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appeared in:ICGA 91 Intelligent Structural Operatorsfor the k-way Graph Partitioning Problem 1Intelligent StructuralOperatorsfor the k-way GraphPartitioning ProblemGregor von LaszewskiGesellschaft f�ur Mathematik undDatenverarbeitung mbHSchlo� Birlinghoven, D { 5205 St. Augustingregor@npac.syr.eduNorthEast Parallel Architectures CenterSyracuse University111 College PlaceSyracuse, NY 13244-4100AbstractA parallel genetic algorithm for the graph partitioningproblem is presented, which combines general heuris-tic algorithms with techniques that are described inevolution theory. In the parallel genetic algorithm theselection of a mate is restricted to a local neighborhood.In addition, the parallel genetic algorithm executes anadaptation step after an individual is generated, withthe genetic operators crossover and mutation. Duringthe adaptation step the solution is improved by a com-mon algorithm. Another selection step decides if theadapted descendant should replace the parent individ-ual. Instead of using a uniform crossover operator amore intelligent crossover operator, which copies sub-sets of nodes, is used. Basic parameters of the parallelgenetic algorithm are determined for di�erent graphs.The algorithm found for a large sample instance a newunknown solution.1 GENETIC ALGORITHMSGenetic Algorithms are stochastic search algorithmsintroduced by J.Holland in the 70's [8]. These algo-rithms are based on ideas and techniques from geneticand evolutionary theory. Genetic algorithms simulate

an evolutionary process with N individuals which rep-resent points in a search space. Every individual isencoded as a string called a genotype. The value ofthe cost function which is de�ned for such a string iscalled a phenotype.In each step of the genetic algorithm, called a gen-eration, every individual is evaluated with regard tothe entire population. This value is called the rela-tive �tness of an individual. According to \naturalevolution" o�spring are produced using genetic oper-ators. The selection operator chooses individuals witha probability that corresponds to the relative �tness.Two chosen individuals produce a descendant usingthe genetic operator crossover. The crossover opera-tor exchanges substrings of the codes of the two chosenindividuals. The descendant replaces an individual inthe population after the generation step is complete.Another genetic operator, calledmutation, changes thegenotype of the descendant, with a small probability.Mutation and crossover cause variation in the searchprocess. The mutation operator allows a search closeto a point in the search space, because only a smallnumber of changes occur. Crossover causes longerjumps in the search space.However, only selection leads the search in a speci�cdirection. Substrings of individuals that are more �tthan others are kept for the next generation. Thesearch is successful if the search space has the prop-erty that a combination of two high valued points ofthe search space leads to a higher valued point withhigh probability [12].Further information about genetic algorithms andtheir applications is provided in [3] and [5].2 PARALLEL GENETIC AL-GORITHMSIn Holland's genetic algorithm, selection occurs in theentire population, whereas in the parallel genetic algo-rithms the selection of a mate is restricted to a localneighborhood. In addition, the parallel genetic algo-
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appeared in:ICGA 91 Intelligent Structural Operatorsfor the k-way Graph Partitioning Problem 2rithm executes an adaptation step after an individualis generated, with the genetic operators crossover andmutation. During the adaptation step the solution isimproved by a common algorithm. Another selectionstep decides if the adapted descendant should replacethe parent individual.The parallel genetic algorithm (PGA) can be describedas follows: An environment consists of a set of loca-tions X = fx1; :::; xNg which are divided geographi-cally. Connections between locations are described bya relation R on X. At each location xk there exists anindividual Itk at time t. At the beginning of the evolu-tionary process the initial individuals I0k are randomlyinitialized. For each individual Itk, a set of neighborindividuals N t(xk) are determined by the relation R.Figure 1 shows the evolution process that runs on eachlocation.
crossover

descendant

mutation

adaption

(local-hillclimb)

individual partner
selection

should descendant
    survive?

Figure 1: Evolution processPGA = (C;N; I0;K; c; GO)C is the set of genetic codings for the solutions.N is the number of locations. The locations areX = fx1; :::; xNg. At each time t there is a indi-vidual Itk 2 C on location xk .I0 = fI01 ; :::; I0Ng is the initial population attime t = 0.K � X � X is the communication relation.c is a cost function which determines the phenotypeof the individual. A coding is evaluated.GO = fmutation, crossing-over, selection, parent re-placement strategyg is the set of genetic operators.Figure 2: Parameters of the parallel genetic algorithm

First, an individual chooses a partner for mating inits neighborhood and creates a descendant using thecrossover operator. After the mutation operator isapplied, the descendant is improved in the adapta-tion step. If the descendant is well adapted to theenvironment,1 it replaces the parent individual. Thealgorithm is terminated when a termination constraintis ful�lled.2Since the evolution process runs simultaneously oneach location, this model can be mapped onto a multi-processor system. Each processor must know the cod-ings of the individuals living on its neighbor processors.The parallel genetic algorithm has been successfullyapplied to the traveling salesman problem [14, 6]. Inthis paper it is demonstrated that the parallel geneticalgorithm can also be applied to the complex k-waygraph partitioning problem. A formal description ofthe k-way graph partitioning problem is given in thenext section.3 THE k-WAY GRAPH PAR-TITIONING PROBLEMThe k-way graph partitioning problem (k-GPP) is afundamental combinatorial problem which has appli-cations in many areas of computer science (e.g., designof electrical circuits, mapping) [10]. Mathematicallywe can formulate the k-way graph partitioning prob-lem as follows:Let G = (V;E;w) be an undirected graph, whereV = fv1; v2; :::; vng is the set of nodes, E � V � Vis the set of edges and w : E 7! IN de�nes the weightsof the edges. The k-way graph partitioning problemis to divide the graph into k disjoint subsets of nodesP1:::Pk, such that the sum of the weights of edges be-tween nodes in di�erent subsets is minimal, and the1For example, if the descendant is better than the parents,or if it is better than the worst individual in the neighborhood,it is considered as well adapted.2For example, a time limit may be used as terminationconstraint.
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appeared in:ICGA 91 Intelligent Structural Operatorsfor the k-way Graph Partitioning Problem 3sizes of the subsets are nearly equal. The subsets arecalled partitions, and the set of edges between the par-titions is called a cut.Let P = fP1; :::; Pkg be the partitions. Then the string(g1g2:::gn) describes a solution:gi = a () vi 2 Pa 8i 2 f1; :::; ngWith a 2 f1; :::; kg. Node vi is assigned to the parti-tion speci�ed by gi. Instead of minimizing the cost ofthe cut we maximize the sum of the weights of all theedges between nodes in the same partitions. This isan equivalent problem because the total cost of edgesis constant. This leads to a cost function of:c(g1g2:::gn) = X1�i<j�ngi=gj w(vi; vj) :The advantage of this cost function is that a selectionoperator for a genetic algorithm can be easily formu-lated. Furthermore, the parallel genetic algorithm de-scribed in this paper does not change the sizes of thepartitions during the computation. The equal size ofthe partitions is controlled by the variance�2(P ) def= 1m mPi=1 jPij2 � � 1m mPi=1 jPij�2.4 PARALLEL GENETIC AL-GORITHM APPLIED TOTHE k-GPPTo apply the parallel genetic algorithm to the k-waygraph partitioning problem, a representation of prob-lem solutions has to be de�ned. Genetic operatorswhich control the composition of two solutions or themodi�cation of one solution have also to be de�ned.In addition, the values of the parameters used by theparallel genetic algorithm have to be determined (e.g.population size, relation between the locations, muta-tions, etc.).

4.1 Representation,Communication Relation, and Se-lectionRather than a simple binary representation, the dis-crete string representation de�ned in section 3 is usedto code solutions of the k-way graph partitioning prob-lem. Therefore, a larger alphabet � = f1; ::; kg is used.To guarantee the constraint of the equal partition size,only a subset of all kn possible strings is allowed. Thisstraightforward representation implies that the pheno-type of a string g1:::gn is given by the value c(g1:::gn).For the experiments, the communication relation be-tween the locations is determined by a ring:xk is neighbor of xl () 0 < (l�k+N ) mod N � A;where A denotes the number of neighbors and N de-notes the population size. Let N t(xk) be the set ofindividuals located in the neighborhood of the indi-vidual Itk. These individuals are called the selectionneighbors. For example, let three be the size of the theselection neighborhood. Then those three individualsare in the selection neighborhood that lie in the ringdirectly before the individual itself (Figure 5).The individual which is currently the best3 can beadded to the selection neighbors. This individual iscalled the currently best individual.With the selection neighbors, the relative �tness of anindividual in an environment is de�ned as follows:f(Itl ) = c(Itl )PItr2N t(xk) c(Itr) 8Itl 2 N t(xk)The relative �tness determines the probability of se-lecting an individual from the selection neighbors formating. With the help of this �tness function, verygood solutions can be found. Other selection strate-gies are described elsewhere [2, 5].3The currently best individual is the representation of thebest solution found since the parallel genetic algorithm isstarted.
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appeared in:ICGA 91 Intelligent Structural Operatorsfor the k-way Graph Partitioning Problem 44.2 The Structural Crossover OperatorThe crossover operator is very important for the suc-cess of the genetic algorithm. If a crossover operatordestroys too much information already gained in thepast, the genetic algorithm degenerates to a simplerandom search algorithm. To avoid losing too muchinformation, an intelligent structural crossover oper-ator is de�ned. It copies whole partitions from onesolution into another.
result 

select a partition for
the crossover step

partition 1
partition 2
partition 3
partition 4

detect the overwritten nodes
and remove nodes that destroy
the condition of equal  partition
sizeFigure 3: Recombination of two solutionsFigure 3 depicts the recombination of two solutions. Agrid with 4�4 nodes is to be divided into 4 partitions.To show the recombination step more clearly, colorsare used in the �gure instead of numbers to representthe di�erent partitions.First, a partition is randomly chosen in a parent so-lution (the light gray partition). Then this partitionis copied into the other parent solution. Because thiscopying process may destroy the constraint of equalpartition sizes, a repairing operator is applied. Inthe repairing step, all nodes in the temporary solu-tion which are not elements of the copied partition,but have the same color as this partition, are detected.These nodes are marked in the second part of Figure3 with horizontal lines.To assign these nodes to a partition, they have to bemarked (e.g. randomly) with the colors of those nodeswhich have been overwritten by the copied partition.In the example the white and the black partitions haveone node too few. So the nodes marked with horizontallines are relabeled with the colors white and black. Anew code is generated which represents a valid solution

for the problem instance.Executing the crossover operator on arbitrary geno-types creates descendants which temporarily have alot of open positions during the crossover process. Inthe extreme case, these positions could correspond toa whole partition. If the number of nodes in a parti-tion is large in comparison to the number of nodes inthe graph, a great disturbance of the old solutions willarise. In order to avoid losing too much informationcomputed in the past, the codings are adapted beforethe crossover process starts. They are changed, in sucha way that the di�erence between the two parent so-lutions is as small as possible. Let (a1:::an); (b1:::bn)denote the parent individuals. Then the di�erence ofthe two parent individuals is de�ned as follows:di�erence (a1:::an; b1:::bn) def= nXi=1 ( 1 if ai 6= bi0 otherwise4.3 The Structural Mutation OperatorA common mutation operator that replaces values inthe string with an element randomly chosen out of �will destroy the condition of equal partition size. Toavoid leaving the search space, a mutation is de�nedas the exchange of two numbers of the coding.Because, at the beginning of the evolution process,the solutions generated with the crossover operatorare very di�erent from each other, there is no needto disturb them with a mutation operator. Mutationsare only executed if the di�erence between a parentand the solution created by the crossover operator issmaller than a parameter called mutations. Let � de-note the minimum of the di�erence between the twoparents and its descendent generated by the crossoverstep. If this di�erence is smaller than the parametermutations, then � - mutations swap operations areexecuted on the coding of the descendant.4.4 The Adaptation StepFor large problem instances, it is important to restrictthe solution space. This can be achieved by using a
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appeared in:ICGA 91 Intelligent Structural Operatorsfor the k-way Graph Partitioning Problem 5hill climbing algorithm to improve the solutions repre-sented by the coding. Therefore, a variant of the 2-optalgorithm introduced by Kernighan and Lin is imple-mented [10]. For all pairs of nodes, the 2-opt algorithmexchanges these nodes if the solution can be improvedby the exchange. This step is repeated until no furtherimprovement can be made. Since one iteration step isdone in O(n2) time, it is necessary to reduce the num-ber of nodes on which this heuristic is used. Instead oftrying the exchange over all pairs of nodes, the 2-optalgorithm is only executed on the nodes located at theborder of the partitions.5 RESULTSThe parallel genetic algorithm is implemented on a64 node transputer system. Each evolution process isexecuted on one transputer. The maximal populationsize is 64.This paper concentrates on two di�erent problem in-stances. First, a graph whose edges are connected likea grid is used to demonstrate some basic e�ects of theparallel genetic algorithm. This graph is to be dividedinto four partitions. Therefore, the globally optimalsolution for a grid with 100 nodes has a cost functionvalue of 20. Without equivalent solutions4, there ex-ists only one globally optimal solution. The problemgrid provides a test instance for determining the basicproperties of the implemented algorithm.Second, a graph called beam is used [4]. This graphhas 918 nodes and 3233 edges, and is to be dividedinto 18 partitions.There are only a few algorithms which can be com-pared with the PGA, because other algorithms areusually restricted to the 2-way graph partitioningproblem. Two of these comparable algorithms are theround robin algorithm of Moore and the divide-and-conquer Kernighan-Lin algorithm of Zmijewski[13, 7].These algorithms do not use the constraint of equal4Solutions are equivalent to each other only if they are dif-ferent in the names of the partitions

partition size, so that the partitioning problem is sim-pler.For the grid graph, parameters were found that allowthe globally optimal solution to be generated in everycase. Also, the PGA found the best known solutionfor the instance beam. Figure 4 shows the progress ofthis solution. The table 1 also shows the best knownresults found with the di�erent algorithms.
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best individualFigure 4: Problem beam,64 individuals Figure 5: Communicationstructure, Ring with 8 in-dividualsalgorithm minimal cost �(P ) running timeGZ87 587 0.99 78 roundsMoore 453 0.99 78 roundsPGA 430 0.00 500 generations,28 minTable 1: Comparison of the best solutions for the in-stance beam6 PARENT REPLACEMENTSTRATEGYIn the implementation of the parallel genetic algorithmfor the k-way graph partitioning problem the conver-gence speed, is an important factor. To increase theconvergence speed two special concepts are introduced:1. The parent solution is only replaced if a speci�ccondition is ful�lled.2. The currently best individual is included in theselection neighborhood.
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appeared in:ICGA 91 Intelligent Structural Operatorsfor the k-way Graph Partitioning Problem 6In this section, di�erent strategies for deciding whethera descendant should survive and replace a parent in-dividual are compared. The following replacementstrategies are considered:Strategy \each": Each parent individual is replacedby its descendant. The replacement is done regard-less of the quality of the parent or the descendantsolution.Strategy \better": A parent individual is only re-placed by its descendant if the descendant is betterthan the parent individual.Strategy \locally better": This strategy is a com-bination of the previous strategies. The replace-ment of a parent individual is dependent on the costof the neighbor individuals, the descendant, and theparent itself. A parent is replaced if the descendantis better than the parent solution, or if the descen-dant is better than the worst individual in the localselection neighborhood.The same experiments are done with and without thecurrently best individual in the selection neighbor-hood. The problem instance grid is used. For theexperiments with the problem instance grid, the pop-ulation size is 16 and the size of the selection neigh-borhood is 4. Figure 6 and 7 display the range of thecost values of the population over generations. Foreach generation, the cost of the worst and best indi-viduals are shown. Furthermore, the average cost ofthe individuals in the population is shown. The graphsshown in Figure 6 do not include the currently best in-dividual in the selection neighborhood. Whereas, thegraphs shown in �gure 7 include the currently bestindividual in the selection neighborhood.The experiments show that for the strategy \each,"the cost range of the individuals in the population
uctuate heavily among the generations. A relativelong time period is needed to �nd the minimal solu-tion. If the currently best individual is included in theselection neighborhood, the convergence speed can beimproved.
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appeared in:ICGA 91 Intelligent Structural Operatorsfor the k-way Graph Partitioning Problem 7with the mutation operator. Using a su�ciently largemutation rate enables the parallel genetic algorithmto introduce new variation into the search process asshown in the second graph of Figure 7. Here, the mu-tation rate is 15 .This result also holds for the larger problem instancebeam. Figure 8 shows the range of the solutions gener-ated with the strategy \locally better" and the inclu-sion of the currently best individual in the selectionneighborhood. This approach produces the best re-sults.
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433 431Figure 8: Replacement strategy. The problem instancebeam is used.7 MUTATIONIn the last section, it was shown that the mutation op-erator is important for varying solutions when the ge-netic algorithm get stuck in locally optimal solutions.With a large experiment, the optimal number of mu-tations are determined for the problem instance grid.The optimal number of mutations achieves1. that the average number of generations needed to�nd a very good solution5 is minimal.2. that the frequency of �nding the globally optimalsolution is maximal.Figures 9 and 10 depict the result of the experimentsused to �nd the optimal number of mutations. 100 ex-periments were done for each mutation in the interval5For the problem instance grid, \very good" means \globallyoptimal"

from 0 to 50. Each experiment was terminated afterthe globally optimal solution is found, or the evolu-tion cycle (Figure 1) is repeated more than 100 times.The strategy \locally better" is used for replacing theparent individual.
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appeared in:ICGA 91 Intelligent Structural Operatorsfor the k-way Graph Partitioning Problem 87.1 The Correlation Between Muta-tion and the Adaptation StepCommon genetic algorithms use very small mutationrates. For the problem instance grid an optimal so-lution rate of about 14 was observed. This section ex-plains, why a high mutation rate is needed to �nd verygood solutions quickly. To see the correlation betweenthe mutation rate and the adaptation step, one has toremember that:1. the adaptation step is executed after the recom-bination of a new descendant.2. the mutation operator is applied when thecrossover operator generates a descendant that isvery similar to one of its parents.The PGA is applied to the problem instance grid. Atthe end of the evolution process, a descendant is onlyslightly di�erent from one of its parents. If the 2-optalgorithm were executed next, no new variation wouldintroduced into the search process.Furthermore, with advancing generations nearly opti-mal solutions are generated. Applying the 2-opt algo-rithm on a slightly disturbed solution near the opti-mum leads with high probability to the same old so-lution. This fact is displayed in Figure 11. Let a bea solution and b be the solution which is created byapplying some mutations and the 2-opt algorithm ona. Figure 11 shows how often the solutions a and b areequivalent for di�erent good solutions.To prevent the parallel genetic algorithm from gettingstuck, the mutation operator is used to disturb thedescendants. In addition the number of mutations hasto be su�ciently large.The mutation operator is de�ned in such a way that itis only applied if the di�erence between the parent so-lutions and the descendant is smaller than the numberof mutations. Because the solutions are so di�erent atthe beginning of the search process the mutation op-erator is only applied later. Therefore, the crossoverand repairing operator are responsible for introducingvariety early on in the search process.
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431 432 433 435Figure 12: Analysis of the population size and the sizeof the selection neighborhoodFigure 12 compares the cost of solutions found with
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appeared in:ICGA 91 Intelligent Structural Operatorsfor the k-way Graph Partitioning Problem 9di�erent population and neighborhood sizes. The se-lection neighborhood of each individual includes thecurrently best individual to increase the convergencespeed of the algorithm. To get good results, the pop-ulation size is more important than the size of theselection neighborhood. The best results are foundusing the largest population { i.e. 64 individuals. Inaddition, the size of the neighborhood should be small.One important result is that, for large populations,the PGA algorithm produces better solutions with arestricted neighborhood than with a panmictic popu-lation.Crossover and MutationIn [1], a genetic algorithm for the graph partitioningproblem can be found. This algorithm only generatessolutions for the 2-way partitioning problem. Experi-mental results are only presented for graphs of up to64 nodes. A uniform crossover operator is used to pro-duce o�spring. Each position of the o�spring is ran-domly labeled by one of the two corresponding num-bers in the parent genotypes.In this paper the uniform crossover operator has beenextended for the k-way graph partitioning problem.With this crossover operator, however, no solutionswere found which were as good as those generated withsubset crossover for di�erent mutations (Figure 13).
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Figure 14: Comparison ofthe cost of the cut for dif-ferent heuristics on a ran-dom graph with 900 nodes

Random GraphsRandom graphs are de�ned so that the average degreeof each node is (n � 1)p, where n is the number ofnodes, and p is the probability that a pair of nodes isconnected by an edge. For a constant p and a largen, random graphs are dense. The graph partitioningproblem is easier to solve for dense graphs, becausethe solutions have nearly the same cost of the cut.The GPP is more di�cult for instances of restrictedrandom graphs whose degree is bounded, e.g. by 4 [9].To compare the PGA with other heuristics, the 2-optand the KL-algorithm for the m-partitioning were alsoimplemented. The KL-algorithm tries to exchange se-quences of nodes instead of exchanging only two nodesin one step. A detailed description of these algorithmsis provided in [10] and [11].Figure 14 shows the comparison of the algorithms 2-opt, KL, and PGA terminated after 500 and 1000 gen-erations. They are tested on a random graph with 900nodes and maximum node degree of 4. Experimentswith the problem instances with 900 and 918 nodesshow that the PGA is much faster for regular graphsthan for restricted random graphs.8 CONCLUSIONSThe parallel genetic algorithm computes very good re-sults for the graph partitioning problem. For a largeproblem instance the algorithm found a new unknownminimal solution. The search space has the propertythat a combination of two high valued points oftenleads to a higher valued point. Implanting a small,maximized subset of nodes from one solution into an-other and applying a local hill-climbing heuristic tothis solution, often leads to a better partition.Furthermore, this paper shows:� that a parent replacement strategy improves thequality of the solutions.� that mutation is needed only if the crossover op-erator produces a solution which is nearly equal
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appeared in:ICGA 91 Intelligent Structural Operatorsfor the k-way Graph Partitioning Problem 10to one of its parents.� that the population should be chosen to be aslarge as possible.� that better solutions are generated with the re-stricted neighborhood structure than with thepanmictic population structure.� that for the implementation presented in this pa-per, the selection neighborhood should have a sizeof 4, and should include the currently best indi-vidual to achieve the best results with a high con-vergence rate.� that to restrict the solution space, a discrete prob-lem representation and structural genetic opera-tors are important.� that the adaptation step is very important forrestricting the solution space and improving theconvergence rate of the algorithm.This implementation of a parallel genetic algorithmshows that there exist two strategies for de�ning ge-netic algorithms. The �rst strategy uses a sophisti-cated representation and simple genetic operators ontothe codings to generate good solutions. Sometimes itis di�cult to �nd a sophisticated representation. Thenit is easier to chose a simple straightforward represen-tation and introduce intelligence into the algorithm byde�ning genetic operators which use the structure ofthe problem to generate o�spring.There are many opportunities for further research inthis area. The most interesting would be to choosea larger population size to display more clearly thedi�erence between the panmictic population and theneighborhood model. A more sophisticated mutationand selection operator may also be de�ned. The imple-mentation environment makes it possible to run di�er-ent adaptation strategies on di�erent locations in orderto inspect the solution space with di�erent strategies.Also, di�erent communication relations may be com-pared.
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