.Al P Fiuids

An O(N) algonthm for Stokes and Laplace mteractlons of particles
Ashok S. Sangani and Guobiao Mo

Citation: Phys. Fluids 8, 1990 (1996); doi: 10.1063/1.869003

View online: http://dx.doi.org/10.1063/1.869003

View Table of Contents: http://pof.aip.org/resource/1/PHFLE6G/v8/i8
Published by the American Institute of Physics.

Related Articles

Clouds of particles in a periodic shear flow
Phys. Fluids 24, 021703 (2012)

The dynamics of a vesicle in a wall-bound shear flow
Phys. Fluids 23, 121901 (2011)

A study of thermal counterflow using particle tracking velocimetry

Phys. Fluids 23, 107102 (2011)

Particle accumulation on periodic orbits by repeated free surface collisions
Phys. Fluids 23, 072106 (2011)

Drag force of a particle moving axisymmetrically in open or closed cavities
J. Chem. Phys. 135, 014904 (2011)

Additional information on Phys. Fluids

Journal Homepage: http://pof.aip.org/

Journal Information: http://pof.aip.org/about/about_the_journal
Top downloads: http://pof.aip.org/features/most_downloaded
Information for Authors: http://pof.aip.org/authors

ADVERTISEMENT

Running in Circles Looking
for the Best Science Job?

Search hundreds of exciting [oTreo
new jobs each month! ;

http://careers.physicstoday.org/jobs [=]
physicstoday JOBS

Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions


http://pof.aip.org/?ver=pdfcov
http://careers.physicstoday.org/post.cfm?ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Ashok S. Sangani&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Guobiao Mo&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.869003?ver=pdfcov
http://pof.aip.org/resource/1/PHFLE6/v8/i8?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3685537?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3669440?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3657084?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3614552?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3606394?ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://pof.aip.org/about/about_the_journal?ver=pdfcov
http://pof.aip.org/features/most_downloaded?ver=pdfcov
http://pof.aip.org/authors?ver=pdfcov

ARTICLES

An O(N) algorithm for Stokes and Laplace interactions of particles

Ashok S. Sangani® and Guobiao Mo
Department of Chemical Engineering and Materials Science, Syracuse University,
Syracuse, New York 13244

(Received 27 December 1995; accepted 12 April 1996

A method for computing Laplace and Stokes interactions amrgpherical particles arbitrarily
placed in a unit cell of a periodic array is described. The method is based on an algorithm by
Greengard and Rokhlifd. Comput. Phys73, 325 (1987] for rapidly summing the Laplace
interactions among particles by organizing the particles into a number of different groups of varying
sizes. The far-field induced by each group of particles is expressed by a multipole expansion
technigue into an equivalent field with its singularities at the center of the group. The resulting
computational effort increases only linearly with The method is applied to a number of problems

in suspension mechanics with the goal of assessing the efficiency and the potential usefulness of the
method in studying dynamics of large systems. It is shown that reasonably accurate results for the
interaction forces are obtained in most cases even with relatively low-order multipole expansions.
© 1996 American Institute of PhysidsS1070-6630196)01108-7

I. INTRODUCTION perse suspensions, or for suspensions in which the hydrody-
namic interactions are expected to be screened at distances
Numerical simulations of motion of particles through alarge compared to the size of the particles.
suspending fluid provide valuable insight into the complex  Two major difficulties in computing hydrodynamic in-
interrelationship between the microscale physics, the microteractions among particles in Stokésmall Reynolds num-
structure, and the macroscopic behavior of suspensiongep flow are: (i) the long-range, multiparticle nature of in-
However, the problem of determining hydrodynamic interacteractions; and(ii) the lubrication effects arising from a
tions among many particles is computationally intensive withrelative motion of particles in close proximity to each other.
most of the existing methods for simulations suitable onlyThese are explained in more detail below.
for a relatively small number of interacting particles, typi-  The velocity disturbance caused by a particle with a net
cally of O(100). While this is adequate for many problems, nonzero force acting on it decays only as,1f being the
there are also large numbers of problems for which it isgistance from the center of the particle, and therefore it is not
desirable to simulate systems containing much greater nungossible to use an arbitrary cut-off radius for truncating the
ber of particles. For example, the uniform state of small Reyhydrodynamic interactions among particles. In other words,
nolds number, finite Stokes number, gas-solid fluidized begne must compute the interactions amaigthe particles in
is known to be unstable for certain ranges of its parameterg,e suspension. The velocity induced by a particle is gener-
(the volume fraction of the particles and the Stokes nuberg|ly expressed in terms of a distribution of hydrodynamic
resulting in the formation of large bubbles or regions devoidiorce density acting along its surface. The multiparticle na-
of particles. Large-scale simulations are needed to undefyre of the interaction arises due to the fact that this force
stand in detail the mechanisms responsible for these MaCrerensity is unknown and is to be determined as a part of the
scopic instabilities. Similarly, problems involving concen- soytion by solving for the force density on all the particles
trated fiber suspensions withl® of O(10°—10%) require simultaneously. This is different, for example, from the prob-
large-scale simulations involving thousands of fibers in ordefgy, of computing Coulombic interactions among species
that the box size used in the simulations does not signifiy;ith known charges for which the interactions are also long-
cantly affect the behavior of such suspensions. Heie,the  anged but, because the charge on the individual species is
number density of fibers arldis the length of fibers. More-  \nawn, the interactions are pair-additive. As a consequence,

over, recent experimental and numerical work on sedimenty, simple pair-additive approximation can be made in com-
ing fibers suggest that the uniform state of such suspensiorﬁlting hydrodynamic interactions.

is unstable resulting in the formation of clustétsarge-scale When two particles in close proximity approach toward
simulations are needed to determine the cluster size distribyssch other with a®(1) relative velocity, the fluid in the gap
tion and the resulting properties of the sedimenting fiber suspetween the particles must squeeze out radially from the nar-

pensions. Large-scale simulations are also needed in the,, gap between the particles. This results in a radial veloc-
study of suspensions with significant wall effects, polydls—ity of O(e~?) in the gap region of thicknessand a force

density ofO(e~2) localized to arO(e€) surface area of each
3 Electronic mail: asangani@mailbox.syr.edu particle. This is known as the lubrication effe¢Gee, for
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example, Happel and Brenfesr Kim and Karrild for de-  of the particles. The accuracy of the method was shown to be
tails) Since the lubrication force density is highly localized comparable to that of the method of Brady and Bo3sis.
to a relatively small area of the the surface of the particlesHowever, since each element Afwas evaluated separately,
the conventional numerical techniques, such as the boundatie method also require@(N?) computations, and, conse-
integral technique in which the surface of the particles isquently, no significant computational savings resulted even
discretized into a number of surface elemenfsee though it avoided the computation of the mobility matrix
Pozrikidi¢ for detail9, become impractical for large systems inverse.
as the number of discretized elements needed for resolving For large systems, it will be advantageous to devise
the lubrication effects become prohibitively large as the twaschemes in which the computational effort increases much
particles approach each other. more slowly withN. The solution of the set of linear equa-
To overcome the above two difficulties, Brady andtionsA-x=Db is typically obtained by iterative methods when
BossiS devised an ingenious scheme in which the manyN is large. In order that this can be accomplished with only
particle resistivity matrix, which gives the force density onan O(N) computational effort, one must be able to compute
the particles given their velocities, is expressed as a sum @& - x for a givenx in an O(N) time. This is the main objec-
far-field approximation to the many-particle mobility matrix tive of the present investigation. Our method is based on a
inverse and the pair resistivity tensors. The former accountiast summation technique based on hierarchial grouping of
for the long-range, multiparticle nature of the interactionsparticles developed for computing Coulombic and gravita-
while the latter accounts for the lubrication forces betweertional interactions. There are several ways of doing thés,
pairs of particles which contribute in a pair-additive mannerfor example, Applé? Barnes and Hut! and Greengard and
to the resistivity tensor. This method is also used by [Padd Rokhlin? Here, we shall follow the approach outlined by
who showed that the approximation devised by Brady andsreengard and Rokhlitf. These investigator&@nd the other
Bossis can be systematically improved by including higher<co-workers of Greengajchave developed an algorithm for
order approximations to the far-field mobility matrix. The computing Laplace and Coulombic interactions in the two-
main advantage of the method over the conventional boundas well as three-dimensional sp&t¥ and for the elastic
ary integral method is that relatively few unknowftgpi- interactions in the two-dimensional spdcéhe field created
cally 11 to 26 per particle are needed for determining many-by a group of particles far from a given particle is expressed
particle interactions with an accuracy that is adequate fom terms of multipoles at the center of the group as described
many dynamic simulation problem$. Unfortunately, the in more detail later in this paper. Since the field represented
method requires inverting a far-field mobility matrix with at by a group of particles with a fixed number of multipoles
least (1N)? elements, the computational effort for which becomes accurate when the distance from the center of the
grows asN? as the system size increasbsbeing the num-  group is large compared with the linear dimension of the
ber of particles in the system. This limits the computations tagroup size, we need a hierarchy of groups in which the field
N of no more than few hundreds. felt by a given particle is evaluated by using smaller groups
Alternate methods that do not require inverting the mo-of particles that are relatively close to the particle and larger
bility matrix have been proposed by Mo and SandaBan-  groups of particles that are further away from it.
gani and Md® and Cichokiet al® Cichoki et al. employed The method described by Greengard and Rokhlin for
the same idea as Brady and Bossis to account for the lubrsolving Laplace equation starts with a discretization of the
cation effects but avoided the matrix inversion with the helpboundary integrals and this makes it somewhat inefficient for
of a suitable transformation of the equations governing thdreating suspension problems in which the lubrication forces
multipoles. In the present study we use the method proposeate significant. Although the computational effort scales lin-
by Sangani and Mo. According to this method, the forceearly with N, the number of discretization elements per par-
density on the particles is decomposed first into a lubricatiorticles will be prohibitively large when the lubrication effects
force density which is localized to the gap region betweerare significant. However, by combining their technique of
the closely spaced particles and a regular force density whictapidly summing the interactions with the method of Sangani
is distributed on the entire surface of the particles. The veand Mo® in which the number of unknowns per particle is
locity due to the latter is expressed in terms of force multi-small due to explicit treatment of the lubrication effect, it
poles at the center of the particles while that due to theshould be possible to decrease the overall computational ef-
former is approximated in terms of a force dipole at thefort significantly. Also, as we shall see, the extension of the
center of the gap between the particles. This method thusmethod to sum Stokesian interactions is nontrivial. The
accounts for both the long-range, multiparticle nature of thenethod requires developing appropriate expressions for the
interactions and the lubrication effects. Application of thefar-field and near-field representations of the field induced by
boundary conditions on the surface of the particles leads to a group of particles. Greengard and Rokhlin gave these ex-
system of linear equations of the forfn x=b, wherex isa  pressions for the Laplace equation and the present study de-
vector of translational and rotational velocity of the particlesrives similar relations for the Stokes equations. The method
and the induced force multipoled, is anO(NXN) matrix is applied to several problems to assess the efficiency and the
andb is a vector that depends on the imposed flow. In Sanpotential usefulness of the algorithm.
gani and Mc® each element of the matrik was evaluated We should perhaps mention here about@{N) algo-
separately and the resulting equations were solved subsdthm based on the lattice-Boltzmann gas technique that al-
qguently to determine the force multipoles and the velocitiegeady exists for the study of hydrodynamic interactions in
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suspensions. The fluid continuum in Stokes interactions igffective viscosity of suspensions; afiil) sedimentation ve-
replaced by a lattice-Boltzmann gas with appropriate ruledocity and hydrodynamic fluctuations in suspensions.

for its molecules to exchange their positions and momentum.

It is found that with suitable rules for this exchange in the

bulk and at the iqterface between thg particle; and the.mloln_ THE METHOD EOR LAPLACE INTERACTIONS

ecules of the lattice-Boltzmann gas, it is possible to mimic

the behavior of rigid particles suspended in a Navier—Stokes As mentioned in Sec. |, we shall first consider a simpler
flow. A method based on this idea has been extensivelproblem of determining Laplace interactions of spherical
tested in two recent papers by Latfl’ Ladd has been able particles. We shall explain the method in reference to a prob-
to carry out Stokesian dynamic simulations of suspensionfem of diffusion-controlled reactions. This will be applicable
with N of O(10% using this technique. In addition to being with minor modifications to the other problems of Laplace
O(N) in computations, the method has the advantage of bgnteractions.

ing able to treat both the nonzero Reynolds number flows When the size of one of the reactant species is much
past fixed particles and the suspensions of submicron sizegreater than the other, the larger species may essentially be
particles for which the Brownian forces are significant. Thisfégarded as immobile and the rate of reaction then depends
method, however, is still in its early stages of developmen®h the rate at which the smaller species diffuses through the
with its accuracy and efficiency for lardé systems untested medium and arrives at the surface of the larger, immobile
and unchallenged by the other direct approaches based §Recies. To model this situation, we consider a suspension
solving partial differential equations arising from the con-consisting ofN spherical particles each of radiasplaced
tinuum approximation. It is hoped that in the least theWithin a unit cell of a periodic array. The suspending fluid

method developed here may serve as a check and an altern&Rtains a species with a linear dimension much smaller than
a which diffuses through the fluid with a constant diffusivity

to the lattice-Boltzmann gas based algorithms for monodis®
perse suspensions of rigid particles. Furthermore, since t X
its concentration at the surface of the spheres may be taken

size of the lattice is typically governed by the smallest di-t b ishinal Il We shall that th o
mension of the particles, it appears that the method of sum? D€ vanishingly smalfl. ¥ve shall assume that the Species IS

ming interactions by hierarchial grouping will be far more continuously produced in the fluid at a constant rate through-

LS . . . ' out the fluid medium. At steady state the average concentra-
efficient in dealing with the suspensions of slender fibers 05. O o .

: . . ; - ion (C) of the species in the suspension is determined by the
polydisperse suspensions. Also, since in general, itis a no yalance between the rate at which it is produced in the bulk
trivial task to determine the appropriate rules for the ex-

) . and the rate at which it is consumed by the reaction. The
change of momentum at the interface to mimic boundary

e . o roblem then is to determine the non-dimensional reaction
conditions other than the no-slip condition, it is expected thafate constanR, defined by
the method described in this paper will be more readily s
adapted to the suspensions of charged parti€lespps or (Q)=47aDRC). (1)
bubbles’ Note that for highly deformable particles and slen-

der fibers, the interactions can be computed using the int nit time on a single sphere. Whe the volume fraction of
gral equation representation for the Stokes flow instead %he spheres, is small, the interactions among spheres can
the multipole representation. The lubrication effect men-,, neglectéd andé —1—a result first given by

. . . . . U S
tioned earlier is likely to play Iess_ important a role for thesfaSmquchowsk?.0 An estimate of the first correction for small
cases, and_ consequently the st_ra|ghtforward mtegral equatlc_mJt finite ¢ was given by Felderhof and Deutthand, more
coupled with the fast summation method described here i cently, numerical simulations have been used to compute
expected to .be adequa_te for _the sFudy of such suspensionsy_ a5 a function ofg for dense suspensiorisee, for ex-

~ The basic method is outlined in Sec. Il where we con-ample, Felderhdf). Our goal will be to calculat®, for a
sider a simple case of Laplace interactions. We have chosegy, selected configurations & spheres. The fluid is as-

to treat these interactions first since the method is mucgumed to be at rest so that the Species concentr&tisat-
easier to understand for this case and because of its applicgfies the Poisson equation

tion to the simulations of bubbly liquids at large Reynolds )
and small Weber numbersee Sangani and Didwanfa VeC+S=0 @

Although the general principles are the same as in thgith the boundary conditiorC=0 on the surface of the
method outlined by Greengard and Rokhlin, the details argpheres. HereDS is the net rate at which the species is
quite different. In Sec. Il we describe the method for Com'produced per unit volume of the fluid and is re|ated®>
puting Stokes interactions. In Sec. IV we assess the effiby DS(1— ¢)=n(Q), n being the number density of the
ciency of the algorithm by applying it to a number of prob- spheres. It may be noted that the presenc& ai Eq. (2)
lems. First we consider two Laplace interaction problefis: renders it a Poisson equation instead of the Laplace equation
determination of the effective reaction rate constant in aut we shall continue to refer to the interactions as Laplacian
diffusion-limited reacting medium; angi) determination of since Eq.(2) is a rather trivial special case of the more gen-
the added mass coefficient for particles in inviscid suspeneral Poisson equation in which the sink term is a function of
sions. Next, we consider three Stokes flow interaction probthe position. In Sec. IV, where we present the results of
lems: (i) a uniform flow through fixed beds of particle@;) computations folRg, we shall also consider the problem of

. The species reacts very rapidly with the spheres such that

Here,(Q) is the average quantity of the species reacting per
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added mass whose governing differential equation is indeeHere, u=cos§ and the spherical polar anglé#sand ¢ are
the Laplace equation, and the solution for that case will balefined byr,=rcos), r,=rsindcosp, and rz=rsinésing.
obtained simply by setting=0. Now the boundary condition of vanishing atr=a yields

. . 1
Epmta 2" AL~ =S 8100m08i0=0, @)

A. A review of an O(N?) algorithm ) ) S
whereé,o is a Kronecker delta function whose value is unity

Before describing th©(N) algorithm in detail, it is use- for n=0 and zero otherwise.
ful to present a more conventional method of multipole ex- | order that Eq(3) can be recast into E@5), we define
pansion in which the computations grow$ as the system  the differential operatofs® such that the singular terms at
size is increased. The method has a close connection to the iy Eq. (3) are exactly the same as those in E5). Since

boundary integral method but enjoys an advantage of a fastfe singular part 06, equals 17, we require that
convergence for simple particle shapes such as spheres con-

sidered in the present study. This method was outlined in oo -1_ > p-an-1playi @)
.. . 4 - nm'nm>
reference to the problem of determining the effective thermal i;n,m

gondu_ctlwty and the ‘?dded mass coefﬁqeqt for a given COMyhere the summation oveérn,m is the same as that in Eq.
figuration of spheres in our earlier studfés:

The concentratiol© of the diffusing species can be ex- (5. In Appendix A, we have compiled a number of useful

X ) > results on the differentiation of /and the other spherical
p.ressed in ter'ms of the Green s functi@m 'the fundamental harmonics. Using EqA1), we see at once that
singular solution S; of the Poisson equation as

N 7= 5 N ©
C(X)=C*+ >, LS (x—x%), 3 i:n.m
a=1 .
where\,, is given by Eq.(A2) and &, ,, is the differential
whereC” is to be chosen such that the average concentratiooperator defined by EqA3). The constani;; will be re-
equals(C), £ is a differential operator that will be defined ferred to as the induced multipoles.

more precisely later in the sectior? is the center of the Now the coefficientlein'r‘f1 of the terms that are regular at
particle «, and$S; is the spatially periodic Green’s function r=0 in Eq.(5) are related to thath order derivatives of the
satisfying regular part ofC atr =0 by [cf. Egs.(A6)-(A8)]
ELo=ennl Znm(C®%+ Sr/6)], o0, 10
stl(X)=47T 7_,1_2 Sx—x)|. 4) nm= €nm Znm( =0 (10
XL wheree,, is given by Eq.(A8) andC'? equalsC minus the

singular part at =0, i.e.C'™%=C— < . Substituting for
2 from Eq. (9) into Eg.(3) and combining it with Eq(10)
yields

Here, x, represents the lattice points of the periodic array,
7 is the volume of the unit cell of the periodic array, ahts
the Dirac’s delta function. The constant sink term' in the
above expression is needed to balance the source term at the i o_ i 2
lattice points. An Ewald technique for evaluatig is de- Erim= €nm {“nm(C"+Sr/6)}—0
scribed in detail by Hasimot®. More details including ex- e Kk 1 N
pressions for the derivatives &, are given in Sangani YYD
et al?* and Cichoki and Felderhdéf.As shown by Hasimoto, =
Si(x) has a singular, source-like, behavior near lattice points
where it behaves as|k~x,|. (1D

The use of spatially periodic Green’s function ensureswvhere the singular part dfnust be removed frors, before
that the field induced by each particle, i.&4S,(x—x?%), is  differentiating it for y=«. For later reference, we note that
spatially periodic, and hence consistent with the imposed peS is related to the sum of monopoles by means of a simple
riodic boundary condition. Thus, we only need to satisfy therelation
boundary condition at the surface of the particles. For the N
case of spherical particles it is convenient to exp@ssear S=——> AY (12)
each particle in terms of spherical harmonics in a polar co- T y=1
ordinate system with its origin at the center of that particle
Thus, near particler, we expres< as

N A a2 S (x¥ = Xx7) |,

o
Il
o
Il
o
A
Il
=

‘obtained by combining Eq$4) and (9). Here, we made use
of the fact that all singularities are situated inside the par-
1 e« n ticles so that, for a point lying in the fluid, E¢) simplifies
C=-Srle+> 2 X [EnntAunt " p(r), 0 V?Si=4alr
=0 n=0 m=0 Now the O(N?) algorithm consists of truncating the in-
) finite set of equations represented by EGS.and (11) by

wherer=x—x¢, andY! are the solid spherical harmonics considering only the equations and multipol&§y, with

with n=<N,. This results in a total oR,=N(Ng+1)? number of
o - N o _ equations in an equal number of unknown multipofesg'.
Yom=I"Pr(m)come, Y ,=r"Pi(u)sinme.  (6)  These equations are cast into a fofmx=b wherex is an
Phys. Fluids, Vol. 8, No. 8, August 1996 A. S. Sangani and G. Mo 1993
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N,-vector of unknown multipole strengthd, is anN,xN, and Rokhlirt? which we shall present in more detail in Sec.
matrix whose coefficients are the derivatives of!l C. Here, we shall derive the expressions that are needed
S,(x*—x?), andb is anN,-vector that is related t€~, or, for combining the fields induced by a group of particlles and
equivalently,(C). The computational cost is typically gov- the regular fields .“felt” by a group of pgrucl_es. In particular,
erned by the calculation d? elements of the matriba. ~ We need to knowii) how to translate a field induced due to a
This is computationally intensive sin& itself is to be com- ~ Singularity atx® to a field with singularity at another point
puted using series in real and reciprocal space latticg” Such that both fields are identical at a poinsufficiently
vectors?® When high accuracy in numerical simulations is far away from bothx andxP; and(ii) how to translate a field
not critically required, it is possible to avoid the repeatedWhich is regular and expressed in solid spherical harmonics
calculations ofS; for all pairs of particles by using a grid &t One point to a regular field expanded around another point
interpolation scheme in which the unit cell is first divided In itS vicinity. The first one will be useful, for example, in
into a number of smaller cubes with the help of a grid and allcombining the fields induced by a group of particleshile

the derivatives 0B, needed in the calculations are evaluatedthe second one will be useful in determini@ around a

at the grid points and stored for the interpolation purpose iftumber of particles near. Greengard and Rokhlin accom-
the subsequent calculations. Although this reduces the confished these two tasks through the use of addition theorems
putational effort considerably, the computations still growor Legendre functions. We shall use a different procedure
quadratically withN, . here, one that we have found more suitable to treat the case
The set of linear algebraic equations is Subsequent|§3f Stokes flow to be con_5|dered in Sec. Ill. Al_so,_ since the
solved using an appropriate iterative solver and this requireg'€thod presented here incorporates the periodic boundary
computations ofO(N?) times the number of iterations re- conditions imposed by the presence of the unit cell at the
quired for the convergence to within a desired accuracy_outset, it has the advantage of dealing more easily with vari-

Thus, the overall computational effort and the memory stor2Us kinds of non-absolutely convergent sums that otherwise
age (for the matrix A) scale as Nt2_ [In earlier arise in calculations involving the Green’s function for infi-

calculation$2* we solved the system of equations using ghite domains. The case of interactions among finite number

Gaussian elimination algorithm which required @{N?) of particles in an in'fini.te medium can of course be trivially
effort, but for smallN, the computational time was mostly récovered by substitutingilin place ofS,(r).
governed by the time for computing the matrix elements and
thus this step was not crucil. 1. Translation of singularities
. . We wish to translate a fiel@€°= £°S;(x—x) with its
B. Far- and near-field representations of the singularities ak® to an equivalent fieldP with its singulari-
disturbances induced by a group of particles ties atxP such that bottC® and CP give the same value of
In order that the overall computations for determiningC or its derivatives at a point far from bothx® andx?. We
the multipoles scale linearly withN,, we must be able to start with a Green’s identity
determineE5, with O(N;) computations. The method de-
scribed in Sec. Il A is inefficient for larghl; since it com-
putes the disturbance created by each particéeparately at
the center of each particle. Clearly, the field created by
particles that are separated by a large distance from particl@hereV is any volume enclosing points andx®, gV is its
« can be grouped together for the purpose of evaluating thegurface,n is the unit outward normal oaV, andr=x—xP.
effect on particlea. Similarly, all the particles neaw feel ~ Now we choosd to equalY!, (r) (j=0,1) and substitute in
similar regular field C™9 from the group of particles far turn for C bothC® andCP. SinceC=CP andVC¢=VCP on
away from them and therefore the calculation of the regulagV, the surface integrals in both must be equal and therefore
fields for the particles could also be grouped together. If waye obtain
simply create all the groups of particles with each group
containing nearly an equal numbeEr of particles, then we
would requireO((N/P)?) group—group interaction compu-
tations. In addition, we must separately account for the inter-
actions among particles that are neighbors and this woulglhere we have made use of the fact that
require O(NP) computations resulting in a total computa- y2f=vy2yl (r)=0. (Note that this does not assume that
tional effort that scales roughly @¢/P?+NP. This has a ¢ andCP are equal at all points withil, only their equiva-
minimum for P=0O(N*?), and the total computational time |ence ondV.) Care must be taken in evaluating the above

for this optimumP scales af*®. integrals since the Laplacian @ or CP is a series in gen-
In order to further reduce the order of computations Wegrglized functions

must create a hierarchy among groups of particles and adopt

J(fVZC—CVZf)dVr=J (fVC—CVf)-ndA,, (13
\% VvV

ijnm(r)VZCCdvr:f Yl .(r)V2CPdV,, (14)
\% \

a strategy in which the regular field near partialés evalu- V2C°= £°V2S,(r —r°P)

ated by combining greater number of particles that are fur-

ther away from it and fewer particles that are closer to it. —4n| A0S 1 E N LALC T S(r — roP) (15)
This can be accomplished using the algorithm of Greengard 0o i T T ’
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wherer®P=x°—xP. Here, we have used E() to represent surface of the unit cell, the surface integral in both cases
C® in terms of multipolesAy’ at x° and Eq.(4) for the  must be identical leading thereby to the equality of the vol-
Laplacian ofS;, the pointsx® andxP being assumed to lie ume integrals
inside the basic unit cell witly, =0.

Now sinceCP must be spatially periodic, the most gen- f
eral form for it with singularities akP is 7

c_l22c _ p_}22p
C 6rVC av C 6rVC dv. (22

o Substituting forC® and CP, noting that the integral of'S,;
CP=eP+ >, N\ AP SI(), (16)  over the unit cell vanishes, and using the generalized func-
el tion representation of Laplacians 6f andCP, we obtain
whereeP is a constant that may arise in translating the sin-
gularities fromx°® to xP, and A, are the multipoles axP. eP+
Substituting Eqs(15) and (16) into Eq. (14) we obtain

2

2
0p_ 0c.pc c__ 0c.pc 0c,pc
3TAz()—?”_[AOOrp rPC—2A75r I+ 2A7TT5

+2A75T 80+ A%, (23)
-1 nAj,p: E -1 k —1Ai,Cgi IYJ cp
( )"Anm )\nmenml = ( )N AT P Y am(rEP).

which can be further simplified by substituting fab$ from
(17 Eqg. (17) to obtain

Here, we have used the result tHag,Y! (r) at r=0 is 2@

nonzero only foii =j, n=k, andm=1, t;nar?aazt its value for ep:T[Agbc{(rpc)z_Ygo(rpc)}+3(Agfrgc+Aifrgc)]
this special case is &/,. Also, in deriving the above result (24)
we have assumed that the monopoleg°andxP, are equal,
i.e., AJS=ASP, aresult that is verified posteriorifrom Eq.
(17). Thus, the term containing™ ! in Eq. (4) made no con-
tribution to Eq.(17). Finally, we also made use of the fol-
lowing result for the integration of generalized functions:

Equations(17) and (24) allow us to shift the multipole
singularities at poink® to that atxP. These will be useful in
combining the disturbance created a group of partiglé@so
an equivalent disturbance created at a single pdint

f YLm(r)@;ﬁ(r—rcp)dV=(—1)"£Zki|YLm(r°p). (19) 2. Translation of regular solutions - |

v We now consider the problem of translating a field
C™9® which is regular at botix? andx® (these are not to be
confused with the singular points we used in the previous
erivation and for which a spherical harmonic expansion

“aroundxP is known to the corresponding field with its ex-

pansion around®. Let

Expression(17) allows one to compute the multipoles at
xP given their values ax®. A more convenient form that is
useful for computing these multipoles can be obtained b
using the results given in Appendix A where we have pre
sented more detailed formulae for evaluating the derivative

of spherical harmonics. o 1, i o
It may be noted that the first few multipoles>& could CrooP=—fr +j;m EnmYam(r) (25)
also be obtained by a straightforward Taylor series expan- o
sion of C® aroundxP. Thus, using be the regular expansion around x—xP=0. We then wish
. . ‘ to determine the coefficients that appear in the expansion
GS(r—=rP)y =25, (r)—rP.vZs(n)+ ..., (19 aroundxc
the relations among first few multipoles can be readily ob- 1 o
tained Creoe=— =f|r— rcp|2+_2kI ELCYL (r—rCP). (26)
1K,
Op_ AO0cC Op_ AO0c_ .cppOc X
Aoo=Roo»  A10=A10~r1"Aoo For this purpose we use the fact tHg} is related to &th
A‘H’=Agf+rg°A‘ff, o (20) order derivative ofC"™9¢ evaluated at =r°P
It is easy to veri_fy that these are in agr_eement yvith the more Eik’|°: €k|~@ki| Cregy Ef|r_ ren|2 ) (27)
general result given by E@17). Calculations of higher-order 6 r=rcp

multipoles using the Taylor series expansion, however, beSubstituting forC™ from Eq. (25) we obtain the desired
comes cumbersome and the method presented here basedr89ult

generalized functions proves more convenient.
To complete the translation, we need to determine the
constanteP. For this purpose we start with the identity

J av=g]
= — n.
v 3Jav

and once again substitute f@rin turn bothCP andC®. The  Once again, expressions for the first few coefficieE'anC
volumeV is chosen to be the basic unit cell in which both could also be obtained using the Taylor series expansion, and
x¢ andxP lie andéV is the surface of the unit cell. Since both the results obtained that way can be shown to be in agree-
CP andC°¢ are required to be equivalent at all points on thement with the above more general result.

' 1 )
Ele= S el 2 ()= 20 1P}, e

C 12VC
r —Er

1
C—ngVZC

dA (21 +eq > ELPAIYL (reP). (29
J,n,m
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C. An O(N) algorithm computed and&” by the center of the equal generation box
from which the contribution is being computed. Al$bto be
used equals the net sirf¥® due to all the particles repre-

(1) Create a hierarchy treeThe first step is to create a sented by the equal generation boxes. This can be deter-

hierarchy among groups of particles. For simplicity, we shallminled from Er(]:].(12) with the summhation ov|e1y once again
assume that our basic unit cell is cubic. We divide this into g'€Paced by the summation over the equal generation boxes.

equal-sized cubes each with its linear dimension half that o ow comparing with 'the regular expansion given by Eq.
the basic cell. These are referred to as the level 0 boxe %‘:’) we see that at }h's levélfor ?j_glven box ;]sbthe sum of
Next, each box at level 0 is further subdivided into 8 smaller> V€' its 37 equa generatlti)n Istant neighbors.

level 1 boxes leading to a total of 64 boxes at level 1. Thef Next, we computef and Ey, of the boxes at the next

process is continued to the finest lewa),, at which the box égﬁ{rifgggn"ﬁséexgl e2.ul;|nIll;ielfz;/t?cl)nl,Ie;\?e?gdglc?;éstsgr;he
size is such that on average there Brgarticles per finest qual g

. , are 6—3%=189 equal generation boxes for each box at this
level box, P being a constant 0®(1) whose precise value X o
A o . level), we must also determine the contribution from the
must be determined by optimizing the total computanonalre ular expansion of its parent box at level 1. Denoting the
time. Note that there are a total Wi, + 1 =10gg(N/P) levels. 9 P P ' 9

Finally, each particle is assigned the finest level * arent”box at level 2 under consideration by a supersctipthe
o, each p . 9 P parent byp, and the equal generation box by eq, we write
box in which its center lies.

(2) Upward pass.The second step is to determine the _ _ _
muIt_ipoIe repr_esentgtion of the fields induced by a group Qf fe=fP+ >, S ELC=ELP7C+ > ELETC, (29
particles that is valid at large distance from the group. It is ed €q
assumed that we shall determine the multipoles of the par- _ o
ticles by a suitable iterative proceduid. Step(5)]. Thus, at and use Eq(28) to determine the contribution from the par-

the beginning of each iteration we start with the assume(gnt (p—.>c)c;jthe iql:al gengrr]at;]on contr:‘bllzjtmn tcagdllizk| IIS
values of the multipoleg\);” for each particle and compute etermined, as before, with the use of E(l) and (12). It

the contribution from each particle’s multipoles to its parentfShOUId be noted that the parent of a box accounts for the field

box multipoles and the constaek at my,, level using Egs. induced by all the particles lying in the distant boxes of level

(17) and (24) with X in that expression being the position 1. Thus,' for each level 2 l?ox,.we have now accounted for all
ic the particles that are outside its nearest 27 level 2 boxes. The
vector of the center of the parent box axdand A", re-

. . . particles in these 27 boxes are too close to an arbitrarily
spectively, the center and the multipoles of partigleNext, L . :
with the multivoles and the constaafor all the finest level selected particle in the box under consideration and therefore
P . : we must wait for the calculations of the coefficients for the
boxes computed, we determine the multipoles arfdr the

, finer level boxes to account for their effect.
next coarseme,—1 level boxes with each parent box mul- The above procedure of combining contributions from
tipoles now determined from the multipoles of its eight

“children” at level Thi dure i ted to | the equal generation boxes and the parent box is continued to
chiidren™ at level Myey. 1NIS procedure IS repeated o 1arger o615 3 4, . . M. At all these levels, the total number of

size boxes to compute the constanand the multipoles of equal generation boxes from which the contributions are
all the boxes at all the levels. , computed equals 189, except for the finesf, level, for

(3) 'DOW|_'1ward pas;?l’he mUIt'POIGS and the cgnstaet which we sum over all the 216 boxes. This includes addi-
determined in Stef?) give the far-field representation of the iona) 27 nearest neighbor boxes with one small difference:
effects of particles whose center .is located in.a. given boXine singular part 1/is removed fromS, before computing
We next want to computeandEy,, i.e., the coefficients that  he contribution from these nearest 27 boxes. Physically, this
appear in describing the regular field, for all the boxes at alhccounts for all the particles that are lying in the periodic
the levels. This is achieved by starting with the boxes at Ieveﬂmages of the nearest neighbor boxes at the fingst but
1 (or level 0 if the basic unit cell is not cubic but oblong not the particles in the nearest boxes themselves which are
instead, for exampleand determining the contribution to the oo close to permit the use of far-field representation in de-

regular field expansion about the center of the boxes fromermining the regular field expansion. We shall account for
the disturbance due to particles in the other boxes at the saniigese particles separately via Stdp.

level but the ones that are not its nearest neighbors. Here, Finally, we compute the contribution tb and ELI of

and in the subsequent discussion, we shall refer to all the 28ach particlex from the finest level parent box. There is, of
nearest neighbors of a given box at a given level and the bogourse, no contribution from the equal generation boxes at
itself as the nearest neighbor of the box for the sake of brewthe particle level.

ity. Thus, a given box has 27 nearest neighbors. At level 1,  (4) Particle to particle contribution.The contributions
there are 4—33=37 boxes that are further away from a from the particles in the nearest 27 boxes are evaluated in the
given box and contributions tbandE,, of a given box from  same way as for the contributions from the equal generation
the particles in these 37 boxes can be determined usingoxes in the previous step except that the funcB(r) is

Eg. (11) with the summation ovet in that expression re- now replaced by t/because the regular part 8f has al-
placed by the summation over these 37 “equal generation’teady been accounted for in Sté&).

boxes. Of coursex® must be replaced by the position vector (5) Determine new guess for the multipold$e Steps

of the center of the box whose regular coefficients are being2)—(4) constitute one iteration in solving for the multipoles

We now describe th®(N) algorithm for computing the
Laplace interactions. This consists of the following steps:
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of the particles. A suitable iterative procedure, such as thebtained in the present algorithm. Similar reduction in the
generalized moment residulBMRES method, is used to exponent ofNg, is obtained in a related calculation by
obtain the new guess for the multipoles. Zinchenko? These investigators considered very high val-
Steps(2)—(5) must be repeated until the multipoles con- ues ofNg, for which the reduction is significant. As will be
verge to within a specified accuracy. We now make severathown in Sec. IV, a very good accuracy is obtained even
remarks regarding the procedure outlined above. with Ng, as small as 3 and therefore we have not imple-
Remark 1.For problems in suspension mechanics, wemented their method here.
typically use the periodic boundary conditions. For this spe- Remark 3.If the dimension of the unit cell does not
cial case, creating the hierarchy tree is a trivial matter. Oncehange in dynamic simulations, then it is possible to save
the basic unit cell is divided into a specified number of lev-considerable computational time by storing various matrices
els, this tree remains unchanged throughout the dynamitat are needed in computing the parent to child or child to
simulation. In order that this remains computationally effi-parent contributions, and the contribution from the equal
cient, the number of particles in any of the finest level boxeggeneration boxes. In particular, the only place where one
must not become much greater than its average \RIUEhis ~ needs to use Ewald’s technique for determinBigand its
will be true provided that no isolated cluster with a largederivatives is in the equal generation computations and these
number density develop as the simulation proceeds. This igalculations need to be done only once, at the beginning of
an important consideration in stellar dynamics where thghe simulations. Also the total number of derivatives to be
overall number density of particleGtars/planetsis very — evaluated isO(4NZJogN), which amounts to a negligible
small and the clusteigalaxy formation is an important phe- cost compared with a total derivatives@{4N2N?) that one
nomenon to be investigated through simulations. In such #&ust evaluate aeverytime step in theO(N?) algorithm
case,m,, Mmay have to be changed during the simulationsdescribed in the previous section.
and may not remain uniform throughout the basic cell. The

computational effort for the determination of the tree for
such highly nonuniform systems scales B$logN)* as IIl. THE METHOD FOR STOKES INTERACTIONS

shown by Aluru and co-workerS:?® The number density of Having described in detail the method for Laplace inter-
particles in most suspension problems is typically large andictions, we now consider the method for Stokes interactions.
the probability of developing a highly nonuniform suspen-The pasic idea is same as before and we need to address only
sion is generally small. In few exceptional cases, such agyo important issuesti) how to include the lubrication ef-
gas—solid fluidized bed where large voids devoid of any parfects such that reasonably accurate particle trajectories are
ticles may form, creating tree with nonuniformye, may  gptained with very few unknowns per particle; afiid how
prove useful. to translate the singular and regular solutions of Stokes equa-
Remark 2.1f the multipole moments representing the tions. Of course, the lubrication effects could also be impor-
effect of groups of particles are computed umtoNsp, the  tant in some problems involving Laplace interactions, e.g.,
computational effort for the upward pass scales ashe problem of determining the effective thermal conductiv-
(Nspt1)*N: there are a total ofNgp+1)? multipole coef- ity of dense suspensions consisting of highly conducting in-
ficients to be evaluated and each depend linearly on the samysions, but we chose to defer the discussion of the iG$ue
number of multipoles of its children. The computational costto the present section to explain the important aspects of the
for computing the parent to child contribution to the coeffi- algorithm through a relatively simple problem for which the
cientsEy, in the regular expansion is ald((Ngp+1)*N),  Jubrication effects are absent.
assuming that these coefficients are also computed up to \We shall follow the method of Sangani and o ac-
k=Nsp. The cost of computing the contribution from the count for the lubrication forces in Stokes flow. This method
equal generation boxes is roughly 2B6fimes that for the separates the force density on the surface of the particles into
parent to child calculation? being the average number of a singular distribution of the force density near the narrow
particles per box. Finally, the particle to particle contributiongap between the particles and a regular distribution of force
requires arO(27P(Ns+1)*N) effort. Here,N; is the order  density over the entire surface of the particles. The singular
of multipoles retained in describing the field induced by theforce density gives asymptotically correct forces on the par-
particles. Thus, as a first approximation, the total computaticles in terms of their velocities and the gap width while the
tional cost per one iteration is controlled by the equal genregular distribution is expanded in the case of spherical par-
eration contribution and the particle to particle contribution.ticles in a series of multipoles at the center of the particles,
A rough estimate of the total operation count is thereforeand their values are determined by satisfying the boundary
[216(Ng,+1)*/P+27P(Ng+1)*]N and this has a minimum  condition on the surface of the particles. In addition to giving
for P=3[(Ngp+1)/(Ns+ 1)]2. Of course, this is to be used correct lubrication forces and torques on the particles in
only as a rough guide to estimate how optimiéimmight  close proximity, the method also accounts for the effect of
depend orlNg and Ng,. More accurate estimate can be ob- the velocity induced by the lubrication forces on the other

tained through numerical experimentation. particles in the suspension. The velocity of the fluid is given
The total operation count and the estimate of optimumby

P obtained here are different from that of Greengard and N

Rokhlm1 who u;‘e_d a slightly more complex algorithm ui(x)=<ui>(x)+2 ‘//élgzvij(x_xa)_}_u!ub(x), (30)

which scales adlg, instead of the fourth power dependence a=1

Phys. Fluids, Vol. 8, No. 8, August 1996 A. S. Sangani and G. Mo 1997

Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



where(u;) is the average velocity of the suspensiop,is a *

spatially periodic Green’s function for the Stokes equationu™“(r)= >, [chr2Vphe+blrp @+ Vx(rx"®) + Ve ],
/" is a differential operator, and" is the velocity in- n=1 @
duced by the lubrication force density. Detailed expressions

for each of these quantities may be found in Mo andwith ch=¢c%,_4, by=b%,_;, and

Sangari and Sangani and Mb. In particular,

—(FjlAmn)v;;(r) is the velocity atr due to point forces phe=>, Pyl
acting at the lattice points of the periodic array. As shown by mJ
Hasimoto?® o (38)
ra__ r,a
(9232 Xn _mzj Tn]m YJnm!
Vi =818 — ——0, 31 ’
! 1] &riﬁrj ( )

=2 DYl
where S, is the same function as introduced earlier in the m]
Laplace interaction calculations, aSd satisfiesV2S,=S; .

i X . In Mo and Sangani,we have defined the differential
vij(r) has a singular behavior nea#0 as given by

operator.7;" in terms of the coefficient®,«, etc., that
1 1 & appear in Eqs(36) such that

o pS=s =
vij— U (32 up =2 (39)

the well-known Oseen tensor for the flow induced due to avherevs; is the Oseen tensdcf. Eq. (32)]. We also gave
point force at origin in a fluid at rest at infinity. The actual expressions for evaluating the coefficients that appear in the
expression for the differential operato#{* is somewhat in- regular part of the velocity ax* in terms of the singular
volved but, fortunately, will not be needed for our discus- coefficientsPy,”, etc., of all the particles in the suspension.
sion. The only thing that we need to note is that it is definedThis is analogous to the expression we cited for the Laplace
such that, when operated off , it produces terms that co- interactions[cf. Eq. (11)] except that the corresponding ex-
incide with the singular terms in the Lamb’s general solutionpressions for the Stokes interactions are considerably more
in terms of spherical harmonics. More specifically, let theinvolved. The direct evaluation of these regular coefficients
velocity of the fluid near the surface of particie be ex-  requires anO(N?) computational effort. In the present sec-

panded in the Lamb’s solution as tion we shall derive the results for the translation of regular
. ) and singular solutions that will allow us to determine the
ut=u>r4u (33 regular coefficients with a®(N) effort.

with u®“ andu”¢ being, respectively, the singular and regu-
lar parts ofu at x=x“. These are defined by
A. Translation of Stokes singularities

use(r)= >, [c3r2VpS@+bSrpS+Vx(ryS®) + Vs, We wish to translatery=. 7{v;;(x—x°) with its singu-
n=1 34 larities atx® to a velocity field with its singularities at”
(34) such that both are equivalent at a pointsufficiently far

wherer =x—x¢, away from bothx® andxP. Since the field with singularities
at xP must also be spatially periodic, the most general form
o 2—n bs n+1 35 for it is given by

n: _ ! n: _ ’
2n(2n—1) n(2n—1) WP=e . ZPui(x—XP), (40)
and p,, xn. and ¢; are spherical harmonics of degree hereg, is a constant. Lep® and pP be the corresponding

—n—1. (For this section we temporarily suppress our previ-pressure fields. Substitutingfor C in Eq. (14) we obtain
ous notation according to whic# is the volume fraction of

the particles. We define the above spherical harmonics in

terms of “multipole” coefficientsPl, ., etc., by means of

f Yi(1)V2p° dV,= f Vi1 V2P dV, (41)
\ \

ca favi —2n-1 wherer =x—xP. Now since the pressure satisfies the Laplace
Pn = mEJ PhmYnm ' equation except at its singularities, the integrals in the above
’ expression can be evaluated simply from the singular behav-
. o 1 ior of p which can be written as
Xa= 2 T bl 2, (36) o o
’ pS= ﬂl;i Pl Yiar 2 1= ﬂ;i Na PuZar 7t (42
F= 2 R

. where we have made use of E@\1) in writing the last

equality. Noting thav?r ~*=—4x48(r), it is relatively easy
where the summation oven is from 0 ton and forj from O  to carry out integrations in E¢41) to obtain a relation simi-
to 1. Likewise, the regular part is written as lar to Eq.(17)
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PLh= enmknmi% NGLPLEZI Y (1Po),

(43

whererP¢=xP—x°. .

Now we determinel’P. Let o=V xu be the vorticity.
Using Egs.(34) and (35), it can be shown that the singular
part of the vorticity is given by

ws,a:; - %raprf;a— NVxS2—ray2ysa, (44
where the superscriph stands forc as well asp, and
ré=x—x* Now we note thatr- w? satisfies the Laplace
equation at all points except at its singular poifit This can
be seen by multiplying Eq.(44) with r and using
ré=r—raP to yield

r-ws=Y,

n

1
- e (rxVpy®)+[n(n+1)—nraP.v

e A S A v Y (45)

Taking Laplacian of the above equation and using resultsk

such asr?.-Vyp?=—(n+1)x? (since xy2 is a homoge-

neous polynomial of degree n—1 in r) andr=r2+rap
we obtain

1
V1 w8t)=3 — ﬁrap-rxvvzpﬁ'a+[n2+ 5n+6

n
—(N+2)r3P. V41 (r2P—r)V2]v2ys?.
(46)

Now substitutingr - w for C in Eq. (14), using the general-
ized function representation of Laplacianspjfand x;, and
simplifying the resulting integrals we obtain

n(n+1) . 1 : o 1
1P — + 1L,Coyl v] + — 1,C
W gl N (K DT LYt PR
~{@L.<rxvv'am<r>>}} 47
r=rPC

This can be further simplified using the general results for
differentiation of spherical harmonics given in Appendix A.
A convenient set of formulas for computing all the multi-

poles atx? from those a® is given in Appendix B.
To compute the coefficient® P we start with the iden-

tity

(90'”' , Ju;

! (9Xj (9_)(i,

!

J
—(ojjui — (48)

' _
ﬁXJ O'ijUi)—u

where gjj= —pé&;; + 7(du; 1 9xj+ du;/ dx;) is the stress ten-
sor corresponding to a fieldu(,p) and a'i'j is the stress cor-
responding to a regular fieldu(,p’). (u;,p) on the other

tain bothx® andxP, apply the divergence theorem, and use
the equivalence of the two fields at all points on the bound-
ary ¢V to obtain

f [{chr2vYl (D +DbhrYl (D}-(V-0)+ YL (1) V-ucldV,
\Y

= f [{chr2VYL (D +DbhrYl (D} (V- o)
\Y

+Y!(rV-uPldV,. (50)

Since the divergence of stress and velocity are zero ex-
cept at the singular points, only the singular part of the ve-
locity and stress will contribute to the above integrals. Sub-
stituting the singular part of the velocity far®, wherea
stands forc or p, the integrands in the above expression
reduce to

1 . . _
G Y D Vi1 G Y V0

+(chr2vyYl +blryl ). (VX (raveys )+YLmV2¢E}.
(52)

Using the generalized function representation of Laplacians
of p;, etc., and carrying out the integrations in E§0) we
obtain

CI)H%: fnm)\nmi’EkI [CDII(’IC(Z”'kIYLm—'— mTklcrpC'V

X (Dig(rYhe)) + Pif m)

r S
Cn+ Ck_

2—k
k(n+1) k(2k—1))r

X ) |

2K(2k=1) - (52

r=rPC

V) + A

A convenient formula for evaluating’, , based on the above
expression is given in Appendix B.

Finally, to complete the transformation of the singular
solution atx® to that atxP, we need to determine the constant
g; in Eq. (40). For this purpose we use the identity

ru-n dA,

f[uc—rV-uC]dV=f[up—rV-up]dV=f
T T ar 53

hand, is allowed to be singular at some points in the spacgynhere r is the unit cell enclosing botk® andx? andn is a

We now choose the regular fields to be given by
P'=Yhu(r),

substitute for (,p) both (U p®) and @P,pP) in turn, inte-
grate the identityf48) over a volumeV large enough to con-

u'=c'r2vyl +biry! (49)
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unit outward normal on its surfacgr. As before, we have
used the equivalence of anduP on 7. Sincev;; and its
derivatives are solenoidal, and since their integrals over the
unit cell vanish, substituting fou® and uP [cf. Eq. (40)]
yields e=0.
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B. Translation of regular solutions of Stokes expressions for computing the contribution to coefficients in
equations the regular part of the velocity near each particle from the

We now consider a solution of Stokes equation which isSingularities situated at the center of the particles and the
regular both atx® and x© and for which the coefficients lubrication gaps. These expressions are given in Appendix B.

(PP TP ®1-P) in the regular Lamb’s solution around

nm > 'nm?

xP are known. Our goal is to derive expressions for its €X-1v. APPLICATION TO FEW SPECIFIC SUSPENSION

pansion aroundx®, i.e., to determine the coefficients PROBLEMS
Pl THw and ®J.°. Since the pressure satisfies the _ . _ .
Laplace equation, the coefficients in its expansion are related !N this section we apply the method described in the

by the same expression as fy; in Sec. ll[cf. Eq.(28) with previous tyvo sectior?s to few specific prpblems yvith the aim
f=0] of assessing the utility of the method in studying systems
with large N. Since the computational effort increases as
N‘S‘p, we shall be particularly interested in determining the
accuracy of the method for smallbk .
To validate the analytical results for computing the
translation of singular and regular solutions of Laplace and
_ Stokes equations, and to test the accuracy of the computer
k(k+ )Ty =€(o" 1), programs, we found it very useful to compare the results of

the programs againgD(N?) programs which were exten-
:€k|_2
J,n,m

P o= Eklj;m PP Y h(1€P). (54

Similarly, we use the fact thab"-r with r=x—x° satisfies
the Laplace equation and obtain

k(n+ 1) TPy (rop) b sively tested previously for their accurat$%2*Since the
n+1 computational time required by the€(N?) algorithms is

very large, the accuracy for lardé was tested by arranging

X PHefy. (V(@ljl(rYLm)))}rrCP} (55) th.e N particles Wit_hin the basip pnit cell ip a periodjc array
with each sub-unit cell containindyly particles. Typically,
Finally, we use the fact that-u' is biharmonic, and there- the calculations were checked witRo=1, which corre-

fore ®}° can be evaluated from sponds to a truly periodic array, and wiky= 16, the par-
ticles within the sub-unit cell arranged in the latter case in a
{@i 3 (k=1)(k=1-1)

, i 20 e 0o random array. Since in th®(N?) method we compute each
ki Dy Vo (r-u') : :
4k—2 ' r—rop element of the matrixA separately and then evaluate the
(56) productA - x, the most important test of tHe@(N) algorithm

Once again, the detailed expressions for determining varioy$duires the direct evaluation cif this product o matc;}h with
coefficients of the regular part of the velocity are given inthe corre§pond|ng product evaluated by BEN®) method
Appendix B. for any givenx. Here, for example, for the case of Laplace

interactions x is the vector ofAl” while the product is the
vector of EL{' [cf. Eq. (11)] plus a constant times the vector
C. The O(N) algorithm for Stokes interactions of A, with the constant depending on the boundary con-

The O(N) algorithm for Stokes interactions consists of ditior_1 at thg surface of the parti_cle;. The elements of the
the same steps as outlined in Sec. II. In addition to computMatrix A bemg_relatied to the derivatives 8 evaluated at
ing the contribution from the singularity at the center of par-X=X"—X". TakingA;3=1 for all n,m,i, andy, we evalu-
ticle  to the regular field near particie, we also calculate 2at€ the mean value @&, over all the particles and its vari-
the flow induced by the lubrication forces between each paifc€ from the mean. For the special case of a periodic array
of particles in close proximity. In Sangani and Mae gave  With No=1, the variance must, of course, be zero. However,
the expression for the flow due to lubrication forces in termgh€ O(N) algorithm with finiteNs, introduces some fluctua-
of a force dipole singularity situated at the center of the gaﬁmns even in the case of a _peno@c array. These_fluctuauons
between the particles. The upward pass now determines tif4ere found to decrease rapidly with the increasdip. The
equivalent force multipoles of the finest level boxes fromMean value for eack, was also found to agree well with
both the force multipoles of the particles and the lubricationthat obtained from th©(N<) algorithm as we shall show in
singularities. The remainder of the upward pass calculation@0ré detail below. Similar tests were also made for the
in which the multipoles are evaluated for the coarser levePtokes interactions code.
boxes remain unaffected by the lubrication singularities. Ina. Laplace interactions
the downward pass calculations, the contribution from the ) )
equal generation boxes is evaluated by the expressions given A few typ!cal .results for the relat!ve errors .for the Spe-
in Mo and Sangadiwith the center of particle in that study cial case of dlffu5|on—ppntrolled reactions are given in Tabl_e
now replaced by the center of the equal generation box, and The bou_ndary condition on the surface of par.tlcles for this
the center of particlex replaced by the center of the box prpblem y_|elds Eiqa(7)- Denoting the left-hand sidghs) of
whose regular coefficients are being evaluated. Finally, il €guation by, we calculate two measures of the rela-
the particle to particle step, we evaluate the contributiori'V€ €rTors. The firstis defined by
from the particles and the lubrication singularities lying in 1 (rhay_ (yha

the 27 nearest neighbor boxes. For this we need additional E;=— —
eq n,m,i rn'r‘:,l

ri,c_ SkI

kl_k

, (57)
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TABLE I. Relative errors from the Laplace interaction code as a function of TABLE Il. Computing time(in s) per iteration using a single processor on

N, for different values ofNs. Case A: simple cubic array witih=0.3, IBM SP2: eq gen, pp, and total refer to time for computing equal generation
No=1, N=512. Case B: random array with=0.25, Ny=16, N=1024. contribution, particle to particle contribution, and the total time, respec-
tively. (These times are for the diffusion-controlled reaction problem.
Case Ng Nsp E; E,
A 1 1 1.0E-2 L3E3 N Mgy Ng Nsp eq gen pp Total
2 4.0E-2 1.3E-3 512 2 1 1 2.0 0.7 2.8
4 7.5E-4 2.1E-4 1 2 3.6 0.7 4.6
1 4 47.6 0.7 49.2
A 2 2 7.9E-2 1.1E-2 2 2 36 26 6.6
4 7.4E-2 1.1E-2 2 5 113 27 117
5 9.5E-5 2.2E-4
B 1 1 2.5E-2 1.1E-2 1024 2 10 10 ij'77 30';15 62.;13
2 L1E-1 L.9E-2 1 2 3.6 2.7 6.8
4 L4E-L 1.3E-1 1 3 7.2 2.7 11.0
5 1.9E-3 2.5E-3 1 4 49 27 54
B 2 2 8.0E-2 4.9E-2 3 3 7.1 31 40
4 7.8E-2 2.2E-2 4 4 50 73 128
5 6.9E-4 9.9E-3 4096 3 1 1 215 5.5 28
1 4 375 55 387
2 2 38 21 62
4 4 386 145 550
where the angular brackets denote the average over all the
1 23 23 48

particles in the unit cellf;2 is the Ihs of Eq(7) computed 8192 3 1
by the O(N) algorithm,r};% is the corresponding value ob-
tained from theO(N?) algorithm, andne,=(Ns+1)? is the

total number of unknowns per particldg being the highest

order multipole used in describing the disturbance field dudS €Ssentially governed by the downward pass in which the
to each particle f<Ny). The order of multipoles to which evaluation of the contributions from the equal generation

the disturbance created by groups of particles is representdt§ighbors and the particle to particle interactions to the regu-
in the O(N) algorithm is denoted by lar coefficientsEy* take up most of the computing time. As

The second measure of the relative error is mentioned earlier, the operation count for the equal genera-
. _ tion roughly scales as 2MN§Ng,+ 1)*/P, and that for the

(Epey—(Epm particle to particle as 29P(Ng+1)*. The scaling of these
? ' 58 times with Nsp, Ng, and P can be verified approximately
. nm _ from the data presented in Table Il. For example, the particle
whereE} " is computed using th®(N) algorithm andE.;  to particle time quadrupoled whéwas increased from 512
by theO(N?) algorithm. This error is a true representation of to 1024 keepind\s= 1. Note that withm,.,= 2, there are 512
the error introduced by the grouping of particles and is relaboxes and henceP equals, respectively, 1 and 2 for
tively insensitive to the volume fractios of particles. The N=512 and 1024. Similarly, the particle to particle time
errorE, on the other hand, depends on the specific boundarghanged roughly by a factor of 4 whéh was changed from
condition and is therefore dependent on the nature of probt to 2 atN=>512. The ratio of particle to particle time to the
lem to be solved. Also since the magnitudeEyf; decreases equal generation time is somewhat variable. Rgr N, the
relative to the coefficient of the singular terAj,> as the ratio of this time does approximately scale RS, but the
volume fraction decreases, this error will decreasepais  ratio appears to vary considerably wikh ranging from 0.07
decreased. for Ng=0 and N=512 to 1.09 for Ng=Ns,=3 and

As seen in Table | both relative errors are generallyN=1024. This variation may be partly due to inaccurate na-
small in magnitude even though the errors do not decreasire of the timing obtained from the interactive calculations.
monotonically withNg,. For the special case of periodic More importantly, however, the difference may arise because
arrays withNy=1, only the multipolesA,,, with n andm  the particle to particle calculations require evaluation of
multiples of 4 are nonzero and therefore a significant reducspherical harmonics for each pair of particles whereas the
tion in the error is expected to occur only whély and calculation for the equal generation contribution uses precal-
N, are incremented by 4. This is found to be generally trueculated derivatives 08, .
even for random arrays. In most cases the errors for The set of equations given by E(.) were solved itera-
Nsp=Ns+4 are seen to be very small, well within the accu-tively using a subroutine based on the generalized minimum
racy of theO(N?) algorithm. residual method for nonsymmetric matrices written at

Table 1l shows the computing time for one iteration on aLawrence Livermore. The routine determines the approxi-
single IBM SP2 processor at the Cornell Theory Center. Thenate solutiorkx®’to A-x=b and generates an estimate of the
times shown there are for an interactive calculation on thesrror defined as the square root of Euclidian norm of the
machine and thus represent approximate times. They are ussifferenceb— A -x® divided by the norm ob. Since it is not
ful, however, for illustrating the dependence of computerknown a priori what error estimate is acceptable for gener-
time onN, Ng, Ng,, andP. We see that the computing time ating a satisfactory solution to a given problem, we must

1
Eo=— E

neq n,m,i

sp»
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TABLE Ill. Convergence of the reaction rat&; as a function of number of TABLE IV. A comparison of the results for the non-dimensional diffusion-
iterations(iter) andN using a generalized residual moméBMMRES algo- controlled reaction rate”Z; and the monopole variandef. Table Il cap-
rithm. Error refers to the error estimate calculated by the GMRES code antion) obtained by the@d(N?) andO(N) algorithms.

var=(A%2—(A)2)/(A)? is the non-dimensional variance in the induced

monopolesA=AY,. O(N?) O(N)
N ¢ Ns=Ngp Iter Error T var ¢ No Ns Rs var N Nsp  Rs var
1024 o1 5 6 s8E2 208 38E2 045 1 0  9.06 0.0 512 0 835 0.0
11 81E-3 211  4.1E-2 512 4 9.06 0.0
17 95E-4 211  42E-2 4096 0 603 11ES
23 70E-5 211  42E-2 4096 4 905 17E9

4096 4 10.30 1.0E-7
1024 0.3 2 10 6.0E-1 4.74 1.3E-2 8 10.31 0.0

20  45E2 495  16E-2
38 92E-5 495 16E.2 045 16 1 998 25E3 1024 2 871 3.3E-3

4 9.98 2.5E-3

4096 03 1 20 1.7E-1 415  3.3E-1 2 1074 1.7E-3 2 937 3.0E3
40 1.0E-2 419  3.7E-1 3 1117 1.7E3 3 950 17E-3
4 1133 17E3 4 1139 15E-3

4096  0.01 1 8 89E-3 119  4.6E-2
24 1.0E-5 119 46E2 01 16 0 217 26E2 1024 0 165 3.4E-2
1 231 17E2 1 231 18E2
8192 0.1 1 9 15E-1 189  4.1E-2 2 234 17E-2 2 231  1BE-2
19 9.7E-3 200  4.1E-2 3 234 17E2 3 227 16E-2

study the convergence properties for various problems Sep@bnably high accuracy is achieved with less than or equal

rately. to 4 even at high volume fractions. For the special case of a
periodic array Ny=1), the results obtained here are in
1. Diffusion-controlled reactions agreement with the results reported by FeldefAdfs men-

tioned earlier, we expect a very high accuracy from the
; . o L . . O(N) algorithm whenNg,=Ng+4. This is indeed the case.
our primary interest is in determining the non-d|men5|onaIHOWeVer even the results obtained with lower values of
reaction rateZ2s. This is determined as follows. ' . .

L sp are seen to introduce only a modest error, typically less

It can be shown that the average concentration is relate an 10%

to C” in Bq. (3) by In studying large systems it will be desirable to carry out
simulations with the lowest order approximation that keeps
the essential physics of the problem. In the present case, this
corresponds tdN = 1. The net reaction rate is related to the
v_vhere thg angular brackets Qenote average over .aII the paﬁionopoles 6=0) and the effective diffusivity of the me-
ticles, ¢ is the volume fraction of Othe_ particle§ is the dium is governed by the induced dipoles=1). Since the
strength of sink[cf. Eq. (2)], and Agg' is the strength of . caniration on the surface of the particles is specifi,
induced monopole due to the presence of partielethe  ~_ ) \ve expect a Brinkman-like screening of the condi-
radius of the spheres being taken to be unity. The nong, a1y averaged concentration. More specifically, it is easy
dimensional reaction rate can be shown to be given by ., <how that the average concentratig®), at x given a

We begin with the diffusion-controlled reactions. Here,

(C)y=C"- o

1A°“ 1S
§< oo>+1_5 ;

S(1-¢) sphere atx, satisfiesV%(C),=a?(C), for large r=x—x,
Tos= 51T (60 with a2=3¢.2.D/(D*(1— ¢)), D* being the effective dif-
3¢|C”+ 6( 1- §¢” fusivity in reacting media and is analogous to the Brinkman

viscosity used in describing the conditional averaged veloc-
For computing.725, we take C*=1 and first determine ity in the analogous case of Stokes flow through an array of
ASs. S is then determined from the overall heat balancefixed particles. For large, we therefore expediC);—(C)
which givesS=—3¢(A5¢). Finally, substituting forS in  to decay a ™ *'/r, the radius of the particles being taken to
Eq. (60) yields. 7. be unity. Thus, the conditional average concentration decays
An additional quantity that gives some measure of thealgebraically as */for smallr and exponentially for larger
convergence is the variance in the monopole strength frorthan the screening lengthdl/ For small ¢, this screening
its average value. Table Il gives boths and the variance length is ofO(¢~Y?), and a question we would like to ad-
for various values ofp andN. In all cases the convergence dress is if such a screening can be observed clearly in simu-
is seen to be quite rapid, with the number of iterations for dations based o®(N) algorithms with smalN;, or do the

given error estimate increasing slowly wih imposed lengths due to hierarchial division of the suspension
Table IV shows a comparison between the results obinterfere with the screening phenomenon.
tained by theD(N?) andO(N) algorithms. First, we find that Figure 1 shows the conditionally averaged monopole as

the convergence o2 with Ny is very rapid. Thus, a rea- a function ofr. The ordinate 7 is defined by
2002 Phys. Fluids, Vol. 8, No. 8, August 1996 A. S. Sangani and G. Mo
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TABLE V. Results for the added mass coeffici€f .

0.8 T T T T

T
® (o] I\Q; led
orf @ OV + b No N, Ca N Nep Ca
06 - 0.25 1 1 2.00 512 1 2.00
& 3 2.03 3 2.03
os| ¥ o 4 5 2.03
&
04} & 2 . 0.45 1 1 3.45 512 1 3.45
$ 3 3.80 3 3.80
M 03 F o oo e . 5 3.82 5 3.82
o® e 7 3.82
0.2 | dSQ & @ -1
s B e 0.25 16 1 2.06 1024 1 2.06
01 w Bty 3 1 5 2.06
. o, o 3 2.12 3 2.12
* T “’ﬁ, T3 5 2.13
¢ Ve 4 &
-01 ¢ @ & E
0.2 1 1 1 ! !
¢ ’ 1 ¥ 20 B ® dominated by the time for evaluating the derivativeSpf a

step that is not required in th@(N) algorithm since the
FIG. 1. The normalized conditionally averaged monopefeas a function  derivatives needed for this calculation are precalculated and
of r in a system withN=512 and¢$=0.01. TheO(N) calculations were  gtoreqd for subsequent calculations. Moreover, as mentioned
done withNs=Ns,=1 and theO(N") with Ns=1. earlier one needs to evaluate or®(216 logN) number of
derivatives as opposed to tkN?) derivatives required by
the O(N?) algorithm.
(A) = (A)(r)

M=, 61
(A) €1 2. Added mass coefficient
where(A) is the average monopoléAJs)) and(A)4(r) is We now consider another problem of Laplace interac-

the average of the monopoles of particles separated by disions, viz., inviscid, irrotational flow past spheres. This has
tancer. Is is easy to show that the conditionally averagedimportant applications in understanding the flows of bubbly
monopole is proportional to the conditionally averaged condiquids at large Reynolds numbers and small Weber
centration(C), and therefore we expecZ to decay as numbers® as well as the acoustic behavior of suspensféns.
e~ ' for distances large compared with unity but small com-Dynamic simulations for large systems will be needed for
pared with the size of the unit cell. The calculations wereunderstanding the nature of instabilities in bubbly liquids.
done for a single configuration of 512 randomly placed parHere, we shall consider the problem of determining the
ticles with ¢=0.01, Ng=1, andN,=1. The same configu- added mass coefficient of suspended particles. Thus, we de-
ration was used also for evaluatingZ using the O(N?) termine the resulting inviscid, irrotational flow when all the
algorithm so that a detailed comparison of the conditionaparticles are given a velocity of unit magnitude along the
averaged monopoles can be made. The agreement betweenaxis. The velocity of the liquid can be expressed in terms
the two is remarkably good for all values b 30. The unit of a velocity potentialep by u=Ve, with the continuity
cell size was about 60 units and with the two hierarchialequation for the liquid requirin§ > = 0. The boundary con-
levels used in th©(N) calculations, the box sizes at the first dition on the surface of the particle givesn-Vo=n-v*,
and second levels were, respectively, 15 and 7.5 units. As being the unit outward normal on the surface of the particle
seen in Fig. 1, there appears to be no influence of these andv“ its velocity. With ¢ near the particler expanded in
lengths on the results obtained with tB¢N) method even spherical harmonics as in E¢6), the boundary condition
for Ngp, as small as unity. yields

It is interesting to make a comparison of the computing i ian—2n—1_
times for the two algorithms. For the case mentioned above, NEim= (N+ D Aina = On19moio- (62)
the time per iteration was abb8 s and it took 10 iterations Finally, the velocity of the suspension averaged over the
to converge. Thus the total time using tB¢N) algorithm is  whole unit cell is specified to be zero. The added mass co-
about 30 s. The time required by tB&N?) algorithm on the efficient C, is related to thex;-component of the impulse
other hand, was about 4350 (8oth these times are for in- 1, by
teractive calculations on a single IBM SP2 procegsbhis
consisted of about 2880 s for evaluating various derivativegl| ;)= —p< f on; dA> — —m(E%+ A% a3 = (m/2)C,,
of S;. (There are 512 511/2= 130,816 pairs of particles and s
for each pair we need to evaluate 9 derivativesSpiusing (63
the Ewald's technique, which in turn requires sums over avherep is the density of the liquid and is the mass of
total of 400 real and reciprocal space lattice vecjoffie liquid having the same volume as the particle, i.e.,
time for filling the coefficients of matrix took 77 s, and the m=(4ma3p)/3.
time solving the system of 2048 equations using a Gaussian The results for the added mass coefficient are shown in
elimination method took 1388 s. Note that the total time isTable V. The convergence &, with Ny is very rapid with

Phys. Fluids, Vol. 8, No. 8, August 1996 A. S. Sangani and G. Mo 2003

Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Ns=1 giving reasonably accurate estimates. The results oFABLE VI. The non-dimensional drag coefficiert=(F)/(6m7Ua) for
tained using theD(N) algorithm with Nsp: 1 and Ne=1 flow through an array of fixed spherical particles.

also appear to be quite accurate. The accuracy in this case’s &
better than the reaction-diffusion problem.

No Ns  K(O(N?%) N Ngp  K(O(N))

0.25 1 2 7.08 512 2 7.46
3 6.91
; ; 5 7.03
B. Stokes interactions 3 8.97 3 8.70

We now consider the applications to Stokes flows past ,

: X i ; ©0.5235 1 3 28.0 512 3 25.0
spherical particles. For this case the no-slip boundary condi- 5 40.9 5 38.6
tion on the surface of the particles yields a set of relations 7 41.9
arr;ong the coefficients of singular and regular terms given 0.25 16 ’ 6.18 1024 ) ve
by 3 7.36 3 7.11
-2 2
ooy (MFDA 8 e i 01 16 2 265 1024 2 2.72
"mon(2n—1)(2n+1) "™ 2(2n+1) "M nm: 3 2.65 3 2.69
(64)
) 3.2 ) na2n+3 )
Dy mplﬁﬁn* (n+1)(2n+1)(2n+3) Phm a very good agreement between the two was found. We now
_ present results for few specific cases with the primary aim of
=Py, (65  assessing the accuracy of the method for relatively small
' IS . Ns andNg,, and the efficiency of the GMRES method for
Tray g=2n—lqia_ i (66) S = SP - P .
nm nm~— ‘nm> solving the system of equations arising in suspension me-

where the quantities on the right-hand side of the abov&hanics.
equations depend on the imposed flow and the translational
and rotational velocities of the particles. In addition to thel. Permeability of fixed bed of particles

above, we have 6 additional equations per particle for the  The results for the average non-dimensional drag
suspension problems for which the translational and rotak = (F)/6mnaU on the spheres placed in a uniform flow
tional velocities are to be determined given the force andyith a superficial velocityU are given in Table VI. The
torque acting on the particlefcf. Egs. (67)-(68)]. As  parcy permeabilitk of the fixed bed of spheres is related to
pointed out by Cichokét al” and Cichoki and Hinseff the K by k=2a2/(9¢K). We find that the results obtained by
accuracy of the numerical results for dense suspensions dge two algorithms are in a reasonably good agreement with
pend critically on the manner in which the above set of equagach other even withs,=Ng, an exception being the case
tions is truncated. We follow the truncation scheme used byf random array with¢=0.25 for whichNg= Ngp=2 gave

Mo and Sangari,and solve only the set of equations ob- gp unphysical result.

tained by truncating Eq(64) to n<N;, Eqg. (65 to The computing times we reported in Table Il were for a
n<Ns—2, and Eq.(66) to n<N;—1. Likewise, the un- sjngle SP2 processor. In Table VIl we give the computing
knowns are truncated as follow®5 to n<Ns, ;5 10  times for both Laplace and Stokes interactions using multiple
n<Ns—2, and T7 to Ng—1. This truncation scheme is processors running in parallel. Since the GMRES code we
based on the asymptotic analysis of the resulting equations gked for solving the system of equations was written for a

small volume fraction of particles in flow through periodic scalar computing, we employed a master-workers model.
arrays of spheres by Sangani and AcrivbBor high volume

fractions it was found that significantly better results are ob- S o
tained if additional terms arising fOFCI)'n‘r’fq with TABLE VII. Computmg t|me§(|n s) fc_)r the dqwnward pass calculations in

. s Laplace and Stokes interactions using multiprocessors on IBM SP2.
Ng—2<n=<Ng are also included by substituting

dhx=a?P,%/(4n+2) for n>Ns—2. This corresponds to N N, No W Laplace Stokes
satisfying Eq.(65) without theP;* term. According to this

truncation scheme then we have a total d23-1 unknown o1z 2 2 81 04'77 231;19
multipoles per particle plus the six components of transla- 2 3 1 77 84.7
tional and rotational velocities. The coefficients of regular 8 1.2 123
terms are truncated as followB;,;* and @\ with n<Ng 3 3 8 14 13.7
and T;; with n<Ng—1. Similarly, all the moments of  1p24 2 2 1 8.6 325
groups of particles in the upward pass and all the coefficients 4 2.4 9.3
of the regular terms in the Lamb’s solution during the down- 8 16 5.0
ward pass are evaluated in the same way as the above regular 3 3 1 20.9 132
coefficients for the particles witNg replaced byNs,. 8 3.0 26
As in the case of Laplace equations, the code was tested 4096 2 2 8 6.6 30.2
by comparing the coefficients of all the regular terms ob- 3 3 8 13.5
tained by theO(N) algorithm against that obtained from the  g19o 2 2 8 10.8 39.3
O(N?) algorithm developed earlier by Mo and Sandaanid
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10 T T T T 2. Effective viscosity and sedimentation

S\e\
i I
ce
oS
[ty

. We now consider the problems of determining the effec-
] tive viscosity of random suspensions of neutrally buoyant
particles and the sedimentation velocity of negatively buoy-
ant particles. The calculations for these two problems include
the lubrication forces as outlined in Sangani and®Mdth
E two modifications{(i) an expression for the velocity field due
1 to relative motion of two particles in the plane normal to the
line joining their centers given in that paper was incomplete
. and hence needed a correction; diidl the torque due to
lubrication flow induced by two spheres with unequal rota-
tional velocities omitted in their study was included in the
] present study. Atp=0.45 we found that this made no more
than 5% change in the effective viscosity and thus their in-
» fluence on the effective viscosity or the sedimentation veloc-
0 20 oo 80 100 ity results presented in Sangani and Mo should be negligible.
For the suspension problems, Eq§4)—(66) for the
FIG. 2. Error estimate as a function of number of iterations for the perme/Nultipoles are supplemented with the addition& équa-

0.1

Error

0.01

0.001

ability problem.N=512, Ng=Ng,=2. tions given by
Freg+ Flub+ Fext: O’ (67)
Lo+ b=, (68)

The updating of the unknown multipoles and the upwardwhere F“* and L"* are the Iubrication contributions to the
pass which takes relatively insignificant time were carriedforce and torque=*'is the external non-hydrodynamic force
out by the master processor who also distributed to all thélue to gravity or inter-particle potential, aftf9andL " are
workers the downward pagghe equal generation and par- related to the multipoleB; ,, andT,,, respectivelycf. Egs.
ticle to particle calculations. All the workers essentially (70)—(71) in Mo and Sangadl. The regular parts of the
used the same memory as the master processor and hence f@ece and torque can be related to the velocity of the particles
were limited to systems smaller than about 10,000 particle§y consideringn=1 terms in Eqs(64) and (66). These are
for Ng=Ng,=2. We see that the computing time for the €quivalent to the Faxen’s laws

downward pass roughly scales linearly with the number of Fe9=6 7 pal — v+ {1+ (a2/6)V2}u'ed],

workersW. Also we note that the computing time for the

Stokes flow problem is greater than that for the Laplace in- L"*®=4mna[ —2Q+ 0™, (69)

teraction problem for same values Nf andNsp. The op-  \yhereu™d and ™9 are the regular parts of the velocity and
eration count for Stokes flow interactions for givly and  yorticity evaluated at the center of the particle.

Nsp can be shown to be slightly less than six times that  nitial guess for the velocity of the particles in the case
required for Laplace interactions. This is consistent with thepf effective viscosity problem was obtained by solving first
times shown in Table VI which shows the time for Stokesggs. (67)—(69) with uf®%= yijX; andw'®9=Vxu's, ;; being
interactions to be roughly 4-5 times that for Laplace interthe imposed shear rate. The solution of these equations con-
actions. We should note that the computing times shown |Werges very quick|y' and since On|y the Short-range lubrica-

Table VI correspond to the case of flow through fixed bed oftion forces need to be evaluated, the computational effort is
particles for which the lubrication effects are absent. For theelatively insignificant.

suspension problems to be discussed in the next subsection Figure 3 shows the error estimate as a function of the
an additional time will be required for evaluating the contri- number of iterations using the GMRES code for solving the
bution from the lubrication velocity field, the magnitude of system of Eqs(64)—(66) coupled with Eq(67) and(68) for
which depends on the average number of pairs with theia random suspension of 512 particles per unit cell. We note
center to center distance less than a specified value. that the convergence rates are slower than those obtained in
Figure 2 shows the convergence rate for the permeabilitthe permeability problem, especially fop=0.1 and
problem for three different values of volume fractignfor ¢=0.25. Thus, the inclusion of lubrication forces decreases
random arrays wittN=>512. The error estimate is defined as the convergence rate. On the other hand, since a good initial
before, i.e., the square root of the ratio of Euclidian norm ofguess can be obtained for the viscosity problem by first solv-
A-x—Db to that ofb. The convergence rates fgr=0.1 and ing the simple set of equations given by E(&7)—(69), the
0.25 are nearly equal and much greater than#er0.45.  magnitude of the error is relatively small. Table VIII gives
Thus, higher values of will require greater number of it- the effective viscosity and the variance in the particles’ ve-
erations. A suitable preconditioning of the matrix may there-ocity from the mean as a function of number of iterations.
fore lead to considerable saving in the overall computationalWe see that while the error is decreasing slowly with the
times for higher volume fractions. The further work in this number of iterations, the values of viscosity and variance
direction is left to future work. obtained even with 40 iterations are reasonably accurate. The
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FIG. 3. Error estimate as a function of number of iterations for the effective

viscosity problemN=512, Ng=Ng,=2. FIG. 4. Error estimate as a function of number of iterations for the sedimen-

tation problemN=512, N;=Ng,=2.

effective viscosity does not monotonically converge but os-

cillates around 5.6, the value reported by L&dd. rate similar to that for the permeability problem. We see a
The convergence rates for the sedimentation problem argenerally good agreement between the results obtained by

shown in Fig. 4. These rates are very similar to those obthe two algorithms. In view of the fact that the lubrication

tained for the effective viscosity problem. However, unlike forces are relatively unimportant, it may be possible to im-

the viscosity problem, a good initial guess is difficult to prove the convergence rate without loss of much accuracy by

make in the present case, and, consequently, the magnitudigiting the lubrication forces only between pairs of particles

of the error is relatively high. On the other hand, the lubri-that are very close to each other. The calculations shown in

cation forces are not very critical in the present problemFigs. 3 and 4 included lubrication forces for all pairs of par-

Two particles with same external forces sediment togetheticles with the center to center distance less tham.2This

and the nonzero relative velocity between them can occudlistance, for example, could be reduced toa2.1

only due to the effect of the other particles aff? felt by In both suspension problems discussed here the slower

each particle. This relative velocity is typically small and convergence rates arise probably due to the fact that some of

consequently the lubrication forces play a relatively insig-the coefficients in the force equati¢f7) areO(e ') times

nificant role. This can be seen from Table IX which give thethe velocity difference between the pairs of particles. Per-

results for the sedimentation velocity both with and withouthaps iterative methods in which Eq&7)—(69) are solved

the inclusion of lubrication forces. These results were ob-separately from Eqg64)—(66) might lead to better conver-

tained with theO(N?) algorithm with No=16. The corre- gence rates. This will be investigated further in a future

sponding results foN=1024 particles with th®©(N) algo-  work.

rithm were obtained by excluding the lubrication forces for ~ We close this section by considering sedimentation at a

which the error decreases with the number of iterations at &latively low volume fractiongp=0.05. Our aim is to check
how well the simulations with lower-order approximations,

TABLE VIIl. Convergence data for the non-dimensional effective viscosity

and particle-velocity variance as functions of number of iterations using theTABLE IX. A comparison of the results for average non-dimensional sedi-
GMRES algorithmN=1024;N,= 16; Ns=Ns,=2. The lubrication contri-  mentation velocityU/U, obtained byO(N) and O(N?) algorithms with
bution is denoted by lub and error is the error estimate obtained by thé=1024 andN,=16. TheO(N?) results are obtained both with and with-
out the lubrication singularities while tf@(N) results are obtained without

GMRES code.
the lubrication singularities.
) Iter Error 7"l lub var/(ya)?
U/Uy(O(N?) O(N)
0.45 40 1.7E-2 5.78 34 0.14 é N, w lub. wlo lub. Nep U/U,
80 1.3E-2 5.57 3.2 0.15
120 8.0E-3 5.94 3.6 0.16 0.45 2 0.099 0.100 2 0.057
160 6.0E-3 5.44 31 0.16 3 0.049 0.050 3 0.057
0.25 40 3.5E-3 2.10 0.38 0.10 0.25 2 0.173 0.174 2 0.165
80 1.3E-3 2.10 0.38 0.10 3 0.145 0.146 3 0.151
0.1 40 1.2E-3 131 0.048 0.067 0.1 2 0.399 0.401 2 0.391
80 3.8E-4 1.31 0.048 0.067 3 0.388 0.389
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The simulations were carried out by requiring that the itera-
tive scheme be terminated either when the error estimate
decreases belowE5—-4 or when the number of iterations
exceeded 35. FON=512 andN=1024 the error estimate
reached lower than the specified value with an average of 20
and 26 iterations whereas fol=2048 and 4096 the trunca-
tion was due to number of iterations exceeding 35. The cor-
responding average error estimates were, respectively,
5.8E—4 and ZE-3. These calculations were done non-
interactively using 8 SP2 processors. The average time per
iteration for the downward pass fdd=4096 was 25 s,
somewhat lower than one reported in Table VII.

In Fig. 5 we have plotted the sedimentation velocity as a
function of N. In the limit of largeN the sedimentation ve-
locity approaches a constant value as given(dfy Mo and
Sangarfi)
U(N)=U°°—1.760]S(0)U077—Z¢1/3N‘1’3, (70)
where U, is the terminal velocity of an isolated particle,
U” is the velocity in an unbounded suspension with finite

e.g.,Ng=N,,=2, satisfy the theoretical prediction by Caf- ¢, and S(0) is the zero wave number structure factor. For

lisch and Luké? that the velocity variance in random sedi- #=0.05, “Singﬁ*/’?:_l-l?’ andS(0)=0.67 yields the co-
menting suspensions diverge with the system size. In addgfficient of N~** term in the above equation to equal 0.39.
tion to using the lower-order approximations, we also wanted he above relation witlJ*/U,=0.74 is seen to be in a

to test if there would be any serious consequences of nd€asonably good agreement with the results of numerical
using enough iterations in obtaining the solution by theSimulations. _ _
GMRES code. The results for the average sedimentation ve- Figure 6 shows the results for the velocity variance.
locity and velocity variances in the direction of gravity and Since the long-range interactions are dominated by the fields

in the plane transverse to it are presented in Figs. 5 and élduced by point forces, one may estimate the variance based

Each point was obtained by averaging over 15 independer@? @ Simple point force approximation. This was done by

random configurations. The standard eficg., standard de-
viation divided by the square root of the number of gldita

the velocity variances computed with these configurations
was generally smaller than the size of symbols used in Fig. 6.

10

Variance 0.1

0.001

10

100

1000 10000

Ladd®® who showed that the variance in the velocity compo-
nent parallel to gravity is given by

(U5 —(Uy?
(Uy?
and that in the plane normal to gravity by

U2
var,= ﬁz =0.066252°N3.

var,= =0.823p2*N3, (71)

(72

Thus the velocity fluctuations diverge with and the fluc-
tuations in the direction parallel to gravity are about 12.4
times that in the plane normal to it. Our simulations are seen
to be in excellent agreement with these predictions.

V. CONCLUSIONS

In this paper we have described in detail a method of
summing Laplace and Stokes interactions with a computa-
tional effort that scales only linearly with the number of par-
ticles. The method consists of combining the fields induced
by a group of particles in a series of multipoles at the center
of the group. The results from the method are in excellent
agreement with the ones obtained from previ@(N?) al-
gorithms asNg,,, the order to which the multipole series is

FIG. 6. The divergence of velocity variance with the system $izén expanded, is increased. Very good agreement is obtained in
random sedimenting suspensions witkr 0.05. The top line corresponds to

the theoretical prediction for the velocity variance in the direction of gravity r.nOSt.CaseS even Whm’? e.quaISNS ’ .the o.rder to which the
while the bottom line corresponds to the velocity variance in the planefleld 'ndl_Jced bY_the |n(_j|V|duaI part'CI_eS IS rej\p_resented._ The
normal to gravity. method is combined with the generalized minimum residual
2007
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(GMRES algorithm for solving iteratively the system of lin- o - (—2)m
ear equations in the multipoles induced by the particles. A DiamY hm= fnnlw Enm:(l+5 y(n+m)! (A8)

. . . . mo .
number of problems are studied with an aim of assessing the
computational time requirements for solving problems inThe following identity is useful in evaluating derivatives in-
Stokes and Laplace interactions. The method appears to @lving product of two differential operators that appear in
extremely efficient for solving Laplace interactions. Theexpressions such as E@.1): . _
GMRES algorithm, however, yields a relatively slow conver- ~ ZiZm=(—1)" 75 me1 + 8" +8B(—1)'1(=4) ™"
gence rate for the Stokes interaction problems at large vol-

ume fractions and further work to improve the convergence X gﬁw,ﬁ(mq)_ minv2@§+k72ﬂ(mfl)

rate is desirable. At any rate, the method offers very signifi-

cant reduction in the overall computational effort over the min(min—1)

existingO(N?) algorithms and may be used for carrying out > V4£Zﬁ+k_4ﬁ(m_|)+ e

dynamic simulations of systems 6f(500— 10°) particles at

very high volume fractions to systems ©{10%) at low vol- (A9)

ume fractions. where the dots represent terms wiH, etc., which are un-
important in most calculations dealing with Laplace and

ACKNOWLEDGMENTS Stokes interaction problems where the functions to be differ-

This work was supported by the National Science Foun€ntiated satisfy either Laplace or biharmonic equation.
dation under Grant No. CTS-9307723. All computations  The following formula is useful for differentiations in-
were done on the supercomputer facilities at the Cornelvolving curl of rY}:

Theory Center. The work was inspired by Professor Leslie r.Vx[gkil(rYLm)]zcan]',kaH+c4Yﬁl_k+1’B(m_|>,
Greengard’s lecture at a workshop organized by the Institute (A10)
of Mathematics and its ApplicationdMA ), University of where

Minnesota in Fall 1994. Sangani gratefully acknowledges the

organizers at IMA for the invitation to participate in the c3=(—1) U9 —I(n+1)—mK]
workshop.

27 (n+m)!
(n—k+1+m+N1’
c,=[Bs' —s(—1)'I[(n+ 1)l =mk](—1)™"

27 (n+m)!

X .
. . [n—k+1+B(m—1)]!
In this appendix, we present some frequently used re- _
sults concerning differentiation of spherical harmonics. Thel Ne other useful results are as follows:

APPENDIX A: SOME USEFUL FORMULAS FOR THE
DIFFERENTIATION OF SPHERICAL HARMONICS

(A11)

following result is taken from Hobsoff: i e 2n—k+3 i
i %71:Kan72”71YJ (A1) - Z(rYhm = 2n_2k+3rzgkllYJnm_*—dlYflkarZ,erl
“nm nm?
where +daY0 ket 28m-1) s (A12)
_ - 1- i ; o T
)\nm_(_l):j:](n_m)!z i (A2) AL =2r- 73 (rYL )+ (k=) (k—1-1)
%f%m (A3) XDy Yh= 1270V (A13)
: Here
with ,
== +|— =i|l|—| —|— 1= (= - —
siel () <Al el 23
(A4) 27!(n+m)! "~
and “—kemri+ D! (Al4)
§:X2+iX3, 7]:X2_iX3. (AS) K K |
) : n—k+2+m-—
The following is also a result from Hobsthrecast in a d2=(—1)m'“2'[s'+sB(—1)'][—I+ ( SN KT 3 )
slightly different form:
ZaYhm=C1Yn-kme1+C2Ynok gim-1) (A6) X(n—k+2—m+|)(n+m)! (AL5)
with [n—k+2+p(m=D]!
1yiin-] (n+m)!
a2 S mer
- o 27(n+m)! (A7) APPENDIX B: FORMULAS FOR TRANSLATING
C2=(=1)™[s"+sp(-1)']
2 [n—k+B(m—DH]t" SINGULAR AND REGULAR SOLUTIONS OF STOKES
S o EQUATIONS
Here, minemin(m,l), B=sgn{m—1), s=1ifi+j=1 and 0
otherwise, ands’=1—s. In using Eq.(A7) we must set In this appendix, we present detailed formulas for trans-
Yf;qzo wheneverg>p. Note that for the special case cor- lating singular and regular solutions of Stokes equations.
responding t;m=k, m=I, andi=j, the above result gives Formulas for the upward pass.
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PL‘%= )\nmfnmi = )\lalpik’lc[CerS\—k,mH + CZYi—k,ﬁ(m—l)]v (B1)

|c i,c

) Nnm€
j,p_— nm=nm _ + + S +i s’ + s’
"M h(n+1) |;| v k(n+1){c Yy —k,m+l CZYn—k,,B(m—I)} k)\kl{C3Yn—k+1,m+| C4Yn—k+1,ﬁ(m—l)} ) (B2
J,p— 1 i,c s s 1
(Dnm_)\nmenmi§k3| )\_kl CI)kl {ClYnfk,erl+02Yn—k,ﬁ(m—|)}_ n+1 {CSYn k+lm+|+C4Ynfk+1,,B(mfl)}
_ r?
+ P:(IC{ —4n_4k+6(ClYﬁk,m+|+02Yﬁ—k,ﬁ(m—l))+CSYrS1k+2,m+|+C6Yﬁ—k+2,ﬁ(m—l)]}’ (B3)

wherec; —c, are given by Eqgs(Al) and(All) and

_(=ni27'(n+m)! [ [ k(n—k+2-m—1) (n+3 1)
5= n—k+1imint||  (2n—2k+3) [\Zn+3 Kk n+1 KTDk=1=1)
n+3 1 2Kk
x 2(n+1)(2n+3)_k(n+1)+2k(2k—1)] (B4)
_(=ypm™27(n+m)t [ k((n=k+2)?—(m—1)?) n+3 1)\ 1
C6= Tkt 2+ B(m-D]I - +Sﬂ(_1)][ 2n—2k+3 _'(”_k+2_m+')] 2013 k/n+i
n+3 1 2Kk
+(k_|)(k_|_l)[2(n+1)(2n+3)_k(n+1)+2k(2k—1)] (B5)

In the above formulasff)q must be evaluated af —x°.

Formulas for the downward pass. _ _
Formulas for evaluating contribution to the regular coefficig?{{s®, T, and®}® from the singularities at the equal

generation distant neighbors similar to Efj1) may be found in Mo and SanganTo thls the contribution from the parent
must be added, the formulas for which are given below

P c= Eklj;m PLjﬁqp[ClYﬁ—k,mﬂ +C2Y -k gm-1)1» (B6)
,p
o= S (e ) TEPLCLYS e G2 ML R +egYs } (B7)
nm~ g 1i,k,| n—k,m+l n—k,B(m—1) k(I’H-l) n—k+1m-+l n—k+1,8(m-1)J |1

. . 1 ) '
r,c__ r, S S ry, S S
D= lej;m {(ijl Pl YR kme1 T C2Ynok p(m-1)} — ETnJmp{CSYn—k-f-l,mH+C4Yn7k+1,ﬁ(mfl)}

2
+ Pgrhp[ an—4kt6 (C1Ya—kme1 T C2Ynk gm-1) T C5Yn_ks2m+1 +CGY§—k+2,ﬁ(m—I)] } (B8)

The spherical harmonics,, in the above expression must be evaluateg®atx®.

Formulas for particle to particle contribution.

The formulas for determining contribution to the coefficients of regular terms in the expansion around padiseto
singularities at the lubrication point or the neighbor partigleare obtained from Eq9B6)—(B8) by substitutingn by
—n— 1. The factorials appearing in these expressions must also be modified. The resulting expressions are given below

rluz

= €y MmPhY(91+0,), (B9)

nm]y
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1Y 1Y
rki|’a:€k|n’m2]j’7 ( “kr 1 1—2(91+92)—mi—$n(93+94)- (B10)
A Ly 1 TR Ly 1
rkl"azek'n,mZ,j,yA_,:(gl+gz _E)\_::(93+94)+%r: mr2(91+92)+ E(g5+96) , (B11
where
O1= Mpskmet(—D)Ir 202 typ (B12
92=Nnikpm-n(—4) ™S +sB(= 1) Tr 2 2RIV ) (B13)
gs=Nnskrmei(— DI S(nI—migr 202 1ys (B14)
g4:>\n+kfl,ﬁ(mfl)(_4)_min[s/_S:B(_1)i],8(_nl_mk)r_2n_2k+1Y§,+k—l,,B(m—I)’ (B15)
95=Nnk—am+i(— DI 2N EIYE | (mn—k+14mt]) k(22;(nz)+ll+)2n (_ Zk%
k—2 k(n—2)
~(k=hk=1=1) _ﬁ+4k—2+2n(2n—1)” (810
U6=Nn+k-28m-n[S +SB(—1)'1(—4) ™M 720 2F3YE Lo smn| (—N—k+ 1"’“‘*")%
n+k—1-m+l 1 k-2 k(in—2)
x| —ars k= —(k—|)(k—|—1)(—ﬁ+4k_2+2n(2n_1)”, (817)

wherer =x*—x" and Y}, are evaluated at.
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