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positive to negative through time at the 0.15 m HRTS B3 location using a 0.07 m analysis 

window.  This allowed the estimation of bounds for determining whether flux was significantly 

different than zero ms-1 under these site specific conditions. 

Vertical flux rates determined with heat tracing were compared to nominal travel times 

[Harvey et al., 2005; Triska et al., 1989] estimated during a 9-hr constant rate Cl- injection on 

August 8-9th.  Profiles of pore water were collected in the streambed three times (3.7 hr, 5.3 hr, 

8.3 hr into the injection) within 0.2 m of each HRTS using piezometer nests screened at 0.05-

0.10, 0.15-0.20 and 0.30-0.35 m depth intervals.  Nominal vertical velocities were multiplied by 

the general porosity determined for the site (0.35), which was assumed to equal effective 

porosity, to calculate vertical hyporheic flux which is directly comparable to that derived from 

the temperature records. 

Temporal Evaluation of Flux Patterns  

 A linear trend analysis was performed for every depth along each HRTS profile to 

identify any general patterns in flux through time.  Hyporheic flux patterns may be expected to 

change as the streambed pressure head boundary changes through time due to changing stream 

discharge and associated velocity and stage.  Therefore, changes in vertical hyporheic flux over 

time were compared to changes in stream discharge over time, as a proxy for total pressure head 

change.  The strength and significance of correlation between discharge and vertical flux were 

explored for every depth along each HRTS profile.   
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depths resulting from physical processes rather than instrument error or offset.  Although many 

individual loggers have higher precision than the DTS system used at Cherry Creek, the system 

parameters could have been reasonably adjusted to yield much better HRTS precision as has 

recently been shown by Suárez and Tyler [2011].  Finally, although temperature precision was 

relatively coarse (0.2 °C), the method still performed well despite a very modest input signal 

(amplitude of 0.6-1.9 °C) associated with high stream discharge and cold baseflow.  Many 

systems of interest would have larger diurnal amplitude swings during summer recession, even 

large rivers [e.g. Constantz et al., 1994; Vogt et al., 2010].  Moving forward, the spatially 

distributed temperature data collected with HRTS may be particularly useful to inform 2-D and 

3-D numerical models (e.g. SUTRA, FLOW 3-D) which can be used to describe the total vector 

of oblique hyporheic flow. 

Managing the shear amount of data produced by high-resolution temperature monitoring 

systems can be challenging.  Fortunately, programs are available for software such as MATLAB 

which can automate and streamline these processes significantly.  We utilized the program 

VFLUX [Gordon et al., 2012] to seamlessly integrate many existing data manipulation and 

signal processing tools to perform many complex processes on large data sets quickly and 

cleanly.  Over 100,000 individual flux measurements were generated from pure diurnal signals 

(Figure 5A) extracted from the original temperature records for each profile above Cherry Creek 

beaver dams.  This kind of computational efficiency allowed us the flexibility to use the high-

resolution records to their greatest potential.  This flexibility included integration of multiple-

sized sliding analysis windows that allowed us to optimize the evaluation of vertical flux which 

was highly variable with depth along vertical profiles. 
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Conclusions 

 The purpose of this project was to use high resolution temperature data to investigate the 

complicated hyporheic exchange dynamics observed around beaver dams, and to evaluate the 

feasibility and benefits of using multiple simultaneous fiber-optic HRTS over an extended period 

of time in the stream environment.  The high-resolution temperature records provided a rich 

picture of flux through the streambed with depth through time, and similar patterns of diurnal 

signal transport were observed by general morphologic unit above two dams of varied size.  The 

attenuation of the diurnal signal was used to quantitatively describe the vertical component of 

hyporheic flux from the stream into the subsurface using a 1-D flux model.  This flux was patchy 

with evident “hot-spots” of seepage near the dams though glides and bars, and more modest 

shallow flux through pools and bar locations farther upstream from the dams.  Because 

hyporheic flux is fundamentally driven by streambed pressure and resisted by streambed 

hydraulic conductivity and competing groundwater inflow, the different observed flux patterns 

resulted both from the proximity to the dam step and from bedform heterogeneity.  Specifically, 

shallow vertical flux at the glides and two close bar locations was 1.6 to 0.9 md-1, while shallow 

vertical flux at the upstream bars and pools was generally less than 0.3 md-1.  These general 

patterns of flux were supported with conservative transport of Cl- injected into the stream.  All 

profiles showed a transition to horizontal flow with depth across a spectrum of hyporheic 

flowpaths, with a penetration of vertical flux to approximately 0.45 m at glides and close bars 

and only approximately 0.12 m at pools and upstream bars.  Finally, the upstream bars showed 

increasing flux with falling discharge over the month, which may be due to pumping model type 

exchange, while the other bar locations showed reduced flux with time, which may be due to 

decreasing head gradients over the beaver dams with decreasing stage. 
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 The HRTS design and installation was successful, with strong signal transmission 

allowing the system to be run in double-ended mode which aided in calibration.  As all HRTS 

were run inline off the same unit, all data were on the same timestep, and could all be adjusted 

simultaneously for instrument drift over the extended data collection period.  The high-resolution 

temperature records allowed us to optimize the analysis window spacings to flux magnitude, 

which was highly variable in space.  The fiber-optic HRTS is a valuable emerging tool, which 

can be used to describe hyporheic flow dynamics at high-resolution across a spectrum of 

flowpaths.  These sensors are an important addition to emerging geophysical and analytical 

methods which are moving my descriptions of the heterogeneous hyporheic zone beyond the 

point scale, to a more useful understanding integrated through space and time. 
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Tables 

Table 1. The morphology and longitudinal HRTS distances above beaver dams 1 and 2. 

HRTS Distance from beaver dam 
(m) Morphology at HRTS location 

B1 4.3 edge of bar, fine gravel/silt 
B2 3.1 middle of bar, fine gravel/silt 
B3 1.0 middle of bar, fine gravel/silt 
B4 1.7 middle of bar, fine gravel/silt 
P1 2.7 bottom of pool, fine silt/clay/organics 
P2 1.0 bottom of pool, fine silt/clay/organics 
G1 1.7 mid-glide, fine silt/sand 
G2 1.0 end of glide, silt/sand/gravel 
G3 1.0 mid-glide (lateral), fine gravel/silt/sand 

 

 

 

Table 2.  The estimated thermal properties of the saturated streambed used for 1-D modeling of 

vertical hyporheic flux with the estimated uncertainty (standard deviation) of each parameter 

used for the Monte Carlo analysis in italics. 

Thermal Parameter Estimated Value 
porosity (n) 0.35 (0.05) 
volumetric heat capacity of the sediment (Cs) 2.09x106 (8.4x104)  Jm-3oC-1 
volumetric heat capacity of the water (Cw) 4.18x106 (1.3x104) Jm-3oC-1 
thermal dispersivity (β) 0.001(0.0001) m 

thermal conductivity of the saturated sediment (λo) 1.4 J s-1m-1 (0.21) ºC-1 
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Figure 2.  From left to right this figure shows the fiber-optic HRTS and adjacent piezometer nest, 

which are installed in the streambed and used to produce: A) a high-resolution map of vertical 

flux rates over time, shown here with corresponding pore water sampling screened intervals 

marked with transparent white bands and sampled on days 194, 203, 210, 216 and 221; and B) 

the median flux rate with depth over the six-week study period, shown here with the mean redox 

scores for hyporheic pore water collected from the piezometers at corresponding depths. 
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Figure 3. Panel A) Median vertical flux, and B) mean redox score by depth over the study period 

along each streambed profile.  The vertical, black dashed lines in panel A show the range of flux 

values that are not significantly different from zero [Briggs et al., 2012]. 
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Figure 4.  Panel A) Vertical flux through time, averaged over the 0.05 to 0.10 m depths at the 

profiles that showed significant increasing trends over the month (B1, B2, P1), and a coincident 

drop in flux around ordinal day 200.  Pore water chemistry was sampled on days shown by the 

geometric symbols and vertical black lines. Panels B, D) The broad “redox envelope” created by 

temporal variability in residence times at the low-flux B2 and P1 profiles; and C) The narrow 

envelope redox envelope generated by changes in residence time within the oxic range at the 

high-flux G1 profile. 
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Figure 5.  Spatial and temporal mixing relationships between the stream and streambed water for 

“conservative” species that had strong concentration differences between surface and 

groundwater.  Variability in the streambed was generally in the range of surface water values.  

Water samples from the riparian wells appear to follow a different mixing line that trended 

toward the deeper groundwater. 
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Figure 6.  Dissolved organic carbon (DOC) in the stream showed some temporal variability but 

no significant trend over the study period, error bars for the stream samples were determined 

through duplicate samples and several of these error ranges were smaller than the plotted 

symbol.  DOC in the pore water at 0.08 m on days 194 and 216 was also variable with the 

highest values found at the pool locations. 
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Figure 7.  Relationship between mean residence time and the mean PCA score, [DO] and [NO3
-] 

at 0.08 m depth at each profile and the stream (n=10).  A quadratic polynomial was fit to the 

PCA data with an R2 of 0.93.  This empirical relationship was used to interpolate residence times 

for depths where the flowpath length was unknown (Table 4). 
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Figure 8.  Change in hyporheic redox score from stream values above Dam #1 at each sampling 

event.  Increasing shallow flux through time at B2 and P1 reduced residence times to create a 

shallow oxic zone; while closer to the dam decreasing deep flux/increasing residence times at G1 

and G2 formed a zone of anoxia at depth.  The low flux event at the upsteam locations prior to 

sampling on day 203 resulted in a “cold moment” of shallow biogeochemical cycling and 

increased anoxic conditions. 
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Figure 9.  Rru:Raz ratio in the streambed sediments of varied morphology and flux condition. 

Larger ratios indicate pore water has experienced greater aerobic respiration.  All hyporheic 

locations indicate reactive flowpaths, as ratios are higher than both the 0.17 input ratio (dotted 

line), and the 0.18 net stream ratio after 1.4 km transport. 
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