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Abstract 

In this dissertation I assessed the potential hydrochemical responses of future climate 

change conditions on forested watersheds in the northeastern U.S. using climate projections from 

several atmosphere ocean general circulation models (AOGCMs) under different carbon dioxide 

(CO2) emissions scenarios. The impacts of changing climate on terrestrial ecosystems have been 

assessed by observational, gradient, laboratory and field studies; however, state-of-the-art 

biogeochemical models provide an excellent tool to investigate climatic perturbations to these 

complex ecosystems. The overarching goal of this dissertation was to apply a fully integrated 

coupled hydrological and biogeochemical model (PnET-BGC) to evaluate the effects of climate 

change and increasing concentrations of atmospheric CO2 at seven diverse, intensively studied, 

high-elevation watersheds and to evaluate aspects of these applications. I downscaled coarse 

scale results to local watersheds and applied these values as input to a biogeochemical model, 

PnET-BGC. 

I conducted my research in this dissertation in three phases. In phase one, I used PnET-

BGC to evaluate the direct and indirect effects of global change drivers (i.e., temperature, 

precipitation, solar radiation, CO2) on biogeochemical processes in a northern hardwood forest 

ecosystem at the Hubbard Brook Experimental Forest (HBEF) New Hampshire, USA. A 

sensitivity analysis was conducted to better understand how the model responds to variation in 

climatic drivers, showing that model results are sensitive to temperature, precipitation and 

photosynthetically active radiation inputs. Model calculations suggested that future changes in 

climate that induce water stress (decreases in summer soil moisture due to shifts in hydrology 

and increases in evapotranspiration), uncouple plant-soil linkages allowing for increases in net 



mineralization/nitrification, elevated leaching losses of NO3
-
 and soil and water acidification. 

Anticipated forest fertilization associated with increases in CO2 appears to mitigate this 

perturbation somewhat. 

In phase two, I compared the use of two different statistical downscaling approaches- 

Bias Correction-Spatial Disaggregation (BCSD) (Grid-based) and Asynchronous Regional 

Regression Model (ARRM) (station-based) - on potential hydrochemical projections of future 

climate at the HBEF. The choice of downscaling approach has important implications for 

streamflow simulations, which is directly related to the ability of the downscaling approach to 

mimic observed precipitation patterns. The climate and streamflow change signals indicate that 

the current flow regime with snowmelt-driven spring-flows in April will likely shift to conditions 

dominated by larger flows throughout winter. Model results from BCSD downscaling show that 

warmer future temperatures cause midsummer drought stress which uncouples plant-soil 

linkages, leading to an increase in net soil nitrogen mineralization and nitrification, and 

acidification of soil and streamwater. In contrast, the precipitation inputs depicted by ARRM 

downscaling overcame the risk of drought stress due to greater estimates of precipitation inputs. 

In phase three of this research, I conducted a cross-site analysis of seven intensive study 

sites in the northeastern U.S. with diverse characteristics of climate, soil and vegetation type, and 

historical land disturbances to assess the range of forest-watershed responses to changing 

climate. Model results show that evapotranspiration increases across all sites under potential 

future conditions of warmer temperature and longer growing season. Modeling results indicate 

that spruce-fir forests will likely experience temperature stress and decline in productivity, while 

some of the northern hardwood forests are likely to experience water stress due to early loss of 

snowpack, longer growing season and associated water deficit. This latter response is somewhat 



counter-intuitive as most sites are expected to have increases in precipitation. Following 

increases in temperature, ET and water stress associated with future climate change scenarios, a 

shifting pattern in carbon allocation in plants was evident causing significant changes in NPP. 

The soil humus C pool decreased significantly across all sites and showed strong negative 

relationship with increases in temperature. Cross-site analysis among different watersheds in the 

Northeast indicated that dominant type of vegetation, and historical land disturbances coupled 

with climate variability will influence future responses of watersheds to climate change. The 

variability in hydrochemical response across sites is due to vegetation type, soil and geological 

characteristics, and historical land disturbances. 
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1. Introduction and Objectives 

The 2007 report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) 

[Intergovernmental Panel on Climate Change (IPCC), 2007] provides strong and convincing 

evidence that human activities, mainly intensive fossil fuel consumption and tropical 

deforestation, are the main drivers of global climate change [NECIA, 2006]. The latest IPCC 

report (IPCC AR5, 2013) provides even stronger and more convincing evidence that human 

activities are extremely likely has been the dominant cause of the observed warming since the 

mid-20
th

 century. These disturbances accelerate the release of carbon dioxide (CO2) and other 

heat-trapping gases increasing concentrations of greenhouse gases (GHG) in the atmosphere 

compared to pre-industrial values. The interaction of global climate change with the unique 

geographic characteristics of different land areas will result in distinct regional responses to this 

perturbation. Changes in climate have the potential to alter the structure, function and 

ecosystems services of forested watersheds and streams that drain them. Moreover, changes in 

upland terrestrial ecosystems, in turn, will likely influence the water quantity and quality of 

downstream rivers and estuaries. Projected future changes in climate could pose stress on water 

resources. Therefore, there is a keen interest in assessing the vulnerability of headwater streams 

to climate change. 

There have been limited assessments of the extent of climate-induced disturbances on 

forested watersheds. Experimental manipulations and historical observations have provided some 

insight, but the long-term effects of climate change on hydrological and biogeochemical 

processes in forested watersheds need to be addressed. To assess the potential impacts of climate 

change, a multi-faceted approach is required that is capable of resolving multiple climatic drivers 

(e.g., temperature, precipitation quantity and distribution) and other anthropogenic stressors 
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likely to simultaneously affect ecosystems over the coming decades. As a result, modeling is the 

only practical approach to probe how future changes in climate are likely to interact with other 

drivers of global change such as atmospheric deposition, land disturbance and increasing 

concentration of CO2 over broad regions. Hydrochemical watershed models are an important tool 

to help to understand the long-term effects of climate change on ecosystems.  

The consequences of future climate change scenarios are primarily assessed through 

projections from coupled atmosphere-ocean general circulation models (AOGCMs) from the 

IPCC AR4, 2007 [IPCC, 2007]. AOGCMs are large, complex three dimensional models which 

incorporate the latest knowledge of physical processes among the lands, oceans and atmosphere 

of the Earth [IPCC, 2007]. They provide geographic grid-based projections of climate variables 

[IPCC, 2007]. In the past, it has been difficult to model future climate change effects at small 

scales (on the order of kms) since the output from AOGCMs has a comparatively coarse spatial 

resolution (on the order of 100s of km). The coarse resolution is particularly problematic in 

linking AOGCM output to hydrochemical models for projections in small watersheds that are 

located in complex mountainous terrain because these areas are affected by local weather 

patterns, but are nevertheless critically important for water supplies. Recently, both statistical 

and dynamical techniques have been applied to downscale coarse resolution AOGCM output to 

provide finer spatial resolution to improve climate projections at the local scale [Hayhoe et al., 

2004, 2007, 2008, O’Brien et al., 2001, Stoner et al., 2012]. Understanding and applying 

AOGCM output for use with hydrochemical models is an important step to improve 

quantification of the direct and indirect effects of climate change on watersheds and water 

resources.  
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The overarching goal of my dissertation is to improve understanding and assess responses 

of several forested watersheds with a range of climate conditions, historical land disturbance 

(e.g., clear cut, fire, ice storm) and biophysical characteristics (e.g., latitude, longitude, elevation, 

vegetation, soil types, and wetland or lake presence) in the northeastern U.S. to climate change 

over the 21
st
 century using the hydrochemical model, PnET-BGC. PnET-BGC is a forest-soil-

water model that simulates energy, water, and elements fluxes at the watershed scale. This 

research took advantage of long-term data from intensive watershed study sites that exhibit 

climatic conditions (temperature, precipitation) spanning the expected range of future climate 

change. Multiple approaches and tools were used to accomplish the objectives, and three distinct 

research phases were developed and implemented in this study. Three phases of this dissertation 

are: 1) an evaluation of the effects of future climate change on soil and surface water chemistry 

at the Hubbard Brook Experimental Forest, NH; 2) application of the use of two statistical 

downscaling approaches (BCSD and ARRM) on model (PnET-BGC) output; and 3) conducting 

an assessment of the variation in responses of forested watersheds in the northeastern U.S. to 

changing climate through cross-site and spatial analysis of seven intensive study sites. 

1.1. Dissertation Objectives and Hypotheses 

The following are the specific hypotheses of the dissertation: 

Hypothesis 1: The annual average quantity of stream water will decrease and the seasonal 

pattern will be more evenly distributed due to higher temperatures and associated higher 

evapotranspiration under future climate conditions. Invoking atmospheric CO2 effects on 

vegetation will offset temperature effects to some extent depending on the future climate change 

scenario causing an increase in the annual average quantity of stream water (Phase one); 
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Hypothesis 2: Future increases in temperature will cause midsummer droughts and water 

stress on trees which will impair vegetation uptake of nutrients and increase net mineralization. 

This uncoupling of soil and plant processes will increase watershed element losses and changes 

in ecosystem dynamics, changing streamwater and soil chemistry (Phases one and three);   

Hypothesis 3: The choice of downscaling technique has a significant impact on projected 

responses of soil and streamwater chemistry to changing climate. These differences are mainly 

due to the ability of downscaling technique to capture the changes in precipitation at small scale 

watersheds and are manifested through changes in hydrology, soil moisture, and hydrochemistry 

(Phase two); and 

Hypothesis 4: Stream water responses, changes in biogeochemical cycling and fluxes of 

ecologically relevant chemical elements to climate change will vary across different watersheds 

due to site characteristics, hydro-meteorological, chemical and biological gradients (Phase three). 

There are three main research phases in this dissertation. Following a literature review 

(Chapter 2) and an overview of the sites, data and methods used (Chapter 3), in Phase 1 (Chapter 

4) the hydrochemical model, PnET-BGC, is applied to evaluate direct and indirect effects of 

global change on biogeochemical processes, pools and fluxes of different elements in a northern 

hardwood forest ecosystem at the Hubbard Brook Experimental Forest (HBEF) New Hampshire, 

USA. Model performance was evaluated using long-term data collected from the biogeochemical 

reference watershed (W6) at the HBEF over the last half century. A sensitivity analysis was 

conducted to better understand how the model responds to variations in climatic drivers, 

including air temperature, precipitation, and PAR. The PnET-BGC model was modified to 

consider the two confounding effects of increasing atmospheric CO2 on vegetation, changes in 

stomatal conductance and CO2 fertilization effect on biomass, by using a multilayered sub-model 
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of photosynthesis and phenology based on Free-Air Concentration Enrichment (FACE). This 

analysis should improve the understanding of the potential consequences of changing climate in 

high elevation forest watersheds, and the strengths and limitations of using AOGCM-derived 

climate projections as input to hydrochemical watershed models. Availability of comprehensive 

measured data from the HBEF provided an opportunity to evaluate and test the model output.  

In Phase 2 (Chapter 5), I compared and contrasted the use of two different statistical 

downscaling techniques on model-projected responses to future climate change at the HBEF. 

Bias Correction-Spatial Disaggregation (BCSD) uses an empirical statistical technique broadly 

referred to as “quantile mapping” (grid-based). I employed this method for model application 

and analysis described in Chapter 4. The second technique, Asynchronous Regional Regression 

Model (ARRM), uses piecewise regression to quantify the relationship between measured and 

modeled quantiles (station-based). In this phase, I did not run the model with CO2 effects on 

vegetation. Based on results from Phase 2, I used the ARRM technique for downscaling of 

climate input for Phase 3.  

Phase 3 (Chapter 6) is a cross-site analysis for seven headwater watersheds in the 

northeastern U.S. The study sites cover different forest ecosystem types; northern hardwood, 

spruce-fir, and central hardwood. They have a range of climate conditions, historical land 

disturbance (e.g., clear cut, fire, ice storm) and biophysical characteristics (e.g., climate, latitude, 

longitude, elevation, different vegetation, soil types). The geographic extent of these watersheds 

creates spatial variation in climatic patterns (temperature, precipitation, solar radiation), 

atmospheric deposition, site characteristics, and a host of other variables. In this phase, I used the 

ARRM approach for downscaling future global climate model output. Also I used output from 

four new AOGCMs from the latest report of the Intergovernmental Panel on Climate Change 



6 

 

(IPCC AR5) along with Representative Concentration Pathway scenarios (RCP) instead of 

Special Report on Emissions Scenarios (SRES) which was used in Phases 1 and 2. 

The final chapter of this dissertation provides a synthesis of the findings of three phases 

of my research and their applications and is followed by a list of conclusions and suggestions for 

future work.  
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2. Literature Review 

2.1. Climate Change in the Northeast 

Human activities after the Industrial Revolution have accelerated emissions of 

greenhouse gases (GHG). Increasing concentrations of GHG are affecting climate and 

ecosystems. This perturbation raises challenges to important choices and decisions that we face 

in this century. These anthropogenic emissions of heat-trapping gases are the main cause for 

most of the averaged global warming since 1950 [Committee on Stabilization Targets for 

Atmospheric Greenhouse Gas Concentrations; National Research Council, 2011; 

Intergovernmental Panel on Climate Change (IPCC), 2007]. The major heat-trapping gases that 

make significant contributions to global warming are CO2, methane (CH4), nitrous oxide (N2O), 

and ozone (O3), with CO2 providing the major driver (55%) (greenhouse effect). Future 

projections show the contribution of CO2 will increase to between 75 and 85% of the total 

greenhouse effect by the end of this century depending on emission scenarios [Committee on 

Stabilization Targets for Atmospheric Greenhouse Gas Concentrations; National Research 

Council, 2011]. The current pool of CO2 in the atmosphere is larger than for any time in the last 

800,000 years and based on future emission scenarios this pool could double or triple by end of 

this century, amplifying effects on climate [Luthi et al., 2008]. The average global surface air 

temperature has increased by about 0.75
o
C in response to the increase in atmospheric GHG over 

the last century, and approximately 2/3 of the increase has occurred since 1980 [IPCC, 2007]. 

Therefore, GHG emission control policies that we make today define potential climate change 

impacts decades and centuries into the future.  
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Global climate change is manifested through several atmospheric and ecosystem effects: 

increasing atmospheric concentrations of CO2; increasing air temperature and warming of the 

Earth’s surface, especially in winter; more frequent extreme hot days [DeGaetano and Allen, 

2002]; less precipitation as snow and more as rain [Wolfe et al., 2005; Huntington et al., 2004]; 

decreases in snow cover [NECIA, 2006]; earlier arrival of spring and spring snowmelt, and 

earlier high spring river flows [Hodgkins et al., 2003]; a longer growing season [Wake and 

Markham, 2005]; more severe drought; changes in storms and extreme events; alterations in soil 

and surface water chemistry; and sea-level rise [Huybrechts et al., 2001]. Across the Northeast 

U.S., climate is changing. The region has been warming at a rate of nearly 0.27°C per decade 

since 1970 [NECIA, 2006]. Winter air temperatures show a higher rate of increase; 0.72°C per 

decade from 1970 to 2000 [NECIA, 2006]. Total precipitation has increased 100 mm and is 

characterized by increased temporal variability [Hayhoe et al., 2007].  

Climate projections from coupled AOGCMs suggest that across the Northeast U.S. 

annual average air temperature and precipitation will continue to increase over the 21
st
 Century. 

The extent of these increases depends on future GHG emissions; a lower emissions scenario (B1) 

is projected to increase air temperature by 2.1°C and annual precipitation by 7%, while an upper 

emissions scenario (A1fi) would increase air temperature by 5.3°C and precipitation by 14%, 

with larger changes in winter and spring as compared to summer and fall [Hayhoe et al., 2007, 

2008]. Increases in winter temperature and precipitation mean more available water for runoff 

and evaporation. Warmer temperatures would cause snow to melt faster and the peak of the 

snowmelt hydrograph to shift toward early spring (four to five days over 2010–2039) which will 

cause increases in soil moisture and runoff in late winter and early spring [NECIA, 2006]. 

Projections show that by the end of the 21
st
 century the peak of streamflow, compared to the 
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historical period (1961-1990), would move 10 days and more than 14 days earlier under lower-

emissions and higher-emissions scenarios, respectively [NECIA, 2006]. Soil moisture will 

decrease in late summer and early fall due to higher temperature and higher evaporation. It is 

anticipated that increases in precipitation will not be able to compensate for this decrease, 

causing short-term drought [Campbell et al., 2009; NECIA, 2006]. These effects are more 

pronounced under higher emissions scenarios compared to lower-emissions scenarios, which 

highlights the significant effects of temperature on the hydrological cycle in the Northeast 

[NECIA, 2006]. As warming is projected to continue across the Northeast [NECIA, 2006], 

changes in climate have the potential to alter the region’s economy, ecosystems and services they 

provide, and quality of life. Although the impacts of climate change on U.S. ecosystems are 

already evident, the degree and direction of these changes are highly variable in time and space 

[IPCC, 2007]. 

The dynamic nature of climate change, both temporally and spatially, makes it 

challenging to generalize long-term climatic shifts for any given region. The pattern of warming 

is more consistent than the pattern for changes in precipitation quantity and timing [NECIA, 

2006]. The US Global Change Research Program (USGCRP) Assessment on the Coupled Model 

Intercomparison Project Three (CMIP3) projected changes in extreme events (heaviest 1% of 

precipitation events) in addition to seasonal changes to precipitation [Karl et al., 2009]. This 

report projected that extreme rainfall events would increase the most in the Northeast by 67% 

[Karl et al., 2009]. Changes in the frequency of extreme events have significant impacts on flood 

frequency and return period and associated damages to ecosystems. Increased risk of flooding 

has important implications for climate change adaptation policies. 
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2.2. Climate Change Impacts on Forest Ecosystems 

Forests are one of the most important ecosystems on Earth in terms of biodiversity, 

biogeochemistry, and ecosystem services. A wide array of human-induced disturbances can alter 

the structure and function of forests, including climate change. Climate is an important regulator 

of the structure and function of ecosystems [Campbell et al., 2011]. Therefore changes in climate 

are anticipated to impact ecosystems and the services they provide. Forested watersheds have an 

essential role in regulating carbon and nitrogen storage, and water for downstream aquatic 

ecosystems. Headwater streams drain into larger watersheds and rivers, and ultimately supply 

downstream estuaries. Climate change likely affects the quantity, distribution and quality of 

water resources across the U.S. [Stewart et al., 2005; Hayhoe et al., 2007]. Water quantity and its 

distribution and water quality are affected by year-to-year and long-term variations in climate 

[Mitchell et al., 1996; Murdoch et al., 1998]. Therefore, hydrology and water quality could be 

used as effective indicators of global climate change. In this century, climate change could 

emerge as an important stressor of water resources, challenging water resource management.  

There is a keen interest in better understanding the responses of small watersheds to 

climate change. The direct and indirect effects of climate changes on terrestrial and aquatic 

ecosystems are likely to be complex and highly variable in time and space [Campbell et al., 

2009]. Watershed responses to climate change vary depending on their characteristics. Although 

climatic effects are substantial, they should not be studied in isolation from other aspects of 

global change, such as atmospheric deposition, land disturbance (e.g., clear cut, fire, ice storm) 

and increases in atmospheric concentrations of CO2. For instance, the structure and function of 

high elevation terrestrial and aquatic ecosystems have been altered by air pollution and ongoing 
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air pollution emission controls are driving ecosystem recovery from these effects [Driscoll et al., 

2001]. Higher atmospheric CO2 concentrations appear to affect forest productivity, water use 

efficiency (WUE) and therefore influence hydrochemistry [Keenan et al., 2013; Ollinger et al., 

2009]. The combined influence of multiple factors contributes to the complexity of the response 

of forest ecosystems to global change. As a result, assessing the effects of global climate is a 

grand research challenge. Research is needed to evaluate the long-term consequences of climate 

change on ecosystem structure and function.  

2.3. Assessment of Climate Change Impacts  

Ecological responses to climate change have been assessed to some extent by 

observational, gradient, laboratory and field studies; however, hydrochemical models are the 

only practical approach to comprehensively investigate how future changes in climate are likely 

to interact with other drivers of global change such as atmospheric deposition, increasing 

atmospheric CO2 concentrations, and land disturbance in forest watersheds over broad regions. 

In order to assess the potential effects of climate change in the Northeast, climate projections 

from coupled AOGCMs have been used (e.g., [IPCC, 2007; Hayhoe et al., 2007; Ollinger et al., 

2009; Campbell et al., 2009]).  

There are very few comprehensive long-term assessment of whole ecosystem responses 

to climate change. Past research has focused on individual processes or organisms. However 

there is interest and need to better understand the linkages among climate, hydrology and 

biogeochemistry in watershed ecosystems. There are multiple drivers of climate change, 

including changes in precipitation, solar radiation, temperature and atmospheric concentrations 

of CO2 which vary with time and space. Past studies have generally not considered the 
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interactions of these multiple drivers. Therefore, there is a need to study the consequences of 

climate change considering multiple climatic drivers on a whole ecosystem basis. The fully 

integrated hydrochemical model, PnET-BGC, could be an effective tool to assess the effects of 

climate change on hydrology and the cycles and fluxes of elements across multiple watershed 

sites over the century. 

2.4. Downscaling of Atmosphere-Ocean General Circulation Models 

(AOGCMs)  

Application of hydrochemical models for assessment of climate change impacts on forest 

ecosystems necessitates the use of climatic variables simulated by atmosphere-ocean general 

circulation models (AOGCMs) to determine inputs to drive model projections. AOGCMs are an 

important tool in climate change impact assessments and researchers primarily rely on 

projections from these models to forecast the plausible range of ecosystem responses to changing 

climate. AOGCMs have a considerable potential for use in climate change studies due to their 

ability to incorporate various and complex processes which represent the Earth’s climate 

dynamics including atmosphere, oceans, land surface, land cover, and sea ice and their 

interactions (e.g., water and energy fluxes) [IPCC, 2007]. Although AOGCMs are the only tool 

which can provide detailed and sophisticated regional projections of climate change, their coarse 

resolution (~1-2 degrees in latitude or longitude) is unable to resolve sub-grid scale 

characteristics (topography, land use, clouds, etc.). For instance, the HadCM3 model resolution 

is 2.5° latitude by 3.75° longitude [Pope et al., 2000] while hydrological models such as Variable 

Infiltration Capacity (VIC) [Liang et al., 1994] requires 1/8° resolution. Therefore, AOGCM 

projections due to their coarse resolution are inadequate for assessment of climate change 
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impacts on small, high elevation watersheds which are affected by local weather patterns due to 

complex mountainous terrain and are critically important for water supplies.  

The gap between AOGCMs coarse resolution output and fine resolution required by local 

scale models, is a significant problem for climate change impact assessment studies that hampers 

the application of hydrological/hydrochemical models. Linking coarse AOGCM outputs to 

resolve important hydroclimatological processes at a finer scales has been problematic in the 

past. Therefore, there is a need to bridge the gap between coarse spatial resolution and the higher 

resolution required for hydrochemical models. In order to bridge this gap, considerable effort has 

been focused on techniques known as “downscaling” [IPCC, 2007]. There are two general 

downscaling techniques: (1) the first is dynamical downscaling, in which a high resolution 

regional climate model is incorporated within the AOGCM, and (2) the second method involves 

the use of statistical techniques to develop empirical relationships between AOGCMs coarse 

resolution and fine local scale climate [IPCC, 2007]. Recent statistical techniques have been 

applied to downscale coarse resolution AOGCM output to a finer spatial resolution, matching 

long-term observations [Hayhoe et al., 2004, 2007, 2008; O’Brien et al., 2001; Stoner et al., 

2012].  

2.5. Uncertainties in Modeling Approach 

Dynamic hydrochemical models are useful tools to understand and predict the interactive 

effects of climate change, atmospheric CO2, and atmospheric deposition on the hydrology and 

water quality of watersheds. Models have the ability to simulate the dynamics of energy, water 

and element cycles in terrestrial ecosystems over spatial and temporal scales that are difficult to 

achieve through observation and experimentation. Model projections have inherent uncertainties 



14 

 

which stem from simplifications and assumptions of hydrological, biological, and 

biogeochemical processes depicted in the model and inaccurate parameterization of the model 

(model uncertainty due to lack of data). When models are used to assess the potential impacts of 

climate change on a terrestrial ecosystem, new additional sources of uncertainty become 

embedded in the analysis. These include uncertainties in estimates of future emissions due to 

human activities (scenario uncertainty), the ability of the AOGCMs to simulate the response of 

the climate system to human forcing (AOGCM uncertainty), and the assumption of downscaling 

approaches (downscaling uncertainty).  

One of the most challenging issues in climate change modeling of forest ecosystems is 

scaling up leaf-level responses of an individual tree species to changes in atmospheric 

concentrations of CO2 to the stand level. There are two confounding effects of atmospheric CO2 

on vegetation: changes in stomatal conductance, leading to increased intrinsic water use 

efficiency (WUE), and a CO2 fertilization effect on biomass as increased efficiency of 

photosynthesis [Beerling, 1996; Drake et al., 1997; Ellsworth, 1999; Lewis et al., 1996; Nowak 

et al., 2004; Ollinger et al., 2009; Saxe et al., 1998]. As a result of extrapolation and scaling of 

these leaf-level mechanisms to the terrestrial ecosystem scale, scientists expect that carbon 

sequestration should increase under water stress due to increased WUE while in the absence of 

water stress, carbon storage will weaken and growth might be limited by nutrient deficiency 

[Strain and Bazzaz, 1983; Luo et al., 2004].  

Unfortunately, CO2 enrichment experiments and observations often contradict these 

projections [Farrior et al., 2013]. Nowak et al., [2004] and McCarthy et al., [2010], compared 

years of several different CO2 enrichment experiments and did not find any correlation between 
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soil moisture in drier years and greater carbon sequestration. Moreover, Peñuelas et al., [2011] 

synthesized CO2 enrichment studies and reported significant increases in WUE without 

associated increases in woody biomass allocation. Norby and Zak, [2011] reported strong CO2 

fertilization effects despite nitrogen limitation in several experiments. Finally, Keenan et al., 

[2013] in a synthesis of forests in the Northern Hemisphere showed a substantial increase in 

WUE in both temperate and boreal forests over the past two decades. They also observed that the 

increase in WUE is a result of a CO2 fertilization effect. This increase is larger than projections 

by existing theory and terrestrial biosphere model (TBM). They concluded that the increase in 

WUE is the result of an increase in leaf-level photosynthesis and net carbon sequestration, and a 

decrease in evapotranspiration [Keenan et al., 2013]. Therefore, there is a keen interest to 

incorporate current knowledge of CO2 effects on vegetation into biogeochemical and terrestrial 

models in a way that can capture and mimic responses of terrestrial ecosystems on the whole 

stand level. 

Models can only depict processes to the extent that they are understood and quantified. 

Different models can have different responses for the same site and model predictions may not 

match measured values [Melillo et al., 1995; Cramer et al., 2001; Friedlingstein et al., 2006]. 

Models are often criticized for being unrealistic, overly complex or simplistic, or producing the 

right output for the wrong reasons. Nevertheless, they provide the only practical means for 

evaluating whole ecosystem responses to multiple climatic drivers and stressors over very long 

periods under changing environmental conditions [Keenan et al., 2012]. Even if modeling results 

are imperfect, they help constrain the range of potential responses, and when combined with 

results from field studies, serve as a useful guide to establish guidelines for climate mitigation 

and adaptation, and a powerful tool for water resource and forest management.  
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Modeling and use of available data from field and laboratory studies are interconnected 

approaches which are crucial to enable future projections and help inform decision making on 

watershed and water resources management. The application of models to environmental 

problems inevitably brings up new questions that need to be addressed through field and 

laboratory experiments; this feedback loop is an essential component of the process of science 

and engineering research which pushes forward the boundaries of knowledge on ecosystems 

dynamics and processes. Therefore, modeling and long term monitoring should be used hand-in-

hand to quantify and project the potential long-term effects of climate change. 
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3. Methods 

3.1. Study Sites 

In order to achieve the study objectives and to test hypotheses, seven intensively-

monitored forest watersheds in the northeastern U.S., with relatively long records (14 to 45 

years) of vegetation, soils, meteorological, hydrological and biogeochemical data have been 

selected for this study (Table 3.1). The study watersheds include the Hubbard Brook 

Experimental Forest (HBEF) and Cone Pond Watershed (CPW) in the White Mountains, New 

Hampshire; East Bear Brook (EBB) in Maine; Sleepers River Watershed (SRW) in Vermont; 

Biscuit Brook (BSB) in the Catskill Mountains; and Huntington Wildlife Forest (HWF) in the 

Adirondack Mountains, New York, and the Fernow Experimental Forest (FEF) in the Allegheny 

Mountains, West Virginia (Figure 3.1). These sites encompass a range of climate, atmospheric 

deposition, soil conditions, and historical land disturbances.  

The selected study sites are all small, relatively high-elevation watersheds which 

represent different forest ecosystem types (northern hardwood, spruce-fir, central hardwood). 

These watersheds are relatively undisturbed with the exception of air pollution and changing 

climate. The study sites include headwater streams that drain these watersheds, which are likely 

important indicators of changing climate. Using small, undisturbed watershed as the unit of study 

provides an opportunity to accurately quantify hydrologic and chemical fluxes. High-elevation 

watersheds generally have shallow soils with poor buffering capacity, which makes them 

sensitive to small, but measurable changes in land disturbance, atmospheric deposition and CO2, 

energy, water and chemical inputs. Therefore these watersheds are sensitive to global climate 

changes, relatively easy to study, and may act as a “canary in a coal mine” for more complex, 
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larger watersheds. All of these watersheds are remote, relatively small and generally isolated 

from urban influences and land cover change. Therefore I used these sites to tease out the effects 

of climate change, while minimizing the effects of other confounding factors.  

The range of drainage areas for the study watersheds varies from almost 10 to greater 

than 1000 hectares, and the precipitation is relatively high due to their high elevation and 

location in the Northeast U.S. The scale of all the study sites are much smaller compared to the 

AOGCM coarse resolution grids which are on the order of hundreds of kilometers. All sites 

include detailed long term monitoring and are able to meet the data requirements of this study 

and PnET-BGC specifically. Long-term datasets in order to run and test the model such as 

meteorology, atmospheric deposition, hydrology, stream and soil chemistry, and historical land 

disturbances, and data to establish model parameters such as soil and vegetation, were obtained 

from site researchers. Measured values enabled me to evaluate the model output and 

performance and gain confidence to project future changes associated with changing climate. 

The thorough characterization of these intensive long-term sites helped me examine complex 

processes such as the effects of snowmelt, rainfall events or drought on hydrology, soil and 

stream water chemistry, and in-lake processes that are associated with changing climate and 

other disturbances (e.g., atmospheric deposition, land disturbance). 
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Figure 3.1. Location of seven intensive study sites for this study and their elevation in meters. 

 

Table 3.1. Location and characteristics of study watershed sites. 

Site (Id., Region) Stream Lat., Long. State Record 

Length 

(yrs)

Elevation 

(m)

Forest 

Cover

Size 

(ha)

Annual 

Precipitation 

(mm)

Annual 

Discharge 

(mm)

Literature

Bear Brook    

(EBB; NE)

East 

Bear

44°52'N, 

68°06'W

ME 20 265-475 Northern 

Hardwood

11 1250 920 Norton et al., 

1999

Hubbard Brook 

(HBR; NE)

WS6 43°57'N, 

71°44'W

NH 45 550-790 Northern 

Hardwood

13 1400 880 Likens and 

Bormann, 1995

Cone Pond    

(CPW; NE)

Inlet 43°54'N, 

71°36'W

NH 19 485-650 Spruce-Fir 33 1280 670 Bailey et al., 

1995

Sleepers River 

(SRW; NE)

W-9 44°29'N, 

72°10'W

VT 18 520-680 Northern 

Hardwood

41 1320 740 Shanley et al., 

2002

Huntington Forest  

(HWF; NE)

Archer 

Creek

44°00'N, 

74°13'W

NY 14 460-825 Northern 

Hardwood

135 1210 830 Mitchell et al., 

2001

Biscuit Brook 

(BSB; NE)

Biscuit 

Brook

41°59'N, 

74°30'W

NY 25 620-1125 Northern 

Hardwood

990 1520 970 Murdoch et al., 

1998

Fernow             

(FEF; SE)

WS4 39°03'N, 

79°41'W

WV 37 750-870 Central 

Hardwood

39 1460 710 Adams et al., 

1994  
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3.2. PnET-BGC 

PnET-BGC is a biogeochemical model that has been used to evaluate the effects of 

climate change, atmospheric deposition and land disturbance on soil and surface waters in 

northern forest ecosystems [Chen and Driscoll, 2005]. PnET-BGC was created by linking the 

forest-soil-water model PnET-CN [Aber and Driscoll, 1997; Aber et al., 1997], with a 

biogeochemical (BGC) submodel [Gbondo-Tugbawa et al., 2001], thereby enabling the 

simultaneous simulation of major element cycles (Ca
2+

, Mg
2+

, K
+
, Na

+
, C, N, P, S, Si, Al

3+
, Cl

-
, 

and F
-
). PnET-BGC has been used extensively to evaluate fluxes of water and elements in forest 

ecosystems by depicting ecosystem processes, including atmospheric deposition, CO2 effects on 

vegetation, canopy interactions, plant uptake, litterfall, soil organic matter dynamics, 

nitrification, mineral weathering, chemical reactions involving gas, solid and solution phases, 

and surface water processes [Gbondo-Tugbawa et al., 2001]. These processes determine the 

hydrochemical characteristics of the ecosystem because water and solutes interact with forest 

vegetation and soil before emerging as surface runoff. 

Model inputs include meteorological data (photosynthetically active radiation (PAR), 

precipitation, maximum and minimum temperature), atmospheric CO2 concentration and 

atmospheric deposition (wet and dry), vegetation type (northern hardwoods, spruce-fir), and 

elemental stoichiometry, soil characteristics (soil mass, soil cation exchange capacity, element 

weathering rates, soil cation exchange and anion adsorption coefficients, water holding capacity), 

and historical land disturbance (e.g., forest harvesting, hurricane, ice storm, fire) [Chen and 

Driscoll, 2005; Gbondo-Tugbawa et al., 2001; Zhai et al., 2008]. A detailed description of 
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PnET-BGC is provided by Aber and Driscoll, [1997]; Aber et al., [1997]; and Gbondo-Tugbawa 

et al., [2001], including a sensitivity analysis of parameters.  

In my dissertation, the model was run on a monthly time-step from the year 1000 to 2100.  

This time frame includes a “spin-up” period (1000 to 1850), which allows the model to reach 

steady state under “background” conditions of climate and atmospheric deposition. Hindcast 

simulations from 1850 to 2009 (phase 1) or to 2012 (phases two and three) were based on 

estimates of historical climate, atmospheric deposition and land-disturbance. Early values for 

these inputs were recreated from historical records [Aber and Federer, 1992; Driscoll et al., 

2001] by matching them with measured values later in the record (e.g., for the HBEF 

meteorology and hydrology since 1955; bulk deposition since 1963; wet deposition since 1978). 

The model was run from 2009 (or 2012) through 2100 using future global change scenarios that 

are based on projected changes in climate, atmospheric CO2, and business as usual scenarios for 

atmospheric deposition. 

3.2.1. Algorithm for CO2 Effects on Vegetation 

Although there have been numerous CO2 enrichment experiments (e.g., Ainsworth and 

Long, 2005; Ainsworth and Rogers, 2007; Ainsworth et al., 2002; Norby et al., 1999, 2010), few 

have occurred in forests [Ainsworth and Long, 2005; Curtis and Wang, 1998; Curtis et al., 1995; 

Ellsworth, 1999; Ellsworth et al., 1995; Lewis et al., 1996; Saxe et al., 1998], and those have 

been short duration experiments that have utilized relatively young stands [Drake et al., 1997; 

Ellsworth, 1999; Nowak et al., 2004; Ollinger et al., 2009; Saxe et al., 1998]. Nevertheless, the 

effects of increasing atmospheric CO2 were depicted in PnET-BGC using a multilayered sub-

model of photosynthesis and phenology developed by Aber et al., [1995, 1996], and modified by 
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Ollinger et al., [1997, 2002]. There are two confounding effects of atmospheric CO2 on 

vegetation: changes in stomatal conductance, and a CO2 fertilization effect on biomass. In order 

to simulate these effects, stomatal conductance and photosynthesis are coupled [Jarvis and 

Davies, 1998] such that stomatal conductance varies in proportion to changes in ambient 

atmospheric CO2 (Ca) across the boundary of stomata [Ollinger et al., 2002, 2009; Saxe et al., 

1998]. Water use efficiency (WUE) is a function of CO2 assimilation and is inversely related to 

vapor pressure deficit (VPD) [Ollinger et al., 2002, 2009]. The internal concentration of CO2 

(Ci) is estimated from Ci/Ca which is relatively constant in response to changes in ambient 

atmospheric CO2 (Ca) [Beerling, 1996; Drake et al., 1997; Ellsworth, 1999; Lewis et al., 1996; 

Nowak et al., 2004; Ollinger et al., 2009; Saxe et al., 1998] and varies with changes in foliar N 

concentration [Farquhar and Wong, 1984]. Therefore, the model depicts higher assimilation of 

CO2 along with depletion of Ci in foliage with higher N concentrations [Ollinger et al., 2002, 

2009]. A detailed description of the processes and parameters related to photosynthesis in the 

algorithm are described by Ollinger et al., [2009]. 
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Figure 3.2. Schematic illustration of inputs, processes, interactions and outputs of PnET-BGC. 

 

3.3. Model Application and Validation 

To evaluate model performance, I used two statistical indicators: normalized mean error 

(NME) and normalized mean absolute error (NMAE) [Janssen and Heuberger, 1995]: 

O

OP
NME


      (1)                               

 
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OP

NMAE
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ii
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
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     (2) 

Where Pi is the predicted value and Oi is the observed value at time i. P and O  are 

means of the individual observations of Pi and Oi, respectively, and n is the number of 

observations. NME provides a comparison of the means of predicted and observed values and is 
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an index of relative bias, indicating overestimation (NME > 0) or underestimation (NME < 0) of 

simulations. The NMAE indicates any discrepancy between model simulations and observed 

values which is scaled relative to mean observations. The smaller the absolute value, the closer 

model simulations are to observed values.  

 

3.4. AOGCMs and Future Scenarios 

Emissions scenarios [Moss et al., 2008, 2010; Nakićenović et al., 2000] have been used 

as inputs to AOGCMs [Committee on Stabilization Targets for Atmospheric Greenhouse Gas 

Concentrations; National Research Council, 2011; IPCC, 2007]. A wide range of projections 

based on future demography, technology, and energy consumption have been used to drive a 

range of plausible emissions scenarios in the future [IPCC, 2007]. As output, AOGCMs produce 

geographic grid-based projections of precipitation, temperature, pressure, cloud cover, humidity, 

and a host of other climate variables at daily, monthly, and annual scales [IPCC, 2007]. In order 

to estimate potential changes in climate during the next century, for phases 1 and 2 of the 

dissertation, I used the Special Report on Emissions Scenarios (SRES) [Nakićenović et al., 2000] 

from the Intergovernmental Panel on Climate Change (IPCC) analysis AR4. I used 

Representative Concentration Pathway scenarios (RCP) [Moss et al., 2008, 2010] from the IPCC 

AR5 for phase 3. The World Climate Research Programme’s Fifth Coupled Model 

Intercomparison Project (CMIP5) also used RCPs to drive climate model simulations [Taylor et 

al., 2009].  

In phases 1 and 2 of this research, I rely on calculations from three AOGCMs, the U.S. 

National Oceanographic and Atmospheric Administration/Geophysical Fluid Dynamics 
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Laboratory model CM2.1 [Delworth et al., 2006], the United Kingdom Meteorological Office 

model HadCM3 [Pope et al., 2000], and the U.S. Department of Energy/National Center for 

Atmospheric Research Parallel Climate Model (PCM) [Washington et al., 2000]. These three 

models represent different climate sensitivities in terms of temperature change resulting from a 

doubling of atmospheric CO2 concentrations relative to pre-industrial conditions. Climate 

sensitivity for these models range from 1.3ºC to 3.3ºC, covering the lower part of the IPCC 

1.5ºC-4.5ºC uncertainty range [Solomon et al., 2007]. GFDL and HadCM3 have medium to 

medium-high climate sensitivities, while PCM has low climate sensitivity [Hayhoe et al., 2008; 

NECIA, 2006]. I used the SRES A1fi (fossil fuel-intensive) and B1 scenarios to represent 

possible higher- and lower-emission futures, respectively (2008-2099). At the end of the current 

century (2099) atmospheric CO2 concentrations are estimated to reach 970 (ppm) under the 

higher emissions scenario (A1fi) and 550 ppm in the lower emissions scenario (B1). These 

concentrations are about triple and double pre-industrial concentrations, respectively.  

In phase 3, I employed results from four more recent AOGCMs, the Community Climate 

System Model version 4 (CCSM4) from NCAR [Gent et al., 2011], the Hadley Centre Global 

Environmental Model version 2 (HadGEM2) of Met Office Hadley Centre, UK [Collins et al., 

2011], the Model for Interdisciplinary Research on Climate version 5 (MIROC5) of Center for 

Climate System Research, Japan [Watanabe et al., 2010], and The Meteorological Research 

Institute Coupled GCM version 3 (MRI-CGCM3) of Meteorological Research Institute, 

Tsukuba, Japan [Yukimoto et al., 2012]. I used the RCP8.5 [Thomson et al., 2011] and RCP4.5 

[Riahi et al., 2011] scenarios to represent possible higher- and lower-emission futures, 

respectively. At the end of the current century (2099) atmospheric CO2 concentrations are 
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estimated to reach approximately 936 ppm CO2-equivalent under the RCP8.5 and approximately 

538 ppm CO2-equivalent in RCP4.5. 

The Representative Concentration Pathways (RCPs) approach was designed to depict 

emissions pathways and concentrations of GHGs in order to support climate change impact 

assessments as well as providing a framework for potential policy makers and managers to 

address climate mitigation [Moss et al., 2010; Vuuren et al., 2011]. The representation of climate 

policy is included in the socioeconomic scenarios that drive the RCPs, in order to enable the 

scenario to achieve the target radiative forcing by 2100 [Jones et al., 2013]. SRES scenarios, 

which were reported in the IPCC [Nakićenović et al., 2000], were developed to assess possible 

future changes in socioeconomic and associated emissions of GHGs without considering any 

possible action and policy to limit climate change. RCPs are stabilization scenarios that invoke 

future climate policies and steps toward mitigation. The detailed characteristics of these 

scenarios are provided by Moss et al., [2008, 2010], Riahi et al., [2011], and Thomson et al., 

[2011].  

Representative Concentration Pathway (RCP) 4.5 considers global emissions of GHGs, 

short-lived species (aerosols, black carbon on snow or ice, and methane), and changes in land-

use and land-cover that stabilizes radiative forcing at 4.5 W m
−2

 (approximately 538 ppm CO2-

equivalent) [Thomson et al., 2011]. It assumes that policy makers will take steps to limit 

emissions and associated radiative forcing [Thomson et al., 2011]. These steps include, but are 

not limited to: introducing global GHG emissions markets, assigning emission prices for land use 

change, advancement in lower emissions technology, changes in energy systems and improving 

energy efficiency, and carbon capture and geologic storage technology [Thomson et al., 2011].  
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The Representative Concentration Pathway (RCP) 8.5 represents a high GHG emissions 

pathway. The RCP8.5 assumes high population growth along with low income growth, modest 

advancement in technology and energy efficiency which lead to high energy demand and 

associated GHG emissions over the long term (21
st
 century). It does not include any policies on 

emissions control or mitigation target [Riahi et al., 2011]. The GHG emissions under this 

scenario increase over the 21
st
 century, causing radiative forcing at 8.5 W m

-2
 by 2100 [Riahi et 

al., 2011].  

 

3.5. Downscaling 

Atmosphere-Ocean General Circulation Models (AOGCMs) provide a “coarse-scale” 

resolution, with geographic grid cells ranging in size from 80 to 400 kilometers [IPCC, 2007]. In 

general, this type of resolution is too coarse to capture the type of “fine-scale” changes 

experienced by small watersheds, which are in the range of km
2
, across the northeast and eastern 

U.S. Therefore, outputs from global climate models were downscaled to transform simulation 

results into higher-resolution projections for the Earth’s surface and watershed model 

applications. There are two main types of downscaling approaches: dynamical and statistical. All 

of the downscaling of AOGCM outputs for this dissertation was statistical and done by Katharine 

Hayhoe and her research group at Texas Tech University.  

3.5.1. Dynamical Downscaling 

Dynamical downscaling uses high-resolution (~30 kilometers) regional-scale models. 

These models take small-scale processes and detailed topography. Therefore, their output is 
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usually closer to observed climatic patterns especially over the Northeast compared to output 

from global models [Hayhoe et al., 2008; Liang et al., 2004, 2004b; Zhu and Liang, 2005]. 

Another reason for the closer match is that observations are “local” since they are from specific 

weather stations. Also, dynamical downscaling has the ability to account for important changes 

in smaller-scale processes which in turn affect regional climate [Hayhoe et al., 2008b; Tryhorn 

and DeGaetano, 2011]. Furthermore, dynamical downscaling is based on physical rather than 

statistical relationships and hence in theory it should be a preferable approach. Although, in order 

to obtain the meteorological output, a regional climate model (RCM) needs to be nested within 

an AOGCM in order to create high-resolution output. In practice this approach has a high 

computational burden which significantly limits the number of RCM runs [Committee on 

Stabilization Targets for Atmospheric Greenhouse Gas Concentrations; National Research 

Council, 2011]. Another practical limitation is that AOGCM output, which supplies essential 

variables at the domain boundaries of RCMs, often is not archived, or at least not archived at 

vertical levels in the atmosphere and at a temporal resolution required to meet RCM needs 

[Committee on Stabilization Targets for Atmospheric Greenhouse Gas Concentrations; National 

Research Council, 2011]. Lastly, Wood et al., [2004] showed that RCM output has a bias which 

needs to be removed through statistical post-processing similar to those used in statistical 

downscaling methods. 

3.5.2. Statistical Downscaling 

Statistical downscaling utilizes historical measured data for model calibration and 

application at the local scale. This involves interpolation onto a regular grid or for individual 

weather stations. This method “trains” relationships between measured climate and model output 
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in such a way as to correct for biases in the AOGCM, and in temporal and spatial patterns 

[Hayhoe et al., 2008]. First, a statistical relationship is established between AOGCM output and 

measured data. In order to remove year-to-year variation, the relationship is averaged over a 

relatively long period (at least 20 years) [Hayhoe et al., 2008; NECIA, 2006]. The relationship 

between AOGCM output and measured climate variables (monthly or daily) is then used to 

downscale future AOGCM outputs to the same scale (grid or weather station). The statistical 

downscaling method is based on the assumption that the relationships between large and small 

scale processes remains constant over time, which can be problematic for precipitation 

[Committee on Stabilization Targets for Atmospheric Greenhouse Gas Concentrations; National 

Research Council, 2011]. However, this technique has a substantial time and cost benefit over 

dynamical downscaling and is therefore practical and cost-effective [Hayhoe et al., 2008]. I used 

two different statistical downscaling approaches for this dissertation:  Bias Correction-

Spatial Disaggregation (BCSD) (Grid-based) and Station-based Daily Asynchronous Regression 

(SDAR) (station-based). 

3.5.2.1. Bias Correction-Spatial Disaggregation (BCSD) 

BCSD is the most commonly used method for downscaling monthly AOGCM data 

[NECIA, 2006]. It uses an empirical statistical technique known as quantile mapping, whereby 

probability density functions (PDFs) for modeled monthly and daily precipitation and 

temperature for a period (in this case, 1961–1990) are mapped onto gridded historical 

observations [Maurer et al., 2002; Maurer and Hidalgo, 2008]. In this approach, the mean and 

variability of both monthly and daily observations were reproduced by climate model output. 

The BCSD technique was originally developed to adjust AOGCM output for long-range 
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streamflow forecasting [Wood et al., 2002], and later adapted for studies examining the 

hydrologic impacts of climate change [VanRheenen et al., 2004]. BCSD originated from the 

requirement to downscale ensemble climate model forecasts as input to a macro-scale hydrologic 

model, the Variable Infiltration Capacity (VIC) model, to simulate runoff and streamflow at 

spatial and temporal scales appropriate for water management [Wood et al., 2002]. I used these 

high resolution climate projections and removed any bias through comparison with local weather 

records for phases 1 and 2 of this dissertation. 

Hydrologists have considerable interest in understanding and forecasting surface 

water and energy balance responses to changing climate. For water management, most studies 

have focused on basins at the scale of 10
2
–10

3
 km

2
. The VIC macroscale hydrology model is 

well-suited for these applications [Liang et al., 1994; VanRheenen et al., 2004 Wood et al., 

2002], and requires climate projections with a 1/8º resolution grid cell as input to project runoff 

for each grid within the basin [Liang et al., 1994]. Following successful applications of the VIC 

model to forecast hydrological responses to climate change (e.g., [Hamlet and Lettenmaier, 

1999; Liang et al., 1994; VanRheenen et al., 2004; Wood et al., 2002]), the 1/8º grid cell, known 

as VIC grid, has become popular among hydrologists and climate scientists.  

In phases 1 and 2, the monthly coarse spatial resolution output of temperature, 

precipitation, and solar radiation from the two AOGCMs under the two future emission scenarios 

were statistically downscaled to 1/8º resolution for the period 1950 to 2100 using a standard 

downscaling routine [Liang et al., 1994]. The latest generation of AOGCM outputs represents 

observed climate change at the global scale over the last century based on model analyses and 

inter-comparisons [Solomon et al., 2007]. A detailed description, comparison, and validation of 
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the BCSD downscaling method is provided by Hayhoe et al., [2004, 2007, 2008]; NECIA, 

[2006]; and Campbell et al., [2011]. 

3.5.2.2. Station-based Daily Asynchronous Regression (SDAR) 

SDAR is a more complex statistical method that uses quantile regression to 

determine relationships between two quantities that do not have temporal correspondence, but 

that are expected to have similar statistical properties such as mean and variance [O’Brien et al., 

2001]. A regression relationship is assigned by only using probability distribution functions 

(PDFs) between two independent time series. This method addresses the issue of relating two 

measurements made at different times to each other [O’Brien et al., 2001], which occurs when 

measured values are related to historical climate model simulations. Although these two time-

series do not have temporal correspondence, over timescales of about 30 years they are expected 

to have similar probability distributions [O’Brien et al., 2001]. 

For daily asynchronous regression, each historical time series is reordered by rank 

and a relationship between observed and modeled temperature or precipitation is determined 

using piecewise linear regression [O’Brien et al., 2001]. This relationship is then used to correct 

global climate model output to site-specific conditions over the future period. The relationship 

between measured values and AOGCM simulations can be improved further by additional steps 

such as pre-filtering the AOGCM output by principal component analyses (PCA) to remove low-

level noise, spatial interpolation of the global model to the scale of the observations, 

and including information generated by the climate models for convective and large-scale 

precipitation [O’Brien et al., 2001]. 
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The Asynchronous Regional Regression Model (ARRM) builds on the same 

statistical technique used by SDAR [Dettinger et al., 2004]. It assigns a quantitative relationship 

between a daily measured and simulated variable that has a symmetric distribution. ARRM, 

similar to SDAR, makes historical measurements and simulations independent of time by 

ranking them before matching their quantiles [Stoner et al., 2012]. Time-independence is an 

important aspect of this approach since AOGCMs have inherent variability patterns that do not 

correspond with day-to-day or even year-to-year variability patterns of measured values [Stoner 

et al., 2012]. Dettinger et al., [2004] first applied this AOGCM downscaling approach in order to 

study simulated hydrologic responses under changing climate. 

In this dissertation, the time series of measured observations from the HBEF 

(meteorological station#1 for maximum and minimum temperature, and watershed 6 for 

precipitation) were compared with results from historical AOGCM simulations. Future model 

simulations were downscaled based on the regression model derived from these two distributions 

[Stoner et al., 2012]. I used the ARRM method in phases 2 and 3 of my dissertation. 
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4. Modeling Potential Hydrochemical Responses to Climate Change 

and Increasing CO2 at the Hubbard Brook Experimental Forest 

Using a Dynamic Biogeochemical Model (PnET-BGC) 

The objective of this phase of the dissertation was to use the hydrochemical model, 

PnET-BGC, to evaluate the direct and indirect effects of global change drivers (i.e., temperature, 

precipitation, solar radiation, CO2) on biogeochemical processes in a northern hardwood forest 

ecosystem at the Hubbard Brook Experimental Forest (HBEF) New Hampshire, USA.  

 

4.1. Site Description 

The HBEF is located in the southern White Mountains of New Hampshire, USA 

(43°56'N, 71°45'W) [Likens and Bormann, 1995]. The site was established by the U.S. Forest 

Service in 1955 as a center for hydrological research, and in 1987 was designated as a National 

Science Foundation Long-Term Ecological Research (LTER) site. The climate is humid 

continental, with short, cool summers and long, cold winters. Soils are well-drained Spodosols 

with an average depth of 1-2 m. Vegetation is mostly northern hardwoods, dominated by sugar 

maple (Acer saccharum), American beech (Fagus grandifolia), and yellow birch (Betula 

alleghaniensis). Conifer species are more prevalent at higher elevations, largely balsam fir (Abies 

balsamea) and red spruce (Picea rubens) [Johnson et al., 2000].  

The model was run for Watershed 6 (W6), which has one of the longest continuous 

records of meteorology, hydrology and biogeochemistry in the U.S. [Likens and Bormann, 1995; 

Likens et al., 1994] (http://www.hubbardbrook.org/). The watershed area is 13.2 ha, with an 

http://www.hubbardbrook.org/
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elevation range of 549-792 m. Watershed 6 was logged intensively from 1910 to 1917, and has 

experienced some subsequent disturbances including a hurricane in 1938, which prompted some 

salvage logging, and an ice-storm in 1998.  

 

4.2. Results 

4.2.1. Validation of Climate Projections 

I calculated the average of all six different AOGCM scenarios on a monthly basis (model 

time step) and compared these values with measured climatic data using NME, NMAE, and 

regression analysis over the period of 1960 to 2008. The three AOGCMs have different values in 

the hindcast period (1960-2008) and each has its own climate variability. Note that there is no 

temporal correspondence between AOGCM simulations and observations on a year-to-year basis 

[Maurer and Hidalgo, 2008; Maurer et al., 2002]; therefore I used monthly values to evaluate 

climate projections based on ranking. There is a good match between measured and statistically 

downscaled air temperature, with a slight over-prediction for the maximum air temperature 

(NME = 0.14, NMAE = 0.14; see Table 4.1 and Figure 4.1a) and under-prediction for the 

minimum temperature (NME = -1.82, NMAE = 1.85; see Table 4.1 and Figure 4.1b). A single 

linear regression analysis for maximum and minimum temperatures (r
2
 = 0.997; β = 1.04; s.e. = 

0.002; P < 0.001 and r
2
 = 0.997; β = 0.96; s.e. = 0.002; P < 0.001, respectively) indicates that the 

slopes of downscaled and measured data are similar. The analyses shows that the downscaled 

PAR values slightly over-predict the measured values, although they match closely (NME = 

0.13, NMAE = 0.13; see Table 4.1 and Figure 4.1c) and the regression slopes are similar (r
2
 = 

0.98; β = 1.05; s.e. = 0.006; P < 0.001). The statistically downscaled precipitation data under-
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predict the measured values by greater than 20 cm leading to an overall under-prediction of 

32.9% (NME = -0.25, NMAE = 0.27; see Table 4.1 and Figure 4.1d). A regression analysis 

showed a discrepancy between observed and downscaled data based on the deviation in slope 

from the one-to-one line (r
2
 = 0.97; β = 0.38; s.e. = 0.003; P < 0.001). Consequently the 

precipitation data are scaled upward by 32.9% to match the measured data for model forecasts 

which resulted in better performance criteria for downscaled precipitation values (NME = -0.003, 

NMAE = 0.16; see Table 4.1 and Figure 4.1e; β = 0.51; s.e. = 0.004; P < 0.001). 

 

Table 4.1. Summary of statistically downscaled AOGCM output validation for the period of 

measurement (1964-2008) as indicated by normalized mean error (NME) and normalized mean 

absolute error (NMAE). 

NME NMAE

Max. Temperature (°C) 0.14 0.14

Min. Temperature (°C) -1.82 1.85

PAR (mmol m
-2

 s
-1

) 0.13 0.13

Precipitation (cm) - Original -0.25 0.27

Precipitation (cm) - Scaled Upward by 32.9% -0.003 0.16

Simulated Constituent
Model Performance
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Figure 4.1. Regression analysis between measured (a) maximum temperature (°C), (b) minimum 

temperature (°C), (c) photosynthesis active radiation (PAR) (mmol m
-2

 s
-1

), (d) precipitation 

(cm), and the average of all AOGCM scenarios over the period of 1960-2008. Graph (e) shows 

regression analysis between measured precipitation and the average of all AOGCM scenarios 

(cm) after being scaling up by 32.9% over the same period. 

 

4.2.2. Sensitivity Analysis 

Building on previous sensitivity analyses for PnET-BGC [Aber et al., 1997; Gbondo-

Tugbawa et al., 2001; Schecher and Driscoll, 1995], I evaluated the sensitivity of model 

calculations to climatic inputs: temperature, precipitation and PAR. The state variables used to 

assess model sensitivity to these inputs were discharge, stream NO3
-
, DOC, and acid neutralizing 

capacity (ANC), and soil base saturation (BS%). These state variables were selected because of 

their role in the acid-base status of soil and water and importance in the response of water 

supplies to climate change. The sensitivity analysis was conducted by testing the relative change 

in each state variable X values divided by the relative change in the value of the input (Input) 

tested [Gbondo-Tugbawa et al., 2001]. Thus the sensitivity of an input SInput, X was as follows 

[Jørgensen, 1988]:  

InputInput

XX
S XInput /

/
, 


      (3) 

Higher SInput, X values indicated that the model is more sensitive to that climate driver 

[Jørgensen, 1988]. A positive number indicated a positive correlation between the parameter and 

the state variable while a negative number is an indication of negative correlation [Gbondo-
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Tugbawa et al., 2001; Jørgensen, 1988]. The range of maximum and minimum temperature, 

precipitation and PAR used for this analysis was determined from long-term measurements at the 

HBEF. Climatic input values included: the warmest and coolest year, wettest and driest year, and 

maximum and minimum long-term annual PAR values. In each model run, all other inputs and 

parameters were held constant, while varying only one maximum or minimum value for the 

input of interest (total of 6 runs). 

4.2.3. Model Performance 

The predicted annual streamflow over the measurement period of 1964-2008 generally 

matched observed values, with the exception of 1973, 1990 and 1996, which are the three highest 

annual discharge years on record and were under-predicted by the model (NME = -0.02, NMAE 

= 0.07; see Table 4.2 and Figure 4.2a). A long-term increase in discharge at the HBEF is 

consistent with a pattern of increasing precipitation [Campbell et al., 2011]. The seasonal 

variation in streamflow matched observed values reasonably well (Table 4.3). Although there is 

variability in model performance metrics over different seasons with minimum (NMAE = 0.19) 

and maximum (NMAE = 0.31) discrepancies over spring (April-June) and winter (January-

March), respectively. The model slightly under-predicts spring (NME = -0.08) and winter (NME 

= -0.07) stream discharge while slightly over-predicting summer (July-September) (NME = 0.07) 

and fall (October-December) (NME = 0.06) streamflow (Table 4.3).  

The model generally captured the long-term trend of decreasing SO4
2-

 concentrations and 

shows little over-prediction (NME = 0.03, NMAE = 0.06; see Table 4.2 and Figure 4.2b). The 

model reproduces the long-term pattern of stream NO3
-
 concentrations until about 1990 (1964-

1990; NME = 0.12, NMAE = 0.36; see Table 4.2 and Figure 4.2c), after which the model over-
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predicts measured NO3
-
 concentrations, resulting in poorer model performance compared to 

predictions of SO4
2-

 concentrations over the record (NME = 1.17, NMAE = 1.38; see Table 4.2).  

Stream Ca
2+

 concentrations were somewhat under-predicted by the model during the 

beginning of the record (Figure 4.2d), especially the peak in 1970, and over-predicted during the 

latter part of the record. However, overall, the model sufficiently captured the declining trend of 

observed Ca
2+

 values (NME < 0.01, NMAE = 0.19; see Table 4.2). The model also simulated 

stream concentrations of Mg
2+

 (NME = 0.05, NMAE = 0.12; see Table 4.2), K
+
 (NME < 0.01, 

NMAE = 0.16; see Table 4.2) and Na
+
 (NME = 0.03, NMAE = 0.09; see Table 4.2) well. 

Measured streamwater concentrations of DOC are available since 1982 (Figure 4.2e). 

The simulated annual volume-weighted average concentration of DOC in stream water depicts 

the measured values reasonably well (NME = 0.03, NMAE = 0.14; see Table 4.2). The long-term 

average DOC concentration produced by the model was 167 µmol C L
-1

, which is similar to the 

measured value of 162 µmol C L
-1

.  

The model also captured the trend in stream water pH, although slightly under-predicting 

pH values (NME < -0.01, NMAE = 0.02; see Table 4.2 and Figure 4.2f). The model also under-

predicted ANC values (NME = 4.24, NMAE = -4.24; see Table 4.2). The average of the 

simulated and measured stream water ANC was -12.7 and -2.4 µeq L
-1

, respectively. The under-

predictions in stream pH and ANC are consistent with the over-prediction of NO3
-
 in recent 

years. Simulated soil base saturation was 10%, which is similar to a field value of 9.5% 

measured in 1983 by Johnson et al., [1991].    
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Table 4.2. Summary of annual model performance metrics normalized mean error (NME) and 

normalized mean absolute error (NMAE) over the period of 1964-2008. 

NME NMAE

Stream Flow -0.02 0.07

SO4
2-

0.03 0.06

NO3
-
 (1964-90) 1.17 (0.12) 1.38 (0.36)

Ca
2+

<0.01 0.19

Mg
2+

0.05 0.12

K
+

<0.01 0.16

Na
+

0.03 0.09

DOC 0.03 0.14

pH <-0.01 0.02

ANC 4.24 -4.24

Model Performance
Simulated Constituent

 

Table 4.3. Summary of annual and seasonal streamflow model performance metrics normalized 

mean error (NME) and normalized mean absolute error (NMAE) over the period of 1964-2008. 

NME NMAE

Annual -0.02 0.07

Spring -0.08 0.19

Summer 0.07 0.29

Fall 0.06 0.20

Winter -0.07 0.31

Period
Model Performance
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Figure 4.2. A comparison of measured and simulated values of (a) annual discharge and annual 

volume-weighted concentrations of (b) SO4
2-

, (c) NO3
-
, (d) Ca

2+
, (e) DOC, and (f) streamwater 

pH over the period of 1964-2008 at watershed 6 of the Hubbard Brook Experimental Forest, NH. 
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4.2.4. Sensitivity Analysis 

The selected state variables show the greatest response to variations in temperature and 

PAR (Table 4.4). Higher temperatures increase model predictions of NO3
-
 and DOC 

concentrations and decrease discharge, ANC and soil BS%. The sensitivity analysis also suggests 

that higher annual precipitation decreases NO3
-
 and DOC concentrations and soil BS%, while 

increasing ANC. Higher PAR values result in a decrease in discharge and NO3
-
 concentrations 

and increased DOC, ANC and soil BS%. Precipitation has the greatest effect on discharge. The 

most sensitive state variable in this analysis is NO3
-
 which strongly influences ANC and soil 

BS%. The least sensitive state variable is DOC, which is mostly dependent on temperature.  

 

Table 4.4. Summary of model sensitivity analysis to changes in temperature, precipitation and 

photosynthetically active radiation (PAR). 

Parameter Range S
Discharge

S
NO3-

S
DOC

S
ANC

S
%BS

Temperature (°C) 4.46-7.22 -0.03 1.44 0.05 -1.29 -0.09

Precipitation (cm) 104.26-182.45 1.01 -0.51 -0.02 0.59 -0.02

PAR (mmol m
-2

 s
-1

) 456.15-629.99 -0.05 -1.43 0.04 1.25 0.24  

4.2.5. Future Climatic Projections 

The average measured temperature for the HBEF is 5.7°C (station #1: 1955-2008). 

Statistically downscaled AOGCM climate projections for the HBEF indicate increases in average 

air temperature of 1.7 to 6.5°C by the end of the century, depending on the AOGCM and 

greenhouse gas emission trajectory selected (Table 4.5). The greatest temperature increase is 

projected by HadCM3-A1fi, while PCM-B1 shows the most modest increase. Precipitation 
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1970-2000

A1fi B1 A1fi B1 A1fi B1

Temperature (°C) 5.7 6.5 3.1 3.5 1.7 4.4 2.0

Annual Precipitation (cm) 144 31.7 21.5 3.9 12.7 20.2 15.4

PAR (mmol m
-2

 s
-1

) 566 -4.6 41.2 104.7 143.1 17.2 -26.7

Observed
HadCM3 PCM GFDL

2070-2100

projections are highly variable, ranging from 4 to 32 cm above the long-term annual measured 

average of 144 cm. Long-term annual average PAR at the HBEF is 566 mmol m
-2

 s
-1

, and the 

climate projections indicate changes ranging from -26.7 to 143.1 mmol m
-2

 s
-1

 by 2100 

depending on the scenario and model considered. 

 

Table 4.5. Summary of climate projections from statistically downscaled AOGCM output. The 

value shown for each scenario is the difference between the mean of measured values for the 

reference period (1970-2000) and the period 2070-2100. 

 

4.2.6. Hydrology 

Based on PnET-BGC model results, climate change is projected to cause substantial 

temporal shifts in hydrologic patterns at the HBEF (Figure 4.3). Modeling results indicate that 

Spring (April-June) snowmelt will occur earlier and will be less extreme in the future. Low flows 

associated with enhanced evapotranspiration during the summer months (July-Setpember), will 

extend earlier into the spring and later into the fall (October-December). Future streamflow in 

late fall and early winter (January-March) will increase because of less snowpack accumulation 

due to warmer air temperatures and concurrent declines in the ratio of snow to rain. 
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Figure 4.3. Comparison between measured monthly discharge for 1970-2000 and simulated 

mean monthly discharge for 2070-2100 with and without considering CO2 effects on vegetation. 

Note the future climate change scenario depicted in these results is from HadCM3-A1fi (the most 

aggressive scenario). 

 

4.2.7. Soil and Stream Water Chemistry 

Model simulations show that annual volume-weighted NO3
-
 concentrations are projected 

to increase substantially over the next century under all six climate change scenarios considered 

(Figure 4.4a and Figure 4.5a, Table 4.6). Under HadCM3-A1fi, B1 and GFDL-A1fi, B1 

scenarios, predicted annual volume weighted NO3
-
 concentration peaks around mid century 

(2042, 2049, 2059, 2037, respectively) and then declines toward 2100 (Figure 4.6 and Figure 

4.7). In comparison, peaks in annual volume-weighted stream NO3
-
 concentration under PCM-
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A1fi and B1 scenarios are delayed until later in the century. Average annual volume-weighted 

NO3
-
 concentrations for the last 30 years of the 21

st
 century are projected to range from 77 to 132 

µmol L
-1

, compared to an average annual observed value of 18 µmol L
-1

 for 30 recent years 

(1970-2000).  

The model projections for stream SO4
2-

 show a decline in concentration until around 

2025, and level off after that as the watershed approaches steady-state with respect to the 

business-as-usual scenario for atmospheric S deposition (Figure 4.4b and Figure 4.5b). The 

average annual volume-weighted SO4
2-

 concentration projected for 2070-2100 ranges from 23 to 

27 µmol L
-1

, which is lower than the average annual measured value of 53 µmol L
-1

 for the past 

30 years.  

The model simulations of DOC show that under all scenarios concentrations will 

decrease over the next century (Figure 4.4c and Figure 4.5c, Table 4.6). The average DOC 

concentrations projected for 2070-2100 range from 92 to 138 µmol C L
-1

, which is somewhat 

lower than the mean annual measured value of 160 µmol C L
-1

 for 1982-2000. 

The model simulations for stream Ca
2+

 exhibit patterns that are correlated with changes 

in NO3
-
 (Figure 4.4d and Figure 4.5d). For the HadCM3 and GFDL simulations, annual volume-

weighted Ca
2+

 concentrations increase until mid-century, followed by a decline to the end of the 

century. Under the PCM simulations, stream Ca
2+

 remains constant until mid-century and then 

increases in response to the later increase in NO3
-
. The average annual volume-weighted 

concentrations of Ca
2+

 for 2070-2100 range from 17 to 24 µmol L
-1

 (HadCM3-B1 and PCM-

A1fi, respectively), which is comparable to the measured value of 25 µmol L
-1

 for 1970-2000. 

The soil BS% simulation reflects the stream NO3
-
 and Ca

2+
 response, decreasing by almost 50% 

under the high temperature scenarios, while increasing slightly under lower temperature 
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scenarios. The projected soil %BS for 2070-2100 ranged from 5.1 to 9.0%, in contrast to an 

average measured value of 9.5% [Johnson et al., 1991]. 

Future model projections of pH show decreases under all scenarios (Figure 4.4e and 

Figure 4.5e). The average annual volume-weighted pH projected for 2070-2100 ranges from 4.4 

to 5.0, which encompasses the measured volume-weighted mean of 4.9 for 1970-2000. 

Depending on the scenario used, the acid-base response of the ecosystem to historic acidic 

deposition ranges from some recovery to no recovery. Acid neutralizing capacity (ANC) 

projections follow a similar pattern as pH. For the mean of 2070-2100, simulated ANC ranges 

from -9.5 to -42.2 µeq L
-1

, which is lower than the measured mean annual volume-weighted 

ANC of -3.4 µeq L
-1

 for 1988-2000.  

Annual element mass balances for each future climate change scenario were calculated to 

assess patterns in the fluxes and pools of major elements (NH4
+
-N, NO3

-
-N, C, Ca

2+
, Al) and 

associated processes depicted in PnET-BGC (Table 4.6). I summarized PnET-BGC model results 

by calculating average output values using all six future climate change scenarios. These average 

values were then used to examine the retention and loss of elements in the watershed over the 

period of 2070-2100, and were compared with the average of simulated values for 1970-2000. 

The mass balances show that increases in streamwater NO3
-
 associated with higher temperature 

is mainly due to higher rates of N mineralization and nitrification. While NH4
+
 uptake by 

vegetation declines slightly, NO3
-
 uptake greatly increases, resulting in an increase in total N 

assimilated by plants and a decrease in the pool of N in humus. Mobilization of Al from soil is 

enhanced due to acidification caused by high NO3
-
 concentrations. Mineralization of carbon (C), 

without considering CO2 effects on vegetation, decreases compared to the reference period, 

causing decreases in the humus C pool while the amount of C sequestrated in vegetation 



47 

 

increases substantially. Uptake of Ca by vegetation declines, as do the humus and soil 

exchangeable pools; however, the total pool of Ca in plants increases.  

Year

1950 1975 2000 2025 2050 2075 2100

N
O

3

-  (


m
o

l 
L

-1
)

0

50

100

150

200

250

S
O

4

2
-  (


m
o

l 
L

-1
)

0

20

40

60

80

HadCM3-A1fi

D
O

C
 (


m
o

l 
C

 L
-1
)

50

100

150

200

250

C
a

2
+
 (


m
o

l 
L

-1
)

0

10

20

30

40

50

Year

1950 1975 2000 2025 2050 2075

p
H

4.2

4.6

5.0

5.4

5.8

6.2

( a )

( b )

( c )

( d )

PCM-A1fi

Year

1950 1975 2000 2025 2050 2075

GFDL-A1fi

( e )

Without CO2 Effect on Vegetation With CO2 Effect on Vegetation Measured

 

Figure 4.4. Past and future projections of annual volume-weighted concentrations of (a) NO3
-
, (b) 

SO4
2-

, (c) DOC, (d) Ca
2+

, and (e) pH in streamwater under A1fi scenarios with and without 

considering CO2 effects on vegetation. Shown are measured data and simulations using input 

from three AOGCMs under high emission scenarios (A1fi). 
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Figure 4.5. Past and future projections of annual volume-weighted concentrations of (a) NO3
-
, (b) 

SO4
2-

, (c) DOC, (d) Ca
2+

, and (e) pH in streamwater under B1 scenarios with and without 

considering CO2 effects on vegetation. Shown are measured data and simulations using input 

from three AOGCMs under low emission scenarios (B1). 
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Table 4.6. Projected average changes in biogeochemical fluxes (kg ha
-1

 year
-1

) and pools (kg ha
-1

) of major elements for the Hubbard 

Brook Experimental Forest. Values are calculated as the difference between the mean for the period of 2070-2100 and the reference 

period of 1970-2000. 

Fluxes/Pools

Period 1970-2000 2070-2100
a

2070-2100
b

1970-2000 2070-2100
a

2070-2100
b

1970-2000 2070-2100
a

2070-2100
b

1970-2000 2070-2100
a

2070-2100
b

1970-2000 2070-2100
a

2070-2100
b

Deposition 2.4 2.0 2.0 5.6 2.5 2.5 17.2 20.0 20.0 1.6 1.8 1.8 0.2 0.3 0.3

Throughfall 2.0 1.6 1.6 5.6 2.5 2.5 17.2 20.0 20.0 3.5 2.0 2.0 0.2 0.3 0.3

Litterfall 93.6 86.8 95.1 0.0 0.0 0.0 6861 5543 6856 23.3 21.4 22.4 0.0 0.0 0.0

Weathering 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 3.8 4.8 4.5 4.5 4.5

Uptake -82.5 -22.2 -71.9 -15.5 -69.0 -30.9 0.0 0.0 0.0 -39.5 -32.9 -34.3 0.0 0.0 0.0

Mineralization 94.2 99.9 103.5 13.7 79.3 33.2 5976 5109 6117 38.6 33.7 34.1 0.0 0.0 0.0

Nitrification -13.7 -79.3 -33.2 13.7 79.3 33.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Drainage Losses 0.0 0.0 0.0 -3.8 -12.8 -4.8 -18.1 -11.9 -15.2 -9.7 -6.6 -5.9 -2.5 -3.9 -1.2

Plant total* 682 1036 1310 0.0 0.0 0.0 228778 296835 460706 164 237 310 0.0 0.0 0.0

Humus* 3372 2388 2620 0.0 0.0 0.0 119713 79138 91332 666 443 432 0.0 0.0 0.0

Soil Exchangeable* 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 282 189 308 1663 1647 1679

NH4-N NO3-N C/DOC Ca Al

 

Note: Values for reference period (1970-2000) are simulated values from PnET-BGC. Future values are the average output of all six 

climate scenarios over the period of 2070-2100.  

a
 Without CO2 effects on vegetation 

b
 With CO2 effects on vegetation 

* Indicates pool
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4.2.8. Modeled CO2 Effect 

Modeling results show that the effect of increasing atmospheric CO2 on vegetation has 

little impact on the seasonal distribution of stream discharge, causing only a slight increase in the 

quantity of streamflow during the growing season (Figure 4.3). A more detailed analysis of 

hydrologic responses to changes in climate and atmospheric CO2 using PnET-BGC is given in 

Campbell et al., [2011]. 

Compared to hydrology, including CO2 effects on vegetation in the model has a more 

pronounced influence on stream NO3
-
 concentrations, with substantially lower concentrations 

when CO2 effects are considered (Figure 4.4a and Figure 4.5a, Table 4.6). The results for model 

runs with CO2 effects on vegetation included, using the four lower and moderate scenarios of 

climate change (HadCM3-B1, GFDL-B1, PCM-A1fi, PCM-B1), indicate that the average annual 

volume-weighted NO3
-
 concentration for the last 30 years of the 21

st
 century is predicted to range 

from 9 to 22 µmol L
-1

, whereas NO3
-
 concentrations for the two warmest scenarios (HadCM3-

A1fi and GFDL-A1fi) would be substantially higher (85 and 79 µmol L
-1

, respectively). This 

differential response is due to a plateau in CO2 fertilization that occurs at CO2 concentrations 

above 600 ppm, such that increased plant demand for N uptake is not able keep the pace with 

increased available N pools from higher N mineralization associated with increasing 

temperature. In contrast to simulations of climate change, stream NO3
-
 concentrations are lower 

under scenarios with the CO2 effect on vegetation included. A condition of ecosystem N 

saturation is not as prominent, as elevated tree growth associated with CO2 fertilization largely 

mitigating any elevated NO3
-
 losses. 

The model projections for stream Ca
2+

 concentrations were lower when CO2 effects were 

included in the model (Figure 4.4d and Figure 4.5d, Table 4.6). Under the four lower and 
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moderate climate scenarios (HadCM3-B1, GFDL-B1, PCM-A1fi, PCM-B1), the decline in the 

stream water Ca
2+

 concentration was due to enhanced uptake of Ca
2+

 by vegetation associated 

with CO2 fertilization. Under the two warmest climate scenarios (HadCM3-A1fi and GFDL-

A1fi), the peak in Ca
2+

 occurred later in response to elevated NO3
-
. The average annual volume-

weighted concentration of Ca
2+

 for 2070-2100 for the four lower and moderate scenarios with 

CO2 effects varied between 13 and 15 µmol L
-1

 compared to a measured mean value of 25 µmol 

L
-1

 for 1970-2000. The average annual volume-weighted Ca
2+

 concentrations for 2070-2100 for 

the warmest model simulations (HadCM3-A1fi and GFDL-A1fi) with CO2 effects were 20 and 

22 µmol L
-1

, respectively.  

Invoking CO2 effects under climate change results in a change in the simulation of DOC 

loss (Figure 4.4c and Figure 4.5c, Table 4.6). The simulated mean DOC concentrations for 2070-

2100 were higher in comparison to values from model simulations without CO2 effects on 

vegetation and exhibit increased variation. This change is due higher inputs of litterfall and fine 

roots to decomposition pool. The average DOC concentrations for the four lower and moderate 

scenarios with CO2 effects on vegetation for 2070-2100 varied from 137 to 163 µmol C L
-1

, 

while for the two warmest scenarios (HadCM3-A1fi and GFDL-A1fi) mean DOC concentrations 

were 126 and 112 µmol C L
-1

, respectively.  

Future model projections of pH under the four lower and moderate scenarios of climate 

change with CO2 effects showed recovery from current conditions by up to 1 pH unit (steady-

state value around 6). The annual volume-weighted pH for the four low and moderate scenarios 

including CO2 effects for 2070-2100 varies between 5.90 and 6.24, while pH values for the two 

warmest scenarios (HadCM3-A1fi and GFDL-A1fi) are considerably lower (4.84 and 4.95, 

respectively). Acid neutralizing capacity projections follow similar patterns as pH. The mean 
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annual volume-weighted ANC for the four low and moderate scenarios of climate change with 

CO2 fertilization for 2070-2100 ranges from 6.9 to 15.5 µeq L
-1

, in comparison with -3.4 µeq L
-1

 

for mean annual measured values (for 1988-2000). Model simulations suggest that the mean 

annual volume-weighted ANC values for HadCM3-A1fi and GFDL-A1fi (the two warmest) 

were -13.6 and -10.5 µeq L
-1

, respectively. Model outputs for soil %BS follow a similar pattern 

as NO3
-
, pH, and ANC. There is some increase in soil %BS under four moderate and low 

temperature scenarios which range from 10.0 to 13.3% for the period of 2070-2100. The average 

BS% for last 30 years of the 21
st
 century produced by HadCM3-A1fi and GFDL-A1fi however, 

are comparatively low (4.3 and 5.6, respectively). These results suggest when CO2 fertilization 

stimulates tree growth without elevated NO3
-
 leaching, some recovery from acidic deposition 

occurs, resulting in an increase in stream pH and ANC, and soil %BS. However under the 

highest temperature scenarios (HadCM3-A1fi and GFDL-A1fi) enhanced mineralization of soil 

N and NO3
-
 leaching re-acidify soil and streamwater. 

The model simulations indicate that climate change may alter the hydrologic cycle and 

the seasonality of stream discharge. Since drainage quantity strongly influences solute transport 

[Likens and Bormann, 1995] seasonal changes in discharge may also alter the seasonal patterns 

of chemical constituents. I assessed changes in seasonal patterns of concentrations of NO3
-
,  

Ca
2+

, pH, and ANC under all climate change scenarios with and without CO2 effects on 

vegetation over the period of 2070-2100 and compared these with the seasonal patterns of 

measured values from 1970-2000. The timing, patterns and magnitude of streamwater NO3
-
 

concentrations are highly variable depending on the climate scenarios used (Figure 4.6 and 

Figure 4.7). Since NO3
-
 is the largest contributor of strong acids and therefore the main driver of 

the acid-base status of the ecosystem, Ca
2+

, pH, and ANC follow similar patterns. These results 
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suggest that as climate change will likely alter the overall element concentrations and fluxes, 

these changes will be manifested in the seasonal patterns of solutes concentrations and fluxes and 

the timing of these changes. 
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Figure 4.6. Past and future projections of monthly volume-weighted concentrations of NO3
-
 in 

streamwater under the A1fi scenarios without (left panel) and with (right panel) consideration of 

CO2 effects on vegetation. 
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Figure 4.7. Past and future projections of monthly volume-weighted concentrations of NO3
-
 in 

streamwater under the B1 scenarios without (left panel) and with (right panel) consideration of 

CO2 effects on vegetation. 

Element mass balances show that when CO2 effects were included, uptake of NH4
+
 by 

vegetation increased and exceeded uptake of NO3
-
. Also, the amount of total N sequestered in 

plants increase, which was followed by an increase in N in litterfall and the humus pool. 

Nitrification rates decrease compared with values without considering CO2 effects, causing less 

NO3
-
 leaching. Carbon sequestration by plants increases which is followed by an increase in 

litterfall, the humus pool and mineralization of organic C, ultimately resulting in increases in 

streamwater DOC. The amount of Ca
2+

 sequestered in plants increases, which is followed by an 

increase in litterfall and mineralization of Ca
2+

. Pools of exchangeable Ca
2+

 in soil also increase 

due to lower concentrations of NO3
-
. 

 

4.3. Discussion 

4.3.1. Validation of Climate Projections 

There is relatively good agreement between the statistically downscaled climate and 

observed values of maximum and minimum temperature and PAR. In contrast, the statistical 

downscaling method under-predicts measured precipitation. This underestimation of 

precipitation is likely related to the high variability of precipitation encountered at the HBEF due 

to the mountainous terrain and heterogeneous topography. Additionally, even though the output 

from the various AOGCMs is downscaled to a finer spatial resolution, the grid size is still large 
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(~10 km
2
) relative to the size of the watershed (0.13 km

2
). Note that since precipitation is more 

spatially variable compared to temperature, it is expected that the average of precipitation over 

100 km
2
 or more would be smaller than they would be at an individual location. Although, 

temperature, which tends to be more evenly distributed, would be expected to be close to the 

gridded average. Recently a statistical-based downscaling method has been developed [Dettinger 

et al., 2004; O’Brien et al., 2001] which provides much closer agreement with observations 

especially for precipitation. Incorporating station-based projections into future research will 

decrease bias and uncertainty. Additional research, experience, and tools are needed to improve 

the linkages between AOGCM output and hydrochemical models to better capture the effects of 

changing climate at ecologically and management-relevant spatial scales [Dettinger et al., 2004; 

O’Brien et al., 2001]. 

4.3.2. Model Performance 

Overall, the model performs well and adequately simulates the observed values. The 

model satisfactorily captures seasonal variation in streamflow patterns, with slight over-

prediction during summer and fall, and slight under-prediction during spring and winter. These 

over- and under-predictions are manifested in a slight under-prediction of annual discharge. 

Therefore the model captures the general annual hydrologic pattern over the period of 1964-2008 

without any tendency in over- or under-prediction.  

Although there is a slight over-prediction of stream SO4
2-

, the model captures the long-

term trend of decreasing SO4
2-

 concentration. This long-term decline in stream SO4
2-

 is due to 

emission controls of SO2 associated with the 1970 and 1990 Amendments to the Clean Air Act 

[Driscoll et al., 2001]. In general, the model over-predicts NH4
+
 concentrations. Due to the low 
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selectivity coefficient for soil NH4
+
 exchange (Log K = -0.107) and the low potential for NH4

+
 

exchange [Gbondo-Tugbawa et al., 2001], the exchangeable pool of NH4
+
 is very small. The 

higher simulated concentration of NH4
+
 and subsequent increase in soil pools triggers higher 

rates of nitrification and soil N mineralization which contributes to the over prediction of NO3
-
 in 

stream water. There has been an unexplained decline in measured stream NO3
-
 concentrations at 

the HBEF and in the surrounding region despite high chronic atmospheric deposition of N and 

the increasing age of the forest [Goodale et al., 2003, 2005] which is consistent with over-

prediction of simulated stream NO3
-
 concentrations. Modeling the N cycle in forest ecosystems is 

a challenge due to complexity, confounding factors, and limitations in knowledge about the N 

cycle in forest ecosystems, hampering development of algorithms in the model that enable 

adequate depiction of streamwater N losses. PnET-BGC incorporates current thinking of the 

nitrogen cycle of forest ecosystems to the extent that we understand it, but until a mechanism for 

the decrease in N loss can be identified and quantified it seems inappropriate to modify an input 

or parameter of the model or invoke a poorly understood process to fit the measured data. 

Nevertheless PnET-BGC is effective in simulating the response of the N to vegetation 

disturbance [Aber et al., 2002] and so likely captures the plant-soil perturbation associated with 

changing climate.  

The model calculates pH from a charge balance of all ions in streamwater and mass law 

expressions of dissolved inorganic carbon, Al and natural occurring organic acids [Gbondo-

Tugbawa et al., 2001]. Accurate modeling of pH is a key component in most watershed models 

which simulate acid-base chemistry because many biological processes and effects are closely 

linked with pH [Gbondo-Tugbawa et al., 2001]. Simulation of pH is especially challenging in 

systems with ANC values close to 0 µeq L
-1

, like the HBEF (pH 4.7-5.7) due to low buffering 
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capacity [Davis et al., 1987]. Since pH values are affected by all biogeochemical processes 

which influence the concentrations of ionic solutes, slight errors in the simulation of major 

elements can result in high variation and possible errors in pH predictions. Based on model 

performance criteria for pH, slight over-prediction of SO4
2-

 and over-prediction of NO3
-
 are 

compensated for, to some extent, by slight over-prediction of base cations. The under-prediction 

of ANC values are mainly due to over prediction of NO3
-
 and naturally occurring organic acids 

(i.e., DOC).  

4.3.3. Sensitivity Analysis 

Higher temperatures result in higher rates of mineralization and nitrification, causing 

higher NO3
-
 concentration and lower ANC in streamwater and lower soil %BS. Higher PAR 

results in higher rates of photosynthesis and greater plant uptake of nutrients, especially N, 

causing lower surface water NO3
-
 and higher values of ANC and soil %BS. Also, higher 

photosynthesis and the associated increase in vegetation growth and litterfall leads to the 

projected increase in DOC. DOC is most sensitive to temperature since it is a by-product of 

organic carbon mineralization. The results of this sensitivity analysis coupled with the previous 

sensitivity analysis of PnET-BGC inputs and parameters [Gbondo-Tugbawa et al., 2001] show 

that model predictions are sensitive to changes in climate, indicating that future climate change 

will likely elicit a marked hydrochemical response in temperate forest watersheds.  

4.3.4. Modeling Results for Hydrology, Soil and Stream Water Chemistry 

Under PnET-BGC model runs without CO2 effects, warmer temperatures in the future 

cause a decrease in soil moisture and an increase in vapor pressure deficit, despite the increase in 

precipitation. These factors increase evapotranspiration and cause midsummer drought stress, the 
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extent of which is dependent on the climate change scenario considered. Although wood NPP 

increases due to warmer temperatures and a longer growing season, repeated midsummer 

drought is projected to decrease maximum leaf area index, foliar NPP and litterfall and fine root 

NPP [Aber and Federer, 1992; Campbell et al., 2009, 2011] (Table 4.6). Overall, these changes 

translate into less C sequestration in foliage and fine roots, and more in wood. Because of slower 

decomposition rates associated with woody litter, the model simulates a decrease in C transfer to 

humus. The increase in wood NPP does not offset the decline in the litter inputs (sum of leaf 

litterfall and fine roots) to the soil organic matter (SOM) pool. 

The assimilation of N, Ca and other nutrients in plant tissues is similar to the pattern for 

C. The result of the shift in NPP is a decrease in litterfall elements, causing declines in the humus 

pool (Table 4.6). Due to water stress, the plant demand for N decreases and the available N pool 

for plants increases, resulting in a 6.6% decrease in the C:N ratio of the humus pool (Table 4.6). 

Although both model simulations and observed values show that the HBEF is currently a sink for 

atmospheric N deposition, future model simulations suggest that climate change may cause the 

site to shift to a N source for downstream aquatic ecosystems. Note that previous experiments 

and measurements at the HBEF have demonstrated that the N cycle is very sensitive to 

ecosystem disturbances that affect forest vegetation [Likens et al., 1970; Houlton et al., 2003]. 

Elevated export of NO3
-
 from forest soils to surface waters is an environmental concern 

in the northeastern US and elsewhere [Aber et al., 2003; Driscoll et al., 2003]. Elevated leaching 

losses of NO3
-
 facilitate the depletion of cations from soil, and contribute to soil and surface 

water acidification [Driscoll et al., 2003]. High NO3
-
 can lead to water quality impairments and 

can contribute to the eutrophication of coastal waters. It is challenging to model N losses from 

forest ecosystems, due to a poor understanding of processes that control N cycling, particularly 



60 

 

those  associated with immobilization and denitrification (e.g., [Dail et al., 2001; Venterea et al., 

2004]). Nitrogen retention is sensitive to a variety of factors, including legacy effects of 

historical land use and disturbance which are often poorly characterized [Aber et al., 2002]. 

Despite these uncertainties, PnET-BGC is a useful tool for assessing the effects of climate 

change on the N cycle since it accounts for other disturbances including climate change, N 

deposition and atmospheric CO2 simultaneously [Ollinger et al., 2009]. 

For model runs that include CO2 effects, plant WUE increases and midsummer drought 

does not occur appreciably except under the two warmest scenarios (HadCM3-A1fi and GFDL-

A1fi). The effect of elevated CO2 on stomatal conductance and increase in WUE offset the effect 

of higher temperatures by enhanced tree growth and higher nutrient uptake. Over the second half 

of the century under the two warmest scenarios (HadCM3-A1fi and GFDL-A1fi), the CO2 effect 

on vegetation is not able to offset the effect of temperature; midsummer droughts and water 

stress cause less uptake of N and elevated availability of N followed by nitrification and elevated 

leachate of NO3
-
. Increases in atmospheric CO2 result in increased tree growth and limited NO3

-
 

leaching over the first half of the 21
st
 century, while tree growth remains constant or decreases 

over the second half of the century because of water stress. This pattern is due to the nonlinear 

response of photosynthesis to increasing atmospheric CO2. Over time, and especially under 

higher CO2 emission scenarios and warmer temperatures, the CO2 fertilization effect declines 

and N saturation occurs, as temperature becomes the dominant driver of N cycling. This work 

suggests that the legacy of accumulation of elevated N deposition in forest watersheds downwind 

of emission sources could have delayed deleterious effects on soil and surface water. If stores of 

N are mineralized under changing climate, the consequences of elevated NO3
-
 leaching could be 

realized. In my study, I assumed that N emissions remained at current levels and did not consider 
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future land disturbances in our simulations. If atmospheric N deposition decreases or land 

disturbance occurs in the future, N saturation would be delayed. 

Studies suggest that surface water DOC is increasing in Europe and the northeastern US. 

The alternative mechanisms explaining this phenomenon are declines in acidic deposition or 

climate change [Clark et al., 2010; Evans et al., 2006; Findlay, 2005; Freeman et al., 2001, 

2004; Garnett et al., 2000; Monteith et al., 2007; Worrall et al., 2003]. PnET-BGC simulations 

suggest that DOC will decrease over the 21
st
 century under all climate change scenarios. This 

modeled decline in DOC is associated with a decline in litterfall and a decrease soil C 

mineralization rates (Table 4.6). The trends in streamwater DOC are modified under climate 

change in the presence of CO2 fertilization. The higher productivity of the forest (NPP and NEP) 

due to CO2 fertilization increases litterfall in comparison to values from model simulations 

without CO2 effects on vegetation (Table 4.6). An increase in the decomposition of the organic 

matter pool triggered by higher temperatures led to higher DOC concentrations in streamwater. 

Note that when CO2 effects on vegetation are included in the simulations, large increases in 

stream DOC are not evident, although on average DOC concentrations are higher compared to 

simulations without CO2 effects on vegetation due to higher litter production. Model simulations 

would seem to be inconsistent with the hypothesis that climate change is driving increases in 

surface water DOC.  

While hydrochemical models such as PnET-BGC provide useful information about how 

ecosystems may respond to global change, they are somewhat limited by sources of uncertainty.  

First, there are only a few studies that have evaluated the effects of CO2 fertilization on NPP, 

especially in northern hardwood forest ecosystems [Ainsworth and Long, 2005; Curtis and 

Wang, 1998; Curtis et al., 1995; Ellsworth, 1999; Ellsworth et al., 1995; Lewis et al., 1996; Saxe 
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et al., 1998]. Experimental manipulations show that increased atmospheric CO2 enhances plant 

productivity, but the extent of this response over the long-term in conjunction with other global 

change drivers is not well-established. Second, it is unclear how atmospheric N deposition will 

change in the future, which could substantially influence the element responses. Moreover, we 

did not consider scenarios of future land disturbance, which could further affect hydrologic and 

biogeochemical dynamics. Third, changes in climate and other factors (e.g., pests, pathogens) 

may alter the composition of vegetation at the HBEF, which could also influence hydrologic 

(e.g., transpiration) and biogeochemical (e.g., uptake, litterfall, decomposition) fluxes. While 

changes in established tree species would occur slowly in response to climate change, the effects 

might be more pronounced at locations such as the HBEF, which are located in a transition forest 

zone (between northern hardwoods and red spruce-balsam fir forests). In this application, PnET-

BGC model simulations assumed that the watershed consisted of a homogeneous distribution of 

northern hardwood forest. In the future it would be useful to evaluate the influence of shifts in 

species composition or to link PnET-BGC with a forest community model that projects changes 

species assemblages. The temperature conditions considered in some of the climate scenarios are 

beyond the conditions under which parameter values were developed for PnET-BGC. We are 

currently evaluating model performance for watersheds of lower latitude to assess this limitation. 

Finally, it is important to reduce the uncertainty of climate change projections, particularly for 

precipitation, by continuing to improve climate models, downscaling techniques (e.g., station-

based instead of gridded), and linkages with hydrochemical models.  
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5. A comparison of Gridded Quantile Mapping vs. Station Based 

Downscaling Approaches on Potential Hydrochemical Responses 

of Forested Watersheds to Climate Change Using a Dynamic 

Biogeochemical Model (PnET-BGC) 

The objective of this chapter was to compare and contrast projections of temperature and 

precipitation developed by two statistical downscaling techniques: Bias Correction-

Spatial Disaggregation (BCSD) (Grid-based) and Asynchronous Regional Regression Model 

(ARRM) (station-based), and using two different sets of observations; a VIC grid and the HBEF 

station measurements. I evaluated how their differences manifest through potential 

biogeochemical responses of forested watersheds using the PnET-BGC model. I evaluated the 

effects of these different downscaling techniques on simulations of hydrology and water quality 

under potential future changing climate. This analysis improves understanding of the strengths 

and limitations of two common statistical downscaling techniques and selection of the 

appropriate technique for use in hydrochemical watershed models.  

 

5.1. Future Scenarios 

Two sets of four future climate scenarios (HadCM3-A1fi, HadCM3-B1, PCM-A1fi, and 

PCM-B1) were downscaled and developed as input for the PnET-BGC simulations and my 

analysis; the first set was developed by the BCSD downscaling technique and VIC grid 

measurements for training the downscaling model (Chapter 4), and the second set was developed 

by employing the ARRM downscaling approach and using the HBEF station measurements for 
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training (Chapter 5). Note that measured solar radiation used for both downscaling techniques is 

from the VIC grid. 

The atmospheric deposition from 2012 through 2100 was assumed not to change from 

current conditions. The dry-to-wet deposition ratios were assumed to be constant during the 

entire simulation period [Yanai et al., 2013] and wet deposition inputs are from the National 

Atmospheric Deposition Program (NADP) station (NH02) at the HBEF. Note that for these 

simulations I did not consider the effects of potential CO2 fertilization on forest productivity. 

 

5.2. Results 

5.2.1. Future Climate Projections 

The average daily measured temperature for the HBEF is 5.9°C (station #1: 1955-2011). 

Both statistically downscaled AOGCM climate projections for the HBEF indicate increases in 

annual average air temperature ranging from 1.7 to 7.0°C by the end of the century, depending 

on the AOGCM, emission trajectory, and downscaling technique (Table 5.1). The highest and 

lowest projected increases in air temperature occurred under the HadCM3-A1fi and PCM-B1 

scenarios, respectively. The ARRM projections generally showed higher temperature increases 

than BCSD except for the PCM-A1fi scenario. Under all scenarios precipitation was projected to 

increase with high variability, ranging from 4 to 45 cm above the long-term annual measured 

average of 144 cm (Table 5.1). The ARRM projections of annual precipitation for all scenarios 

were significantly greater than BCSD projections. Projections of photosynthetically active 

radiation (PAR) were highly variable and indicated both increases and decreases ranging from 

-14.0 to 143.1 mmol m
-2

 s
-1

.  Compared to the long-term annual average PAR of 566 mmol m
-2
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s
-1

, the ARRM projections showed a decrease in PAR under all scenarios, while BCSD showed 

increases except for HadCM3-A1fi (Table 5.1). 

 

Table 5.1. Summary of AOGCM climate projections from two statistical downscaling 

techniques: BCSD and ARRM. The value shown for each scenario is the difference between the 

mean of measured values for the reference period (1970-2000) and the period 2070-2100. 

1970-2000

BCSD ARRM BCSD ARRM BCSD ARRM BCSD ARRM

Temperature (°C) 5.7 6.5 7.0 3.1 3.7 3.5 3.3 1.7 1.8

Annual Precipitation (cm) 144 31.7 45.3 21.5 23.4 3.9 16.3 12.7 20.8

PAR (mmol m
-2

 s
-1

) 566 -4.6 -13.0 41.2 -11.5 104.7 -14.0 143.1 -6.8

B1

PCM

2070-2100

Observed
A1fi B1

HadCM3

A1fi

 

 

5.2.2. Comparison between HBEF and VIC Observations 

The regression analysis between observations from VIC grid (X axis) and the HBEF (Y 

axis) for maximum temperature (°C), minimum temperature (°C), and precipitation (mm) are 

shown in Figure 5.1. There should be a one-to-one correspondence between daily observations. 

Indeed, there was a strong relationship for air temperature, with slightly higher VIC observations 

for the both maximum and minimum air temperature (Figure 5.1a and Figure 5.1b). A single 

linear regression analysis for maximum and minimum temperatures (r
2
 = 0.91; β = 0.94; s.e. = 

0.003; P < 0.001 and r
2
 = 0.90; β = 0.96; s.e. = 0.003; P < 0.001, respectively) indicated that the 

slopes of both observations are similar. In contrast, the relationship for precipitation was not as 

strong, and precipitation amounts from the HBEF were generally greater than VIC observations 
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especially for extreme events (Figure 5.1c). A regression analysis showed a discrepancy between 

these datasets based on the deviation in slope from the one-to-one line (r
2
 = 0.68; β = 1.33; s.e. = 

0.008; P < 0.001). Although a comparison of precipitation time series for the HBEF and VIC 

grid also showed a similar pattern, measured HBEF precipitation is higher, especially for 

extreme events (Figure 5.2). 

Future projections of monthly precipitation (2012-2100) downscaled with ARRM were 

higher than with BCSD for the all scenarios (Figure 5.3 and Figure 5.4). Also under all scenarios 

the ARRM projections showed higher average precipitation, and extreme rainfall events during 

summer and fall compared to BCSD.  
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Figure 5.1. Regression analysis between measured (a) maximum temperature (°C), (b) minimum 

temperature (°C) at HBEF station#1, and (c) measured precipitation (mm) at the HBEF WS#6 

and values for the VIC grid over the period of 1964-2000. 
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Figure 5.2. Comparison of time series for measured monthly precipitation at the HBEF WS#6 

and VIC grid (mm) over the period of 1964-2000. 
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Figure 5.3. Future projections of monthly precipitation under A1fi scenarios (left panel) and B1 

scenarios (right panel) downscaled with the BCSD technique. 
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Figure 5.4. Future projections of monthly precipitation under A1fi scenarios (left panel) and B1 

scenarios (right panel) downscaled with the ARRM technique. 

 

5.2.3. Hydrology 

Model simulations of streamflow change indicated that the current flow regime, of 

snowmelt-driven spring-flows in April, will likely shift to a flow regime of larger fall/winter 
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streamflows under changing climate (Figure 5.5 to Figure 5.8). Model projections for both 

downscaling techniques suggest a shift in the timing of streamwater discharge compared to the 

historical period (1970-2000), although the downscaling technique had a profound effect on 

annual discharge. The average annual discharge projected under BCSD simulations was lower 

for 2070-2100 compared to 1970-2000 values by an average of 8.9%, with a maximum and 

minimum of 17.3% and 2.4% for PCM-A1fi and HadCM3-A1fi scenarios, respectively (Figure 

5.9a and Figure 5.10a). These simulations projected lower flows during the summer (July-

September) and higher flows in winter (January-March) compared to the historical period. In 

contrast, the ARRM downscaled simulations showed an increase in annual stream discharge 

under HadCM3-A1fi and PCM-B1 of 12.1% and 5.1%, respectively and decrease of 0.4% and 

3.3% under HadCM3-B1 and PCM-A1fi, respectively. For each scenario, ARRM projections of 

annual water yield were higher compared to BCSD for 2070-2100, on average by 13.5% with the 

maximum and minimum difference of 16.9% and 6.1% under PCM-A1fi and HadCM3-B1 

scenarios, respectively (Figure 5.9a and Figure 5.10a). 

The ARRM simulations projected higher flows compared to BCSD during the early 

winter and spring snowmelt, as well as summer. Model projections under both downscaling 

approaches showed an increase in future streamflow in late fall (October-December) and early 

winter due to warmer air temperature, resulting from less snow pack accumulation and a 

decrease in the ratio of snow to rain (Figure 5.11a). Results indicated that under the ARRM 

downscaled simulations for each scenario, there was a deeper snowpack and associated higher 

snowmelt flow (Figure 5.11b). Future model projections of soil moisture showed changes in 

temporal pattern as well as magnitude (Figure 5.11d). Both downscaling techniques indicated a 

decline in average monthly soil moisture for 2070-2100 compared to 1970-2000 values. Soil 
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moisture projections for PCM scenarios under the ARRM technique were significantly higher 

compared to BCSD. In contrast, soil moisture simulated using the HadCM3 scenarios 

downscaled with ARRM was similar to that simulated with BCSD projections except during late 

summer and early fall when values were lower. Model projections showed that under all 

scenarios for both downscaling techniques, decreases in soil moisture start earlier in the spring 

(April-June) due to earlier loss of snowpack and wet up later into the fall. This phenomenon was 

more pronounced under the HadCM3 scenarios (Figure 5.11d). 

5.2.4. Net Primary Productivity (NPP) 

Future model projections of net primary productivity (NPP) using ARRM downscaling 

were greater than for BCSD for all climate change scenarios. Model simulations showed a 

decline in annual NPP for all four climate change scenarios downscaled with BCSD (Figure 5.9 

b and Figure 5.10b). The average percentage decline in projections of NPP under BCSD 

simulations for 2070-2100 ranged from 1 to 12% for PCM-B1 and HadCM3-A1fi, respectively, 

compared to the mean annual simulated value of 1300 g m
-2

 year
-1

 for 1970-2000. In contrast, 

NPP projections for ARRM downscaled simulations showed an increase under all scenarios. The 

average percentage increase in annual NPP projected for 2070-2100 ranged from 2 to 17% 

(HadCM3-A1fi and HadCM3-B1, respectively) compared to the 1970-2000 period. The effects 

of downscaling technique on NPP projections were more pronounced under the HadCM3 

scenarios (average of 15.3%) compared to PCM scenarios (average of 13%). Model projections 

of water use efficiency (WUE) indicated a significant decline under all four climate change 

scenarios and for both downscaling techniques (Figure 5.11c). On average, the ARRM 
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downscaled simulations showed higher WUE compared to BCSD projections for all scenarios. 

This difference is more pronounced for the PCM scenarios compared to HadCM3 scenarios.  

5.2.5. Stream Nitrate 

Model simulations of all four climate change scenarios under both downscaling 

techniques projected statistically significant increases in annual volume-weighted NO3
-
 

concentrations over the next century, although the magnitude and variability depend on the 

scenario and downscaling technique (Figure 5.9c and Figure 5.10c). The BCSD projections of 

average annual volume-weighted NO3
-
 concentrations were higher than those of the ARRM 

downscaled simulations for all four scenarios, with the difference between the two downscaling 

methods more pronounced under the HadCM3 scenarios. Under the HadCM3 scenarios, the peak 

in average annual volume-weighted NO3
-
 concentrations occurred in mid-century, while under 

the PCM scenarios the peak was delayed until the end of the century (Figure 5.9c and Figure 

5.10c). Under BCSD downscaled simulations, projected annual volume weighted NO3
-
 

concentration for the last 30 years of the 21
st
 century ranges from 79 to 133 µmol L

-1
 (PCM-B1 

and PCM-A1fi, respectively), compared to an average annual observed value of 18 µmol L
-1

 for 

1970-2000. The range for the same period under the ARRM scenarios is from 45 to 105 µmol L
-1

 

(PCM-B1 and HadCM3-A1fi, respectively). Model projections indicated that timing and 

magnitude of monthly volume-weighted concentrations of NO3
-
 in streamwater differs for the 

same scenario downscaled with two different techniques (Figure 5.12 and Figure 5.13). 
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Figure 5.5. Comparison between measured monthly discharge for 1970–2000 and simulated 

mean monthly discharge for 2070–2100 under the HadCM3-A1fi scenario downscaled with the 

BCSD and the ARRM techniques. 

 

 

Figure 5.6. Comparison between measured monthly discharge for 1970–2000 and simulated 

mean monthly discharge for 2070–2100 under the HadCM3-B1 scenario downscaled with the 

BCSD and the ARRM techniques. 
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Figure 5.7. Comparison between measured monthly discharge for 1970–2000 and simulated 

mean monthly discharge for 2070–2100 under the PCM-A1fi scenario downscaled with the 

BCSD and the ARRM techniques. 

 

Figure 5.8. Comparison between measured monthly discharge for 1970–2000 and simulated 

mean monthly discharge for 2070–2100 under the PCM-B1 scenario downscaled with the BCSD 

and the ARRM techniques. 
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Figure 5.9. Past and future projections of annual: (a) stream discharge, (b) NPP, and (c) volume-

weighted concentrations of streamwater NO3
-
 modeled using climate input data downscaled with 

the BCSD (red) and ARRM (green) approaches. Shown are measured data and simulations using 

input from two AOGCMs under high emission scenarios (A1fi). 
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Figure 5.10. Past and future projections of annual (a) stream discharge, (b) NPP, and (c) volume-

weighted concentrations of streamwater NO3
-
 modeled using climate input data downscaled with 

BCSD (red) and ARRM (green) approaches. Shown are measured data and simulations using 

input from two AOGCMs under low emission scenarios (B1). 
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Figure 5.11. Comparison between simulated historical (1970-2000) (a) mean monthly snowpack, 

(b) snowmelt, (c) water use efficiency (WUE), and (d) soil moisture and future projections for 

2070-2100 under the HadCM3-A1fi scenario (left panel) and the PCM-B1 scenario (right panel) 

downscaled with BCSD (red) and ARRM (green) approaches. 
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Figure 5.12. Past and future projections of monthly volume-weighted concentrations of NO3
-
 in 

streamwater under HadCM3 scenarios downscaled with the BCSD (left) and the ARRM (right) 

techniques. 
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Figure 5.13. Past and future projections of monthly volume-weighted concentrations of NO3
-
 in 

streamwater under PCM scenarios downscaled with the BCSD (left) and the ARRM (right) 

techniques. 
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5.3. Discussion 

5.3.1. Future Climate Projections 

The projected increases in temperature using ARRM downscaling were higher than 

BCSD due to the ability of the ARRM technique to better capture the number of hot days per 

year (over 95
o
F or 36

o
C) which are in the tail of the temperature distribution [O’Brien et al., 

2001]. An important aspect of ARRM is that it uses all the information provided by 

AOGCMs regarding projected changes in day-to-day variability. This approach allows the shape 

of the probability distribution to change over time, shifting the mean, variance, and even the 

skewness (symmetry) of the distribution [O’Brien et al., 2001]. Although the results of 

this method were similar to less complex downscaling approaches at the seasonal to annual 

scale, ARRM downscaled projections for changes in the tail of the distribution of meteorological 

data can be significantly different from other downscaling methods since those approaches do 

not consider daily projections from AOGCMs [O’Brien et al., 2001]. Overall, the temperature 

projections under the two downscaling techniques were closer than precipitation projections 

since there is generally a good match between sets of VIC grid observations and HBEF station 

measurements of temperature. 

The ARRM downscaled projections of precipitation were much higher than BCSD 

values. This difference is due to two factors. First, ARRM is able to capture simulated changes in 

large precipitation events on daily basis, by accurately resolving the relationship at the tails of 

the distribution [Stoner et al., 2012]. Second, the set of precipitation observations that were used 

for these two downscaling techniques vary significantly. The daily HBEF precipitation for WS6 

(0.13 km
2
) is calculated by the Theissen weighting method based on 3 rain gages located along 



82 

 

an elevation transect through the watershed. In contrast, VIC uses a retrospective gridded 

observational database to train the downscaling model to generate grids. Measured temperature 

and precipitation for a VIC grid cell (~10 km
2
) are not from a single station, but rather are 

statistical interpolations among multiple stations, not all of which are necessarily in the grid cell 

of interest. Therefore, in a relatively small area with mountainous terrain that affects 

precipitation patterns like the HBEF, one would expect a single point source of precipitation data 

to be quite different and more variable from values for the overall 1/8° grid. A comparison of 

observations (graph not shown) by rank showed that the biases are rank-dependent and not time-

dependent (i.e., high precipitation amounts at the HBEF are always underestimated by the VIC 

grid regardless of the day they occur). 

The difference in projections of solar radiation is solely due to the downscaling technique 

selected since they both employed the same set of observations from VIC. Results from phase 1 

(Chapter four) showed that PnET-BGC is sensitive to changes in meteorological inputs. 

Therefore, differences in climate projections associated with different downscaling techniques 

are manifested through marked differences in hydrochemical responses. 

 

5.3.2. Hydrology, Stream Nitrate, and NPP 

Historical changes in climate at the HBEF have altered the seasonal pattern of streamflow 

[Campbell et al., 2011]. At the HBEF, the flow regime is snowmelt-driven with peak spring-

flows in April, but model projections under both downscaling techniques indicated a decline in 

the snowpack, snow melt, and timing and magnitude of the snowmelt hydrograph peak. During 

future warmer winters with a higher rain to snow ratio, snowpack accumulation will diminish 
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and water will become distributed more evenly throughout the year. Although snowmelt is not 

the main driver of streamflow at the HBEF, it helps to recharge the groundwater supply 

[Campbell et al., 2011] and is associated with a large percentage of the annual export of nutrients 

[Likens and Bormann, 1995]. In low elevation areas, changes in the capacity of soil and 

groundwater to store water will alter the risk of flooding during the snowmelt [Hodgkins et al., 

2003]. Compared to BCSD, the use of ARRM downscaling scenarios resulted in a deeper 

snowpack, higher peak discharge during snowmelt, wetter soil, and relatively higher annual 

streamflow, suggesting a greater chance of more intense storms and flooding, particularly when 

soils are saturated. Increased risk of flooding has important implications for climate change 

adaptation policies in the Northeast [NECIA, 2006]. 

There is a strong relationship between precipitation and streamflow at the HBEF 

[Campbell et al., 2011], but modeled hydrologic responses to future projected increases in 

precipitation varied with downscaling technique. Under BCSD downscaled scenarios, the annual 

discharge decreased under all scenarios due to the projected higher temperature and an 

associated increase in evapotranspiration, coupled with the inability of the downscaling 

technique to capture local precipitation patterns and extreme events. In contrast, under the 

ARRM technique, HadCM3-A1fi and PCM-B1 scenarios showed an increase in annual 

streamflow while HadCM3-B1 and PCM-A1fi scenarios exhibited a slight decline. As ARRM is 

more effective in capturing extreme events and local precipitation patterns, all ARRM 

projections resulted in significantly greater stream flow than under BCSD. There is a growing 

body of literature that focuses on climate variability, changes in return period and intensity of 

extreme events rather than “soft” extremes [Klein Tank and Können, 2003] which are typically 

the 90-95
th

 percentile [Fowler et al., 2007]. Changes in precipitation variability and extreme 
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events elicit a strong response on the hydrological cycle. Model projections of future 

precipitation and stream discharge indicate an increased importance of individual storms during 

summer and fall due to more frequent and intense extreme rainfall events. Use of the ARRM 

downscaling approach had a profound effect on modeled hydrological responses. These results 

highlight the critical need to correctly characterize the quantity and distribution of future 

precipitation for accurate streamflow forecasting in the Northeast.  

Projected increases in precipitation and associated higher soil moisture and WUE under 

ARRM downscaling, resulted in increased tree growth compared to BCSD. In PnET-BGC, the 

length of growing season is determined by the minimum temperature, while the maximum 

temperature affects photosynthesis and respiration. The difference between maximum and 

minimum temperatures determines vapor pressure deficit (VPD) which affects the WUE. In the 

absence of water stress, projected forest growth is higher compared to 20
th

 century due to the 

warmer, wetter climate and a longer growing season. An increase in both maxima and minima 

temperatures result in a longer growing season and higher VPD, causing water stress, which 

offsets the enhancement of tree growth to some extent. Repeated water stress and drought during 

the growing season, results in decreases in projected maximum LAI, decreasing NPP. Increasing 

temperature can increase forest growth in two ways: by increasing the number of days with 

optimum photosynthetic temperature, or by alleviating N limitation through higher rates of soil N 

mineralization. However, the extent of these effects are limited by precipitation quantity and the 

seasonal pattern in soil moisture. This example illustrates the important interplay between 

projections of changing temperature and precipitation and their effects on the growth of forests. 

The selection of observations and downscaling technique can have important consequences to 

global change projections. 
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The export of elements from forested watersheds are strongly influenced by stream 

discharge [Likens and Bormann, 1995]; therefore future changes in the hydrological cycle, 

especially the seasonality and quantity of discharge, will likely affect water quality and nutrient 

loss. Soils at the HBEF have low base saturation and are sensitive to inputs of strong acid anions 

[Driscoll et al., 2001]. Therefore, projections of elevated leaching of nitrate could re-acidify soil 

and streamwater in acid-sensitive regions that have been impacted by acid deposition like the 

HBEF [Driscoll et al., 2003]. Moreover, elevated export of nitrate from forest lands could alter 

the nutrient status of adjacent N-growth limited coastal waters [Driscoll et al., 2003]. The 

simulated decline in soil moisture induced mid-summer drought stress on vegetation, which 

could decouples the linkage between soil and vegetation. Midsummer droughts and water stress 

decreases N uptake by trees and increases N availability, which leads to elevated loss of NO3
-
 

[Pourmokhtarian et al., 2012]. For model runs using ARRM downscaling, plant WUE increased 

and midsummer drought did not occur to the same extent as under BCSD simulations. Under 

ARRM simulations, higher precipitation and associated increases in soil moisture and WUE 

offset the effect of higher temperatures, thereby minimizing future NO3
-
 loss. In PnET-BGC, the 

decomposition rate of soil organic matter increases exponentially with temperature and decreases 

linearly with decreasing soil moisture. Therefore, under ARRM downscaled scenarios of higher 

projected soil moisture and temperature, it might be anticipated that NO3
-
 leaching would exceed 

projections under BCSD. However, the absence of midsummer drought and water stress due to 

higher precipitation, allowed plant demand for N to keep pace with the N mineralization rate. As 

a result, the assimilation of the additional N produced under warmer temperatures, limited NO3
-
 

leaching. Nevertheless under the warmest scenario (HadCM3-A1fi) after mid-century, the 

optimum temperature for photosynthesis is exceeded under both downscaling techniques, 
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resulting in similar NO3
-
 leaching. Seasonal patterns of annual N export varied with the 

downscaling technique used; under BCSD elevated concentrations were projected in fall and 

with ARRM NO3
-
 peaked during winter and spring snowmelt. 
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6. Cross-site analysis for seven headwater watersheds in 

northeastern U.S. 

The objective of this phase of the dissertation was to assess the potential range of 

responses of forested ecosystems in the northeastern U.S. to future climate change through a 

cross-site analysis that includes simulations for seven intensive study sites. These sites have 

different climate conditions, vegetation, soils, historical land disturbance, and biogeochemical 

characteristics. The location of these watersheds creates pattern of spatial variation in climate 

(temperature, precipitation, and solar radiation), atmospheric deposition, site characteristics, and 

host of other variables. In this dissertation phase, I used the ARRM approach to downscale future 

global climate model output from the IPCC AR5 (see Chapter AOGCMs and Future Scenarios) 

along with Representative Concentration Pathway scenarios (RCP) (see Chapter AOGCMs and 

Future Scenarios). These scenarios were used as input to run PnET-BGC. 

 

6.1. Introduction 

There is a growing body of literature that anticipates important biophysical processes that 

are driven by climate to change as a linear function of increasing global temperature [Allen et al., 

2009; Matthews et al., 2009; Meinshausen et al., 2009; Zickfeld et al., 2009]. Recent syntheses of 

available data and modeling results have increased confidence in projections of precipitation and 

streamflow that might respond to incremental changes in global temperature (e.g., ∆1°C, ∆2°C, 

∆3°C) [Committee on Stabilization Targets for Atmospheric Greenhouse Gas Concentrations; 

National Research Council, 2011]. Thus, climate change impacts could be quantified for a 
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particular unit temperature change by scaling from global to local increases in temperature and 

coupling projections of water cycle change to the extent of global warming [Committee on 

Stabilization Targets for Atmospheric Greenhouse Gas Concentrations; National Research 

Council, 2011]. Each incremental increase in temperature can be linked to a “carbon climate 

response” for CO2 stabilization targets [Matthews et al., 2009].  

The “carbon climate response” is a new metric of temperature change in response to 

carbon emissions which considers the net effects of both the carbon cycle and physical climate 

feedbacks to the Earth system [Matthews et al., 2009]. It is defined as the globally averaged 

temperature change which corresponds to emission of 1 trillion tons of carbon (3.7 trillion tons 

of CO2) [Matthews et al., 2009]. Studies show that for a given amount of cumulative emissions, 

regardless of instantaneous rate, different AOGCMs exhibit a consistent carbon climate response 

[Allen et al., 2009; Matthews et al., 2009; Zickfeld et al., 2009]. Many impacts of long-term 

climate change over the 21
st
 century are expected to depend on cumulative total emissions rather 

than timing of emissions [Committee on Stabilization Targets for Atmospheric Greenhouse Gas 

Concentrations; National Research Council, 2011]. Implementing this approach links climate-

induced impacts to global mean temperature and associated cumulative carbon emissions. Thus, 

this new framework for assessing climate change impacts allows policymakers to focus on 

potential impacts of climate change to terrestrial ecosystems over the long-term through the 

metric of cumulative CO2 emissions for any given period rather than specific atmospheric carbon 

dioxide concentrations. This approach would orient policymakers toward long term policies of 

how much cumulative CO2 should be emitted rather than specific time periods by which 

emission control programs should take place. 
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Estimates of the temperature response to cumulative emissions are based on the new 

metric of carbon-climate response [Matthews et al., 2009]. This new metric is a generalization of 

climate sensitivity to carbon dioxide forcing. The carbon-climate response relates changes in 

global mean temperature to cumulative carbon emissions by including the response of the carbon 

cycle to emissions beside temperature response to carbon dioxide forcing. Studies have shown a 

linear response of global mean temperature to cumulative carbon emissions [Allen et al., 2009; 

Meinshausen et al., 2009; Zickfeld et al., 2009] which is independent of the timing of emissions 

[Matthews et al., 2009]. In this chapter, the projected responses of different watersheds to 

changing climate are normalized by future increases in temperature. These changes in ecosystem 

responses could ultimately be linked to corresponding total cumulative carbon emissions. 

 

6.2. Study Sites 

Seven intensively-monitored forest watersheds that encompass a range of climate, 

atmospheric deposition, soil conditions, and historical land disturbances across the northeastern 

U.S. were used for this phase of the dissertation (Table 3.1). The study watersheds include the 

Hubbard Brook Experimental Forest (HBEF) and Cone Pond Watershed (CPW) in the White 

Mountains, New Hampshire; East Bear Brook (EBB) in Maine; Sleepers River Watershed 

(SRW) in Vermont; Biscuit Brook (BSB) in the Catskill Mountains; and Huntington Wildlife 

Forest (HWF) in the Adirondack Mountains, New York; and the Fernow Experimental Forest 

(FEF) in the Allegheny Mountains, West Virginia (Figure 3.1).  

The Hubbard Brook Experimental Forest (HBEF) is in the southern White Mountains of 

New Hampshire, USA (43°56'N, 71°45'W) [Likens and Bormann, 1995]. The site was 



90 

 

established as a center for hydrological research in 1955 by the U.S. Forest Service, and joined 

the National Science Foundation Long-Term Ecological Research (LTER) network in 1987. The 

climate is cool-temperate, humid continental, with mean annual temperature of 5.7°C, with an 

annual mean precipitation of 1,400 mm, and an annual mean discharge of 880 mm. Soils are 

largely well-drained Spodosols, with bedrock at an average depth of 1-2 m. Vegetation is mostly 

northern hardwoods with coniferous vegetation at higher elevation [Johnson et al., 2000].  

The Cone Pond Watershed (CPW) is located in the White Mountains of New Hampshire, 

USA (43°54'N, 71°36'W). The dominant vegetation is mixed conifer (80%). Less than 10% of 

coniferous area was cut during 1890-1910 and 1933 [Aber and Driscoll, 1997]. The major 

historical land disturbance was a fire in 1820 which burned almost all of the watershed area 

[Aber and Driscoll, 1997]. Climate is very similar to the HBEF with the mean annual 

precipitation of 1,280 mm and the mean annual discharge of 670 mm. Soils are mainly Typic, 

Lithic, and Aquic Haplorthods [Bailey et al., 1995]. 

The East Bear Brook (EBB) is located in eastern Maine, USA (44°52'N, 68°06'W). The 

EBB watershed is 11.0 ha and it is the reference watershed for West Bear Brook (WBB). The 

major historical land disturbance was harvesting in the 1940s that only affected the deciduous 

vegetation of the watershed (~80-90% of the basal area) [Norton et al., 1999]. The climate is 

typical for central Maine, with some marine influence due to proximity to the ocean [Fernandez 

et al., 2003]. Mean annual air temperature is 5.6°C and mean annual precipitation is 1,320 mm 

[Fernandez et al., 2007]. The dominant vegetation is northern hardwoods. The soils are coarse, 

loamy, mixed, frigid Typic Haplorthods developed on till averaging one meter in thickness 

[Fernandez et al., 2003].  
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Sleepers River Watershed (SRW) is a 41 ha watershed northeastern Vermont, USA 

(44°29'N, 72°10'W). The watershed was clear-cut in 1929 [Thorne et al., 1988]. The climate is 

continental, with Canadian air from the north and the Gulf Stream from the south strongly 

influencing the climate [Shanley et al., 2002]. The mean annual temperature is 6°C with mean 

annual precipitation of 1320 mm [Shanley et al., 2002] and the mean annual discharge is 740 

mm. The dominant vegetation is northern hardwoods. Soil type varies across the watershed and 

ranges from well-drained podzolic Distrochrepts and Fragiochrepts to poorly drained boggy 

Fragiaquepts [Comer and Zimmermann, 1968]. The bedrock of quartz-mica phyllite with 

calcareous granulite, which underlies 99% of the basin, is covered with a fine silty calcareous till 

with a depth of 1 to 3 m [Shanley et al., 2002].  

The Biscuit Brook (BSB) watershed is located in the Catskill Mountains, New York, 

USA (41°59'N, 74°30'W). The watershed has not been logged since the 1920s [Murdoch et al., 

1998]. Vegetation is primarily northern hardwood forest. The mean annual air temperature is 

4.3°C, with mean annual precipitation of 1,750 mm [Murdoch et al., 1998]. The mean annual 

discharge is 970 mm. Soils are primarily acidic Inceptisols with low exchangeable base cations 

[Murdoch et al., 1998].  

The Huntington Wildlife Forest (HWF) is located in the central Adirondacks, New York, 

USA (44°00'N, 74°13'W). The watershed was heavily cut about 1917 and the maximum age of 

trees is about 100 years [Mitchell et al., 2001]. The dominant vegetation is northern hardwoods 

(72%), while mixed hardwood-conifer and conifer forest covers 18% and 10%, respectively. The 

mean annual temperature is 4.4°C. Mean annual precipitation is 1210 mm [Shepard et al., 1989] 

and mean annual discharge is 830 mm. Soils include Becket-Mundal series sandy loams (coarse-
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loamy, mixed, frigid typic Haplorthods) with an average depth of less than 1 m [Mitchell et al., 

2001].  

The Fernow Experimental Forest (FEF) is in the Allegheny Mountains, West Virginia, 

USA (39°03'N, 79°41'W). The forest was logged between 1903 and 1911. The mean annual 

temperature is 9.2°C [Adams et al., 1994]. The mean annual precipitation is 1,460 mm with 

mean annual discharge of 710 mm. The dominant vegetation is central hardwoods. Average soil 

depth is around 1 m. Soils are moderately deep and well-drained and formed in parent material 

weathered from inter-bedded shale, siltstone and sandstone [Adams et al., 1994]. The dominant 

soil type is a Calvin channery silt loam (loamy-skeletal, mixed, mesic Typic Dystrochrept) 

[Adams et al., 1994].  

 

6.3. Model Output Analysis 

I extracted monthly PnET-BGC output along with site-specific projected and mean global 

surface air temperatures from two emissions scenarios for each of four AOGCMs (total of eight 

runs) from 2012 through 2100. I computed the annual global mean temperature for each 

emission scenarios for each of the four AOGCMs. Then I calculated the absolute values and 

average percentage changes of each model output for 2070-2100 relative to measured (or 

simulated when there was no measurement) values of 1970-2000. Then I compared those 

parameters versus projected increase in annual mean temperature for each site. The state 

variables considered for this analysis include streamflow, evapotranspiration, drought index 

(DWater), Net Primary Productivity (NPP), soil humus carbon pool, streamwater nitrate, and 

acid neutralizing capacity (ANC). The DWater term (ranges from 0 to 1, unitless) is an estimate 
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of the degree of stomatal closure due to sub-optimal water availability. DWater is a model-

calculated metric of soil water stress on stomatal closure compared to the condition in the 

absence of water stress (DWater=1). Soil water stress (DWater) and actual evapotranspiration are 

functions of plant water demand and available soil water for each time step of simulation 

(monthly for this analysis). If the plant water demand is higher than available soil water for a 

month, water stress occurs and the value of DWater decreases to less than 1 (e.g., a DWater 

value of 0.9 indicates that there is a 10% shortage of available soil water for trees in that month 

of model simulation). Therefore, if the sum of DWater for all months of an annual simulation is 

12, there is no water stress for any month during that year. An annual DWater value less than 12 

indicates that trees experience water stress in some months over an annual simulation which in 

turn affects stomatal closure, decreases photosynthesis and ultimately decreases NPP. For this 

analysis I compared DWater values from simulations by subtracting simulated DWater values for 

an annual period from a reference condition of 12 (i.e., no water stress) (∆ DWater). Therefore, 

the more negative the ∆ DWater values the greater the water stress experienced by trees.   

 

6.4. Results 

6.4.1. Future Climate Projections 

Statistically downscaled AOGCM climate projections for the two CO2 emission scenarios 

for all Northeast sites indicate increases in average air temperature ranging from 1.2 to 8.5°C by 

the end of the century, depending on the AOGCM, greenhouse gas emission trajectory selected, 

and study site (Table 6.1, Figure 6.1). The greatest temperature increase is projected by 

HadGEM-RCP8.5 (8.5°C), while MRI-CGCM3-RCP4.5 shows the most modest temperature 
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increase (1.2°C). Across the sites, the Fernow Experimental Forest (FEF) shows the lowest and 

highest increase in temperature (1.2 to 8.5°C), therefore has the maximum variability in 

projected changes in temperature (SD = 2.3°C). The variability for all other sites is 1.8°C, with 

the exception of the Huntington Wildlife Forest (HWF) (SD = 2.0°C). Across all eight climate 

scenarios, HadGEM-RCP8.5 and HadGEM-RCP4.5 show the greatest (SD = 0.8°C) and the 

lowest (SD = 0.3°C) variability in projected changes in temperature, respectively. The high 

emission scenarios (RCP8.5) show higher variability across sites and AOGCM simulations (SD 

= 1.5°C) compared to low emission scenarios (RCP4.5) (SD = 1.1°C). 

Precipitation projections are highly variable, ranging from a 5.7 cm decrease to 56.5 cm 

increase compared to the long-term annual measurements (Table 6.1). The greatest precipitation 

increase is projected by HadGEM-RCP8.5 (56.5 cm) for Biscuit Brook (BSB), while HadGEM-

RCP4.5 shows a decline in projected precipitation for the FEF (Table 6.1, Figure 6.2). Across all 

sites, BSB shows the highest variability in projected changes in precipitation (SD = 13.1 cm), 

while the HWF has the lowest variability (SD = 3.4 cm). Across all eight climate scenarios, 

HadGEM-RCP8.5 and MRI-CGCM3-RCP4.5 exhibit maximum (SD = 19.9 cm) and minimum 

(SD = 5.9 cm) variability in projected changes in precipitation, respectively. High and low 

emission scenarios show the same variability in projected changes in precipitation. 

All the sites except the FEF show a positive relationship between AOGCM projections of 

temperature and precipitation (Figure 6.3). The maximum slope of precipitation response to 

increases in temperature was for the BSB (6.5 cm °C
-1

) while the FEF has the lowest slope (-0.45 

cm °C
-1

). The regression between projections of changes in temperature and precipitation is 

statistically significant (P < 0.05) across all sites except for the CPW and FEF. The overall 

regression line for the relationship between projected changes in precipitation with temperature 
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change for all sites is statistically significant (P < 0.1) with a slope of 2.15 cm °C
-1

 (r
2
=0.06). 

The HBEF shows the strongest significant regression (r
2
=0.78, P < 0.05) between temperature 

and precipitation followed by the SRW (r
2
=0.73, P < 0.1) and EBB (r

2
=0.6, P < 0.05), while 

other sites do not show statistically significant relationship between projected changes in 

precipitation with temperature change. 

 

Table 6.1. Summary of climate projections of change in annual air temperature and annual 

precipitation from statistically downscaled AOGCM output. The value shown for each scenario 

is the difference between the mean of measured values for the reference period (1970-2000) and 

the simulation period 2070-2100. Note that for sites that do not have measured values for the 

entire period of 1970-2000, measured data for a shorter period are used.* 

1970-2000*

RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5

Temperature (°C) 6.6 4.9 2.6 6.3 4.6 8.0 4.4 4.6 2.3

Annual Precipitation (cm) 131 42.8 42.2 54.2 52.7 55.5 51.8 54.1 37.2

Temperature (°C) 4.7 4.0 1.7 6.4 4.0 6.5 3.4 3.6 1.6

Annual Precipitation (cm) 125 27.3 17.8 33.5 36.1 34.9 23.2 21.8 12.2

Temperature (°C) 4.7 5.4 3.0 7.4 4.9 8.0 4.8 4.2 2.3

Annual Precipitation (cm) 107 6.2 3.5 6.5 6.0 13.0 5.4 10.0 2.7

Temperature (°C) 5.7 4.8 2.5 6.6 4.4 7.2 4.1 4.1 2.0

Annual Precipitation (cm) 144 23.6 19.1 24.6 26.5 30.2 21.3 22.3 15.8

Temperature (°C) 5.7 4.8 2.5 6.6 4.4 7.3 4.1 4.2 2.1

Annual Precipitation* (cm) 127 29.7 32.3 45.9 46.0 27.3 22.7 22.0 16.3

Temperature (°C) 5.3 4.6 2.3 6.6 4.5 6.9 3.9 3.8 1.9

Annual Precipitation (cm) 155 29.0 26.9 56.5 36.2 52.8 44.8 39.9 18.5

Temperature (°C) 9.4 4.9 2.5 8.5 4.0 6.5 4.0 2.7 1.2

Annual Precipitation (cm) 147 14.0 2.5 3.3 -5.7 22.3 16.1 33.4 9.6
Fernow

Bear Brook

Sleepers River*

Huntington Forest

Hubbard Brook

Cone Pond*

Biscuit Brook*

Study Watershed Climate Variable

2070-2100

Observed
CCSM4 HadGEM2 MIROC5 MRI-CGCM3

 

*Sleepers River temperature and precipitation data are from 1991-2000.  

*Cone Pond precipitation data are from 1990-2000. 

*Biscuit Brook temperature and precipitation data are from 1984-2000. 
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Figure 6.1. Projected changes in mean annual air temperature from statistically downscaled 

AOGCM output for study watersheds for individual AOGCM simulations under different 

emission scenarios. The value shown for each scenario is the difference between the mean of 

simulated annual values for the period 2070-2100 and measured annual values the reference 

period (1970-2000). EBB: East Bear Brook watershed; SRW: Sleepers River Watershed; HWF: 

Huntington Wildlife Forest; HBEF: Hubbard Brook Experimental Forest; CPW: Cone Pond 

Watershed; BSB: Biscuit Brook watershed; FEF: Fernow Experimental Forest. 
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Figure 6.2. Projected changes in mean annual precipitation from statistically downscaled 

AOGCM output for study watersheds for individual AOGCM simulations under different 

emission scenarios. The value shown for each scenario is the difference between the mean of 

annual simulated values for the period 2070-2100 and annual measured values the reference 

period (1970-2000). EBB: East Bear Brook watershed; SRW: Sleepers River Watershed; HWF: 

Huntington Wildlife Forest; HBEF: Hubbard Brook Experimental Forest; CPW: Cone Pond 

Watershed; BSB: Biscuit Brook watershed; FEF: Fernow Experimental Forest. 
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Figure 6.3. Regression analysis between projected increases in mean annual temperature and 

annual precipitation for the period of 2070-2100 compared to the reference period of 1970-2000. 

The black dotted line shows the overall regression line for all data. 
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6.4.2. Hydrology and Water Balance 

Based on PnET-BGC model results, climate change is projected to cause substantial long 

term shifts in annual precipitation and hydrologic patterns across all sites except for the FEF. The 

extent of these changes depend on AOGCMs, emission scenarios, and site characteristics and 

location. The most notable trend in streamflow under the eight different scenarios across all sites 

(except the FEF) was a seasonal shift toward higher winter flows and lower spring flows (data 

not shown). The FEF shows a seasonal shift in hydrology toward higher winter flows only under 

HadGEM2-RCP8.5 which has the highest projected changes in temperature (8.5°C) across all 

sites and all scenarios. 

The model projections of mean annual streamflow are highly variable, ranging from a 

significant decrease at HWF and FEF to significant increases among the rest of the sites except 

for the HBEF which shows both increases and decreases in annual streamflow depending on the 

scenario and emissions trajectory (Figure 6.4). The highest increase in projected annual 

streamflow occurred under HadGEM-RCP4.5 for CPW (Spruce-Fir site) with an increase of 477 

mm yr
-1

. In contrast, the largest projected annual decrease in streamflow also occurred under 

HadGEM-RCP4.5 but for FEF (central hardwood site) by -219 mm yr
-1

. There were no 

significant differences between average projected annual changes in streamflow under high 

(RCP8.5) and low (RCP4.5) emissions scenarios for any of the study sites (Figure 6.5). Under 

high emission scenarios, FEF shows the greatest variability in projected annual streamflow (SD 

= 126 mm yr
-1

) across AOGCM simulations of high emission scenarios, while SRW shows the 

minimum variability (SD = 7.8 mm yr
-1

). In contrast, under low emission scenarios, CPW shows 

the greatest variability (SD = 108 mm yr
-1

) and HWF the lowest variability (SD = 9.2 mm yr
-1

) in 

projections of annual discharge. Comparison of projected changes in mean annual streamflow 
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across all sites, indicates that on average high emission scenarios have higher variability (SD = 

68 mm yr
-1

) than low emission scenarios (SD = 54 mm yr
-1

). 

The model simulations of evapotranspiration (ET) show increases under all scenarios and 

across all sites, although the response is highly variable across sites, AOGCM simulations and 

scenarios. The highest and lowest increase in mean annual ET for all sites occurred under 

MIROC5-RCP8.5 and MRI-CGCM3-RCP4.5, respectively (Figure 6.6). Among all sites, the 

high emission scenarios (RCP8.5) show a higher increase in projected mean annual ET compared 

to low emission scenarios (RCP4.5) with the FEF showing the highest increase in mean annual 

ET (Figure 6.7). The highest increase in mean annual ET is projected for the BSB (44.4 cm yr
-1

) 

under MIROC5-RCP8.5 scenario and the modest projected for the HWF (6.2 cm yr
-1

) under the 

MRI-CGCM3-RCP4.5 scenario. Under high emission scenarios, the BSB simulations show the 

highest variability in projected mean annual ET (SD = 8.4 cm yr
-1

), while the CPW exhibits the 

lowest variability (SD = 2.8 cm yr
-1

). Under low emission scenarios, the FEF and HWF show the 

highest (SD = 8.4 cm yr
-1

) and the lowest (SD = 2.2 cm yr
-1

) variability, respectively. The 

variability in projected ET increases with higher ET values (Figure 6.7). Across all sites a 

comparison of ET between high and low emission scenarios based on percentage change rather 

than absolute change, show the same pattern except that the BSB exhibits the highest relative 

change in mean annual ET (Figure 6.8). The regression analysis between projected increases in  

the percentage change in mean annual ET and mean annual temperature shows a significant (P < 

0.05) positive relationship (r
2
=0.2) across all sites (Figure 6.9). All individual sites except the 

FEF and HWF, exhibited a significant positive relationship (P < 0.05) between percentage 

change in mean annual ET and mean annual change in temperature, with the SRW having the 
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strongest relationship (r
2
=0.9), and HWF (P value = 0.06) having the weakest relationship 

(r
2
=0.48).  

The model projections of drought index (DWater) indicate significant changes in water 

deficit for plants under all future CO2 emission scenarios with different AOGCMs across all 

sites, except for the CPW (Spruce-fir site) and the FEF under the MRI-CGCM3-RCP4.5 scenario 

(Figure 6.10). On average across all sites, the high emission scenarios (RCP8.5) projected greater 

water stress (∆ DWater = -0.4) with higher variability, due to higher temperature projections, 

compared to low emissions scenarios (RCP4.5) (∆ DWater = -0.2) (Figure 6.11). The highest 

projected water stress (∆ DWater = -0.72) occurred for the BSB under the CCSM4-RCP8.5 

scenario, while the FEF shows reduction of water stress (∆ DWater = +0.02) under the MRI-

CGCM3-RCP4.5 scenario which has the lowest projected increase in mean annual air 

temperature across all sites and scenarios (1.2°C). The FEF responses under both high and low 

emission scenarios show the highest variability in projected water stress among all study sites 

(SD = 0.3) and the CPW exhibits the lowest variability (SD = 0.0). A comparison of DWater 

across all sites based on percentage change shows a similar pattern to values expressed in terms 

of absolute change (data not shown). The regression analysis between projected increases in 

changes in mean annual DWater and mean annual temperature show a significant (P < 0.05) 

negative relationship (r
2
=0.2) across all sites (Figure 6.12). Across all sites, the HWF and HBEF 

showed a significant negative relationship (P < 0.05), with the HWF having the strongest 

significant relationship (r
2
=0.93) and the BSB and SRW exhibiting the weakest significant 

relationship (P < 0.1). There is no significant relationship of change in mean annual DWater with 

change in mean annual temperature for the EBB, CPW, and FEF. The CPW did not exhibit water 
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stress as change in DWater with simulated increases in temperature because water stress is 

limited in spruce-fir vegetation.  

 

 

Figure 6.4. Projected changes in mean annual streamflow from PnET-BGC output for study 

watersheds for individual AOGCM simulations under different emission scenarios. The value 

shown for each scenario is the difference between the mean of simulated annual values for the 

period 2070-2100 and the mean of measured annual values for the reference period (1970-2000). 

EBB: East Bear Brook watershed; SRW: Sleepers River Watershed; HWF: Huntington Wildlife 

Forest; HBEF: Hubbard Brook Experimental Forest; CPW: Cone Pond Watershed; BSB: Biscuit 

Brook watershed; FEF: Fernow Experimental Forest. 
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Figure 6.5. Average projected changes in mean annual streamflow under high (RCP8.5) and low 

(RCP4.5) emissions scenarios for study watersheds. The value shown for each scenario is the 

average difference between the mean of simulated values for the period 2070-2100 and mean 

annual measured values for the reference period (1970-2000). The error bars represent the 

variation of four AOGCMs under each emissions scenario for each site. EBB: East Bear Brook 

watershed; SRW: Sleepers River Watershed; HWF: Huntington Wildlife Forest; HBEF: Hubbard 

Brook Experimental Forest; CPW: Cone Pond Watershed; BSB: Biscuit Brook watershed; FEF: 

Fernow Experimental Forest. 
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Figure 6.6. Changes in projected mean annual evapotranspiration from PnET-BGC output for 

study watersheds for individual AOGCM simulations under different emission scenarios. The 

value shown for each scenario is the difference between the mean of annual simulated values for 

the period 2070-2100 compared with the reference period (1970-2000). EBB: East Bear Brook 

watershed; SRW: Sleepers River Watershed; HWF: Huntington Wildlife Forest; HBEF: Hubbard 

Brook Experimental Forest; CPW: Cone Pond Watershed; BSB: Biscuit Brook watershed; FEF: 

Fernow Experimental Forest. 
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Figure 6.7. Changes in projected mean annual evapotranspiration under high (RCP8.5) and low 

(RCP4.5) emissions scenarios for study watersheds. The value shown for each scenario is the 

average difference between the mean of simulated values for the period 2070-2100 compared to 

the reference period (1970-2000). The error bars represent the variation of four AOGCMs under 

each emissions scenario for each site. EBB: East Bear Brook watershed; SRW: Sleepers River 

Watershed; HWF: Huntington Wildlife Forest; HBEF: Hubbard Brook Experimental Forest; 

CPW: Cone Pond Watershed; BSB: Biscuit Brook watershed; FEF: Fernow Experimental Forest. 
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Figure 6.8. Percentage changes in mean annual evapotranspiration projections under high 

(RCP8.5) and low (RCP4.5) emissions scenarios for study watersheds. The value shown for each 

scenario is the difference between the mean of simulated values for the period 2070-2100 

compared to the reference period (1970-2000). The error bars represent the variation of four 

AOGCMs under each emissions scenario for each site. EBB: East Bear Brook watershed; SRW: 

Sleepers River Watershed; HWF: Huntington Wildlife Forest; HBEF: Hubbard Brook 

Experimental Forest; CPW: Cone Pond Watershed; BSB: Biscuit Brook watershed; FEF: Fernow 

Experimental Forest. 
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Figure 6.9. Regression analysis between projected increase in mean annual simulated percentage 

change in evapotranspiration and annual temperature for the period of 2070-2100 compared with 

the reference period (1970-2000). The black dotted line shows the overall regression line for all 

data. 
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Figure 6.10. Changes in projected mean annual water stress index (DWater) from PnET-BGC 

output for study watersheds for individual AOGCM simulations under different emission 

scenarios. The value shown for each scenario is the difference between the mean of simulated 

values for the period 2070-2100 compared with the reference period (1970-2000). Negative 

values indicate water stress. EBB: East Bear Brook watershed; SRW: Sleepers River Watershed; 

HWF: Huntington Wildlife Forest; HBEF: Hubbard Brook Experimental Forest; CPW: Cone 

Pond Watershed; BSB: Biscuit Brook watershed; FEF: Fernow Experimental Forest. 
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Figure 6.11. Changes in projected mean annual water stress index (DWater) under high (RCP8.5) 

and low (RCP4.5) emissions scenarios for the study watersheds. The value shown for each 

scenario is the average difference between the mean annual simulated values for the 2070-2100 

period compared with the reference period (1970-2000). The error bars represent the variation of 

four AOGCMs under each emissions scenario for each site. EBB: East Bear Brook watershed; 

SRW: Sleepers River Watershed; HWF: Huntington Wildlife Forest; HBEF: Hubbard Brook 

Experimental Forest; CPW: Cone Pond Watershed; BSB: Biscuit Brook watershed; FEF: Fernow 

Experimental Forest. 
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Figure 6.12. Regression analysis between projected change in mean annual simulated water 

stress index (DWater) and increase in mean annual temperature for the period of 2070-2100 

compared with the reference period (1970-2000). The black dotted line shows the overall 

regression line for all data. 
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6.4.3. Net Primary Productivity (NPP) and the Soil Carbon Pool 

Future model projections of mean annual net primary productivity (NPP) across all sites 

are highly variable. Simulations show both increases and decreases in mean annual NPP 

depending on AOGCMs, emissions scenarios and study site (Figure 6.13). The model 

simulations suggest the highest increase in mean annual NPP of 681 g C m
-2

 yr
-1

 occurs at the 

BSB under the MIROC5-RCP8.5 scenario. While the largest decrease of 295 g C m
-2

 yr
-1

 occurs 

at the FEF under the CCSM4-RCP8.5 scenario. On average across all sites, the low emission 

scenarios (RCP4.5) from the four AOGCMs projected higher NPP due to the lower temperature 

projections (Figure 6.14). Under the RCP8.5 scenarios, the FEF shows the highest variability in 

NPP response (SD = 359 g C m
-2

 yr
-1

), while the CPW exhibits the lowest variability (SD = 79 g 

C m
-2

 yr
-1

). Under the RCP4.5 scenarios, the FEF and CPW show the highest (SD = 263 gC m
-2

 

yr
-1

) and the lowest (SD = 55 gC m
-2

 yr
-1

) variability, respectively. A comparison of all sites 

based on percentage change of NPP rather than absolute change, reveals a similar pattern for 

increase in NPP (BSB 54%), while the HWF shows the greatest decline (25%) under the 

CCSM4-RCP8.5 scenario (graph not shown). There is no significant relationship (P value > 

0.05, r
2
=0.006) between the projected increases in mean annual temperature and percentage 

changes in NPP across all sites (Figure 6.15). The SRW in the only site that shows a significant 

positive relationship (P value < 0.1, r
2
=0.45) (data not shown).  

The model simulations of the soil humus carbon pool show significant declines across all 

sites under all scenarios, with high variability across sites, AOGCMs and scenarios. The model 

output projected the greatest decline in the humus carbon pool for the HWF (6745 g C m
-2

) under 

the CCSM4-RCP8.5 scenario and a smallest decline for the SRW (555 g C m
-2

) under MRI-

CGCM3-RCP4.5 (Figure 6.16). The projected decline in the humus carbon pool under high 
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emissions scenarios (RCP8.5) are on average 60% greater compared to low emissions scenarios 

(RCP4.5) (Figure 6.17). Under the high emission scenarios, the FEF shows the highest 

variability (SD = 1799 g C m
-2

), while the CPW exhibits the lowest variability (SD = 525 g C 

m
-2

). Under the low emission scenarios, the HWF and FEF show the highest (SD = 1405 g C  

m
-2

) and the lowest (SD = 394 g C m
-2

) variability, respectively. A comparison of all sites based 

on percentage change in the humus carbon pool show a pattern of decline similar to when values 

are expressed on an absolute base, but the EBB shows the highest percentage decline (61.4%) in 

soil humus under MIROC5-RCP8.5 (graph not shown). The regression analysis between 

projected changes in the mean annual humus carbon pool with mean annual temperature change 

shows a significant negative relationship (P value < 0.05, r
2
=0.58) across all sites (Figure 6.18). 

The regression analysis shows significant (P value < 0.05) negative relationship between the soil 

humus pool and mean annual air temperature at each site with a r
2
 ranging from 0.66 (HWF) to 

0.91 (SRW). The SRW shows the highest relationship (r
2
=0.91) while the HWF shows the 

lowest relationship (r
2
=0.66). The slopes of the regression lines are very similar across all sites 

with the exception of the spruce-fir CPW which shows the smallest change in the soil humus 

pool with increases in air temperature. Note the regression analysis based on percentage change 

in the humus carbon pool rather than relative change, indicates a similar slope for the CPW 

compared with the other sites (Figure 6.19). 
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Figure 6.13. Projected changes in mean annual net primary productivity (NPP) for study 

watersheds for individual AOGCM simulations under different emission scenarios. The value 

shown for each scenario is the difference between the mean of simulated values for the period 

2070-2100 compared with the reference period (1970-2000). EBB: East Bear Brook watershed; 

SRW: Sleepers River Watershed; HWF: Huntington Wildlife Forest; HBEF: Hubbard Brook 

Experimental Forest; CPW: Cone Pond Watershed; BSB: Biscuit Brook watershed; FEF: Fernow 

Experimental Forest. 
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Figure 6.14. Projected changes in mean annual net primary productivity (NPP) under high 

(RCP8.5) and low (RCP4.5) emissions scenarios for study watersheds. The value shown for each 

scenario is the average difference between the mean of simulated values for the period 2070-

2100 compared with the reference period (1970-2000). The error bars represent the variation of 

four AOGCMs under each emissions scenario for each site. EBB: East Bear Brook watershed; 

SRW: Sleepers River Watershed; HWF: Huntington Wildlife Forest; HBEF: Hubbard Brook 

Experimental Forest; CPW: Cone Pond Watershed; BSB: Biscuit Brook watershed; FEF: Fernow 

Experimental Forest. 
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Figure 6.15. Regression analysis between projected percent changes in net primary productivity 

(NPP) with projected increase in mean annual temperature for the period of 2070-2100 compared 

with the reference period (1970-2000). The black dotted line shows the overall regression line 

for all data. 
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Figure 6.16. Projected changes in mean annual soil humus carbon pool for study watersheds for 

individual AOGCM simulations under different emission scenarios. The value shown for each 

scenario is the difference between the annual mean of projections for 2070-2100 and the mean of 

simulated values for the reference period (1970-2000). EBB: East Bear Brook watershed; SRW: 

Sleepers River Watershed; HWF: Huntington Wildlife Forest; HBEF: Hubbard Brook 

Experimental Forest; CPW: Cone Pond Watershed; BSB: Biscuit Brook watershed; FEF: Fernow 

Experimental Forest. 
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Figure 6.17. Projected changes in the mean annual soil humus carbon pool under high (RCP8.5) 

and low (RCP4.5) emissions scenarios for the study watersheds. The value shown for each 

scenario is the average difference between the mean annual simulated values for 2070-2100 

compared with the reference period (1970-2000). The error bars represent the variation of four 

AOGCMs under each emissions scenario for each site. EBB: East Bear Brook watershed; SRW: 

Sleepers River Watershed; HWF: Huntington Wildlife Forest; HBEF: Hubbard Brook 

Experimental Forest; CPW: Cone Pond Watershed; BSB: Biscuit Brook watershed; FEF: Fernow 

Experimental Forest. 
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Figure 6.18. Regression analysis between projected changes in annual soil humus carbon pool 

(gC m
-2

) and increase in mean annual temperature for the period of 2070-2100 compared with 

values for the reference period (1970-2000). The black dotted line shows the overall regression 

line for all data. 
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Figure 6.19. Regression analysis between projected percent changes in the mean annual humus 

carbon pool and mean annual temperature for the period of 2070-2100 compared with the 

reference period (1970-2000). The black dotted line shows the overall regression line for all data. 
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6.4.4. Streamwater Chemistry 

Model simulations show an increase in annual volume weighted NO3
-
 responses across 

all sites and all scenarios, with the exception of the FEF which shows a decrease under three 

scenarios (Figure 6.20). Climate change projections indicate substantial temporal shifts in 

streamwater NO3
-
 responses across all sites and the extent of these changes depends on the 

AOGCMs, emission scenarios, and site characteristics and location. The model simulations of 

stream NO3
-
 for the FEF exhibit marked variability across AOGCM simulations and scenarios 

with the highest and lowest changes in projected annual volume weighted NO3
-
 responses of 210 

and -22 µmol L
-1

 under HadGEM-RCP8.5 and MIROC5-RCP8.5, respectively compared to all 

other sites. Across all sites except the FEF, the average changes in annual volume weighted NO3
-
 

concentrations under high emissions scenarios (RCP8.5) are approximately double the changes 

under low emissions scenarios (RCP4.5) (Figure 6.21). Under the high emission scenarios, the 

FEF shows the highest variability (SD = 104 µmol L
-1

), while the CPW exhibits the lowest 

variability (SD = 8.3 µmol L
-1

). Under the low emission scenarios, the FEF and SRW show the 

highest (SD = 23.5 µmol L
-1

) and the lowest (SD = 6.4 µmol L
-1

) variability, respectively. The 

HWF is the most sensitive watershed to climate change projections of stream NO3
-
 and shows 

the highest increase in annual volume weighted NO3
-
 concentrations in response to all 

projections due to the lowest increase in future projections of precipitation (Figure 6.20).  

Future model projections of mean annual volume-weighted stream acid neutralizing 

capacity (ANC) show decreases across most sites under all scenarios. Exceptions in this pattern 

are evident for the EBB and CPW which show increases in ANC under some scenarios (Figure 

6.22). The highest increase of 27 µeq L
-1

 in ANC projected for the EBB occurs under the MRI-

CGCM3-RCP4.5 scenario. The highest decline in ANC is simulated for the SRW under 
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HadGEM2-RCP8.5 by 176 µeq L
-1

. The variation in projected mean annual volume-weighted 

ANC across AOGCM simulations and scenarios is highest for the SRW compared to other sites.  

High and low emission scenarios for SRW had standard deviations of 42 µeq L
-1

 and 66 µeq L
-1

, 

respectively. The EBB and HBEF with standard deviations of 3.1 µeq L
-1

 and 4.2 µeq L
-1

 

showed the lowest variability under high and low emission scenarios, respectively. The CPW is 

the only site that shows a decrease under the high emission scenario and increase under the low 

emission scenario (Figure 6.22). The high emission scenarios on average doubled the rate of 

decline in stream ANC at CPW compared to low emissions scenarios (Figure 6.23).  
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Figure 6.20. Projected changes in mean annual volume weighted NO3
-
 concentrations (µmol L

-1
) 

for study watersheds for individual AOGCM simulations under different emission scenarios. The 

value shown for each scenario is the difference between the mean of annual simulated values for 

the period 2070-2100 and measured values for the reference period (1970-2000). EBB: East Bear 

Brook watershed; SRW: Sleepers River Watershed; HWF: Huntington Wildlife Forest; HBEF: 

Hubbard Brook Experimental Forest; CPW: Cone Pond Watershed; BSB: Biscuit Brook 

watershed; FEF: Fernow Experimental Forest. 
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Figure 6.21. Projected changes in mean annual volume weighted NO3
-
 concentrations (µmol L

-1
) 

of AOGCM projections under high (RCP8.5) and low (RCP4.5) emissions scenarios for study 

watersheds. The value shown for each scenario is the average annual difference between the 

simulated values for the period 2070-2100 and the mean of measured values for the reference 

period (1970-2000). The error bars represent the variation of four AOGCMs under each 

emissions scenario for each site. EBB: East Bear Brook watershed; SRW: Sleepers River 

Watershed; HWF: Huntington Wildlife Forest; HBEF: Hubbard Brook Experimental Forest; 

CPW: Cone Pond Watershed; BSB: Biscuit Brook watershed; FEF: Fernow Experimental Forest. 
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Figure 6.22. Projected changes in mean annual volume weighted ANC (µeq L
-1

) for study 

watersheds for individual AOGCM simulations under different emission scenarios. The value 

shown for each scenario is the difference between simulated values for the period 2070-2100 and 

the mean of measured values for the reference period (1970-2000). EBB: East Bear Brook 

watershed; SRW: Sleepers River Watershed; HWF: Huntington Wildlife Forest; HBEF: Hubbard 

Brook Experimental Forest; CPW: Cone Pond Watershed; BSB: Biscuit Brook watershed; FEF: 

Fernow Experimental Forest. 
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Figure 6.23. Projected changes in mean annual volume weighted ANC (µeq L
-1

) under high 

(RCP8.5) and low (RCP4.5) emissions scenarios for study watersheds. The value shown for each 

scenario is the difference between simulated values for the period 2070-2100 and the mean of 

measured values for the reference period (1970-2000). The error bars represent the variation of 

four AOGCMs under each emissions scenario for each site. EBB: East Bear Brook watershed; 

SRW: Sleepers River Watershed; HWF: Huntington Wildlife Forest; HBEF: Hubbard Brook 

Experimental Forest; CPW: Cone Pond Watershed; BSB: Biscuit Brook watershed; FEF: Fernow 

Experimental Forest. 
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6.5. Discussion 

6.5.1. Future Climate Projections 

Projected changes in temperature and precipitation across all the Northeast sites are the 

main drivers of hydrological and biogeochemical responses, which are manifested differently 

depending on vegetation, soils, site characteristics, elevation, and historical land disturbances. 

There is a strong negative correlation (P value < 0.05, r = -0.91) between measured mean annual 

air temperature for the period of 1970-2000 and projected percent increases in mean annual 

temperature of 2070-2100 across all sites and all scenarios. This trend indicates that the relative 

change in temperature at colder sites is greater compared to changes at warmer sites. Therefore, 

the FEF which has the highest measured mean annual temperature (9.4°C) across all sites, is 

projected to experience less warming compared to colder sites like the SRW (6°C) and HWF 

(4.7°C). Note that removing the FEF from the correlation analysis still yields the same 

significant correlation but with a slightly higher P-Value (P value < 0.1, r = -0.76). There is no 

spatial gradient with latitude in projected increases in temperature, although for a given site 

projected air temperature increases with increasing emissions. The average variability of 

projected increases in temperature across all sites is higher (SD = 0.6°C) under high emission 

scenarios compared to low emission scenarios (SD = 0.4°C). The average variability of projected 

increases in temperature for a given climate scenario across all sites is lower (SD = 0.5°C) 

compared to average variability of all scenarios (four AOGCMs and two emission trajectory) for 

a given site (SD = 1.9°C). This trend indicates how differences in historical climate are 

manifested through increased variability among scenarios for a given site.  
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There is no clear spatial pattern in projected increases in precipitation under future 

emissions. One might expect that the projected increases in precipitation would be greatest at 

sites experiencing relatively high precipitation compared to sites with lower mean annual 

precipitation. Although there is no statistically significant trend between measured mean annual 

precipitation of 1970-2000 and projected increases in precipitation for the period of 2070-2100, 

sites which are currently receiving higher precipitation are projected to get wetter. The exception 

to this pattern is the FEF. The FEF has the second highest mean annual precipitation of 1,460 

mm after the BSB (1,750 mm). However, the average projected increases in mean annual 

precipitation of all climate change scenarios for the FEF is 119 mm which is the second lowest 

projected increase among sites (after the HWF). Even the HadGEM-RCP4.5 scenario shows a 

decline in future precipitation. The average variability of projected increases in precipitation for 

a given climate scenario across all study sites is higher (SD = 15.8 cm) compared to the average 

variability of all scenarios (four AOGCMs and two emission trajectory) for a given site (SD = 

8.5 cm). Therefore, the downscaling of AOGCM projections of precipitation decreases the 

variability of those scenarios. This is an important finding because it indicates that station-based 

downscaling could decrease the variability and therefore uncertainty in precipitation projections 

to some extent. Since precipitation projections have more inter-annual variability and uncertainty 

than temperature projections, more attention should be given to temperature-driven changes as 

metrics for climate change impact assessments. Although this is not to say that projected changes 

in precipitation will not have a profound impact on the structure and function of northern forest 

watersheds. 
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6.5.2. Hydrology 

Results from Phase 1 of this dissertation for the HBEF indicate that changes in 

temperature and precipitation are the main drivers of the forest ecosystem response to changing 

climate. Across all study sites, the FEF, HWF, and CPW did not fit this conceptual model and 

showed varied responses. The FEF and HWF did not show any significant relationship of 

changes in mean annual ET and projected increases in mean annual temperature (chapter 6.4.2). 

The CPW is the only spruce-fir forest and did not exhibit water stress like other study sites.  

The FEF is the only study site with central hardwood vegetation and also soils have the highest 

water holding capacity (WHC) of 30 cm of the study sites (12 cm). These differences in the 

characteristics of the three study sites are responsible for their different responses to changing 

climate compared to the conceptual model observed for HBEF and at most sites. Although, the 

FEF and HWF have similar historical land disturbance (100 years old harvesting), but they have 

different background climate conditions, vegetation and WHC. The FEF has the highest and 

lowest projected changes in temperature across all sites and is the only site that shows a decrease 

in projected precipitation under one climate scenario (HadGEM2-RCP4.5). The average 

projected increases in precipitation for the HWF are the lowest across all sites.  

At the FEF, simulations suggest a complete loss of snow pack under all scenarios toward 

the end of 21
st
 century and higher temperatures compared to other sites. Higher variability in 

projections of temperature and precipitation at the FEF results in a scattered response of ET to 

future changes in temperature compared to other sites (no statistically significant relationship 

between projected changes in ET and air temperature). The higher WHC at the FEF also 

mitigates the effects of higher temperatures to some extent by supplying water for plant 

transpiration demand during the extended growing season. The HWF response of ET to increases 
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in air temperature is driven by a lack of available water for transpiration during the growing 

season since it has the lowest projected increase in precipitation of any of the modeled sites 

despite similar increases in temperature. A lack of precipitation during the extended growing 

season, increases water stress on trees, decreasing photosynthetic rate and therefore decreasing 

ET. The weaker response of ET to future increases in temperature at the CPW is due to the 

different tree vegetation (spruce-fir). The spruce-fir forest has a lower optimum temperature for 

photosynthesis than northern hardwoods and increases in temperature above the temperature 

optimum that are projected for the CPW will cause temperature stress on vegetation and a 

decline in photosynthesis and forest productivity which leads to lower ET. Future projections for 

the CPW watershed do not exhibit water stress. Therefore spruce-fir watersheds experience 

temperature stress before water stress can occur under future climate projections. The spruce-fir 

forest also has higher foliar respiration in response to increases in temperature compared to 

northern hardwoods [Aber and Federer, 1992]. Lastly, the spruce-fir forest at the CPW has a 

lower photosynthetic capacity due to lower foliar N and therefore lower transpirational demand 

compared to northern hardwoods which can eliminate water stress. Therefore, projected 

increases in ET for the coniferous forest of CPW is only driven by temperature through the 

lengthening of the growing season rather than precipitation since trees do not experience water 

stress under future climate projections.  

PnET-BGC calculates the ET and water stress for each month as a function of available 

soil water and plant water demand. Aber and Federer, [1992] derived a relationship for the 

response of tree photosynthesis to changes in temperature, providing parameter values for 

different tree species classes based on literature. They define a multiplier between 0 and 1 to 

depict the effect of temperature on gross photosynthesis. The photosynthesis relationship is a 
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parabolic function with minimum and optimum temperature values set as parameters for 

different tree types. They determined the optimum temperature for gross photosynthesis is 24°C 

and 20°C for northern hardwoods and spruce-fir, respectively [Aber and Federer, 1992; Aber et 

al., 1995; Ollinger et al., 2009]. They also characterize foliar respiration as a function of gross 

photosynthesis which increases with temperature as a Q10 factor of 2 [Aber and Federer, 1992; 

Ollinger et al., 2009]. The Q10 is a measure of the temperature dependency of a rate process (e.g., 

change in foliar respiration if temperature increases by 10°C). A projected lengthening of the 

growing season and associated increases in evapotranspiration due to higher temperature, could 

limit available soil water and ultimately lead to water stress on plants, despite projected increases 

in precipitation. Model simulations under lower emissions scenarios for the Northeast where 

hydrology is strongly driven by snowmelt (except FEF), indicate that projected increases in 

annual ET largely occur during the late spring, summer and early fall due to the extended 

growing season. Under the higher emissions scenarios, the increases in ET continue into winter 

causing a substantial increase in annual ET. Across other sites, the projected increases in winter 

ET are due to a decline in snowpack associated with higher temperature and increases in the 

percentage of precipitation occurring as rain versus snow. Increases in ET result in water stress 

on plants and decrease streamflow during summer. This hydrologic change has important 

implications for the health, structure and productivity of forest and aquatic ecosystems and the 

services they provide, and the availability of water to supply downstream urban centers during 

summer months.  

The projections of water stress across all sites and under all climate change scenarios, 

although highly variable with AOGCM and scenario, suggest a general increasing trend of dry 

growing season conditions. This trend is driven by decreases in mean monthly soil moisture 
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during summer and early fall as a result of increased ET which is consistent with projected low 

summer discharge. The high variability in water stress projections is consistent with high 

variability in projections of increases in precipitation across sites and AOGCM projections and 

among scenarios. During summer drought, ET continues to consume surface water resources 

exacerbating short supply. The greater the soil water deficit, the lower the tree productivity 

which in turn decouples soil-vegetation processes and decreases nutrient retention. Even short 

term water stress on plants during the growing season can hamper productivity, carbon and 

nitrogen sequestration, and disrupt element cycling.  

The seasonal pattern of streamflow across all sites except the FEF, project more winter 

and early spring high-flow and lower summer flows. There will more precipitation during late 

fall, winter and early spring and lower precipitation in summer. In sites where snow is more 

prevalent (e.g., HWF, SRW, HBR, CPW), the snow pack will develop later in the season and 

melt earlier in the Spring. Projected increases in late winter/early spring soil moisture have 

important implications for future water management in the Northeast. The combination of wetter 

winters and warmer summers, pose a significant risk to forest ecosystem productivity and the 

services they provide. Four out of the seven study sites (EBB, SRW, CPW, BSB) show 

significant increases in projected mean annual streamflow. This could pose a risk of flooding for 

urban centers downstream especially since the precipitation projections suggest higher intensity 

rainfall events with shorter return period. Under future projected increases in precipitation and 

annual streamflow, any possible disturbance of forested watersheds and impact on vegetation 

could cause higher risks of flood and removal of soil and nutrients. Increased risk of flooding has 

important implications for climate change adaptation policies in the Northeast [NECIA, 2006]. In 

contrast, at the HWF and FEF, projections of mean annual streamflow show significant decline 
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due to smaller projected increases in precipitation at the HWF and higher projected increases in 

temperature at the FEF, which could cause summer drought for agricultural land downstream and 

pose pressure on water supply and resources especially during summer. Finally at the HBEF the 

projected response is highly variable ranging from increases to decreases in mean annual 

streamflow depending on the climate change scenario. This level of complexity in the hydrologic 

response of watersheds to changing climate will challenge our ability to respond and adapt to this 

critical dimension of global change.  

6.5.3. Net Primary Productivity 

Model simulations indicate a longer growing season across all sites and under all future 

climate scenarios. In PnET-BGC the length of growing season is defined as total growing degree 

days, which is defined as the number of the days that minimum air temperature is above 0°C. 

Under projected future climate change, the longer and more productive growing season is due to 

a combination of higher temperatures and precipitation (more availability of water). Future 

projections of changes in temperature show an average increase of 25% in the number of 

growing days across all sites and all AOGCMs for the period of 2070-2100 compared to the 

reference period of 1970-2000. This expansion in the growing season is greater under high 

emission scenarios (mean = 33%, SD = 15%) compared to low emission scenarios (mean = 16%, 

SD = 8%). Among all AOGCMs, the HadGEM2 and MIROC5 indicate the highest increases in 

projected growing days and therefore the longest growing seasons across all sites (average of 

35%). Note that an enhancement of tree growth can be limited if temperatures exceed optimum 

values for photosynthesis and/or if availability of water becomes limiting during the extended 

growing season. Projected increases in temperature and precipitation drive increases in 
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evapotranspiration in Northeast forest watersheds. Model projections for all sites under all 

scenarios indicate significant increases in ET toward the end of the 21
st
 century, the extent of 

which is strongly a function of projected increases in temperature. The model projections show 

significant increases in both evaporation and transpiration under future changing climate, 

although increases in transpiration exceed increases in evaporation due to longer growing 

seasons and warmer temperatures in northeastern forest sites. 

Although the model projections of NPP varied substantially across all sites and among all 

scenarios, root and foliar NPP decrease across most sites while wood biomass increases. The 

projected reduction in root and foliar NPP is due to water stress while increase in wood NPP is 

driven by the longer growing season and higher rates of photosynthesis due to warmer 

temperature in the absence of water stress. Decreases in foliar and root NPP cause a significant 

decline in inputs of litter which causes declines in the humus carbon pool across all sites. If these 

projections hold up, the ability of forested ecosystems to sequester carbon could decrease due to 

a lack of aboveground growth. In contrast, in the absence of water stress, the efficiency of 

photosynthesis will increase under future climate change and create a strong sink for carbon. The 

CPW shows the smallest decline in foliar NPP of the seven study sites evaluated. Although, the 

projected temperature stress to CPW and decline in productivity has important implications for 

the spruce-fir forests of the Northeast. Possible changes in productivity and composition of these 

forests could impact the economy of the region (wood products industry) and disrupt the services 

these ecosystems provide. If the projected temperature stress occurs in spruce-fir forests of the 

Northeast, it is likely that other tree species with higher temperature tolerance will replace them 

over 21
st
 century. The SRW is the only site that shows an increase in NPP under all scenarios 

and a positive relationship between NPP and mean annual temperature. This response at SRW is 
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due to lower projected increase in temperature (the SRW has the lowest projected increase) 

coupled with large projected increases in precipitation compared to other sites. Therefore, the 

SRW benefits from a warmer, wetter climate and longer growing season. Variability in projected 

changes in NPP, forest productivity and shifts in C storage in plants was evident across all these 

sites, which is an important finding that has implications for the future of forest ecosystems and 

carbon management in the Northeast.  

6.5.4. Biogeochemistry 

Model projections of the soil humus C pool across all sites and under all scenarios show 

significant declines with projected increases in temperature. In PnET-BGC, the decomposition 

rate of soil organic matter is depicted to increase exponentially with temperature and has a 

positive linear relationship with soil moisture. Therefore, temperature is the main driver of 

projected decreases in the humus C pool under future climate conditions. The projected decrease 

in the humus C pool has important implications for the capacity of forested ecosystems to 

sequester carbon and for soil processes under changing climate over the 21
st
 century. This 

process is one of the largest sources of uncertainty in projections of terrestrial ecosystem 

responses to changing climate. The magnitude of this uncertainty could be large enough to 

prevent differentiation between forest ecosystems acting as potential sources or sinks of carbon 

[Cox et al., 2000; Friedlingstein et al., 2006]. 

Changes in the balance of precipitation and ET could substantially impact forest growth 

and productivity which in turn could alter the magnitude and timing of hydrology and 

biogeochemical cycles [Campbell et al., 2009]. Changes in the timing and amount of 

precipitation could impact forest nutrient cycling, and over multiple decades, the species 
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composition of the forest [Huntington et al., 2009]. The projected increase in the growing season 

under a warmer climate could impact forest nutrient cycles by increasing the rate of nutrient 

uptake from the soil by vegetation [Huntington et al., 2009]. With increases in the productivity 

and growth rate of forests, the total amount of sequestrated nutrients (e.g., N, calcium) could 

increase. In addition, the lack of snowpack during winter under projected climate change at sites 

where snow is a prominent form of precipitation, could increase water infiltration during the 

winter [Huntington et al., 2009] and leaching losses of nutrients.  

Model simulations projected increases in mean annual volume weighted NO3
-
 across all 

sites and all scenarios except for three scenarios at the FEF. Elevated export of NO3
-
 from forest 

lands could alter the nutrient status of adjacent N-growth limited coastal waters [Driscoll et al., 

2003]. A strong positive response between nitrogen mineralization and temperature in 

combination with a decoupling of plant-soil interactions under future climate enhances net 

nitrification and NO3
-
 leaching. The pattern of biogeochemical response is evident across 

modeled sites. Sites like the SRW that have relatively large soil pools of exchangeable base 

cations, can neutralize strong acid anions in leachate. Watersheds like the HBEF that have acidic 

soils, exhibit marked acidification of soil and water associated with projected NO3
-
 leaching. The 

differences among sites is the manifestation of differences in rates of atmospheric N deposition 

as well as the degree of soil N depletion caused by past forest disturbance. 

The new framework of climate change impacts based on increases in temperature 

provides a practical approach for decision makers and policy managers to assess and quantify the 

potential effects on forested ecosystems and their services. This approach clearly links climate 

change impacts on forested watersheds to averaged local and global warming and to future 

emission controls, providing useful guidelines for policymakers and water resources managers 
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on cumulative CO2 emissions projected changes in temperature and associated ecosystem effects. 

Therefore, policies could be formed by considering total cumulative emissions, associated 

impacts, and uncertainties. Climate change policies for adaptation and mitigation could be also 

framed around this approach. This framework provides scientific support for evaluating the 

impact of different impacts on forest production, soils and water quantity and quality. 

This framework provides new insights of climate change impacts on forested ecosystems 

with associated uncertainty related to projected temperature change which is different from 

uncertainties associated with equivalent carbon dioxide concentrations (e.g., the lack of 

information on aerosol forcing in climate impact studies). Further, since the range of effects is 

expressed as an incremental temperature change, policymakers can decide an appropriate target 

for emission stabilization which will limit these effects on forested ecosystems. Moreover, each 

degree of temperature increase can be translated into a best estimate of associated CO2-

equivalent concentrations. Through this approach, we can link a range of potential ecosystem 

impacts to a cumulative carbon framework to help guide management decisions [Allen et al., 

2009; Matthews et al., 2009; Meinshausen et al., 2009; Zickfeld et al., 2009]. 
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7. Synthesis and Future Research Recommendations 

Climate change is already affecting the Northeast. Projected increases in temperature and 

changes in the quantity and seasonality of precipitation will likely have impacts on ecosystem 

structure, function and sustainability [Hayhoe et al., 2007; NECIA, 2006]. The projected pattern 

of temperature change is more consistent than precipitation [NECIA, 2006]. The results from all 

three phases of this dissertation indicate that potential changes in climate could affect the 

structure and function of forested watersheds and services they provide. For this dissertation, I 

took advantage of long-term, comprehensive records of meteorological, hydrological and 

biogeochemical data available for seven intensive study sites in the northeastern U.S. Thorough 

characterization and available data from these sites provided me with detailed information for 

model calibration and quantitative hydrological and biogeochemical data to help validate 

processes and rates depicted in PnET-BGC. All sites are relatively undisturbed with the 

exception of air pollution and climate change. Due to their relative small size and high elevation, 

they enable assessment of small changes in hydrological and biogeochemical cycles under 

changing climate. Therefore, these watersheds that are sensitive to small changes in climate can 

serve as surrogate for larger and more resistant catchments at broader scales and improve the 

understanding of climate change impacts at regional scales. Changes in climate are manifested 

differently at each site depending on climate change scenarios, and site characteristics such as 

climate, dominant vegetation, soils, and historical land disturbances. Since the study sites are 

scattered across the Northeast region, I was able to investigate the spatial pattern among these 

sites through cross-site analysis. 

Water quantity and quality and changes in seasonality of streamflow are influenced by 

meteorological conditions and long-term changes in climate [Mitchell et al., 1996; Murdoch et 
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al., 1998]. Stream discharge is the main driver of the export of solutes from forested watersheds 

[Likens and Bormann, 1995], therefore future changes in the hydrological cycle, especially 

annual discharge and its seasonality, will affect water quality and nutrient losses from forested 

watersheds. Small headwater watersheds regulate and provide water for downstream larger 

bodies of water. They provide habitat for aquatic organisms as well as irrigation water for 

agriculture and drinking water for urban areas. Forest ecosystems in the Northeast provide wood 

for timber products, paper and energy, maple syrup, and recreational services while regulating 

trace gas exchange, sequestrating carbon and nitrogen and limiting nutrient losses from soil. 

Quantitatively assessing the impacts of climate change on forest ecosystems is critical to provide 

scientific evidence for policy makers and managers to help guide emission control programs to 

ensure that ecosystems continue providing their services under changing climate and climate 

adaptation programs.  

In phase 1 of my dissertation, I assessed the hydrochemical responses of the HBEF to 

projected changes in climate with and without invoking the effects of CO2 on vegetation. The 

results indicated a broad range of hydrologic and biogeochemical responses to changing climate. 

This phase provided an indication of the direction and extent of changes that might be expected 

under different climate scenarios. A sensitivity analysis was conducted that showed that the 

model output is sensitive to changes in climatic inputs. Temperature and precipitation are both 

important drivers of projected responses, although invoking CO2 effects on vegetation could 

offset the effects of increasing temperature to some extent. Simulations suggest that under future 

climate there will likely be an increase in annual discharge and its distribution as well as quality. 

Model projections indicated a decline in the snowpack, snow melt, and timing and magnitude of 

the snowmelt hydrograph peak. During future warmer winters with a higher rain to snow ratio, 
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snowpack accumulation will diminish and water will become distributed more evenly throughout 

the year. Summer flows will be lower due to higher ET demand and a longer growing season, 

likely increasing soil water stress. Under water stress, plants close their stomata and their 

photosynthetic capacity decreases which causes a decoupling of soil-plant linkages. Higher 

temperatures result in higher rates of net mineralization. Less uptake of NH4
+
 by tress and 

increases in net nitrification leads to elevated leaching of NO3
-
 and acidification of soil and 

surface water. Also the soil C humus pool is projected to decline significantly due to increases in 

temperature. Findings from this chapter underscore the important interplay between projections 

of changing temperature and precipitation and their effects on tree growth in the Northern Forest. 

In phase two, I investigated the differences in two common statistical downscaling 

techniques: Bias Correction-Spatial Disaggregation (BCSD) (Grid-based) and Asynchronous 

Regional Regression Model (ARRM) (station-based) as well as in two sets of observations for 

“training” these downscaling techniques. I found the ARRM technique is more effective in 

mimicking observed precipitation quantity and temporal patterns at the local scale. This finding 

has important implications on assessment of climate change impacts at the small watershed scale. 

In mountainous areas with complex terrain, downscaling applications using the VIC grid 

approach, which averages meteorology over the 1/8° grid, underestimates precipitation. This 

finding is important since results from phase 1 showed that model output is sensitive to climate 

inputs. Moreover, a lack of precipitation during the extended growing season could increase 

water stress on plants and lead to elevated NO3
-
 leaching from soil and stream water. 

Downscaling under the ARRM techniques showed limited drought response under future climate 

change. ARRM downscaling scenarios resulted in a deeper snowpack, higher peak discharge 

during snowmelt, wetter soil, and relatively higher annual streamflow, suggesting a greater 
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chance of more intense storms and flooding, particularly when soils are saturated in low 

elevation areas. An ensemble of AOGCMs projected that extreme precipitation events would 

increase by 67% in the Northeast [Hayhoe et al., 2007; NECIA, 2006]. These extreme events 

could damage infrastructures and ecosystems impacting people, local businesses and the 

economy. These findings have important implications for climate change adaptation and 

mitigation policies in the Northeast. These results highlight the critical need to correctly 

characterize the quantity and distribution of future precipitation for accurate streamflow 

forecasting in the Northeast. The selection of observations and downscaling technique can have 

important consequences to global change projections.  

Phase 3 of this dissertation provides an analysis of the responses of seven different 

forested watersheds in the Northeast to different AOGCM simulations and different emission 

scenarios. Considering the dynamic nature of climate change both in time and space, it is 

challenging to generalize the long-term climatic shifts across the Northeast. Nevertheless, 

comparing and contrasting an array of watersheds with a wide range of characteristics provides 

important insights on the potential range of responses of these diverse ecosystems. Their 

historical land disturbance, vegetation and soil characteristics are important factors that influence 

the differences in their responses to changing climate. Changes in climate could significantly 

impact forest growth and productivity which in turn could alter the magnitude and timing of 

hydrological and biogeochemical cycles [Campbell et al., 2009]. These close linkages between 

climate change and vegetation are manifested in complex patterns across these sites which could 

ultimately alter the structure and function of these forests and the services they provide. The 

Northern Forest has been impacted by air pollution through inputs of acid deposition and soil and 

surface water acidification [Driscoll et al., 2001]. While emission controls have diminished these 
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impacts and some ecosystems have started to show recovery [Driscoll et al., 2001], model 

projections suggest that under future climate, enhanced net mineralization of N and nitrification 

could increase leaching of NO3
-
 which could offset and reverse the recovery of the acid-base 

status of acid impacted ecosystems. Findings from this phase suggest that climate change could 

potentially result in the mobilization of soil N, elevated NO3
-
 leaching and acidification of soil 

and surface water. Note weathering rates and soil percent base saturation of different sites affect 

the magnitude of responses. If northern hardwood species are replaced by more temperature and 

drought tolerant species, this effect could be mitigated to some extent. Forests experiencing 

temperature or water stress could be susceptible to secondary stresses such as insects or disease.  

The findings of this chapter provide a new framework for assessing climate change 

impacts based on incremental increases in temperature. Across all sites, model projections of 

decreases in soil C and N pools showed a strong negative relationship with temperature. The 

responses of other state variables (e.g., NPP, streamwater discharge) are non linear due to effects 

of precipitation quantity and soil water and linkages with temperature change. Nevertheless, this 

framework could help guide policy makers and managers to make appropriate decisions to 

mitigate effects and ensure the continuation of ecosystem services and facilitate adaptation to 

changing climate. Finally, it is essential that experimental forested watersheds such as those 

investigated in this dissertation be maintained and preserved. Long-term monitoring and 

measurements of meteorology, biomass, hydrology, and stream chemistry at these intensive sites 

is not only necessary for model parameterization and testing but it is essential to detect climate 

change signals over time.  

While the results of this dissertation provide insights into climate change impacts on 

forested watersheds in the northeastern U.S., there are still many areas of uncertainty regarding 
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climate change impacts on forested ecosystems. The following research suggestions could 

provide needed contributions to the overall assessments of climate change impacts on forests and 

their watersheds: 

o Studying the interactions of changing air pollution (e.g., tropospheric ozone, 

atmospheric deposition) and climate change across these watersheds; 

o Implementing RCPs projections of changes in emissions (e.g., N, S) instead of the 

assumption of “business-as-usual” of atmospheric emissions and deposition; 

o Cross-site analysis of model projections of high elevation forest watersheds across the 

U.S.; 

o Implementing simulations depicting multiple soil layers rather than current single-

layer; 

o Linking the model PnET-BGC to forest models in order to consider possible changes 

and shifts in composition of trees and species; 

o Assessing possible nutrient limitation under CO2 fertilization effects on vegetation 

growth; and 

o Evaluating the major drivers across site differences that affect the response to climate 

change. 
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8. Conclusions 

In phase 1 of the dissertation, I evaluated the hydrochemical response of a northern 

hardwood forest watershed to projected changes in climate and atmospheric CO2. A sensitivity 

analysis shows that model output is sensitive to climatic drivers that have changed in recent 

decades and are expected to change more in the upcoming decades (temperature, precipitation, 

solar radiation). As model calculations suggest that future changes in climate induce water stress 

(decreases in summer soil moisture due to shifts in hydrology and increased evapotranspiration), 

an uncoupling of plant-soil linkages and element cycling that can increase net 

mineralization/nitrification and soil and water NO3
-
 leaching and acidification. Forest 

fertilization associated with increases in CO2 appears to mitigate this perturbation somewhat. 

Moving forward, there is a critical need to better understand the interplay among multiple 

disturbances and legacies of these ecosystems in order to project their response to global change.  

Phase 2 provides new insights into the importance of the careful selection of statistical 

downscaling techniques and appropriate observations for “training” those techniques. It also 

introduces new sets of uncertainties beyond those generally associated with AOGCMs used for 

climate change impacts assessments in small forested watersheds. In this phase I compared and 

contrasted projections of temperature and precipitation derived from BCSD and ARRM 

downscaling techniques, and two different sets of observations; VIC grid and station-based. I 

evaluated how their differences were manifested through biogeochemical responses of a forested 

watershed using the PnET-BGC model. The choice of downscaling method had a profound effect 

on watershed hydrology, which in turn affected forest growth and stream chemistry. These 

projected changes were directly related to the ability of the downscaling technique to mimic 

observed precipitation, emphasizing the need for careful selection of observations for “training” 
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the downscaling technique as well as selecting a downscaling technique that appropriately suits 

the scale and topography of watershed. For climate projections of small watersheds, particularly 

for sites situated in complex, mountainous terrain, it is important to use point observations from 

within (or in close proximity to) the watershed in conjunction with the ARRM downscaling 

technique since this method relies on measurements from an observation station within or near 

the watershed boundaries. These measurements capture the actual variability of meteorological 

conditions for that watershed which improves the ability of the downscaling technique to mimic 

the local climate patterns especially for small watersheds situated in complex terrain. 

Phase 3 of this study provides insights into how climate change manifests differently 

through an array of forested ecosystems with a wide range of characteristics. I compared and 

contrasted potential responses of seven forested ecosystems in the northeastern U.S. to future 

climate change and conducted a cross-site analysis. I evaluated different site characteristics and 

how they affect watershed responses to potential future changes in climate. I investigated the 

responses of these watersheds and linked them to projected increases in mean annual 

temperature. Results indicate that vegetation plays an important role since it regulates the 

hydrological and biogeochemical cycles. All forest watershed sites show significant increases in 

evapotranspiration under future climate change due to warmer temperatures and an extended 

growing season. Model projections for sites where snow is currently prevalent, indicated the 

extent of snowpack accumulation will diminish significantly or disappear by the end of the 21
st
 

century. This change could impact local economies and businesses that depend on winter 

recreational activities, and put pressure on water supplies. Model simulations showed that under 

climate change, northern hardwoods forests experience drought and water stress during the 

growing season which affect their productivity and the rate of carbon, nitrogen and nutrient 
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assimilation. In contrast, the spruce-fir forests are susceptible to temperature stress due to their 

lower optimum temperature for photosynthesis than hardwood forests. This perturbation could 

affect the pulp and paper industry. Under a changing climate spruce-fir forests may be replaced 

with more temperature tolerant species. The streamflow projections are highly variable across 

sites with some showing significant increases in annual water yield, while others indicate 

decreases. As a result, forests across the Northeast and their downstream urban centers could 

face risks of both flooding or drought. This variability in response challenges policy makers and 

water resource and forest managers. One of the insights of this part of the dissertation is 

projected changes in NPP, carbon allocation in plants, and the humus C pool which could 

significantly affect the ability of these forests to sequester carbon and alter soil processes over 

the 21
st
 century.  
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