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A method for determining Stokes flow around particles near a wall
or in a thin film bounded by a wall and a gas-liquid interface

Shailesh S. Ozarkar and Ashok S. Sangania�
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Syracuse, New York 13244, USA
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A method for determining Stokes flow around particles near a wall or in a thin film bounded by a
wall on one side and a nondeformable gas-liquid interface on the other side is developed. The
no-slip boundary conditions at the wall are satisfied by constructing an image system based on
Lamb’s multipoles. Earlier results for the image systems for the flow due to a point force or a force
dipole are extended to image systems for force or source multipoles of arbitrary orders. For the case
of a film, the image system consists of an infinite series of multipoles on both sides of the film.
Accurate evaluation of the flow due to these images is discussed, including the use of Shanks
transforms. The method is applied to several problems including chains of particles, radially
expanding particles, drops, and porous particles. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2930667�

I. INTRODUCTION

The problem of determining velocity field around par-
ticles in close proximity of a wall or a gas-liquid interface
arises in the analysis of many physical and biological phe-
nomena including cell adhesion, slurry transport, and par-
ticulate flows in microfluidic devices. Understanding these
phenomena require numerical simulations of particle-wall
and particle-particle interactions involving hundreds or even
thousands of particles. For example, there is considerable
interest in simulating biofilms1–3 formed by bacteria such as
Escherichia coli. These are microcolonies in which bacteria
adhere to each other and to a substrate to protect them from
harsh environment while still providing adequate nutrients
for them to grow. Transport phenomena—flow and mass
transfer—play a role equally important as the cell biology in
determining the morphology of such microcolonies, and this
complex interplay of transport and biological factors can be
studied by numerical simulations of a flow involving many
particles near a wall.

Mo and Sangani4 and Sangani and Mo5 described an
efficient method for computing low Reynolds number hydro-
dynamic interactions in a system consisting of many par-
ticles. The velocity induced by a spherical particle is ex-
pressed in terms of Lamb’s multipoles, i.e., the coefficients
appearing in Lamb’s spherical harmonic solution of the
Stokes equations of motion.6,7 Repeated applications of
translation formulas for Lamb’s multipoles are then used to
combine the velocity induced by groups of particles resulting
in an algorithm for which the total computational effort in-
creases only linearly with the number of particles. The
method was devised for particles confined to a periodic unit
cell or particles in an unbounded space.

The present study is intended to give expressions that are
necessary so that the method of Sangani and Mo5 can be
extended to account for the presence of a rigid plane wall, a
nondeformable gas-liquid interface, or both. The method is
based on determining an image system for Lamb’s multi-
poles. Expressions for the velocity induced by a point force
or an array of point forces in a bounded or an unbounded
fluid medium have been given by several investigators in the
past.8–15 Blake10 gave an image system for a point force near
a plane. This image system consists of a point force, a force
doublet, and a source dipole. Blake and Chwang16 derived
image systems for higher-order singularities due to a point
torque, a source, or a source dipole. The present study gives
the image system for a general singularity of arbitrarily high
order. Results for the image system due to force multipoles
of arbitrary order were also given by Cichoki et al.17,18 The
main difference is that the present study gives the image
system in terms of Lamb’s multipoles that can be conve-
niently incorporated into the fast multipole algorithm de-
scribed by Sangani and Mo.5

The method is used to solve a number of simple flow
problems involving either a single particle, a chain of
particles, or particles in a thin liquid film bounded on one
side by a wall and by a gas-liquid interface on the other
side.

The organization of the article is as follows. In Sec. II,
we derive the image system for a particle near a wall. In Sec.
III, we consider several problems of single or multiple par-
ticle interactions with a wall. The results for a single particle
are shown to be in excellent agreement with those published
in the literature. In Sec. IV, we describe the image system for
a film bounded by a wall and a gas-liquid interface. In Sec.
V, we present results for spherical objects—rigid particles,
porous particles, and drops and bubbles—and in Sec. VI, we
summarize the important results.a�Electronic mail: asangani@syr.edu.

PHYSICS OF FLUIDS 20, 063301 �2008�

1070-6631/2008/20�6�/063301/16/$23.00 © 2008 American Institute of Physics20, 063301-1

Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.2930667
http://dx.doi.org/10.1063/1.2930667
http://dx.doi.org/10.1063/1.2930667


II. LAMB’S MULTIPOLES AND THEIR IMAGE
SYSTEMS

The velocity induced by a particle in an incompressible,
Newtonian fluid at small Reynolds number is given by
Lamb’s solution:

up�x� = �
n=1

�

�cn
sr2 � pn

s + bn
srpn

s + � � �r�n
s�� + �

n=0

�

� �n
s , �1�

where r=x−xp, xp denotes the center of the particle, r= �r� is
the distance of the point x from the center of the particle,

cn
s =

2 − n

2n�2n − 1�
, bn

s =
n + 1

n�2n − 1�
, �2�

and pn
s , �n

s , and �n
s are decaying spherical harmonics of order

−n−1 with their singularity at xp. These spherical harmonics
are expressed in terms of spherical coordinates centered at
xp:

�pn
s

�n
s

�n
s � = �

m=0

n

�
k=0

1 �Pnm
k

Tnm
k

�nm
k �r−n−1Ynm

k ��p,�p� , �3�

where Ynm
0 = Pn

m��p�cos m�p and Ynm
1 = Pn

m��p�sin m�p, Pn
m

being the associated Legendre function. The spherical polar
components are related to the Cartesian components ri by the
usual relations:

r1 = r�p, r2 = r	1 − ��p�2 cos �p,

�4�
r3 = r	1 − ��p�2 sin �p.

The constants Pnm
k , Tnm

k , and �nm
k will be referred to as

Lamb’s multipoles. Note that the components of the hydro-
dynamic force Fi, torque Li, and the particle-induced stresslet
Sij are related to the first few Lamb’s multipoles as given by
Mo and Sangani:4

F1 = − 4�	P10
0 , F2 = 4�	P11

0 , F3 = 4�	P11
1 , �5�

L1 = − 8�	T10
0 , L2 = 8�	T11

0 , L3 = 8�	T11
1 , �6�

S11 = −
4�	

3
P20

0 , S12 = 2�	P21
0 , S13 = 2�	P21

1 ,

S22 = 4�	�P20
0 /6 − P22

0 �, S23 = − 4�	P22
1 , �7�

S33 = 4�	�P20
0 /6 + P22

0 � ,

where 	 is the viscosity of the fluid. For the case when the
particle is a source of fluid, the mass flow rate ejected by the
particle is given by

Q = 4�
�00
0 . �8�

A. An image system for Pnm
k

Let us now determine the image system that accounts for
the presence of a wall. We choose the Cartesian coordinate
system with its center on the wall and with its x1 axis passing
through the center of the particle. Thus, we take

xp = hê1, �9�

h being the distance between the particle center and the wall,
and ê1 is the unit normal along the x1 axis. Let uim represent
the velocity induced by an image system so that the com-
bined velocity u=up+uim satisfies the no-slip boundary con-
dition at the wall, i.e., at x1=0. The velocity induced by the
image system will also be expressed in Lamb’s solution form
�Eqs. �1�–�3�� with Lamb’s multipoles denoted by Pnm

k,im,Tnm
k,im,

etc., and �r ,�p ,�p� replaced by �rim,�im,�im�. Here, rim=x
−xim, and xim=−hê1 is the location of the image singularities.

Since the governing equations of motion are linear, we
can determine the image system by considering one multi-
pole at a time. As explained in the Appendix, the image
system for the Pnm

k multipole requires, in general, a set of
seven image multipoles given by

Pnm
k,im = �− 1�n−m
− 2n3 + 2n2 + 2nm2 + n − 4m2

n�2n − 1� �Pnm
k , �10�

Pn+1,m
k,im = 2h�n + 1 − m��− 1�n−mPnm

k , �11�

Tnm
1−k,im = �− 1�1−k 2hm

n�n + 1�
�− 1�n−mPnm

k , �12�

Tn−1,m
1−k,im = �− 1�k2m�n − 2��n + m�

n2�n − 1��2n − 1�
�− 1�n−mPnm

k , �13�

�nm
k,im = h2�− 1�n−mPnm

k , �14�

�n−1,m
k,im = −

4h�n − 1��n + 1��n + m�
n�2n + 1��2n − 1�

�− 1�n−mPnm
k , �15�

�n−2,m
k,im =

�n + 1��n − 2��n + m��n − 1 + m�
n�n − 1��2n − 1�2 �− 1�n−mPnm

k . �16�

Let us now consider a few special cases. For n=1 and
m=k=0, corresponding to P10

0 =−F1 / �4�	�, or a point force
normal to the wall, the image system consists of only three
nonzero multipoles consisting of a point force, a force di-
pole, and a source dipole �P10

0,im=−P10
0 , P20

0,im=−4hP10
0 , and

�10
0,im=−h2P10

0 �. The resulting velocity due to the point force
and its image system is given by

ui =
P10

0

2

�i1

r
+

rir1

r3 � +
P10

0,im

2

 �i1

rim
+

ri,imr1,im

rim
3 �

+
P20

0,im

4

3ri,imr1,im

2

rim
5 −

ri,im

rim
3 � + �10

0,im
 �i1

rim
3 −

3ri,imr1,im

rim
5 � .

�17�

For n=m=1 and k=0, corresponding to a force parallel
to the wall, the image system consists of four multipoles
corresponding to a point force, a force dipole, a torque, and a
source dipole �P11

0,im=−P11
0 , P21

0,im=2hP11
0 , T11

1,im=−hP11
0 , and

�11
0,im=h2P11

0 �. The resulting velocities due to the point force
and its images are given by
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ui = −
P11

0

2

�i2

r
+

rir2

r3 � −
P11

0,im

2

 �i2

rim
+

ri,imr2,im

rim
3 �

−
3

2
P21

0,imri,imr1,imr2,im

rim
5 + �11

0,im
 �i2

rim
3 −

3ri,imr2,im

rim
5 �

− T11
1,im
�i2r1,im

rim
3 −

�i1r2,im

rim
3 � . �18�

Both of the above expressions agree with those given by
Blake and Chwang.16

B. An image system for Tnm
k

Using the same method as outlined in the Appendix, it
can be shown that the image multipoles for Tnm

k are given by

Pn+1,m
1−k,im = �− 1�1−k4m�n + 1 − m��− 1�n−mTnm

k , �19�

Tnm
k,im = 
1 −

4m2

n�n + 1���− 1�n−mTnm
k , �20�

�nm
1−k,im = �− 1�1−k2hm�− 1�n−mTnm

k , �21�

�n−1,m
1−k,im = �− 1�k2m�n + m��n + 2�

n�2n + 1�
�− 1�n−mTnm

k . �22�

The last equation applies to the case when n−1�m.
�nm

k,im must be set to zero when n
m or when k=1 and n
=0. The case n=1 corresponds to the image system for a
point torque. It can be shown that the image system given
above also agrees with that given by Blake and Chwang.16

C. An image system for �nm
k

Finally, the image system for �nm
k is given by

Pn+2,m
k,im = − 4�n + 1 − m��n + 2 − m��− 1�n−m�nm

k , �23�

Tn+1,m
1−k,im = �− 1�k
4m�n + 1 − m�

�n + 2��n + 1� ��− 1�n−m�nm
k , �24�

�nm
k,im = 
2�n + 3��n + 1 + m��n + 1 − m�

�n + 1��2n + 3�
− 1�

��− 1�n−m�nm
k , �25�

�n+1,m
k,im = − 2h�n + 1 − m��− 1�n−m�nm

k . �26�

The special case n=m=k=0, corresponding to a mass
source of fluid, requires an image system consisting of a
point force dipole, a mass source, and a source dipole
�P20

0,im=−8�00
0 , �00

0,im=�00
0 , and �10

0,im=−2h�00
0 �. The result-

ing velocity is, once again, in agreement with that given by
Blake and Chwang.16

D. An image system for nondeformable gas-liquid
interface

The image system for a particle near a surfactant-free
gas-liquid interface in the limit of large surface tension and
vanishingly small gas viscosity is relatively straightforward.

The boundary conditions at the gas-liquid interface are as
follows: �i� the velocity of the liquid normal to the interface
is zero and �ii� the tangential stress components are zero. For
a particle placed at a distance h below an interface, the image
multipoles at a distance h above the interface are simply
given by

Pnm
k,im = �− 1�n−mPnm

k , �27�

Tnm
k,im = �− 1�n−m+1Tnm

k , �28�

�nm
k,im = �− 1�n−m�nm

k . �29�

The motion of a sphere near a planar interface of two immis-
cible, viscous fluids of arbitrary viscosities has been exam-
ined by Lee et al.19 by using the method of images and
reflections. A general solution of the Stokes flow near a pla-
nar interface was also given by Palaniappan20 who gave ex-
plicit expressions for the first few image singularities. The
expressions given above are in agreement with those of these
investigators for the special case when the viscosity ratio of
the two fluids vanishes.

E. Determination of Lamb’s multipoles

With the image system described above for satisfying the
boundary conditions at a wall or at a gas-liquid interface, we
are now in a position to determine the hydrodynamic force
on the particles or their velocities. For this purpose, we first
need to determine Lamb’s multipoles for each particle by
satisfying the boundary conditions at the surface of all the
particles. The velocity at a point in the fluid can be expressed
as

u�x� = u��x� + �
p=1

N

up�x� + up,im�x� , �30�

where u��x� is the undisturbed flow velocity, i.e., the veloc-
ity field in the absence of the particles, N is the total number
of particles, and up,im is the velocity due to the image system
for particle p �denoted earlier for the sake of brevity by sim-
ply uim�.

To satisfy the boundary conditions on the surface of par-
ticle p, the flow induced by the images, undisturbed flow,
and all the other particles are expanded near the center of the
particle, i.e., near xp. Since the velocity due to these flows is
regular at xp, it can be expressed in terms of the regular part
of Lamb’s solution:

ur�x� = �
n=1

�

�cn
rr2 � pn

r + bn
rrpn

r + � � �r�n
r� + ��n

r� , �31�

with cn
r =c−n−1

s , bn
r =b−n−1

s , and

�pn
r

�n
r

�n
r � = �

m=0

n

�
k=0

1 �Pnm
k,r

Tnm
k,r

�nm
k,r �rnYnm

k ��p,�p� . �32�

The coefficients Pnm
k,r , Tnm

k,r , and �nm
k,r are related to the

image multipoles, the other particles’ Lamb’s multipoles and
their images, and the imposed flow parameters. The transla-
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tion formulas for converting the singular part of a Lamb
solution near one point to a regular part of Lamb’s solution
near another point were given by Sangani and Mo.5 �Equa-
tions �B9�–�B17� in their paper. Note that Eq. �B12� had a
typographical error; Yn+k,m

s on the right-hand side of that
equation must be replaced by Yn+k,m+l

s .�
Finally, an application of the boundary conditions on the

particle surface leads to the following set of equations �taken
from Mo and Sangani4 with slight modification�:

�nm
k,r +

�n + 1�a−2n+1

n�2n − 1��2n + 1�
fn

s Pnm
k +

a2

2�2n + 1�
fn

r Pnm
k,r = Vnm

k , �33�

�nm
k −

a2

2�2n + 1�
gn

s Pnm
k +

na2n+3

�n + 1��2n + 1��2n + 3�
gn

r Pnm
k,r = 0,

�34�

Tnm
k,r + a−2n−1hn

sTnm
k = �nm

k . �35�

For rigid particles, the coefficients fn
s , fn

r , gn
r , gn

s , and hn
s are

all unity and Vnm
k and �nm

k are related to the translational
velocity Vi and angular velocity �i through the relations
V10

0 =V1, V11
0 =−V2, �10

0 =�1, �11
0 =−�2, and �11

1 =−�3. Mo
and Sangani4 gave expressions for the coefficients fn

s , fn
r , etc.,

for other spherical objects �drops, bubbles, or porous par-
ticles� and these will be given in Sec. V where we consider
some problems concerning nonrigid particles. Finally, we
also note that the above set of equations �Eqs. �33�–�35��,
with their right-hand side modified, may also be used for
computing flow around charged particles with thin double
layers as was done by Kang and Sangani.21

Since the coefficients �nm
k,r , Tnm

k,r , and Pnm
k,r for a given

particle depend on the Lamb’s multipoles of all the other
particles and images, Eqs. �33�–�35� represent an infinite set
of equations. This set is truncated as suggested by Mo and
Sangani4 to result, in general, a total of �3Ns

2−1�N equations,
where Ns represents the maximum value of n used in Pnm

k

multipoles. Upon solving these equations, one determines the
particle multipoles and hence the force and torque acting on
the particles. In suspension problems, the force and torque
acting on the particles are specified and one determines the
translational and rotational velocities of the particles.

III. PARTICLES NEAR A WALL

To test the validity of the image system derived here and
to assess how the results depend on the truncation order Ns,
we have solved a number of problems involving one or more
particles near a wall or in an unbounded fluid and compared
the results to those available in the literature.22–33

We first consider the case of a single spherical particle of
radius a held fixed in a parabolic flow given by

u��x� = ��x1 + Gx1
2/2�ê2, p� = 	Gx2, �36�

� being the shear rate of the undisturbed flow at the wall, 	
the viscosity of the fluid, and 	G the pressure gradient. In
this case, all force and torque components vanish except for
F2 and L3. Since these quantities must be linear in � and G,
we express them according to

F2 = 6�	a��hf� + 1
2Gh2fG�, L3 = 4�	a3��t� + GhtG� .

�37�

Table I shows the convergence of the results for the non-
dimensional force and torque coefficients f�, fG, t�, and tG

with Ns for the special case of a touching particle, i.e., for
h=a. For this case, only Lamb’s multipoles �Pn1

0 ,Tn1
1 ,�n1

0 �
are nonzero, and the total number of unknowns reduces to
3�Ns−1�. Chaoui and Feuillebois28 used a bipolar coordinate
expansion technique to obtain accurate estimates �to 16 sig-
nificant digits� for the shear flow coefficients, i.e., for f� and
t�. The coordinate system chosen by these investigators did
not allow direct evaluation for the touching case and there-
fore the results were presented for h=a�1+��. Their results
for �=2�10−6 and 5�10−6 extrapolated to �=0 are also
shown in Table I. The results for the parabolic flow coeffi-
cients, i.e., for fG and tG, were obtained previously by Pasol
et al.29 As can be seen in Table I, our technique yields accu-
rate estimates of all these four coefficients. It may be noted
that prior to Chaoui and Feuillebois,28 O’Neill25 also ob-
tained estimates for f� and t�. His estimates �1.7009 and
0.943 993� are also in agreement with the results presented
here—a slight discrepancy is observed only in the fifth digit
for the value of f�.

Next, we consider the translational motion of a particle
in a fluid at rest at infinity. The hydrodynamic force and
torque acting on the particle are given by

F = − 6�	a��fv
w − fh

w�V · n̂n̂ + fh
wV�, L = 8�	a2th

wn̂ � V ,

�38�

where V is the translational velocity of the particle and n̂ is
the unit vector perpendicular to the wall and pointing into the
liquid. Table II shows the results for the coefficients fv

w, fh
w,

and th
w for selected values of h /a. All the three coefficients

diverge as h→a because of the lubrication forces �see Kim
and Karrila7 or Jeffrey and Onishi34� in the narrow gap re-
gion between the particle and the wall. The table shows the
results for Ns=2 and the smallest Ns for which the results of
numerical computations have converged to four significant
digits �the fifth digit being rounded�. We have included the
results for Ns=2 in the table for comparison sake since the
large-scale simulations of interacting particles are often car-
ried out with Ns=2. For h
1.5a, it may be necessary to add
lubrication forces explicitly and the force dipoles to account

TABLE I. Convergence of numerical results for the force and torque coef-
ficients for a sphere resting on a plane wall in a parabolic flow. The numbers
given in the last row are estimated from the results given by Chaoui and
Feuillebois �Ref. 28� and Pasol et al. �Ref. 29�.

Ns f� t� fG tG

2 1.655 40 0.941 18

5 1.700 35 0.940 88 1.946 43 0.993 27

9 1.700 39 0.943 29 1.943 16 0.991 39

17 1.700 57 0.943 87 1.942 89 0.990 88

25 1.700 60 0.943 95 1.942 84 0.990 81

1.700 618 23 0.943 986 50 1.942 809 37 0.990 770 52
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for the velocity they induce as was done by Sangani and
Mo.35 Since the force dipoles due to lubrication effects by
Sangani and Mo35 were expressed in terms of Lamb’s mul-
tipoles, the image system derived here could be readily used
to incorporate the lubrication effects while keeping Ns small.
Accurate estimates of fv

w for the indicated values of h /a in
Table II were previously determined by Brenner22 and for fh

w

and th
w by Chaoui and Feuillebois.28 Results presented here

are in perfect agreement with their investigations.
The corresponding results for the force and torque on a

particle translating near a gas-liquid interface are also pre-
sented in Table II, where the superscript G is used to indicate
the presence of a gas-liquid interface. For this case, n̂ is
defined as the unit normal pointing into the gas phase. Once
again, our results are in perfect agreement with those re-
ported in the literature—the case of a particle moving to-
wards the gas interface was treated by Brenner22 and the case
of a particle moving parallel to the gas-liquid interface, being
the same as two particles moving parallel to each other in an
unbounded fluid, was treated by Stimson and Jeffery.30

A. Chain of particles

Next, we consider two problems that are motivated by
their potential application to biofilms. As mentioned in the
Introduction, biofilms are formed by cells that adhere to each
other or to a substrate. The biofilms are generally heteroge-
neous with morphology that is governed by several variables
including the “stickiness” of the cells and the fluid shear
stress at the wall.

We shall explore the growth of biofilms through dy-
namic simulations of many particles in a future study. Here,
we consider a simple system of touching particles, which
form a straight rod as shown in Fig. 1, placed in a simple
shear flow �cf. Eq. �36� with G=0�. The particles are spheri-
cal and it is assumed that the bonds between a particle and its
neighbors can withstand specified shear or tensile forces as
will be explained below.

Figure 2 shows the hydrodynamic force acting on the
particles for two different cases. The forces are nondimen-
sionalized by 6�	au2

��x1
j �, x1

j being the distance between the
center of particle j and the wall. In the first case, a chain of
N particles is aligned perpendicular to the wall ��=0�. The
particle closest to the wall is labeled 1, and the farthest is
labeled N. In the second case, a chain of 2N particles is
aligned along the x1 axis with no wall. The particles at the
end of the chain are labeled as −N and N, and the symmetry
consideration requires that the force on particle −j is simply
the opposite of the force on particle j. In Fig. 2, we see that
for both cases, the particles at the end of the chains experi-
ence essentially the same force. This suggests that the effect
of the wall is unimportant for the particles far away from the
wall. On the other hand, the force on the particle closest to
the wall �j=1� is significantly greater than the force on a
particle in the middle of a chain twice the length in an un-
bounded flow. The image system, which consists of a nega-

TABLE II. Results for the force and torque coefficients for a particle moving parallel or perpendicular to the
wall or the free surface. The numbers in the brackets indicate Ns required to obtain the result accurate for four
significant digits. Also shown are the results for Ns=2.

h /a fv
w fv

G fh
w th

w fh
G th

G

3.7622 1.4127�2� 1.2471�2� 1.1738�2� 0.000 427 72�2� 0.908 58�2� 0.012 020�2�
1.1738�4� 0.000 421 61�4�

2.3524 1.8329�2� 1.4622�2� 1.3071�2� 0.002 813 9�2� 0.860 08�2� 0.028 961�2�
1.8371�3� 1.4634�3� 1.3079�5� 0.002 642 4�5� 0.860 14�3� 0.028 968�3�

1.5431 2.8940�2� 1.9410�2� 1.5554�2� 0.018 411�2� 0.798 91�2� 0.061 199�2�
3.0360�7� 1.9735�5� 1.5675�8� 0.014 649�8� 0.799 57�5� 0.061 312�5�

1.1276 4.9661�2� 2.9976�2� 1.9946�2� 0.112 76�2� 0.742 71�2� 0.100 09�2�
9.2516�15� 3.9867�15� 2.1515�17� 0.073 718�17� 0.745 65�8� 0.100 81�8�
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FIG. 1. A chain of touching particles in a simple shear flow.
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FIG. 2. Nondimensional hydrodynamic force on particles in a chain aligned
along the x1 axis ��=0�. The squares represent a case of chain of 15 particles
attached to a wall while the circles represent a chain of 30 particles in the
absence of a wall.
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tive force and higher-order multipoles, induces a net flow
that is along the positive x2 axis, causing the drag on the
particle to increase in the case of a particle attached to a wall.
In the absence of a wall, the other particles induce a flow
along the negative x2 axis, causing a decrease in the drag.
Finally, it may be noted that the nondimensional drag on a
single particle in a shear flow was about 1.7 �cf. Table I�
compared to about half that value for the first particle in a
chain of 15 particles. Thus, the drag coefficient decreases
with the number of particles in both wall-bounded and un-
bounded flows.

The force balance on particle N requires that the bond
between particles N−1 and N must exert a −FN force on
particle N and FN on particle N−1. The force balance on
particle N−1 then requires that the bond between particles
N−1 and N−2 must withstand a force equal to FN+FN−1.
Thus, in general, the bond between particles j and j+1 must
be able to withstand force B j given by

B j = �
k=j+1

N

Fk � 6�	�a2�bj
sês + bj

têt� , �39�

where ês and êt are unit vectors perpendicular and parallel to
the chain as given by

ês = − sin �ê1 + cos �ê2, êt = cos �ê1 + sin �ê2, �40�

and bj
s and bj

t are the nondimensional shear and tensile forces
on the bond between particles j and j+1. The required
strength for the bond connecting particle 1 to the wall will be
denoted by B0. Since this bond is always aligned along the x1

axis, the tensile and shear forces for this bond are the com-
ponents along, respectively, the x1 and x2 axes.

When N is large, the slender body theory36 may be used
to estimate the force on each particle and hence the bond
forces. For the �=0 case, the shear component of the bond
forces is expected to scale as N2 / log N. Figure 3 shows b1

s as
a function of N obtained by first determining the force on
each particle and then using Eq. �39�. Results for b0

s are
similar. For large N, these results are well fitted by the rela-
tions

b1
s = N2/�0.7227 log N + 0.3015� , �41�

b0
s = N2/�0.7406 log N + 0.234� . �42�

If we treat the chain of spheres as equivalent to a cylin-
der of radius a and length 2aN and neglect the effect of the
wall, then the use of the slender body theory would have
given us the coefficient of log N in the above expressions to
equal 3

4 , close to the fitted values.
Let us now suppose that all the bonds between the par-

ticles are identical and can withstand a maximum shear force
Sp, and that between the particle and the substrate can with-
stand Ss. Similarly, let the maximum tensile strengths be
given by, respectively, Tp and Ts. If the shear rate � is pro-
gressively increased, then when it exceeds a critical value �c,
to be determined, one of the bonds will break. For �=0, the
bond will break by exceeding the shear strength. If the bond
with the substrate is relatively weak, i.e., if B0

s /Ss�B1
s /Sp,

then the bond with the substrate will break first, and the
entire chain of particles will eventually be carried away by
the fluid �assuming that the particles are rough so that the
lubrication force remains finite for nearly touching particles�.
Otherwise, the bond connecting particles 1 and 2 will break.
The critical shear for this bond to break is given by

�c =
Sp

6�	a2b1
s �

�p

b1
s . �43�

If the shear rate is progressively increased beyond �c

given by the above expression, then the chain of particles 2
through N will rotate around an axis passing through the
center of particle 1 until the chain inclination angle � is such
that the shear force exerted by the bond equals Sp. This as-
sumes that the strong lubrication forces will keep the center
to center particle distance close to 2a and that the time scale
for forming new bonds is relatively short compared to the
time required for the chain to rotate by an angle �. The
critical shear rate for the chain to remain at an angle � is
therefore given by �c���=�p /b1

s��� with �p=Sp / �6�	a2�. To
determine the inclination of chain � as a function of the shear
rate, we therefore need to compute b1

s���. The results are
shown in Fig. 4. We see that as the shear rate is progressively
increased, the chain inclination angle also increases.

In order that the chain simply rotates around particle 1
when all bonds among particles can withstand equal strength,
the tensile force on bond 1 must not exceed its strength. This
requires that 6�	�c���a2b1

t ���
Tp. The results for b1
t are

shown in Fig. 5 for three different N. As one would expect,
b1

t goes through a maximum at �=45°, the principal exten-
sion axis for a simple shear flow. The condition for the chain
to rotate is given by b1

t /b1
s 
Tp /Sp. According to the slender

body theory, one expects b1
t ���
�b1

s�0� /2�sin � cos � and
b1

s���
b1
s�0�cos2 �, where b1

s�0� is the nondimensional shear
force on the bond between the first two particles when the
chain is aligned perpendicular to the wall that can be esti-
mated using Eq. �41�. Thus, b1

t /b1
s = �1 /2�tan �+O�1 / log N�.

Figure 6 shows the computed values of b1
t /b1

s for a few se-
lected values of N and the predicted asymptote for N→�.
Clearly, the chain of spheres will snap off if the shear rate is
sufficiently high so that the chain rotates to an angle �s given
by �s
 tan−1�2Tp /Sp� �in radians�. Figure 4 may then be used
to determine the shear rate beyond which the chain snap off
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FIG. 3. Nondimensional shear force on the bond between the first two
particles near the wall as a function of the number of particles in a chain
aligned perpendicular to the wall. The squares represent the numerical re-
sults while the dashed line represents a fit given by Eq. �41�.
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will occur. This maximum shear rate is given by �max

=�p /b1
s��s�. Substituting for �p, �s, and b1

s , the last being
estimated according to the slender body theory, we find that
the maximum shear rate for the model chain considered here
to remain attached to the wall is given by

�max =
�Sp

2 + 4Tp
2�

6�	a2N2Sp
�0.7227 log N + 0.3015� . �44�

B. Radially expanding particle

The second problem we consider is the problem of de-
termining the translational velocity of a growing spherical
particle near a wall. The boundary condition on the particle
surface is given by

u = U0n̂ + Vê1 at r = a , �45�

where n̂ is the unit outward normal on the particle surface.
We want to determine V such that the net force on the par-
ticle vanishes. The cells in biofilms consume nutrients �re-
ferred to sometimes as substrates� and grow. In a quiescent
fluid, the morphology of the biofilm will be controlled by
how the cells grow, divide, and rearrange. This provides a
motivation for first calculating in detail the flow due to a
single growing particle.

For this problem, �00
0 =−a2U0 �cf. Eq. �8��, and since the

force on the particle vanishes, P10
0 =0. The results of numeri-

cal computations for V /U0 for selected values of h /a are
given in Table III which shows the minimum Ns required to
determine V /U0 correct to four significant digits. The lubri-
cation effects due to an expanding particle are similar to that
of a translating particle to leading order as the gap between
the particle and the wall approaches zero. As a result,
V /U0→1 as �=h /a−1→0. The results of numerical com-
putations are well described by

V

U0
= 1 −

6

5
� log�1/�� + 0.0763� − 1.0785�2 log�1/�� , �46�

where the coefficient of the � log � term is derived by using
the lubrication analysis, while the coefficients of � and
�2 log � are obtained by fitting the numerical results. The
negative coefficient of the � log�1 /�� term in the above ex-
pression suggests that the distance between the wall and the
closest point on the surface of the particle will decrease with
time indicating that the particle surface will come arbitrarily
close to the wall as the time progresses.

When the particle is at great distances from the wall,
V /U0 decays as �a /h�2. The large distance asymptote is re-
lated to the velocity induced by the image system for �00

0

and can be shown to be given by

TABLE III. Translational velocity of a growing particle near a wall

h /a V /U0

1.05 0.562 95�2�
0.815 61�22�

1.1 0.532 76�2�
0.706 73�15�

1.5 0.319 37�2�
0.336 17�6�

2 0.182 70�2�
0.184 74�4�
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FIG. 4. The angle of inclination of a chain of particles as a function of the
nondimensional shear rate and the number of particles in a chain.
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FIG. 5. Nondimensional tensile force on the bond between the first two
particles near the wall as a function of the angle of inclination of the chain.
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FIG. 6. Ratio of nondimensional tensile force to shear force on the bond
between the first two particles near the wall as a function of the angle of
inclination of the chain. The dashed line represents an asymptote for N
→�.
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V

U0
=

3a2

4h2 . �47�

Figure 7 shows the results of numerical computations and the
above two limiting expressions.

IV. PARTICLES IN A THIN FILM

We now consider a more difficult problem of determin-
ing force and torque on a particle in a thin film bounded on
one side by a rigid wall and by a gas on the other side. The
wall is at x1=0, and the gas-liquid interface is nondeform-
able and at x1=H. The gas is assumed to have negligible
viscosity. The particle center is at �h ,0 ,0�. Let us first con-
sider the image system for the case when a point force in the
direction of the x2 axis is applied at �h ,0 ,0�. We then require
image multipoles at x1=−h to satisfy the no-slip conditions
at the wall and at x1=2H−h to satisfy the conditions at the
gas-liquid interface at x1=H. Introduction of the latter, how-
ever, results in the violation of the no-slip boundary condi-
tion at the wall and requires additional image multipoles at
x1=−2H+h. Likewise, additional multipoles are required at
x1=2H+h to correct the boundary condition at the gas-liquid
interface due to the multipoles at x1=−h. This leads to an
infinite number of image multipoles on both sides of the
liquid film as shown in Fig. 8. Since the image system for
�Pnm ,Tnm ,�nm� multipoles consists, in general, of multipoles
of order n+2, every second reflection on the wall side in-
volves multipoles that are two orders higher than the previ-
ous ones. Thus, the complete image system for a point force

does not only involve infinite number of images but also
multipoles that are increasingly higher order as the distance
of the image point from the wall or the gas-liquid interface
increases.

We should note here that a similar case of a fluid
bounded on either side by rigid walls has been investigated
by a number of investigators.11,15,37–40 This case also requires
an infinite number of images. To avoid the evaluation of
these images, Liron and Mochon11 extended the Stokes equa-
tions of motion to the region outside the walls and used a
method of Fourier transform to obtain Green’s function, i.e.,
the velocity field due to a point force. The resulting expres-
sion, which contains an infinite series of Fourier–Bessel in-
tegrals, is quite cumbersome and contains terms that con-
verge very slowly when the point force is near one of the
walls. Although Staben et al.37 recently regularized the
slowly converging integrals to devise an efficient method for
computing Green’s function, the expressions for Green’s
function remain cumbersome, and the method presented here
may provide an alternate approach to solve such problems.

The velocity induced by a point force singularity at
�h ,0 ,0� may be expressed as

ui�x� =
Fj

4�	
· vij�x�, vij = vij

� + vij
im, �48�

where vij
� corresponds to the unbounded flow, i.e.,

vij
��x� =

1

2
��ij

s
+

sisj

s3 � , �49�

with s=x−hê1, s= �s�, and vij
im is the contribution from the

images on the two sides of the film. We describe first a
method that can be used for determining accurately the ve-
locity field due to point force or higher-order singularities.
An approximate method for evaluating the same using
Shanks transforms41,42 is described in Sec. IV A.

To determine v22
im, we need to determine the regular co-

efficient �11
0,r at �h ,0 ,0� �cf. Eq. �32�� when the multipole P11

at that point is set to unity. We first determine the image
multipoles at x1=−h and determine contribution to �11

0,r from
those multipoles as described in Sec. II. Next, we determine
the multipoles on the gas-liquid side and determine their con-
tribution to �11

0,r. This is followed by the second reflection on
the wall side, and so on. This leads to a series whose first few
terms for the special case, h=H /2, are given below:

hv22
im = �

n=1

�

hcn

= − 0.3750 + 0.25 − 0.1719 − 0.1719 + 0.1019 + ¯ .

�50�

We have evaluated the first 240 terms �120 reflections on
each side of the film� in the above series. The 120th reflec-
tion involved an image system with multipoles Pn1 with n
=61. The series in Eq. �50� follows a regular sign pattern
���������� repeating every ninth term. The computa-
tional effort increases roughly linearly with the square of the
number of reflections. To estimate the contribution from
higher reflections, we found correlations for cn from the
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FIG. 7. Translational velocity of a force free particle growing near a wall.
The dashed and dotted lines represent asymptotic expressions in the two
limiting cases �Eqs. �46� and �47��.
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FIG. 8. Positions of the images for a particle bounded by a wall and a
gas-liquid interface.
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computed 240 terms by plotting every ninth term in the
above series. An example of this is shown in Fig. 9 where we
have plotted the product of the c8p+1 coefficient and distance
d8p+1 of the image contributing to that coefficient from
�h ,0 ,0� as a function 1 / p. The dashed line in the Fig. 9
represents a fit given by

c8p+1d8p+1 = A1 + B1/p + C1/p2, �51�

with A1=−0.645 33, B1=0.221 56, and C1=−1.252 39. The
R2 of the fit is better than 0.995. Since d8p+1 increases lin-
early with p, the above correlation suggests that c8p+1 de-
creases as 1 / p for large p.

We obtained similar fits for the other coefficients c8p+j

�j=2,3 , . . . ,8� with an R2 of 0.995 or better. The sum of the
coefficients of leading terms, i.e., Aj �i=1,2 , . . . ,8�, was
found to be −0.0066, or nearly zero, indicating that the sum
of every eight terms decreases roughly as 1 / p2, and that
series �50� will converge. We corrected each Aj by 0.0066 /8
so that the corrected sum of these coefficients is exactly zero
and refitted the terms c8p+j to determine modified Bj and Cj.
These modified fits for the coefficients cn were then used to
determine the contribution for n�240 to series �50�. This
procedure yielded

hv22
im = − 0.4497 �52�

for the velocity induced by the images at the point of force
singularity.

The same procedure was used to determine Green’s
function at other points in the fluid. Table IV gives Green’s
function at several points along the x2 and x3 axes �with x1

=h�. We shall compare next the results of numerical compu-
tations to an asymptotic expression for the velocity at large
distances from the point force.

At large distances from the force singularity, we expect
the velocity to become parallel to the wall. Thus, we write

ui = ūi�
�f1�x1�, i = 2,3, �53�

with


 = �x2
2 + x3

2�1/2 and f1 =
3

2H2 �2x1H − x1
2� . �54�

Note that ui given by the above expression satisfies the
no-slip condition at the wall and the stress-free condition at

the gas-liquid interface. The average of f1 over the film
thickness is unity so that ūi represents the film-averaged ve-
locity. The pressure satisfies Laplace equation in the x2-x3

plane, and for large distances, it is expected to be given by
the dipole approximation

p = 	A
x2


2 . �55�

The film-thickness-averaged velocity satisfies Darcy’s
equation according to which the velocity is proportional to
the pressure gradient. Thus,

ūi�
� =
A

�2
2x2xi


4 −
�i2


2 � . �56�

Substituting for the velocity and pressure fields into the
Stokes equation of motion then yields

�2 =
3

H2 . �57�

These expressions are similar to those given by Bhatta-
charya et al.43 for the flow between two walls. In fact,
Green’s function in the present problem is given by the sum
of Green’s functions for the case of two walls separated by
distance 2H and with point forces applied at �h ,0 ,0� and
�2H−h ,0 ,0�. By comparing with their expression �Eq. �31�
by Bhattacharya et al.43�, we find that

A = − �2/H�f1�h� = −
2

H
� 3

2H2h�2H − h�� . �58�

Figure 10 shows variation in hv22�h ,s ,0� and
−hv22�h ,0 ,s� versus s. The open squares and circles repre-
sent the results of computations presented in Table IV and
the dashed line represents the predictions based on the above
expressions. We have similarly computed the pressure along
the x2 axis and verified that the computed values are in ex-
cellent agreement with Eq. �55� with A given by Eq. �58�.

In summary, the method for computing the velocity due
to a point force or any other singularity consists in first
evaluating as many reflections as possible �typically 120 on
each side of the film�, correlating these terms, and using the
correlations to evaluate the contributions from the higher re-
flections.
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FIG. 9. The product c8p+1d8p+1 as a function of 1 / p. The dashed line repre-
sents Eq. �51�.

TABLE IV. Green’s function �22 at various points along the x2 and x3 axes
due to a point force F2=4�	 at �h ,0 ,0�. The results for s /h=0 correspond
to the regular part of Green’s function.

s /h h�22�h ,s ,0� h�22�h ,0 ,s�

0 −0.4497 −0.4497

2 0.2723 −0.0601

4 0.0974 −0.0626

6 0.0485 −0.0381

8 0.0292 −0.0226

10 0.0202 −0.0139

12 0.0154 −0.0088

14 0.0126 −0.0056
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A. Approximate methods for evaluating sums

We have seen that the series produced by the images on
the two sides of the film converges rather slowly. In large-
scale simulations, it will be necessary to seek methods that
may be used to determine Green’s function or its derivatives
at lower computational cost. The convergence of a series
may often be accelerated through an application of a suitable
transform. A number of transforms for evaluating a series are
described by Shanks.41,42 Let

An = �
p=1

n

cp �59�

be the sum of the first n terms of a series. Then one may
transform the original sequence �An� to a new sequence �Bk,n�
�n=k ,k+1,k+2, . . . � by the kth order transform defined by

Bk,n =

�
An−k · · · An−1 An

�An−k · · · �An−1 �An

�An−k+1 · · · �An �An+1

· · · · · · · · · · · ·

�An−1 · · · · · · �An+k−1

�
�

1 · · · 1 1

�An−k · · · �An−1 �An

�An−k+1 · · · �An �An+1

· · · · · · · · · · · ·

�An−1 · · · · · · �An+k−1

�
, �60�

where �An=An+1−An.
The resulting sequence generated through such a trans-

form is denoted in the operator form by ek�An�. The simplest
and well-known transform corresponds to k=1 for which

B1,n =
An+1An−1 − An

2

An+1 + An−1 − 2An
. �61�

It is often found that the transformed sequence �Bk,n�
converges more rapidly than the original sequence �An� �pro-
vided, of course, that the series is convergent� as the trans-
formation may reduce oscillations or “noise” from the origi-
nal series. Further noise from the transformed series may be

reduced by repeated application of the transform. Thus, for
example, ek

p�An� refers to a sequence generated by applying
the ek transform p times on the sequence �An�. Note that a
finite sequence �An� with n�N reduces to a sequence of N
−2kp numbers upon application of ek

p. Given a finite number
of terms in a series, one may experiment with different com-
binations of k and p to determine an efficient algorithm for
estimating an infinite series.

Table V shows the results of applying various transforms
to the series for evaluating the regular part of Green’s func-
tion v22

im. For the purpose of comparison, we took the contri-
butions from the first 33 reflections on the wall and gas sides.
cn corresponds to the combined contribution from the first n
reflections on the two sides of the film. Due to space limita-
tions, only nine terms are shown in the table even though the
results indicated used n up to 33. Also, only five significant
digits are shown in the table for each result even though we
used a double precision arithmetic. The table shows the se-
quence resulting from the ek �k=1,2 ,4� transform applied
several times. With the total of 33 terms, it is possible to
apply ek transform 16 /k times to yield a single estimate. The
estimates thus obtained are shown in Table VI. Also shown
in that table are the errors in the resulting estimates when
compared to the accurate estimate obtained by the method
described earlier. We see that the least error occurs when the
e4 transform is used. It is possible that this particular trans-
form is better since the sign pattern for the coefficients cn has
a frequency of 4, corresponding to a regular sign pattern
repeating after every four reflections on each side, or a total
of eight terms.

We have also compared the estimates of Green’s func-
tion obtained by using the ek

p transform with a limited num-
ber of reflections to the more accurate estimates obtained

2 4 6 8 10 12 14 16
0.00
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hs /

),0,(22 shhv−
)0,,(22 shhv

asym pto te

FIG. 10. The variation in Green’s function v22 with s /h. The dashed line
represents the predictions based on Eqs. �53�–�58�.

TABLE V. Sequences resulting from the application of Shanks transforms to
the series for evaluating the regular part of Green’s function, �22

m .

n cn An e1
12�An� e2

6�An� e4
3�An�

13 −0.003 29 −0.406 33 −0.403 51 −0.417 06 −0.444 70

14 −0.043 87 −0.450 20 −0.452 44 −0.449 49 −0.446 95

15 −0.002 77 −0.452 97 −0.455 95 −0.453 23 −0.447 15

16 −0.039 88 −0.413 09 −0.410 56 −0.433 66 −0.446 60

17 −0.002 39 −0.415 48 −0.413 56 −0.434 64 −0.447 89

18 −0.033 94 −0.449 42 −0.451 04 −0.436 81 −0.446 98

19 −0.002 10 −0.451 52 −0.453 65 −0.437 66 −0.446 97

20 −0.032 03 −0.419 49 −0.417 61 −0.438 64 −0.446 96

21 −0.001 87 −0.421 36 −0.419 92 −0.440 59 −0.447 02

TABLE VI. Estimates of �22
im using various Shanks transforms and the re-

sulting error.

h�22
im % error

e1
16�An� −0.412 76 8.96

e2
8�An� −0.438 42 2.58

e4
4�An� −0.447 08 0.59

e8
2�An� −0.442 11 1.72
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earlier at other positions along the x2 and x3 axes �cf. Table
IV�. It was found that the e6 transform gives slightly better
estimates than e4 at most positions. With only 25 reflections
on each side, e6

2 gives estimates that are accurate to within
2% for the most cases examined.

Although the use of the ek transform reduces the compu-
tational time substantially �note that, as mentioned earlier,
the number of multipoles required by the image system in-
creases with the number of reflections, and hence the com-
putational cost of cn roughly increases in proportion to n and
the total computing time of Green’s function increases as N2,
N being the total number of reflections�, we were initially
surprised to find that the error did not decrease exponentially
with p, as was the case in the number of series reviewed by
Shanks.42 We surmise that these nonlinear transforms work
extremely well when the functional dependence of cn on n is
relatively simple. In the present problem, the image system
continues to become more complex with increasing n and
these trends are apparently not captured very efficiently with
very few terms. To support this hypothesis, we have tested
the case when all the higher-order multipoles are ignored and
only the point force images are kept in all the reflections. In
this case, we found that even with 17 reflections, the re-
peated application of the transforms gave results that were
accurate to six significant digits.

V. RESULTS FOR THE FORCE AND MOBILITY
OF SPHERICAL OBJECTS

To determine the force or torque on particles in a film,
we need to determine the regular coefficients �Pkl

r ,Tkl
r ,�kl

r � at
the center of a particle in terms of Lamb’s multipoles
�Pnm ,Tnm,�nm� at the center of the same particle or any other
particle in the liquid film. The procedure described in the
previous section for determining �11

k,r due to a P11
k multipole

at �h ,0 ,0� can be used to compute all regular coefficients in
terms of Lamb’s multipoles. Once these coefficients are de-
termined, it is relatively straightforward to compute the force
or torque on spherical objects. The contributions from the
lower-order multipoles �n�1� to lower-order regular coeffi-
cients were obtained by the accurate method described in
Sec. IV in which up to 240 terms were evaluated and corre-
lated to estimate the remaining terms in the series. For
higher-order multipoles, we simply used the estimates from
the first 240 reflections. All calculations to be presented be-
low were carried out with Ns=9 which was sufficient for
most cases except for a /h close to unity.

A. Rigid particles

We first consider the problem of a particle held fixed at
x1=h=H /2 in a film �cf. Fig. 8� with parabolic flow at infin-
ity given by

ui
� =

3U

2H2 �2x1H − x1
2��i2, �62�

where U is the film-thickness-averaged velocity of the fluid.
The force and torque acting on the particle are written as

F2 = 6�	aUfp/f1
s , L3 = 4�	a3�3tp/h1

s , �63�

with �3=3U /4h being the vorticity of the undisturbed flow
at the particle center. f1

s and h1
s are the coefficients that ap-

pear in Eqs. �33�–�35�. For rigid particles, both these coeffi-
cients are unity but we include them in the expressions for
the force and torque as they will be useful later when we give
results for porous particles and drops. The results of compu-
tations for the force and torque coefficients for selected val-
ues of a /h are shown in Table VII. The force coefficient
increases monotonically from 9

8 at a /h=0 to about 1.9 at
a /h=1. For small values of a /h, the force coefficient can be
shown to be given by the asymptotic relation

fp =
9/8

1 + �3/2�v22
ima/f1

s + O�a/h�2

=
9/8

1 − 0.6745a/�hf1
s� + O�a/h�2 . �64�

The factor 9
8 in the numerator corresponds to the undis-

turbed flow evaluated at the center �x1=h=H /2� of the par-
ticle while v22

im is related to the velocity induced by the image
system at the particle center �cf. Sec. IV�. As seen in Fig. 11,
the asymptotic relation gives accurate results up to a /h
=0.3.

To check the results of our analysis by an independent
method, we also obtained the force coefficient by using a
standard computational package due to FLUENT 6.3 which
employs a finite volume method. The computational domain
assumed periodicity along the x3 axis with a period S. The

TABLE VII. The force and torque coefficients fp and tp for a rigid particle
placed in a parabolic flow in a film

a /h fp tp

1 1.9 0.3

0.9 1.85 0.36

0.7 1.71 0.567

0.5 1.55 0.753

0.3 1.38 0.888

0.1 1.20 0.971

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1.0

1.2
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ha

FIG. 11. The force coefficient fp for a rigid particle placed in a parabolic
flow in a film as a function of a /h. The dashed line represents the
asymptotic expression for small values of a /h.
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upstream condition of uniform flow �u2=U� was applied at
x2=−S /2 while the downstream condition on the plane x2

=S /2 was specified to correspond to the “outflow condition.”
The Reynolds number was set to 0.005 and a /h was set to
0.5. We carried out computations for two cases: S=10h and
20h. For the latter case, the flow domain was divided into
400 000 cells and the computational time on Dell Precision
360 was about 7 h. The computed force coefficients for these
two cases were, respectively, 1.79 and 1.70. Assuming that
these forces vary linearly with h /S, we estimated fp to equal
to about 1.61 for the case of a single particle in an un-
bounded �in the x2 and x3 directions� film. This compares
well to the 1.55 obtained by the present method.

The results for the torque coefficient tp are given in
Table VII. This coefficient decreases monotonically from its
value of unity at a /h→0 to about 0.3 at a /h=1. The image
system produces vorticity at the particle position that is op-
posite to that of the undisturbed flow, and this is responsible
for the reduction in the torque as a /h increases. The
asymptotic formula

tp = 1 − 0.236afp/�hf1
s� + O�a/h�2 �65�

with fp given by Eq. �64� is shown to be in excellent agree-
ment with the computed results as can be seen in Fig. 12.

It is interesting to compare the results for the force and
torque on a particle in a thin film to those for a particle
placed in an unbounded parabolic flow studied in Sec. III.
Taking �= 3

2 and G=− 3
4 in Eq. �36� yields the same undis-

turbed flow as that given by Eq. �62�. If the flow for x1�H is
entirely neglected, then fp computed here will equal 3

2 f�

− 3
8 fG. Using the values of f� and fG from Table I yields

3
2 f�− 3

8 fG=1.82 for a particle resting on a plane wall. This is
less than 5% lower than the computed value of fp=1.9 for a
particle in a film, suggesting that the bounded nature of the
film flow is not very important as far as the force is con-
cerned. The torque on the particle in a film on the other hand
is significantly different. If we had used the results from the
unbounded parabolic flow, we would have obtained tp=2t�

− tG=0.89 compared to the 0.3 obtained for a particle in the
thin film. As mentioned above, the image system for the thin

film induces vorticity that is opposite to the vorticity of the
undisturbed flow. This may be responsible for the significant
difference in the results for the two cases.

Next, we consider the problem of determining the force
and torque on a translating and rotating particle through a
quiescent film. The force and torque acting on the particle
with velocity V2ê2 and angular velocity �3ê3 are expressed
as

F2 = − 6�	a�f tV2 − afr�3�/f1
s ,

�66�
L3 = 8�	a2�ttV2 − atr�3�/h1

s .

As mentioned earlier, f1
s and h1

s are unity for rigid particles.
Note that the reciprocal theorem requires that fr= 4

3 tt. Thus,
we need to determine only f t, tt, and tr. The results of com-
putations for these coefficients are shown in Figs. 13 and 14.
The lines in these figures correspond to the asymptotic re-
sults that will be discussed next.

In the limit �= �h−a� /a→0, the force and torque coef-
ficients diverge due to lubrication effects in the gap between
the wall and the surface of the particle. No lubrication effects
arise in the gap between the particles and the gas-liquid in-
terface. Chaoui and Feuillebois28 give asymptotic expres-
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FIG. 12. The torque coefficient tp for a rigid particle placed in a parabolic
flow in a film as a function of a /h. The dashed line represents asymptotic
expression for small values of a /h.
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FIG. 13. The coefficients f t �squares� and tr �circles� for a translating or
rotating rigid particle as a function of a /h. The dashed and dotted lines
represent asymptotic expressions in the two limiting cases.
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FIG. 14. The coefficient tt for a translating particle in a film as a function of
a /h. The squares are the results of computations and the lines are the two
asymptotes.
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sions for the force and torque coefficients in the limit �→0
for the case of a particle translating or rotating parallel to a
wall. Those expressions are applicable here but with different
O�1� constants. Combining their results with our numerical
results, we obtain

f t = − 8
15 log � + 1.092 − 64

375� log � + 0.352� , �67�

tt = − 1
10 log � − 0.04 105 − 43

250� log � − 0.095� , �68�

tr = − 2
5 log � + 0.4366 − 66

125� log � + 0.107� . �69�

In Eqs. �67�–�69�, the coefficients of log � and � log � are
taken from Chaoui and Feuillebois28 while the O�1� and
O��� are estimated from our numerical results for a /h equal
to 0.85 and 0.9. In the limit a /h→0, it can be shown that

f t = 8
9 fp, �70�

tt = 0.0779�a/h�2fp/f1
s , �71�

tr =
1

1 − 0.2204�a/h�3/h1
s . �72�

As seen in Figs. 13 and 14, the above asymptotic results
compare well to the computed results for f t, tr, and tt.

The above results can be combined to determine the
translational and rotational velocities of a freely moving
�force and torque free� particle due to imposed parabolic
flow �cf. Eq. �62��. The results are given in Figs. 15 and 16.
We see that the velocity of the particle is greater than the
mean velocity of the fluid for a /h less than about 0.7. This is
because the center line velocity is greater than the mean ve-
locity of the fluid. The rotational velocity is roughly equal to
half the vorticity of the undisturbed flow at the particle cen-
ter �3U /8h�. We also see that V remains greater than �a for
the entire range of values of a /h indicating that the surface
on the particle closest to the wall will have a positive veloc-
ity component along the x2 axis. For larger values of a /h,
both translational and rotational velocities begin to hinder

due to the presence of the wall. The exact expressions and
the asymptotic expressions in the limit �→0 �setting f1

s =h1
s

=1 for rigid particles� are given by

V2

U
=

fptr + �3a�/�8h�frtp

f ttr − frtt →
0.775

0.6806 − 0.2 log �
, �73�

�3h

U
=

�h/a�fptt + �3/8�f ttp

f ttr − frtt →
0.25

0.6806 − 0.2 log �
. �74�

The errors on the extreme right side of the above expressions
are O�1 / log ��. The lines in Figs. 15 and 16 represent vari-
ous asymptotic results. For small a /h, the asymptotic expres-
sions given earlier for the coefficients fp, f t, tp, etc., were
substituted in the middle expressions in Eqs. �73� and �74�.
These are indicated by the dotted lines. In the opposite limit,
i.e., for �→0, we have shown two asymptotic results. The
first is obtained again from the middle expressions in the
above equations by substituting fp=1.9 and tp=0.3 corre-
sponding to the results for these coefficients for a /h=1 and
the asymptotic expressions Eqs. �67�–�69� for the rest of the
force and torque coefficients. These asymptotic results are
given by the dashed line. The dot-dashed line represents the
simplified form of the resulting asymptotic expressions given
on the extreme right-hand side of Eqs. �73� and �74�.

B. Drops and bubbles

Having determined the regular coefficients �Pkl
r ,Tkl

r ,�kl
r �

in terms of multipoles �Pnm ,Tnm ,�nm� through the image
system, it is relatively easy to determine the force or mobility
of other spherical objects or slightly nonspherical particles.
We shall present here the results for porous particles and for
drops although they could be equally applied with slight
modification to moderately deforming drops or charged par-
ticles.

For the motion of drops or bubbles under conditions of
small Capillary numbers, for which the surface tension is
large enough to keep the fluid particles nearly spherical, the
boundary conditions simplify to continuity of tangential
stress and velocity components at the drop-fluid interface.
The normal component of the velocity satisfies uini=Vini at
the interface, Vi being the translational velocity of the drop.
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FIG. 15. The nondimensional translational velocity V2 /U as a function of
a /h. The dotted line and dashed line represent the asymptotic results in the
limit a /h→0 and a /h→1, respectively. The dot-dash line represents the
simplified asymptotic expression given by Eq. �73�.
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FIG. 16. The nondimensional rotational velocity �3h /U as a function of
a /h. The dotted line and dashed line represent the asymptotic results in the
limit a /h→0 and a /h→1, respectively. The dot-dashed line represents the
simplified asymptotic expression given by Eq. �74�.
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The resulting equations from the application of the boundary
conditions can be put in the form given by Eqs. �33�–�35�
with

fn
s =

1 + �−1

1 + 2�−1/�2n + 1�
, �75�

fn
r = gn

s = �1 +
2

��2n + 1��−1

, �76�

gn
r =

1 − �−1

1 + 2�−1/�2n + 1�
, �77�

hn
s = 1 +

2n + 1

�� − 1��n − 1�
�n � 1� , �78�

where �= 	̂ /	 is the ratio of viscosities. The above expres-
sions, taken from Mo and Sangani,4 correct one important
typographical error: expression �76� for fn

r and gn
s had the

inverse sign missing. The case n=1 in hn
s can be treated

separately by requiring that T1m=0, which is equivalent to
requiring that the net torque on the fluid particles must be
zero. Table VIII gives the results for the translational veloc-
ity of a force and torque free fluid particle in a parabolic
imposed flow. We see that the velocity variation with a /h
reduces as the viscosity ratio is decreased. For bubbles ��

0�, the nondimensional velocity varies only by about 15%
as a /h is varied from 0 to 0.9.

C. Porous particles

Porous particles are often used as models for proteins
and macromolecules. We assume that the flow inside the po-
rous particles satisfies the Brinkman equation

��ij

�xj
� 	�2ui −

�p

�xi
=

	ui

k
,

�ui

�xi
= 0, �79�

where �ij is the stress tensor inside the particles, and k is the
Darcy permeability of the porous medium. The flow outside
the particles, of course, satisfies the Stokes equations of mo-
tion. The boundary conditions at the particle surface are the
continuity of velocity and traction. Using a solution in terms
of spherical Bessel functions to describe the flow inside a
particle and Lamb’s solution for the flow outside the particle,
and applying the boundary conditions at r=a yields Eqs.
�33�–�35� with the following expressions for the coefficients
fn

s , fn
r , etc., that appear in Eqs. �33�–�35� �Mo and Sangani4�:

fn
s = 1 +

2n − 1

�Gn���
+

n�2n − 1��2n + 1�
�n + 1��2 , �80�

fn
r = gn

s = 1 −
2

�Gn���
+

2�2n + 1�
�2 , �81�

gn
r = 1 −

2n + 3

�Gn���
+

�2n + 1��2n + 3�
�2 , �82�

hn
s = �1 − �2n + 1�Gn����−1�−1, �83�

where �=a /	k and Gn���= in��� / in−1���. Here,in���
��� /2��1/2In+1/2��� is the modified spherical Bessel func-
tion. The limit �→� corresponds to the case of a rigid,
nonporous particle. �Note that Eq. �81� corrects the expres-
sion given by Mo and Sangani4 in which � in the denomi-
nator in the second term on the extreme right side of Eq. �81�
was missing.�

The force and torque on a particle placed in an undis-
turbed parabolic flow given by Eq. �62� are given by Eq.
�63�. For a porous particle, f1

s and h1
s can be determined by

substituting n=1 in Eqs. �80� and �83�, respectively. In some
applications, it is of some interest to estimate the average
velocity of the fluid through the porous particle. The average
velocity is given by

�ūi� =
3

4�a3�
V

uidV = �9Ufp�/�2f1
s�2� , �84�

where V is the volume occupied by the particle. In deriving
the last equality in the above expression, use was made of
the fact that ui is related to the divergence of stress tensor �cf.
Eq. �79�� and that the integral of the latter can be related to
the force by means of the divergence theorem.

Table IX gives the results for the force and torque coef-
ficients fp and tp for a porous particle placed in a parabolic
flow in a film for various values of a /h and �. For a trans-
lating and rotating porous particle through a quiescent film,
the force and torque acting on a particle are given by Eq.
�66� with f1

s and h1
s given by Eqs. �80� and �83�, respectively.

TABLE VIII. Nondimensional translational velocity V2 /U of a liquid drop
freely moving in a parabolic flow in a film for various a /h and viscosity
ratios �.

a /h, � � 10 1.01 0

0.9 0.8111 0.8282 0.9016 0.9843

0.7 0.9898 0.9969 1.0327 1.0852

0.5 1.0698 1.0729 1.0886 1.1136

0.3 1.1088 1.1097 1.1146 1.1228

0.1 1.1236 1.1237 1.1241 1.1249

TABLE IX. The coefficients fp and tp for porous particle placed in a para-
bolic flow in a film.

a /h, � 50 20 10 1

fp 1 1.893 1.858 1.793 1.149

0.9 1.832 1.805 1.751 1.160

0.7 1.702 1.681 1.641 1.171

0.5 1.546 1.531 1.502 1.170

0.3 1.373 1.364 1.347 1.158

0.1 1.203 1.200 1.195 1.138

tp 1 0.2821 0.3175 0.3828 0.9226

0.9 0.3777 0.4097 0.4679 0.9333

0.7 0.5815 0.6052 0.6458 0.9539

0.5 0.7614 0.7745 0.7967 0.9711

0.3 0.9810 0.8962 0.9050 0.9847

0.1 0.9719 0.9729 0.9748 0.9953
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Table X gives the results for f t and tt coefficients for a trans-
lating porous particle, and Table XI gives the results for fr

and tr coefficients for a rotating porous particle in a quiescent
film for various values of a /h and �.

The asymptotic expressions for the force and torque co-
efficients in the limit a /h→0 for the rigid particle given in
Sec. V A are also applicable for a porous particle with ap-
propriate expressions for f1

s and h1
s . In the limit of very high

permeability, the force coefficient fp can be determined from
the second equality in Eq. �84� with ui replaced by the un-
disturbed velocity ui

�. This yields the following for ��1:

fp = �9/8��1 − �1/15��a/h�2� . �85�

Thus, for highly porous particles, the force coefficient de-
creases as a /h is increased. The opposite is the case for
nearly nonporous particles for which the presence of the wall
increases the drag. We therefore expect that for some inter-
mediate values of permeability, the force coefficient as a
function of a /h will go through a maximum. Indeed, this is
what is found for �=1.

VI. SUMMARY

We have described a method for accounting for the pres-
ence of a rigid wall or a nondeformable gas-liquid interface
on the Stokes flow interactions of spherical particles. The
flow induced by the particles and the image system that ac-

counts for the boundary conditions at the wall or the inter-
face are both expressed in terms of Lamb’s multipoles. This
will allow an easy integration into an O�N� algorithm de-
scribed earlier by Sangani and Mo.5 The method is applied to
a number of problems including chains of particles, drops,
and porous particles.
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APPENDIX: DERIVATION OF THE IMAGE
SYSTEM

The no-slip boundary condition at the wall is equivalent
to the conditions

u1 = 0, �1 =
�u2

�x3
−

�u3

�x2
= 0, u2x2 + u3x3 = 0, �A1�

where �1 is the x1 component of the vorticity �=��u.
Substituting Eq. �3� into Eq. �1� and using the properties of
spherical harmonics, we find that

u1
p = �

n,m,k

r−n

2n�2n − 1�
��n − 2��n + 1 − m�Yn+1,m

k,p

− 2h�n + 1�r−1Ynm
k,p�Pnm

k − �− 1�kmr−n−1Tnm
1−kYnm

k,p

− �n + 1 − m�r−n−2�nm
k Yn+1,m

k,p , �A2�

�1
p = �

n,m,k
�m/n�r−n−1�− 1�kPnm

k Ynm
1−k,p

+ n�n + 1 − m�r−n−2Tnm
1−kYn,m

1−k,p, �A3�

up · r = �
n,m,k

�n + 1�
2�2n − 1�

r−n+1Pnm
k Yn,m

k,p

− �n + 1�r−n−1�nm
k Ynm

k,p, �A4�

where the summation over n, m, and k is the same as in Eqs.
�1� and �2�, and Yn,m

k,p �Ynm
k ��p ,�p�.

We consider separately the image system for each of
Lamb’s multipoles. By setting all multipoles except one,
Pnm

k , to zero using

TABLE X. The coefficients f t and tt for a translating porous particle in a
quiescent film.

a /h, � 50 20 10 1

f t 0.9 2.246 2.109 1.928 1.099

0.7 1.730 1.687 1.615 1.080

0.5 1.449 1.428 1.393 1.059

0.3 1.239 1.229 1.212 1.036

0.1 1.070 1.068 1.064 1.012

tt 0.9 0.201 0.193 0.175 0.022

0.7 0.089 0.085 0.078 0.011

0.5 0.036 0.034 0.031 0.48�10−2

0.3 0.010 0.984�10−2 0.908�10−2 0.153�10−2

0.1 0.929�10−3 0.895�10−3 0.836�10−3 0.157�10−3

TABLE XI. The coefficients fr and tr for a rotating porous particle in a quiescent film.

a /h, � 50 20 10 1

fr 0.9 0.258 0.233 0.192 0.996�10−2

0.7 0.114 0.103 0.085 0.507�10−2

0.5 0.046 0.041 0.034 0.222�10−2

0.3 0.013 0.012 0.010 0.706�10−3

0.1 0.119�10−2 0.108�10−2 0.916�10−3 0.726�10−4

tr 0.9 1.391 1.312 1.224 1+1.03�10−2

0.7 1.107 1.094 1.075 1+4.72�10−3

0.5 1.030 1.027 1.023 1+1.70�10−3

0.3 1+5.86�10−3 1+5.32�10−3 1+4.50�10−3 1+3.64�10−4

0.1 1+2.09�10−4 1+1.90�10−4 1+1.62�10−4 1+1.34�10−5
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Ynm
k ��im,�im� = Ynm

k,im = �− 1�n−mYnm
k,p, �A5�

and rim=r for all points on the wall, the image system must
satisfy the following conditions:

u1
im = − u1

p

=
�− 1�n−m

2n�2n − 1�
rim

−nPnm
k ��n − 2��n + 1 − m�Yn+1,m

k,im

+ 2h�n + 1�rim
−1Ynm

k,im� , �A6�

�1
im = − �1 = �− 1�1+k�− 1�n−mm

n
Pnm

k Ynm
1−k,imrim

−n−1, �A7�

uim · rim = − up · r − 2hu1
p

=
�− 1�n−m

2n�2n − 1�
Pnm

k �2h�n − 2��n + 1 − m�rim
−nYn+1,m

k,im

+ �n + 1��4h2rim
−n−1 − nrim

−n+1�Ynm
k,im� . �A8�

To satisfy the above conditions, the image system must
involve, in general, seven multipoles: Pnm

k,im, Pn+1,m
k,im , Tnm

1−k,im,
Tn−1,m

1−k,im, �nm
k,im, �n−1,m

k,im , and �n−2,m
k,im , all of which must, of

course, be proportional to Pnm
k . Furthermore, a dimensional

analysis suggests that Tnm
1−k,im and �n−1,m

k,im must be propor-
tional to h and �nm

k,im must be proportional to h2. Substituting
h=�imrim and using the recursion relations among the Leg-
endre functions and their orthogonality, we obtain eight lin-
ear equations among the seven multipoles. Using seven of
these equations to determine the image multipoles and then
verifying that the remaining equation is automatically satis-
fied, we obtain the image system for Pnm

k as given in the
main text �cf. Eqs. �10�–�16��.
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