.Al P Fiuids

Numencal simulation of a gas—hqund flow in a f xed bed
Sangkyun Koo and Ashok S. Sangani

Citation: Phys. Fluids 13, 141 (2001); doi: 10.1063/1.1331314

View online: http://dx.doi.org/10.1063/1.1331314

View Table of Contents: http://pof.aip.org/resource/1/PHFLE6/v13/i1
Published by the American Institute of Physics.

Related Articles

Clouds of particles in a periodic shear flow
Phys. Fluids 24, 021703 (2012)

The dynamics of a vesicle in a wall-bound shear flow
Phys. Fluids 23, 121901 (2011)

A study of thermal counterflow using particle tracking velocimetry

Phys. Fluids 23, 107102 (2011)

Particle accumulation on periodic orbits by repeated free surface collisions
Phys. Fluids 23, 072106 (2011)

Drag force of a particle moving axisymmetrically in open or closed cavities
J. Chem. Phys. 135, 014904 (2011)

Additional information on Phys. Fluids

Journal Homepage: http://pof.aip.org/

Journal Information: http://pof.aip.org/about/about_the_journal
Top downloads: http://pof.aip.org/features/most_downloaded
Information for Authors: http://pof.aip.org/authors

ADVERTISEMENT

Running in Circles Looking
for the Best Science Job?

Search hundreds of exciting [oTreo
new jobs each month! ;

http://careers.physicstoday.org/jobs [=]
physicstoday JOBS

Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions


http://pof.aip.org/?ver=pdfcov
http://careers.physicstoday.org/post.cfm?ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Sangkyun Koo&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Ashok S. Sangani&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.1331314?ver=pdfcov
http://pof.aip.org/resource/1/PHFLE6/v13/i1?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3685537?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3669440?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3657084?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3614552?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3606394?ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://pof.aip.org/about/about_the_journal?ver=pdfcov
http://pof.aip.org/features/most_downloaded?ver=pdfcov
http://pof.aip.org/authors?ver=pdfcov

PHYSICS OF FLUIDS VOLUME 13, NUMBER 1 JANUARY 2001

Numerical simulation of a gas—liquid flow in a fixed bed

Sangkyun Koo and Ashok S. Sangani®
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse, New York 13244

(Received 5 February 1999; accepted 10 October 2000

A countercurrent gas—liquid flow through a fixed bed of spherical particles is examined numerically
by solving the particle-scale equations governing the gas and liquid flows. The liquid is assumed to
flow along the surface of the particles forming a thin film. The case of small gas flow rates is
examined in detail first. In this limit the presence of the liquid film increases the gas pressure drop
over its value for a dry bed by three mechanisms: The liquid film makes the apparent size of the
particles larger, decreases the pore space for the gas flow, and, with its velocity pointing opposite
to the mean gas flow, increases the apparent velocity of the gas compared with the particle surface.
The excess pressure drop is determined for both periodic and random arrangements of particles.
Next, the case of high gas flow rates where the traction exerted by the gas at the gas—liquid interface
is comparable to the weight of the liquid film is examined. In this regime the liquid holdup increases
with the gas flow rate and the pressure drop-gas velocity relation is nonlinear. The results of
numerical simulations are compared with approximate models and it is shown that a simple capillary
model yields reasonably accurate predictions for the liquid holdup and gas pressure dr2P01©
American Institute of Physics[DOI: 10.1063/1.1331314

I. INTRODUCTION computing the pressure drop-velocity relationship for well-
Fixed beds of particl del loved in chemi Idefined geometry of fixed beds. For example, Sorensen and
Ixed beds of particies are widely employed in chemica Stewart® Zick and Homsy* and Sangani and Acrivoson-

industry for absorption, stripping, distillation, and other _. . : -
. . - sidered the case of equal-sized spheres arranged in a periodic
separation processes, and as reactors to provide efficient con- : i .
T : array while Lad and Mo and Sangahtonsidered the case
tact between liquid and gdser vapo) phases. Typically, the

gas flows upward and the liquid flows downward under theof random arrays. These studies were limited to small Rey-

action of gravity through the bed. An important problem in nolds numbers for which the fluid inertia is negligible. The

. . ﬁgfect of inertia at moderately large Reynolds numhagsto
these processes is to predict the gas pressure drop across the . ! )
bed and the liquid phase volume fractidmldup as func- about 100 have been examined for the two-dimensional case

tions of the gas and liquid flow rates and the particle volumeOf periodic as well as random arrays of infinitely long fixed

fraction. Another problem of interest is the prediction of cylinders by Ghadddrand Koch and Ladd.

critical gas flow rate above which the liquid starts accumu- 1 contrast to the above, rigorous analytical studies solv-
lating at the top of the bed, a condition known as the floodiN9 the eguations governing the gas and liquid motion at the
ing particle-scale are lacking. Instead the focus has been on us-

The case of single-phase flow through a fixed bed ofNg volume-averaged macroscale equations to understand

particles has been examined extensively in the literature/arious flow regime transitions in fixed beds including the

both theoretically as well as experimentally. Probably thePnSet of flooding in the countercurrent gas-liquid ﬂBWﬂd _
first systematic approach was due to Cariaho modeled the Stflag% uniform flow to p_U|S!ng in concurrent gas—liquid
the void space in the fixed bed by straight capillaries whosdOws. "~ Although the constitutive relations and the depen-
diameter is taken to be a function of the volume fraction ofde€nce of forces acting on the liquid and gas phases on the
the particles and the size of particles. The pressure drop iMolume fractions of the individual phases are based on em-
the fluid as it moves through the bed as calculated with thigirical correlations, these studies have been generally suc-
model with one adjustable parameter is shown to comparéessful in explaining, at least qualitatively, many of the mac-
very well with the experimentally measured pressure drop if0SCopic features observed in these systems:Ng the
packed beds of spherical particles when the Reynolds nunfther hand explained the origin of various flow regime tran-
ber based on the particle diameter and average velocity of th#tions with the help of a semirigorous microscale model of
fluid is less than about 10. The pressure drop at larger Reyfixed bed. Observations on various flow regimes for gas—
nolds number can be evaluated with an empirical extensiofiquid flows through fixed bed of particles may be found in
of the above analysis using the so-called Ergun equation. the review articles by de Santos, Melli, and Scrivén.

In recent years analytical efforts have been directed at The present study is, to our knowledge, the first attempt
at directly solving the gas-Iliquid flow through an assem-
blage of fixed particles. Because of the complexity of these

dAuthor to whom correspondence should be addressed. Telephon(ﬁOWS in general the problem we shall examine is consider
315-443-4502; Fax: 315-443-2559; electronic mail: -
asangani@mailbox.syr.edu ably idealized. Nevertheless, it is hoped that such a
1070-6631/2001/13(1)/141/16/$18.00 141 © 2001 American Institute of Physics
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microscale-based approach may help develop, for exampl&ye use a finite difference method to determine the liquid
better expressions for the forces on the individual phases arfdm thickness and a boundary perturbation technique to-
may provide better insight into instability phenomena thatgether with the method of multipole expansion to determine
may originate at particle scale for which the applicability of the gas velocity distribution. The steady state solutions of the
the averaged-equations is questionable. microscale equations are determined and compared with the
In general, the phenomenon of gas—liquid flows throughpredictions based approximate models and the averaged-
a fixed bed of particles is influenced by a number of paramequations used in previous investigations. The agreement
eters even when the bed consists of equal-sized spheres awith the approximate models is seen to be quite good.
the Reynolds number based on the average gas velocity is The rest of the paper is organized as follows: Sec. I
small. At very low gas flow rates the liquid trickles down gives the equations governing the liquid and gas velocities.
from one particle to the next down the bed with the liquid Section Il considers in detail the low gas flow regime while
flow governed by the wetting characteristics of the particlesSec. IV examines the loading regime. Finally, Sec. V sum-
gravity, the geometry of the bed, and the nature of liqguidmarizes some of the important findings of the work.
distributor. We shall consider here the case of wetting liquids
with low e_nough flow rates such that the liquid film arqund Il. FEORMULATION OF THE PROBLEM
each particle can be regarded as small compared with the
size of the particles. In principle, the liquid flow distribution As mentioned in the Introduction, we shall assume that
at low gas flow rates can be computed given the position ofhe liquid wets the particles completely and thereby forms a
the particles and the liquid distributor geometry but, to keegfilm around each particle in a fixed bed consisting\opar-
the number of parameters to a minimum, we shall limit theticles placed within a unit cell of a periodic array. The liquid
flow distribution to two special cases. In the first case, themay also form drops that may travel from one particle to the
liquid arrives at the top(the north polg of each particle, nextin the bed. The effect of these drops on the gas flow will
flows down under the influence of gravity along the particlebe neglected in the present analysis. This approximation is
surface, and leaves the particle from its lowest pdthe justified when the drop size is small compared to the size of
south polg. The liquid film in this case is nonuniform with the particles. We shall also neglect the effect of inertia in
the maximum thickness occurring at the north and southdescribing the gas flow. This may not be a reasonable ap-
poles of the particle. The second case corresponds to a urproximation for commercial packed beds in which the par-
form film thickness. While one expects the liquid flow to be ticle size is often of order of 1 cm but the case of small
unaffected by the presence of the gas when the flow rate dkeynolds numbers is the easiest to treat analytically and may
the latter is small, the gas flow rate will be influenced by thebe expected to apply up to Reynolds number of about 10.
presence of the liquid film around each particle and we acThe results obtained here may be adjusted, perhaps @ an
count for this in our analysis using a domain perturbationhoc manner by adding an Ergun correction typical of single
technique. The presence of the liquid increases the pressuphase flows, before they may be applied for predicting pres-
drop in the gas by three mechanisms: first, the liquid filmsure drop or liquid holdup.
appears to make particle bigger in size and this causes an For small Reynolds number flows the gas velocity satis-
increase in the drag exerted by the gas on the particle; sefies the well-known Stokes equations of motion. The bound-
ond, at finite volume fractions of the fixed particles, the ef-ary conditions for the gas and liquid flows are the usual
fect of film is to effectively decrease the pore space for thekinematic and dynamic boundary conditions at the gas-—
gas flow which in turn leads to a greater drag force; andiquid interface, the no-slip condition at the particle surface,
third, the downward moving liquid film at the particle sur- and the periodicity conditions for the gas flow. These equa-
face makes the gas appear to have a negative slip velocity &abns are supplemented with additional conditions specifying
the particle surface causing thereby an effective increase ithe total gas and liquid flow rates through the bed.
the speed of the gas relative to the particles. We use a
method of multipole expansion to determine these effects
separately for both random and periodic arrays of spheres.“l' LOW GAS FLOW RATES

The preceding discussion applies to the low gas flow et us first consider the case of gas flow rates for which
rates where the liquid flow and film thickness are governedne traction exerted by gas at the gas—liquid interface is neg-
by the gravity force acting on it and the viscous stresses dlgible. For the gas to affect negligibly the liquid flow due to
the solid-liquid interface. The resulting gas pressure dropgravitational acceleratiog acting on a film of thickness,
although different from that for the dry bed, varies linearly we must havep,gé> f wherep, is the density of the liquid
with the superficial gas velocity owing to the small Reynoldsand f, is the magnitude of the shear stress produced by the
number. At high gas flow rates the shear stress caused by thgs at the gas—liquid interface. For Stokes flow conditigns
gas at the gas—liquid interface will also affect the liquid film jg O(u4Ug4/a), abeing the radius of the particlg,, the gas
thickness. The average film thickness increases with the iniscosity, andU, the superficial gas velocity through the

creasing gas flow rate and the resulting pressure drofbed. Thus, the case of low gas flow rates corresponds to
velocity relation becomes nonlinear in this gas flow regimeug<ug| with

referred to in the chemical engineering literature as the load- 5

ing regime. Fixed beds are usually operated in this regime ; — P19a2 1)
. oo . . . L gl '

since it yields higher residence time for the liquid in the bed. Mg
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where &, is the characteristic liquid film thicknegdefined  The characteristic liquid velociti is given by
more precisely later, cfi4)]. We shall refer toUgy as the >

i i i i P96,
loading velocity as it represents roughly the gas velocity — p— _ )
above which the liquid flow and liquid phase holdup will be 2
affected by the gas flow and the gas pressure drop—velocity
relation will be nonlinear even in the Stokes flow regime.

This_ regime will be considered in more detail in the next occounted for by simply replacing with the density differ-
section. i ) L . encep;—pg in the above expressions, the former, i.e., the

~ ForUg<Ug we can first determine the liquid velocity neglect of surface tension, calls for some discussion. When
dlstrlpgtlon and use it subsequently t(_) prowde the boundary,e' g rface tension effects are important the pressure inside
conditions for the gas flow. As mentioned in the Introduc-ye jiquid will vary as the curvature of the film changes along

tion, the liquid flow distribution depends in general on ay,q gyrface of the particle. With the pressure in the gas phase
number of factors including wetting characteristics, the nagq; ¢q zero, the liquid flow is now driven by the tangential

ture of the liquid distributor, and the spatial configuration Ofcomponent of.g—Vp,. Thus,p,g, in (2) must be replaced
particles. We shall consider here the simplest case in whicB e

the liquid flow on each particle is the same and governed by

gravity. When the liquid film thickness is small compared 1 ap
with a, the liquid flow caused by the action of gravity gives P96~ 3 3¢
rise to a quadratic profile

In the above calculations we have neglected the effect of
surface tension and the gas density. While the latter could be

€)
wherep; is the pressure difference across the gas—liquid in-
terface which for thin films may be evaluated using

—ovon=271- % L v2siocsa
p=oV.n=— 2 23Vs (o°1a%)

P19s 2
u=-—(2yé—y°)ey, 2
=2, (2YOTY)e 2)
wherey is the distance from the surface of the partidgis

the unit vector along the polar anglemeasured from the _ o _
x,-axis, the direction opposite to the mean liquid flow, andwhereo is the surface tensiom, is the unit normal vector at

g,=g sin6. The film thickness> depends on the total liquid the gas-liquid interface pointing into the gas phase, Bid
flow rate. If the liquid enters ap=0 and leaves fromp IS the surface Laplacian on a unit sphere, i.e.,
= at a steady volumetric flow rat®,, then we have, by

. (10

: ; : : d d 1 [
integrating the velocity over the azimuthal angleandy, 2__ = " |ginp— -

grating y gleandy. Ve=gng (w(sma(w +smz€<ﬁ¢2). (11)

. g P9 .
Qi=2masin Gfo luj|dy= 3—,&'2776153 Sir? 0. () Now the liquid volumetric flow is given by, in lieu of
3,
The film thickness is then given by
8 pigs° _ o8 . 1 4 5
e 3uQ |\t Q== —2ma|si f+ ———sinf— ——{—25+Vs}|.
8=8(sin)"?®  with &= 2mapg) (4) 3u a’pg 6o 90
|

(12)
We note that the liquid film thickness divergestas:0 and 1,5 \hen the surface tension effect is important it is nec-
0— m. This is a consequence of the assumption that all theggary 1o integrate the nonlinear third-order differential equa-
liquid arrives atf=0 and leaves the surface froW=m jon (12) together with suitable boundary conditions for de-
where the cross-sectional areas are essentially zero and g mining the liquid film thickness distribution instead of the
gravity force for flow alpng the surface is zero. If we assUMegimple, algebraic equatiof8). Fortunately the nondimen-
that.not all of the Ilqwq arrives at=0 but over a small  giona1 surface tensionr8,/a3p,g, multiplying the deriva-
portion of the sphere witl#< 6, and leaves the sphere from e terms is very small unless the particle is smaller than 1
m— 0p<6<r, then the film thickness will be finite every- . in radius. For example, for an air—water system with
where on the sphere. Accordingly, we require that the VOIU'5O/a=0.05, o=70 gcm/s, anc=3 mm, the above nondi-
metric flow rate forg< 6, be given by mensional number is less than 0.04. Neglecting the surface
Q((sinb/sinf,)? for 6<8, (5)  tension term altogether frod2) will not be uniformly valid
approximation since the third-order differential equation will
then be simply reduced to an algebraic equation but this
approximation will break down only near the polés 0 and
7 where, how the liquid arrives or leaves the surface would

with a similar expression applicable to— 6,<6<ar. With
this flow distribution the film thickness and the velocity of
the liquid at the gas-liquid interfage= 6 are given by

8=5,Ho(0), u,=AsinoH?2, (6)  need to be specified in more detail to determiheWe ex-
pect the simple expressiof) to hold for mosté values
where except near the poles.
Ho=(sing) 2 for fy<@<m— b, With the liquid velocity and film thickness determined
. - (77 Wwenow turn to the problem of determining the gas velocity
Ho=(singy)~#® for <6, and 7m— @o<f<m. field. The boundary condition for the gas motion is the con-

tinuity of velocity at the gas—liquid interface. We shall treat
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dp/a as a small parameter and determine the gas velocity n o
field using a domain perturbation technique correct to  p%,_,= > (PS&YumtPSeYymr "1 (n>0).
O(6y/a). The liquid velocity and film thickness determined m=0 (19
above are valid only t®(1). Theanalysis of the liquid flow
iS contmu_ed _toO(50/a) in Appendix A. Let us expand the (Note thatp_,=y_;=¢_,;=0.) In (19 PS% and PS¢ are
gas velocity in powers ob,/a as the coefficients of the singular harmonics and
=y9 W4... -~ )

Ug= U+ (Go /@)U (13 Yom=Pm(cos#)cosme, Y,n=Pn(cos#)sinme

Now, as shown in Appendix A, the continuity of the velocity (20

at the gas—liq(uoi)d inter(fgce yields the following boundary gre the surface harmonics wif' being the associated Leg-
conditions foru™ andu®™: endre polynomial and¥ and ¢ the polar and azimuthal
(14) angles defined byx;—X{=r cos6, X,—X5=r sinfcose,

u@=AsingH%e, atr=a, SRR ) _
and x3—xg=r sindsing. The singular harmonicg_,_1

o u® _ . and ¢ _,,_, are likewise expressed in terms of coefficients
ut’=—aH, o +A[(3/4)sinH TS TSa pSe andPse.

The harmonics with non-negativeare expressed as
—(1/3)cosfHzZH,le, at r=a, (15)

n
whereH is the scaled liquid film thickness given ly). Pn= > (PLay +PLAY " n=0 (21
To model an infinitely extended fixed bed of particles we m=0
follow the standard practice and assume the bed to consist @fith similar expressions fox? and ¢ .
a periodic array with each unit cell of the array containkhg To satisfy the boundary conditions for the velocityrat
spherical particles whose positions are generated using @3 it is convenient to use
specified spatial distribution law. The above boundary con-
ditions (14)—(15) must be satisfied on the surface of each ”
particle. In addition, the velocity must be spatially periodic. ”r:n;x (NCntbp)rpn+(n/r) én, (22
Finally, an additional constraint to be satisfied is

o

T n=-

lfv UgdV=U, 1g  Velsm— 2 n(n+Dleypot /i, (23
9

©

whereU, is the superficial gas velocity through the beds
the volu?ne of the unit cell, andy is the volume occupied by & - (VXUg)= n;x n(n+1)xn/r,
the gas within the basic unit cell.

We shall use the method outlined in Mo and Sanfani Whereu, is the radial component of the velocitys= u4e,
for determiningu(o) andu(l)_ Brieﬂy, the method consists of + U¢e¢ is the tangential Velocity at the surface of the Sphel’e,
writing a formal solution of Stokes equations of motion in and
terms of derivatives of a periodic fundamental singular solu- g 1
tion of Stokes equations. This formal solution containing a ~v=¢ —+ -V, (25)
number of undetermined coefficients satisfies the periodicity o T
and the governing Stokes equations of motion. The coeffity,o expressions given above apply equally weltf®) and
cients are subsequently determined by expanding the formak1) The solutions for these two quantities differ mainly
solution around the surface of each particle and satisfying thfhrough the boundary conditiorisf. (14) and (15)]. Let us
boundary conditions on the particle surface. The expansioganote by the velocity distribution at =a. Thenv for the

near a representative particte is expressed in terms of u©® andu™® problems are given by the right-hand sides of
spherical harmonics according to the well-known Lamb’s(l4) and (15), respectively.

(29)

(15
solution; Let us expand, , V- Vs ande, - (VX v,) also in spheri-
% cal surface harmonics. Thus, we write
)= 2 [(Car?VpR+barpf) + VX (rxn) + V41, »
a7 Ur:nzo mE:O L@ amYnmT (0)amYnml- (26)

L
with 1=x-x" and Similar expressions are written f&f,- vg ande, - (VXVvg) in

n+3 -n terms of coefficients denoted byVg-Vilom, [&-(V
= 2N+ 1)(2n+3)’ bn:(n+1)(2n+3)- (18 XVslom, and the corresponding quantities with tilde. The
coefficients ¢,)nm, (Vs-Vs), etc. appearing in these expan-
Here,p,, ¢,, andy, in (17) are the spherical harmonics of sions can be determined by integrating the functions multi-
ordern. The harmonics of negative order are singular at plied by surface harmonics over a surface of a unit sphere.
=0, and we express them as Thus, for example, sincﬁs-vg°)=(2A/3)cos€H2, we have
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xou 2A [5_of37sin6CcosOHY (6, ¢)dAde
snme3 JT127Y2 singdode '

(Vg v
(27)

The surface of the sphere was discretized into a number afoo1
triangular elements to evaluate the integrals appearing in th@005

expressions such as above numerically.

Now using the orthogonality of surface harmonics and

the expression$22)—(24) the boundary conditions at=a
yield

[—(n+1)c_, 1+b_, 1]P3%a "+[nc,+b,]PLra" "t
"= () nm, (28)
e
(29)
(30

—(n+1)dyta ""?+nd] a
—n(n+1)[Pysa”
=(Vs'Ve)nm,

—n(n+1)[Tyea”

n rasn+1 S,y —
+P pa" t+dpra

"2 Thea N =[e- (VX Vo) lnm,

plus similar equations involving the coefficients % ,,.

The singular coefficients in the above equations repre-
sent the effect of particle, whereas the regular coefficients

represent the effect of other particles and the imposed flo

As mentioned earlier, Mo and Sanganirote the expression =
for the velocity in terms of fundamental periodic smgular]c

solution of Stokes equations; as

ui(x):u;wzl Gvij(x—x9), (31)

whereG{ is a differential operator defined in terms of the
in such a way that F=6mujaUgK(¢)| 1+ (5p/a)f,+
Gi'vij(x—x*) corresponds exactly to the singular terms in
The coefficients of the regular terms in the

(Dsa'

o, etc.,

smgular coefficientsPy %,

(17) asx—x*.
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TABLE I. The coefficientsK andf,— f5 for the face-centered cubic array.

f2 f3

6 Ns K fo Oo=m/20 Oy=ml40 fo=m/20 BOy=m/40

7 122 1.34 0.84 0.84 -1.73 —5.77

7 143 157 0.84 0.84 -1.73 —5.75

7 3.76  3.45 0.77 0.77 —-1.60 —5.38

7 7.05 5.27 0.70 0.70 —1.46 —4.93

7 1279 7.54 0.62 0.62 -1.29 —4.39

0.4 7 2391 10.52 0.53 053 -111 —3.78
9 2391 10.54 0.53 053 -111 —3.78

0.5 9 47.96 14.63 0.43 043 -0.91 —3.10
11 4796 14.63 0.43 0.43 -0.91 —3.10

0.6 9 107.60 20.25 0.32 0.32 -0.68 —3.10
11 107.53 20.25 0.32 0.32 —-0.69 —2.36

0.7 9 277.27 26.52 0.21 0.21 -0.45 —-1.57
11 279.29 26.62 0.21 0.21 —-0.45 —1.55

280.45 26.81 0.21 0.21 -0.45 —1.54

The above represents the force exerted by gas at the gas—
liquid interface. To calculate the total force on the particle
one must add the weight of the liquid film surrounding the
article. The pressure drop in the gas will be related to the
rce exerted by the gas, i.e., that given 33 [cf. (35)].
or the sake of brevity therefore we shall refer to the above
orce by gas on the gas-liquid interface as the force on the
particle.

Results The results for the average force on a particle
are expressed in terms of coefficiettsand f,—f; defined

by

A
U—{f2+(50/a)f3}},
g
(39

Lamb’s solution, i.e.P"¢, T etc., are related to various WhereK represents the nondimensional drag on the particle

nm?

derivatives of the regular part af at x=x“. The reader is
referred to Mo and Sangdrfior more details.

in a dry bed f, represents the effect of the finite thickness of
the liquid film on the force exerted on the particle by the gas

Finally, U* can be shown to be the same as the superfioving with finite mean velocity, ant,, andf; represent the

cial gas velocity. Since the integralswf and its derivatives
over the unit cell vanish, integratin@l) over the volume
occupied by the gas gives

1 N
ngu*—;Z n-urdA,
a=1 Sgl
(32

whereV“ is the volume occupied by the particdeand the
surrounding liquid film,r=x—x?, S is the gas-liquid in-

udv= u*——E

terface enclosing particle. Note that use has been made of
the identityu=V - (ur) together with the divergence theorem

effect of downward motion of liquid. Recall th& is the
characteristic liquid velocity at the gas—liquid interface. Note
also that the force on a particle is nonzero even when there is
no net gas flow through the bed. The downward moving
liquid drags along with it some gas and to compensate for
this the gas away from the surface of the sphere must move
upwards causing a net nonzero force. The pressure gradient
in the gas is related to the force by

dpP

~ 3 NFE o F

(35

to convert the volume integral into the surface integral. Nowwheren is the number of spheres per unit volume of the bed

u-n=0 at the gas-liquid interface proving thereby thkt
=U,4

The coefficientsP; s,
dla asP =P+ (8,/a)P(M+- -+ and(28)—(30) were re-
arranged and truncated as in Mo and Sangamnisolve for
these coefficients. The force on partielen the x;-direction

(antigravity direction is related toP3;’ by

Fe= —4wugPiba. (33

and ¢ is the volume fraction occupied by the spheres. The
results forK and f;—f5 for the case of face-centered cubic

etc., were expanded in a series in arrays, which permits the largest range of particle volume

fraction, are given in Table I.

The results for the dry bed pressure drop, or equivalently
K, have been obtained previously for periodic arrays by Zick
and Homs$ and Sangani and Acrivosand for random ar-
rays by Ladf and Mo and SangariOur results for periodic
as well as random arrays f&rshown in Fig. 1 were found to
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FIG. 1. The dry bed drag coefficieKtas a function ofp. The filled circles o ) )
are the results for the simple cubic arrays, pluses for the body-centered cubfdG- 2. The coefficient; as function of¢, for the face-centered cubic array
arrays, squares for the face-centered cubic arrays, and crosses for the ré}{_spheres._ The fllled_arcle_ represents the exact results and the dashed line
dom arrays of spheres. the approximate relation given 4@8).

be in excellent agreement with the results obtained by thes@iz€ Of the particle while the second term represents the ef-
investigators. The results for random arrays were obtained bict of decrease in the pore space volume fraction for the gas
averaging over 20 configurations generated using a hardl©W- The results of numerical computations fby for the
sphere molecular dynamics code which employed 16 parf_ace—centered cubic array are compared against the above
ticles per unit cell. approximate estimate fdr in Fig. 2. For small volume frac-
The results forf; will be compared with an approximate tions, K’ was evaluated analytically by differentiating the
relation obtained by assuming that the main effect of the filmSmall ¢s expansion fork given by Sangani and Acrivos
is to increase the apparent size of the particle and the appa\pmne numerical differentiation using a central differe_nce for-
ent particle volume fraction. Thus an approximate relationmula was used forys>0.3. We see that the numerical re-

for the force on a particle is obtained by writing sults for f, are in excellent agreement with the simple ex-
pression(38).
Fapprox=67pgUg(a+ 5o)K(hst ) The above approximate theory assumed that the film
thickness is uniform and equal & while the film thickness
=6mugUqaK(gps) used in computingf; was given byéd= ,(sin6) 2. To
8o #a K’ check the accuracy of the numerical results, we have also
X|1+ —{1+— —+0(5/a)?|, (36)  determined, for the case of a uniform filnd= &, for which
a % K $,=3¢(5y/a) andf, is given by
v_vhere_K’=dK/d¢s and ¢, is the liquid phase volume frac- f,=1+3¢K'IK. (39)
tion given by
The above result is exact for periodic arrays. Table Il shows
b= nj SdA=2mn azfﬁésin 0d6=3.88p<( 5, /a). f, as a function ofp, for the face-centered cubic arrays with
0

(37
The coefficient 3.88 in the above expression corresponds tif*BLE !l Comparison between approximai&gs. (38)~(39)] and exact
th h Il the liquid . t th th le of computed values off, for the two cases of liquid film thickness distribu-
. e Case when a e liqui am\_/es a € north pole 0 par'tion at variousg for the face-centered cubic array.
ticle, i.e., whenfy,=0. The error in using the above expres-

sion is O(#3”) for small but nonzerad,. Combining(37) 8= 6, 8= 8y(sin ) *°
with (36), and using the definition of; [cf. (34)], an ap- 4 Eq. (39) Exact Eq.(39 Exact
proximate expression fdf; is obtained as given by
0.1 3.06 3.06 3.66 3.47
f1=1+3.88)K'/K. (39 0.3 6.42 6.43 8.02 7.56
. . _ . 0.5 12.18 12.16 15.44 14.67
The first term on the right-hand side of the above expression - 22 64 22 69 29.05 26.99

represents the effect of liquid film increasing the apparent
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FIG. 4. The coefficientf, as a function of¢g for periodic and random
FIG. 3. The coefficient; as a function ofg, for the random arrays of arrays of spheresly=7/20. The filled circles are the results for the simple
spheres. The filled circles and solid line correspond, respectively, to th&ubic arrays, pluses for the body-centered cubic arrays, squares for the face-
exact results and the approximate relation for the cas&=of, at low gas centered cubic arrays, and crosses for the random arrays of spheres. The
flow rates. The crosses and the dashed lines are the corresponding results $6fid line represents the fft; = 0.84— ¢s.
the distributions= 8(sin 6) =22,

We now present the results for the effects of the motion
the two liquid film thickness distributions. These are com-within the liquid film, i.e., forf, and f5. The results for
pared with(38) and (39). We see that indeed there is an these two quantities for the face-centered cubic array are
excellent agreement betweéB9) and the numerical results given in Table | for two values o#), corresponding tad,
for the constan® case.(38) slightly overpredictsf; for the = #/40 and§,= 7/20. Note that the results fdy discussed
case ofs= 5y(sin6) 2. In fact, it appears that the numerical earlier corresponded t6,=0, i.e., assuming that all the lig-
results for both cases are in a reasonable agreement withd arrives exactly at the north pole=0. Small values of),

(39). would have affected the results féy by an insignificant
For random arrays the above result for the constnt amount. The same is true fbs. In the limit of smallgg, f,

case is not exact because the spatial distribution of the pars related to ¥ V)10 by simply

ticles with radiusa and volume fractiongs+ ¢, is not the

same as for the random arrays with volume fractianbut 2 P

with the particle radius changed ot 6,. Nevertheless it is f,=[ Vs (gsin g)]loz_f ————d6=0.8425 (41)

of some interest to compare the relati@9) with the results 3Jo (sing)*®

for f, for random arrays. We used 20 configurations of hard-

sphere random arrays with 16 particles per unit cell to deterfor 8,=0. Here, V- V)19 is the coefficient ofY,q in the

mine f, for random arrays with uniform film thickness. Nu- spherical harmonic expansion Bf v, [cf. (27)]. The correc-

merical differentiation oK for random arrays is difficult and tion to the above for small but finit¢, can be shown to be

hence we used the following fit d{ for random arrays to small, ofO(aé“’a). Thus,f, is essentially independent &,

7 COS

obtain estimates of’:16 as long as the latter is not too large. The resultsf§dfor all
o the three cubic arrays and periodic arrays wigls /20 are
K 1+3(s/2)7+(135/64 s In ps+17.14ps shown in Fig. 4. The solid line in that figure represents the
140.681p— 8.48p2+ 8.16¢3 approximate relation
(45=<0.45. (40 f,=0.84- . (42)

Figure 3 shows results fdr; for both the uniform and the

nonuniform thickness distributions as a function ¢f for Finally, we note that the effect of liquid film distribution
random arrays. The solid line in that figure represents th@ear the north and south poles is the most significant for
approximate value of; predicted by(39) with K’ andK  the results for which for the face-centered cubic array were
evaluated usind40) for the uniform thickness distribution given in Table I. Similar strong dependence 6 is ex-
case. pected for the other arrays.
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IV. THE LOADING REGIME Let us now consider the gas—Iliquid flow through such
, N . . capillaries. We assume that the liquid flows down along the
We now consider gas velocities for which the tractionjnner walls of capillaries with a uniform film of thickness
exerted by the gas at the gas-liquid interface is sufficiently, ;..o the gas moves upward through the central corer 0
large to affect the liquid flow and the liquid film thickness, —, _ 5 Both the gas and liquid velocities are assumed to
i.e., we considet) ;=0(Ug) with Ug defined by(1). The o nigirectional and functions only of radial position. We
ratio of the characteristic gas and liquid velocities in thiSgpa| present here an approximate analysis valid for the case
regime isO(Ugq /A), or O(wmial(pgdo)), which is typically  \yhen 5_is small compared witla, and when the ratios of
very Iarge.. Thus the pressure d.rop_ contribution due to Upyiscosities and densitigs,/x, and p,/p; are much smaller
ward moving average gas velocity is much greater than thg,,n ynity. Appendix B gives the results obtained by an exact
downward moving liquid motion. In other words, the main onayvsis in which these approximations are not made. The

effect of liquid flow on the gas pressure drop is through they e gictions from the two analyses will be compared later in
finite thickness of the film and not the nonzero velocity at thei,a section.

gas-—liquid interface. Note also théf was generally much Since the liquid velocity is much smaller than the gas

smaller thanf,. Thus we may se&=0 in determining the  \e|5city, the gas velocity can be taken to be zera a@,

effect of liquid film on the gas pressure drop and quuid_EC. The pressure gradient in the gas is then related fo
holdup. In other word, we must solve for the liquid flow and

film thickness allowing for the effect of gas flow but that in

determining the gas flow we may use the no-slip boundary 8ugUgc
condition at the gas—Iliquid interface. We shall begin with the [Vp|= m'
simple capillary model of packed beds. The results obtained ¢ €
using this model will be compared with those to be obtainedvhere e.= 6./a. is the nondimensional film thickness. The

(46)

later for fixed beds. downward flow of liquid due to gravity equals
(27p,gali3u) €l when e,<1 while that due to upward
A. The capillary model moving gas is (4rajugU g€/ (1u1(1—€c)?), Ugye being the

superficial gas velocity through the capillary. The difference
etween the two gives the total volumetric liquid flow rate

hrough a capillary. This gives the relation between the non-
dimensional gas velocity and the liquid film thickness as
given by

In the simplest model of a packed bed/porous medium
the medium is assumed to consist of equal-size, straight ca
illaries of radiusa. oriented in the direction parallel to the
mean flow. The radiua., the number of capillaries per unit
cross-section, and the average gas velodify through the
capillaries are chosen such that the porosity, the superficial

velocity through the medium, and the pressure gradient in eg—euge(,c%:egc, (47)
the gas for a dry bed are the same as in the actual medium. (1-€)
For example, where
Ugc:Ug/(1_¢s)a (43 Uge a2
) Ui =—ro—, (48)
a Ugl,caC
— =(9/16) ps(1— ) K(s). (44)
& 3uU
3 1~ (49)

A note on the notation used in this section will be helpful to EOc:m’
the reader. The subscriptis used to denote quantities con- S
cerning the capillary model; the subscript 0 is used to denot&), being the superficial velocity of the liquid through the
a low gas flow rate limit quantity; the gas and liquid flows medium. Note thaky.= dy./a. is the nondimensional film
will be characterized by subscripgsand|, respectively; the thickness in the absence of gas flow. The loading velocity
solid volume fraction will be denoted by, and the critical Uy ¢ is based ondy, in lieu of &, used in(1). The nondi-
gas flow rate conditions to be introduced later in this sectiormensional pressure gradient can be expressed in terbh$ of

will be denoted by the subscript crit. by combining(46) and (48),
For random fixed beds of spherical particles wik in .
the range of 0.5-0.7, the dry bed force coeffici€fts) can IVp*|= IV_pl _ 8eocU¢ . (50)
be estimated from the experimentally determined Carman P19 (1—50)4
correlation

Figures 5 and 6 show the nondimensional film thickness
10¢¢ and the pressure drop as functionsUjf for eq.=0.02 ob-
K= EEPRER (45 tained by the approximate expressions given here and the
s exact expressions given in Appendix B. The latter requires
whereaq40) may be used for estimatink§, and hence/a, ratios of gas to liquid viscosities and densities. We used
for beds with¢<0.45. For periodic arrays, one may use theuy/u;=0.02 andpy/p;=0. We see that the predictions of
results forK reported by Zick and Homéyand Sangani and the two models are essentially the same as long. as less
Acrivos? than about 0.1. For larger film thicknesses the exact solution
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FIG. 5. €. vs U} . The solid line represents the exact result and dashed line

the approximate. FIG. 7. The nondimensional pressure gradi@h* | vs U at variouse .

given in Appendix B is necessary to provide accurate esti-

mates of pressure drops. We also see the existence of tvgame behavior. The turning point was interpreted by these
steady states for most values Off . These two solution investigators as corresponding to the flooding point.
branches meet at the turning poldf =Ug; .. No steady Figure 7 shows the pressure gradient as a functidsof
solutions exist fol 7 >Ug; .. The lack of steady solution at for several different values ofy. using the exact solution
such high gas flow rates is interpreted in the literature to bgjiven in Appendix B. The behavior is qualitatively the same
related to the onset of flooding. For example, Dankworth andt all the indicated values @fy. . It is interesting to note that
Sundaresaf analyzed averaged-equations for gas and liquithe nondimensional pressure at the turning point is approxi-
flows through packed beds. Although different from the cap-mately constant, at about 0.25 &g is varied from 0.02 to

illary model, their analysis also showed qualitatively the0.2.
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Figure 8 showsUy; . as a function ofey.. The solid

line in that figure corresponds to an approximate fit

Ul c€0c=0.013. (51)

The uniform thickness flow of liquid down a vertical wall is
generally unstable unless it is stabilized by sufficiently large
surface tension. The upper branch in Figs. 5-7 is very un-
stable so that in practice the pressure drop and liquid film
thickness are expected to correspond to the lower branch.
Dankworth and Sundares&rhave performed linear stability
analysis of the steady solutions obtained from the averaged
equations for gas and liquid flows and also found that the
upper branch is very unstable. The lower branch stability
depended strongly on the surface tension, and, in particular,
for the case of zero interfacial tension, the lower branch was
found to be unstable at all gas flow rates. It may be noted,
however, that there is no experimental evidence to indicate
that the lower branch is unstable for gas-liquid flows
through packed beds.

B. Fixed bed of particles

We now consider the loading regime for a fixed bed of

FIG. 6.|Vp*| vs U} . The solid line represents the exact result and dashecpamdes- In this regime the gas flow affects the liquid film
line the approximate.

thickness distribution on the surface of the particles and we
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1 wheregs=g sinfe,, p; is the pressure in the liquid film, and
fs is the tangential stress at the gas-liquid interface. Note
091 thatfs is a function ofd@ and¢. The gas and liquid flows are
o5 coupled through this stress.
’ As in the case of low gas flow rates analysis we write the
7] gas velocity asiy=u®+u with the boundary conditions,
5u(0)
061 u@=0, u®=v=-5(0,¢) —— atr=a. (56
U*crit ¢ 05
’ . Note thatu(® corresponds to the gas flow in a dry bed while
0.4 - uM is the correction due to finite film thickness.
The numerical scheme for solving the gas and liquid
031 x flows consists of following stepsi) The surface of a sphere
02 is discretized into a number of triangular elements and the
x initial value of § at these points is taken to be the same as
0.1 - corresponding to the low gas flow analysis) With u(®
py determineda priori, the right-hand side of the second equa-
0 : , : tion in (56), i.e.,v, is evaluated at the nodes of the triangular
0 0.05 0.1 0.15 0.2

g, elements. The components of this velocity are expanded in
¢ spherical surface harmonics as in the low gas flow rate analy-
FIG. 8. U%, . Vs €x. The filled circles represent the exact results and SiS [Cf. (26)—(27)] and these expansions are used for deter-
crosses the approximate. The solid line corresponds to theit.€oc mining u‘®). (iii) The tangential stresk andV¢p, atr=a
=0.013. + 6 are evaluated next at all the nodes using the combined
velocity fieldu(®+u®). Since the surface tension is taken to
be zerop, is the same as the gas pressure. The surface flow

must use a numerical method to determine this distributionds 1S €valuated at all the node points usifi). (iv) Next,

We shall use both steady and unsteady flow equations t&s Us IS evaluated at the node points using a second-order
determine the film distribution. difference formula. Since the liquid flow is primarily in the

Let us denote by, the surface flow at a pointd{¢) on B—d?rec_tion we use a backward differen(;e formula for the
the surface of a particle, derivative \./wth. respgct t@ and a ceptral difference formula
for the derivative with respect to, i.e., we evaluat&/- g
ato using
As(0.9)= | ug(r.0.e)dr, (52
a . .
(SinOV - qs)i j=(12A 0)[3(q,Sin 0); ;
where§ is the film thickness at{, ¢) andus is the velocity

parallel to the surface of the particle. The mass balance for ~4Apsin)i-1j+(dpSiN6); 2]

the liquid gives +(12A 0)[(ap)ij+1—(dg)ij-1], (B7)
0—5+V _s 53 whereq, andq, are the components af, i.e., gs=€,q,
ot s Us= (53 +e€,q,, and the subscripts and j correspond to a node

i . (6i,¢;) on the surface of the sphere. The low gas flow rate
whereS is the sourceSis zero everywhere except 80  hopavior is assumed to hold near the north pole, i.e., we

and 7 for the case when the fluid arrives at the north pole, <o\ ,me that af=0 and d=A 6. the discretization interval
flows down the surface, and leaves from the south pole of thg, . s— So(sin6) =23 at all timés.&é/&t at the node points

particle. For the case of the uniform thickness model .o ovaluated next by substituting f8-qgs into (55). A

= o, we take Runge—Kutta method is used to determifig+ At), At
2p,9 being the time incrementlv) Steps(ii)—(iv) are repeated
S= 3—,(“88 cosé, (54 until the steady state is reached. The gas flow rate is subse-

quently incremented by a small amount and the st&ps(v)
so that 5= 4§, is a steady state solution @63) when the repeated to determine the film thickness distribution, liquid
tangential stress at the gas-liquid interface is zero. holdup, and pressure drop as function of the gas flow rate for

Since the Reynolds number for the liquid flow is much selected values o and 6.

smaller than for the gas flow, and the gas Reynolds number In an alternative method, the steady state liquid holdup
is assumed to be small compared with unity, we shall neglecnd gas pressure drop are determined directly as described
the inertial terms in the momentum equation for the liquid.below. As in the transient method, the gas velocity, and
The surface flow is then given by hencef, and V¢p, are determined first for an assumed film
¢ thickness distribution. These quantities are used for deter-
S 82 (55 mining  (psin6)i-1;, (qpsin6)i;, (qy)ij-1, and
2 (d,)i j+1 Using(55). Next, (singy); ; is calculated usings7)

_ng
qS 3,U~|

(gs— 1 'Vgp) 8°~
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FIG. 9. The ratio of pressure gradients in wet and dry bgdg|/|Vp|o, a: od 0 P 4

a function of scaled gas velocity*. The dots represent the results obtained
by the steady state method and the line represents the results by the transient

method.¢=0.4; §,/a=0.02; simple cubic array. . ° . .
¢ 0 mpie cubl Y ied from 0 to 90°. As the gas flow rate is increased, the film

thickness neaf=90°, where the traction exerted by the gas
andV-qs=0. This is next substituted i65) and the result- is a maximum, increases. Figure 12 shows the variatia in
ing cubic equation is solved to determine a new estimate ofith the azimuthal angle> at #=90°. The maximum film
3 j- The cubic equation gives either three real roots or onéhickness occurs ap=45°.
real root. In the case of three real roots it is found that two At U*=0.45 the liquid films on the surface of the two
are very close to zero while the third is positive and compa2djacent spheres overlap @t 90°. Our numerical scheme
rable to 5,. We use this third root as the new estimate offor computing gas flow is not valid when the films overlap

. The same procedure is used for h|gher Va|uas&mfdj and hence we have not Computed the pressure drop and

untll the new estimates of; ; are obtained at all the node holdup(Figs. 9 and 1pbeyond this gas flow rate.
points. This new dlstrlbutlon is used to solve again for the
gas flow and to evaluate the tangential stress, etc., at the
node points. The procedure is repeated until the sui aif

all nodes converges. Most calculations to be presented herr %4

were obtained withA = 7/40 andA ¢ = 7/20 and the sum 0.45

of &'s was required to converge to within 1 The calcu- 0.12 - .

lations were started with low gas flow rates where the precise i x

thickness distribution is known. 010 | *
Figures 9 and 10 show the results of computations for ' x 035
=0.02 and¢,=0.4 for the case of a simple cubic array of . .

spheres. We see that the results obtained by the two method, , 0.08 - s

are in excellent agreement with each other. The pressure gra< >¢, H « "

dient for the dry bed is denoted B¥ p|,. The normalized 0.06 | .

pressure gradient, i.e|Vp|/|Vp|o, approaches %f, as 5 x a 0.20

U* —0. As expected both the liquid holdup and the normal- H . "

ized pressure gradient increase with increasirig It should 0.04 4 L N

be noted that the gas velocity is scaled by the loading veloc- "y py " - U =0

ity, i.e., U* =U/Uy, with Uy, given by(1). The low gas flow 2 T

rate holdup was determined usiggy= 3.88¢4(J5/a) while

¢, was obtained by integrating over the surface of the 0.00 ] ' |

sphere[cf. the first equality in(37)]. 0 25 45 675 %

Figure 11 shows the film thickness averaged over the
azimuthal anglep, (5(6)),, for selected gas flow rates. The o
film thickness is symmetric arourt=90°. At low gas flow  giG, 11. The azimuthal angle-averaged film thicknés, , as a function
rates the film thickness decreases monotonically &svar-  of 6 at variousu*.
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FIG. 12. The thickness of liquid film a=90° as a function of at various

U* for a simple cubic array withp;=0.4 ands,/a=0.02.

shows$ as a function ofU* and ¢ at §=175.6°. We see

Figures 13 and 14 show results for the case when thE1at asU™ is increased the film thickness begins to vary
initial liquid film thickness is uniform over the surface of the Significantly withe exhibiting minima atp=18° and at 72°.
spheres. Once again the pressure drop and holdup increa¥gry near the critical gas flow rate the symmetry aroynd
with the increasing gas flow. Figure 15 shows variations in=4>" breaks and the film thickness at 72° vanishes indicat-
the p-averaged film thicknesgs),,, as a function oh. We N9 the formation of a dry region near that point. The contact
see that increasing the gas flow rate increases the thickne889l€ and other surface tension related phenomena will be-
mostly nearf=90° where the traction exerted by the gas isCOMe important once the surface of the particle is not com-
maximum. Unlike the previous case, however, we find that
the liquid film thickness at some points on the sphere be-

comes zero a)* =0.35. This is illustrated in Fig. 16 which 0.0
17 x
x
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FIG. 13.|Vp|/|Vp|o vs U* for the case of uniform initial liquid film thick-

ness.¢=0.4; §,/a=0.02; simple cubic array.

6

FIG. 15. The azimuthal angle-averaged film thicknés},, , as a function
of 6 at variousU* for the uniform film thickness at low gas flow rates case.
@$s=0.4; 5,/a=0.02; simple cubic array.
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FIG. 16. § as a function ofp for 6=175.6° for the case of uniform initial
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C. Comparison with other models

We now compare the numerical simulation results for
fixed beds with those predicted using the other models. To
compare the capillary and fixed bed models we require that
the liquid holdup at very low gas flow rates in the two mod-
els be the same. As mentioned earlier the radius of the cap-
illary is chosen such that the gas pressure drop for the cap-
illary and fixed bed models are the same in the absence of
liquid flow. The results for these models will also be com-
pared with the predictions of the averaged equations used by
Dankworth and Sundares@nand with an approximate
theory that we shall presently describe.

Dankworth and Sundaresan used the following expres-
sions from Saez and Carbortéllifor pressure drop and
holdup calculations:

Fq Fi
T 9
A5uqb3(1— ) U
E = , 59
D@kl g h)*® 0
[ 1= | P4 45u1 4547V,
F“« ¢ a2y (1- 9 ©0

pletely wetted and this would make the calculations for
higherU* very difficult.

In writing the above expressions we have taken the residual

Figure 17 shows the results for the body-centered cubiéquid holdup, i.e., the holdup in the absence of gas or liquid

array with the low gas flow rate thickness driven by theflow, to be zero and we have set the Ergun parameter, which
gravity flow, i.e.,(4). In this case the dry region occurs at @ccounts for the effect of gas inertia, in their expressions to
much smaller gas flow rates and therefore we have beeffro- To compare the pr(_adictions from the above expressions
unable to compute the pressure drop and holdup at high&¥ith the ones obtained in the present study, we choose the
gas flow rates. The same applies to the face-centered cubféPerficial liquid velocityU, in such a way that the liquid

arrays.

1.30
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1.20

1.05

1.00

Vel,

¢l 0

0 0.02 0.04 0.09 0.08 0.1

U

0.12

holdups at zero gas flow rate calculated using the two models
are the same.

In the capillary model the traction exerted by the gas at
the gas—liquid interface is directly related to the total pres-
sure gradient while in the fixed bed model the two are not
directly related. The traction depends on the magnitude of
the shear stress at the interface while the pressure gradient,
being related to the total drag force, also depends on the
magnitude of the normal force at the surface of the particles.
To account for this difference we have developed an ap-
proximate theory as follows. Let us assume that the liquid
film thickness distribution is similar to the initial distribution,
i.e., 6= 4, (sin) 3. Then volumetric flow balance gives

3f,(sing) 3

83+
2p19

: 8085 = 5. (61)

This equation will not hold at alb and ¢ since we have
assumed a very simple form of film distribution with only
one parameter, i.ed, . To satisfy the above equation in an
approximate sense we integrate it over the surface of the
sphere and introduce a functiar( ¢s) defined by

ff(,(sina)’l’?’dA:—BWMQaUga((j)S)K(d)S). (62

FIG. 17. |Vp|/|Vplo and ¢ /¢ vs U* for the body-centered cubic array 1 NUS,(61) upon integrating over the sphere surface and non-
with ¢=0.4 and§,=0.02.

dimensionalizing, leads to
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FIG. 18. A comparison among different models. The thick solid line repre-

sents the simulation, the thin solid line the approximate model, the smalf|g, 19. A comparison among different models. The thick solid line repre-
dashed line the capillary model, and the large dashed line the Dankworthgents the simulation, the thin solid line the approximate model, the small

Sundaresan model based on Saez and Carbonell equations. dashed line for the capillary model, and the large dashed line the
Dankworth—Sundaresan model based on Saez and Carbonell equations.

a(pst d)K(pst @)
e—4 1+ e)U* gpe?= €3 63
¢5K(¢s) ( ) 0 0 ( )
with e= 6, /a andeg= 6,/a. Note that in writing the above
equation we have accounted for the effect of finite liquid film
thickness orf , by requiring thate andK be evaluated at the

and holdup estimated using the Saez-Carbonelt
Dankworth—Sundaresarequations are considerably lower.
Also the criticalU* for the capillary model and the approxi-
mate model are seen to be much smaller than that predicted
by the Dankworth—Sundaresan equations. This last observa-
total volume fractiongs+ ¢, and that the nondimensional tion may be. §|gn|f|cant since Dankwort'h ".".”d Sundaresan
found the critical gas flow rate to be significantly greater

radius of the particle be corrected from unity te-&. The ! Lo .
Co T . . than the flooding velocity given by the experimentally deter-
above expression is similar to the one obtained using the

. ) - . mined Sherwood correlatidff. For example, for 1.25 cm
capillary model but with the coefficienw accounting now . . : . . .
diam particles the flooding velocity predicted using the equa-

%‘ons proposed by Saez and CarboHelvas about three to
four times greater than the Sherwood correlation. Dankworth
and Sundaresan also carried out calculations for the flooding
velocity based on equations suggested by Huétbal 1° and
a(¢ps)=0.841+1.22p+ 4.84¢§]*1. (64)  found that those equations overpredicted the flooding veloc-
ity by an even greater factor. While in that comparison the

Equation(63) can be used to determirié* given e and . N .
. . : as inertia was significant, our calculations do suggest that
€p. The normalized pressure gradient can be determined ug- . : .
e expressions used in the Dankworth—Sundaresan analysis

We have determined for the simple cubic array at several
¢ values in the range 0—0.5. The following expression
gives a good fit to the numerical results:

g tend to significantly overpredict the flooding velocity at least
|Vp| B K( s+ ) when the Reynolds number is small. Also, our calculations
Vplo  K(oy (1+e) (€9 show that the simple capillary model gives reasonably accu-

_ rate estimates for the pressure drop and liquid holdup. It may
with ¢=3.88¢se. _ be noted that Specchia and Bafthave compared their ex-

_ Figures 18 and 19 show a comparison among the foufqimental data with the Huttoet al. correlation and found
different methods of estimating the pressure drop and liquidye ¢orrejation to significantly underpredict the gas pressure

hpldup. The exact calculations corrgspond to the.smplg Cudrop in wet packed beds. This observation is consistent with
bic array. We note that up to the point where the liquid fllmsOur calculations

begin to overlap in our numerical calculations, i.e., upJto

of about 0.45, the capillary model, the approximate mode

based on63)—(65), and the exact method are in very good k/ SUMMARY

agreement with each other. The pressure drop is better pre- We have solved the detailed equations governing the
dicted by the approximate model while the liquid holdup isflows of gas and liquid through fixed beds of spheres. The
better predicted by the capillary model. The pressure drogffect of thin liquid film on the gas pressure drop is deter-
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mined for random as well as periodic arrays of spheres. A, U,
simple analytical relation is obtained for predicting the pres—(w =—cosf+e——
sure drop in the low gas flow rate regirfe. (34), (35), and Y

(38)]. The presence of liquid film increases the gas pressure
drop by three mechanisms: an increase in the apparent size b
the particles, decrease in the pore space volume fraction for
the gas flow, and increase in the apparent relative velocity
between the gas and the particles. Of these three, the first two

effects are more significant and the equations listed abovﬁeglecting the gas density and the effect of gas flow on the

could be used to estimate their effect. At higher gas ﬂO\.Nquuid film, we havep,=0 at the gas—liquid interface. For

rates the traction produced by the gas affects the liqui . . : : .
. . the zero interfacial tension case then, since the normal vis-
holdup and makes the pressure drop-gas velocity relation

nonlinear. We have been unable to carry out calculations uCOLIS stre;s 19(e7), the boundary condition for the liquid
: " . ressure is
to high enough gas velocities to compute the flooding veloc-
ity because either of the two things happened: either the lig- —O(e2 _
. . ; ) = at Y=Hgy+eH;. A5
uid formed a bridge between adjacent particles or some re- P=0(e%) o e (AS)

gions on the particle surface became dry. Both the liquidrhe normal and tangential vector perpendicular to the azi-
bridging and the contact line formation and their effect ONmuthal direction at the gas—liquid interface are given by
the gas flow rate are difficult to incorporate in our analysis.

The numerical results in the nonlinear regime are seen to be n=e —eHle,+ O(€)
in excellent agreement with the capillary modef. (47) and 0

(50)] and an approximate modf. (63~(65)] developed in At jow gas flow rates the tangential stress at the interface is
the present study. The equations proposed by Saez apggiigible. Thus we have

Carboneft’ and Huttonet al1® appear to predict lower pres-

sure drops and liquid holdups, at least in the small Reynolds  t*—g,. 7., = 7, ,+ e(7* — %) +0(€?)=0, (A7)
number limit. The critical gas flow rates obtained from the

equations proposed by these investigators are much greaighere 7 is the dimensional stress tensor. Scaling stresses
than those predicted by the capillary model and approximatgjith .U/ 8., and noting that the stress componerf{sand

+0(€?). (A3)

lpe boundary conditions at the particle surface, i.e.Y at
0, areu,=U,=0. Let the gas—liquid interface be given by

Y=Hqo(0)+eH () +O(€). (A4)

, t=ey+eHie+0O(€?). (AB)

model developed in the present study. 7 are O(e?), we obtainr, ;=0 correct toO(e?) at the
gas-liquid interface. This is equivalent to the boundary con-
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AUy 2u,,
APPENDIX A: ANALYSIS OF FLOW WITHIN THE 0_Y+ € H1_2_U9 +O(€2):0 at Y=H,. (A9)
LIQUID FILM aY

Let uj=Ucuy, uf=UceU,, p*=uUcp/dy, € The boundary condition of vanishing normal component of
=dp/a, andr*=a+ ;Y. Here,u,, U,, andp are scaled the velocity at the interface reduces to
velocity components and pressutg,= p, 5§gl,u, =2Ais the
characteristic liquid velocity, and is the scaled distance U,—Hgu,+0(e)=0 at Y=H,. (A10)
measured from the surface of the particle. We shall deter-
mine the liquid velocity profile, the film thickness, and the Finally, scaling the liquid volumetric flow rate with
gas velocity at the gas—liquid interface correctQge) in  2map,gda/(3u;) we have the condition,
this Appendix.

The continuity and momentum equations can be shown ) HoteHy
to reduce to Q(#)=3sind o updY
i S n6)+el 20— —— in6 Ho
v T sing g eSO € 2V gg G (Uesing) ~3sing fo Uyd Y+ eHy+Uy(Ho)+O(e?) |,
+0(e?)=0, (A1) (A11)
AT P Mo h 0 Is unity for 6< < 6, and (sind/sin ,)? f
+esing| — — +2—21 +0(e?)=0, (A2) whereQ(#) equals unity for o and (sind/sin 6y)- for
aY? a0 Y 0< <y and 7— < <.
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The solution of the above set of equations is given by _— 8ep U 2q [ e(€c—2)
Y3 3H,Y? 1—€)* Vp*| | (1—e)?
Uy=sind[Y Hy— Y2/2]+ €| sin 0[—— 0 (1<) wl VPl (1€
2 2 -1
y?2 ><(1—|Vp*|)—2|n(1—ec)H . (B2)
+(2HZ+H,)Y +cos¢9H()[7—H0Y] +0(€?),
The relation between the superficial liquid velocity aag
(A12) given by (49) is valid only for thin liquid films. For thicker
films, the superficial liquid velocity can be computed from
p=cosf[Ho— Y]+ O(e), (A13)  5,. using
_ 2/o_ i ' P19
U,=2cosé(Y</2—Y Hg) —sin6Y Hy, (A14) U|=(1—¢s)a§2—m[€§c—fgc+€3c/4
5H3  cosé , 2 2 2
Hi=——=+ 35,4 HoHo. (A15) —(1—€0c){(1—€0c)” IN(1— €gc) + €0c — €c/2} ]
(B3)
Ho=(sin®) 2% for g,<6<m—6,. (A16) In the above]Vp*|:|Vp|/(p|g)+pg/p| .
The pressure drop for a given liquid holdup can be de-
Near the north and south polds,= (sin 6,) ~2°. P b g . P

termined usingB1). The corresponding gas velocity} is

_ Now we de_rivg the boundaw_ conditions for _the_ gas Ve'subsequently determined fro(B2) by substituting forV p*
locity. The continuity of the velocity at the gas—liquid inter-
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