)! commnewv P creates a local storage variable `, initializes its contents to v, executesP (`), and de-allocates ` on completion. With this explanation the binding of anidenti�er denoting a local variable is accomplished using �, as in new v (�x:C).PPCF is a sublanguage of IA. The PPCF types are� ::= nat j bool j �! �:PPCF terms are build from variables x�, abstraction, application, and the constantsjust given (with the restriction that in ifb b is nat or bool). We will denote thestandard continuous-function model of PPCF by P[[�]]. The interpretation of typesis as usual: P[[nat]] = N?P[[bool]] = T?P[[�0 ! �]] = P[[�0]]) P[[�]]A P[[�]]-environment u is a type-respecting map that assigns a value u(x�) 2 P[[�]]to each variable x�, and the meaning of a PPCF term is a (continuous) map fromenvironments into values so that P[[M]]u 2 P[[�]] when M : �. All of the constantshave their usual interpretations, with pif� being the parallel conditional. We oftensuppress mention of environments when speaking of P[[c]], for c one of the givenconstants. We refer to (Plotkin, 1977; Gunter, 1992) for detailed de�nitions.Returning to IA, to complete the semantics of types we have to de�ne the set Sof states. There are a number of ways to do this, one of the simplest of which is toset S = L) (N + funusedg)The unused portion is used to de�ne the local variable declarator new. For this towork, we must assume that there is a partial function new : S * L that selects anew unused location if there is one, and is unde�ned if all locations are in use; seethe textbook (Tennent, 1991) for a more detailed discussion.An S[[�]]-environment u is a function associating an element u(xt) 2 S[[t]] toeach variable xt. The following semantic equations de�ne a continuous functionS[[M]] : E) S[[t]] for M : t, where E is the (componentwise ordered) domain of

Algol and Functional Programming 5environments.S[[xt]]u = u(xt) S[[Yt]]f = Fi2N f i(?)S[[M (N)]]u = S[[M]]u(S[[N]]u) S[[0]] s = 0S[[�xt:M]]u a = S[[M]] (u j xt 7! a) S[[0?]]a s = P[[0?]](a(s))S[[pred]] a s = P[[pred]] (a(s)) S[[tt]] s = ttS[[succ]] a s = P[[succ]] (a(s)) S[[�]] s = �S[[skip]]s = sS[[;]]a b s = � b(s0) if a(s) = s0 6= ?? if a(s) = ?S[[deref]]a s = � s(`) if a(s) = ` 6= ?? if a(s) = ?S[[:=]] a b s = � s(` 7! v) if a(s) = ` 6= ?, b(s) = v 6= ?? if a(s) = ? or b(s) = ?S[[ifb]]a b c s = 8<: b(s) if a(s) = ttc(s) if a(s) = �? if a(s) = ?S[[pif�]]a b c s = 8<: b(s) if a(s) = ttc(s) if a(s) = � or c(s) = b(s)? if a(s) = ?S[[new�]] e p s = 8<: (s0 j ` 7! unused) if new(s) = `; e(s) = v 6= ?;p(�s:`)(s j ` 7! v) = s0? otherwiseWith the various constants, we have suppressed mention of environments.3 Conservativity3.1 Semantic ConservativityThe model of IA given in the previous section is standard and, even if it is imperfect,it is certainly computationally adequate wrt a suitable operational semantics (Meyerand Sieber, 1988). Thus, we may consider the semantics as a reference point, forde�ning the language. However, the model S[[�]] is not conservative over P[[�]], as thefollowing example shows.Consider the type bool! bool.S[[bool! bool]] = (S) T?)) (S) T?)The two occurrences of the set S of states allow us to (semantically) evaluatedi�erent parts of an expression at di�erent states. An example is the functiong 2 S[[bool! bool]] de�ned by:g(e)s = e(s j ` 7! 0)where ` 2 L is a �xed location. Intuitively, g executes e after changing the state,by assigning 0 to `, and so there are two states, s and (s j ` 7! 0), that play a rolein the evaluation of the semantic expression g(e)s. To see this issue on the level of

6 Peter W. O'Hearnequivalences, consider the termsM = ifx (f(x))
 N = ifx (f(tt))
where f : bool! bool and x : bool are identi�ers, and
 = Ybool(�x : x) is thedivergent boolean. This is a valid equivalence in PPCF, P[[M]] = P[[N]], because inthe model f is applied directly to the value of x, which is a truth value. However,in the S[[�]] model f is applied to an argument of semantic type S) T?, and sothere is an opportunity to apply f in states where x is false. Speci�cally, de�nee 2 S[[bool]] by e(s) = �� if s(`) = 0,tt otherwiseNow, let s be a state where s(`) 6= 0. Then g(e)s = � while g(�s0:tt)s = tt.Therefore, if we consider an environment u where u(f) = g and u(x) = e, we getS[[M]]us = � while S[[N]]us = tt. So M and N are not equal in the model S[[�]], andsemantic equality in the standard model S[[�]] of IA is not conservative over equalityin the model P[[�]] of PPCF.The function g is an example of the \snapback" e�ect, so named because the statechange is not recorded globally in the semantics. For instance, in an environmentwhere f denotes function g, an assignment statement x := f(1) will leave location` unchanged (unless x denotes `) because the change to ` during evaluation of f(1)is temporary.We now present a semantic model that overcomes this speci�c di�culty per-taining to conservativity. The model does not address the general problem of irre-versibility of state change; see (O'Hearn and Tennent, 1995; Reddy, 1995; O'Hearnand Reddy, 1995) for discussion of this. The aim is to provide a simple (though adhoc) work-around, that is just enough to achieve conservativity.The main idea of the new semantics C[[�]] is to push the state as far outwardas possible, by interpreting the PPCF fragment in a way that, given any state s,\compiles" to a meaning in the PPCF model P[[�]] by reading values of variables.In intuitive terms, we will maintain the following property for the PPCF fragment:C[[M]]us = P[[M]]u0 where u0(x) is obtained by \looking up" u(x) in state sHere is the semantics of types.C[[�]] = S) P[[�]] for PPCF types �C[[comm]] = S[[comm]]C[[var]] = S[[var]]C[[t0! t]] = C[[t0]]) C[[t]] provided one of t0; t not a PPCF type.For PPCF types there is now only one occurrence of S, at the outermost level. Forexample, C[[bool! bool]] = S) (T?) T?).

Algol and Functional Programming 7The semantic equations for the PPCF constants must be altered in certain cases.C[[M (N)]]us = C[[M]]us(C[[N]]us) M;N of PPCF typeC[[�xt:M]]u s a = C[[M]] (u j xt 7! (�s 2 S : a)) �x:M of PPCF typeC[[succ]] s = P[[succ]]C[[pred]] s = P[[pred]]C[[if�]]s = P[[if�]]C[[pif]] s = P[[pif]]C[[Y�]] s = P[[Y�]]For the remaining constants and cases the equations are exactly as for S[[�]].The non-standard semantics of the PPCF fragment of IA can be easily seen tosatisfy the laws of the typed �-calculus. In fact, it is just an interpretation of thetyped �-calculus in the Kleisli category of a monad on the category of !-completeposets and continuous functions. The functor part of this monad is S) ({), andthe resultant Kleisli category is cartesian closed.Lemma 1 (Semantic Conservativity)For all PPCF terms M;N , P[[M]] = P[[N]] i� C[[M]] = C[[N]].ProofFor any PPCF term M and C[[�]]-environment u, a routine induction shows thatC[[M]]u s = P[[M]]u0, where u0 is a P[[�]]-environment such that u0(x) = u(x)s. As aconsequence, for any closed PPCF term M , we clearly have C[[M]] = �s 2 S:P[[M]],and so the result holds for closed terms. For open termsM and N the result followsby considering closures �~x:M and �~x:N , which are equal i�M and N are (by virtueof �-calculus laws).The reader may enjoy verifying that the terms M and N from the example atthe beginning of this section are indeed equivalent in C[[�]].3.2 Observational ConservativityObservational equivalence will be generated by observing convergence at groundtype. In the case of IA, this means a closed term of type comm or var, as well asterms of type nat or bool.De�nition 2 (Observational Equivalence)1. For PPCF terms M;N , M �PPCF N i� for all ground PPCF contexts C[�],P[[C[M]]] = ? () P[[C[N]]] = ?2. For IA terms M;N , M �IA N i� for all ground IA contexts C[�],S[[C[M]]] = ? () S[[C[N]]] = ?There are typical implicit provisos in this de�nition, such as that M and N be ofthe same type and that C[�] be a context that captures all their free identi�ers.As we indicated before, we take the standard model S[[�]] as de�ning IA. Themodel C[[�]], though non-standard, is adequate wrt this model.

8 Peter W. O'HearnLemma 3 (Adequacy)For all closed IA terms M of ground type, S[[M]] = ? i� C[[M]] = ?.ProofThe proof uses a standard \logical-relation argument" (Tennent, 1991; Gunter,1992) to connect the meanings in the two models. Given (complete and pointed)relations Rb � C[[b]] � S[[b]] on IA primitive types, we lift to higher types by theclauses:(p; p0) 2 R�!�0 () 8(a; a0) 2 R� :((�s : (ps)(as)); p0(a0)) 2 R�0(p; p0) 2 Rt!t0 () 8(a; a0) 2 Rt :(p(a); p0(a0)) 2 Rt0where one of t; t0 is not a PPCF type. Then taking Rb as the equality relation, thisgenerates a family of relations. One checks that each constant of IA is invariantunder the resulting relation, using the fact that each Rt is pointed and closedunder lubs of !-chains in the case of �xed-point. One then shows that the meaningsof all terms map related environments to related meanings in the usual way, andadequacy follows.This, together with lemma 1, yields the result.Proposition 4 (Observational Conservativity)For all PPCF terms M;N , M �PPCF N () M �IA NProofIf a PPCF context C[�] distinguishes M and N in P[[�]], say P[[C[M]]] 6= ? andP[[C[N]]] = ?, then by the semantic conservativity lemma we have C[[C[M]]] 6= ?and C[[C[N]]] = ?. The (direction then follows from the adequacy lemma.Conversely, if M �PPCF N then P[[M]] = P[[N]] by the full abstraction theoremfor P[[�]]. By the semantic conservativity lemma we get C[[M]] = C[[N]], and thenM �IA N follows from the adequacy lemma and the compositionality of C[[�]].The interesting part of this argument is the use of the non-standard model of IA.It shows that the presence of snapback operations is the only reason for the failureof conservativity in standard models of Algol. The result also illustrates, by way ofequivalences, some of the undesirable properties of snapback operations, and thusweaknesses in the models of, e.g., (Oles, 1982; O'Hearn and Tennent, 1995; Sieber,1994). Among the more advanced models of Algol-like languages, Tennent's (1990)model of speci�cation logic is the only one in which a semantic conservativity resultholds. 4 ConclusionReynolds's Algol, unlike Algol 60, disallows side e�ects in integer and booleanexpressions. This leads to a clear distinction between the types of phrases (integers,booleans) that are evaluated for the value they produce, and commands, which areevaluated soley for their side e�ects. Analogous conservation results typically failfor languages where there is a less strict separation. For instance, in ML or Scheme

Algol and Functional Programming 9procedure invocation is inextricably bound up with state change, and equivalencessuch as f(1)+f(2) � f(2)+f(1) that (viewed at an appropriate level of abstraction)hold in the e�ect-free subset { what is often referred to as the \pure" subset { donot hold in contexts where f can have a side e�ect. In versions of Algol that allowside e�ects in expressions, such as (Weeks and Felleissen, 1993), conservativity isalso lost, though the laws of the typed �-calculus remain valid.Some recent proposals for integrating imperative and functional programmingalso use types to isolate e�ects from the procedure mechanism (Peyton-Jones andWadler, 1993; Launchbury and Peyton Jones, 1995). A type T (a) is used for statetransformers that change the state and also return a value of type a: the type commin IA resembles T (unit) for a type unit with a trivial value. In these languagesinteger and boolean expressions are completely state-independent, whereas in IAexpressions are read-only or passive, in that they are state-dependent but side-e�ect free. The imperative �-calculus (Swarup et al. , 1991) is even closer to IA,but also uses state-independent expressions. In order to maintain equational laws ina setting that does not allow for passive or read-only types excessive sequencing ofdereferencing operations is required. This is one of the motivations for consideringgeneral notions of passivity (Reynolds, 1978; Wadler, 1990b; Reddy, 1994; O'Hearnet al. , 1995).Although every speci�c equation true in the functional sublanguage remains truein IA, it is important to note that not all \global properties" of equivalence arepreserved. One example is the context lemma(Milner, 1977): two closed termsM;Nof functional type in PPCF are equivalent i� M~V � N~V for all closed vectors ~Vof arguments. This property fails in IA already at the type comm! comm. Forinstance, the procedures �c : c and �c : c; c are not observationally equivalent, butclosed applicative contexts are not su�cient to distinguish them: up to equivalence,skip and
 are the only closed terms of type comm in IA. To create a distinguishingcontext we must use new, as innew 0 (�x : ([�](x := x+ 1)); if x = 1 then skip else
)This failure of the context lemma can perhaps be attributed to the presence ofimpure features in IA, though it is di�cult to make this attribution precise since\impure" is ill-de�ned. ReferencesGunter, C. A. 1992. Semantics of Programming Languages: Structures and Techniques.MIT Press.Guzm�an, J., and Hudak, P. 1990. Single-threaded polymorphic lambda calculus. Pages333{345 of: Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Science.Philadelphia, PA: IEEE Computer Society Press, Los Alamitos, California.Launchbury, J., and Peyton Jones, S. 1995. State in Haskell. Lisp and Symbolic Compu-tation. Special issue on State in Programming Languages. To appear.Meyer, A. R., and Sieber, K. 1988. Towards fully abstract semantics for local variables:preliminary report. Pages 191{203 of: Conf. Record 15th ACM Symp. on Principles ofProgramming Languages. ACM, New York.

10 Peter W. O'HearnMilner, R. 1977. Fully abstract models of typed �-calculi. Theoretical Computer Science,4, 1{22.Odersky, M. 1994. A functional theory of local names. In: Conf. Record 21st ACMSymp. on Principles of Programming Languages. ACM, New York.Odersky, M., Rabin, D., and Hudak, P. 1993. Call-by-name, assignment, and the �-calculus. In: Conf. Record 20th ACM Symp. on Principles of Programming Languages.Charleston, South Carolina: ACM, New York.O'Hearn, P. W., and Reddy, U. S. 1995. Objects, Interference and the Yoneda embedding.In: Proceedings of the Eleventh Conference on the Mathematical Foundations of Pro-gramming Semantics. To appear. Electronic Notes in Theoretical Computer Science,volume 1.O'Hearn, P. W., and Tennent, R. D. 1995. Parametricity and Local Variables. Journalof the ACM. To appear. Preliminary version appeared in Conf. Record 20th ACMSymp. on Principles of Programming Languages, Charleston, South Carolina, pages171{184. ACM, New York, 1993.O'Hearn, P. W., Power, A. J., Takeyama, M., and Tennent, R. D. 1995. Syntactic control ofinterference, revisited. In: Proceedings of the Eleventh Conference on the MathematicalFoundations of Programming Semantics. To appear. Electronic Notes in TheoreticalComputer Science, volume 1.Oles, F. J. 1982. A Category-Theoretic Approach to the Semantics of Programming Lan-guages. Ph.D. thesis, Syracuse University, Syracuse, N.Y.Peyton-Jones, S., and Wadler, P. 1993. Imperative Functional Programming. In:Conf. Record 20th ACM Symp. on Principles of Programming Languages. Charleston,South Carolina: ACM, New York.Plotkin, G. D. 1977. LCF considered as a programming language. Theoretical ComputerScience, 5, 223{255.Reddy, U. S. 1994. Passivity and independence. Pages 342{352 of: Proceedings, 9th AnnualIEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, LosAlamitos, California.Reddy, U. S. 1995. Global states considered unnecessary: Introduction to object-basedsemantics. Lisp and Symbolic Computation. Special issue on State in ProgrammingLanguages. To appear.Reynolds, J. C. 1978. Syntactic control of interference. Pages 39{46 of: Conf. Record 5thACM Symp. on Principles of Programming Languages. Tucson, Arizona: ACM, NewYork.Reynolds, J. C. 1981. The essence of Algol. Pages 345{372 of: de Bakker, J. W., and vanVliet, J. C. (eds), Algorithmic Languages. Amsterdam: North-Holland.Reynolds, J. C. 1988. Preliminary design of the programming language Forsythe. Tech.rept. CMU-CS-88-159. Computer Science, Carnegie Mellon University, Pittsburgh.Reynolds, J. C. 1992. Replacing complexity with generality: the programming languageForsythe.Riecke, J. G. 1993. Delimiting the scope of e�ects. ACM Conference on FunctionalProgramming and Computer Architecture, 146{158.Riecke, J. G., and Viswanathan, R. 1995. Isolating side e�ects in sequential languages.In: Conf. Record 22nd ACM Symp. on Principles of Programming Languages. ACM,New York. San Francisco.Sieber, K. 1994. Full abstraction for the second order subset of an Algol-like language (pre-liminary report). Technischer Bericht A 01/94, Universitaet des Saarlandes, February.Strachey, C. 1972. The varieties of programming language. Pages 222{233 of: Proceedingsof the International Computing Symposium. Cini Foundation, Venice. Also technicalmonograph PRG-10, Programming Research Group, University of Oxford, Oxford.Swarup, V., Reddy, U.S., and Ireland, E. 1991. Assignments for applicative languages.Pages 193{214 of: Hughes (ed), Functional Programming Languages and Computer Ar-chitecture. LNCS 523, Springer Verlag.

Algol and Functional Programming 11Tennent, R. D. 1989. Elementary data structures in Algol-like languages. Science ofComputer Programming, 13, 73{110.Tennent, R. D. 1990. Semantical analysis of speci�cation logic. Information and Compu-tation, 85(2), 135{162.Tennent, R. D. 1991. Semantics of Programming Languages. Prentice-Hall International.Wadler, P. 1990a. Comprehending monads. Pages 61{78 of: Proceedings of the ACMConference on LISP and Functional Programming.Wadler, P. 1990b. Linear types can change the world! In: Broy, M., and Jones, C. (eds),Programming Concepts and Methods. North Holland.Weeks, S., and Felleissen, M. 1993. On the orthogonality of procedures and assignmentsin Algol. In: Conf. Record 20th ACM Symp. on Principles of Programming Languages.Charleston, South Carolina: ACM, New York.

	Note on Algol and Conservatively Extending Functional Programming
	Recommended Citation

	tmp.1286816405.pdf.Mr5TE

