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Abstract 

Iron (Fe) is ubiquitous in forest ecosystems and its cycle is thought to influence the 

development of soil, particularly Spodosols (podsolization), and the biogeochemistry of macro-

nutrients such as carbon (C), nitrogen (N), and phosphorus (P), as well as many trace metals. The 

cycle of Fe in northern hardwood forests remains poorly understood. To address some of these 

uncertainties, we constructed a biogeochemical budget of Fe for a small catchment at the 

Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, USA.  

Horizonal, temporal, and elevational patterns of concentrations and fluxes of oxidized and 

reduced Fe species were assessed in leaf litter, soil, soil solution, and stream water. The 

chemistry of dissolved Fe was evaluated in the context of its relationship with dissolved organic 

carbon, pH, and dissolved oxygen. Soil solution fluxes of Fe were highest in the organic (Oa, 

52.5 mol
 
ha

-1
 yr

-1
) horizon and decreased with depth in the mineral (Bh, 50.5 mol

 
ha

-1
 yr

-1
, and 

Bs, 19.7 mol
 
ha

-1
 yr

-1
) horizons, consistent with podsolization theories predicting immobilization 

of Fe following downward transport to mineral soils. The export of Fe in stream water (1.8 mol
 

ha
-1

 yr
-1

) was lower than precipitation input (3.5 mol
 
ha

-1
 yr

-1
). The low stream flux indicates 

most Fe in drainage waters was immobilized in the soil and retained in the watershed. The 

portion of total Fe as Fe(II) was approximately 10% to 60% in soil solutions, seemingly high for 

soils that are considered to be well-drained, oxidizing environments. Organic complexes likely 

stabilized Fe(II) in solution under oxidizing conditions that would otherwise promote 

considerably higher Fe(III)-to-Fe(II) ratios. Our study indicates that there are organic matter-

derived sources of dissolved Fe(II) as well as substantial mobilization of Fe(II), possibly the 

result of the reduction of Fe-bearing soil minerals.  
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Introduction 

Interest in iron (Fe) biogeochemistry stems from its role as a micronutrient and as an 

indicator of mineral weathering and soil development. Iron is relatively abundant in comparison 

to other trace metals. In soils and drainage waters, Fe transformations and fluxes are linked to the 

cycling and mobilization and immobilization of organic carbon (McDowell and Wood 1984; 

Ussiri and Johnson 2004; Gu et al. 1994), sulfur (Drobner et al. 1990; Harrison et al. 1989; 

Sollins et al. 1988), phosphorus (Yuan and Lavkulich 1994) and trace metals (Kabata-Pendias 

and Pendias 1984). Oxidation-reduction (“redox”) transformations between ferric (Fe(III)) and 

ferrous (Fe(II)) iron can affect the mobilization and immobilization of Fe and compounds 

associated with Fe. The reduction of Fe(III) can significantly increase the concentration of 

available P that otherwise strongly sorbs to Fe oxide surfaces (Chacon et al. 2006; Peretyazhko 

and Sposito 2005). Redox reactions of Fe have also been proposed as a mechanism of abiotic 

nitrate immobilization in soils (Davidson et al. 2003). 

In many northern ecosystems, soil development (podsolization) is closely coupled with 

iron cycling. The development of Spodosols involves the mobilization of Fe and Al to lower 

mineral soil by complexation with organic acids derived from foliar leaching and forest floor 

decomposition (e.g. Bloomfield 1953; de Coninck 1980; Dahlgren and Ugolini 1989). 

Podsolization is thought to result from the downward transport of organic-metal (Fe and Al) 

complexes until they co-precipitate or adsorb in the spodic (B) horizon due to decreasing carbon-

metal ratios. Decreasing carbon-metal ratios are caused by the further complexation of Fe and Al 

(McKeague et al. 1978) and/or microbial breakdown of the organic carrier molecules (Boudot et 

al. 1989; Lundström et al. 2000).  
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Redox transformations involving Fe are often important in soils and sediments, especially 

in the presence of organic matter. Oxidation and reduction of Fe can be mediated by microbes 

(Weber et al. 2006) as well as by chemical constituents (Singer and Stumm 1970). Chemical and 

enhanced biological reduction of Fe has been shown to be mediated by natural organic matter 

under anoxic laboratory conditions (Chen et al. 2003). It has been proposed that humic 

substances can facilitate indirect reduction of Fe(III) by shuttling electrons from humic-reducing 

microorganisms to iron oxides (Lovley et al. 1996). Wet Spodosols, or Aquods, show 

redoximorphic features resulting from Fe reduction due to high water tables and saturated 

conditions with low dissolved oxygen concentrations (Buol et al. 2003). 

Few input-output budgets of Fe have been constructed for forest ecosystems compared to 

those for major nutrients. Swanson and Johnson (1980) found that bulk precipitation input of Fe 

far exceeded output (deep seepage + streamflow) in a forested watershed in the New Jersey Pine 

Barrens. Heinrichs and Mayer (1977) reported Fe budgets for a 125-year-old beech forest and an 

85-year-old spruce forest in central Germany’s Solling hill region. At both sites, bulk 

precipitation inputs of Fe exceeded deep seepage, indicating net retention of Fe. Fluxes from the 

humus layer suggested most retention occurs in the forest floor. However, in a 70-year-old 

spruce forest in southwestern Sweden, leaching of Fe from the A horizon exceeded input from 

precipitation (Tyler 1981). Jersak et al. (1995) used mass-balance modeling to quantify specific 

aspects of long-term Spodosol development, including Fe accumulation or loss. They found a net 

loss of Fe from two soils, and a small accumulation in a third. At the Hubbard Brook 

Experimental Forest (HBEF) in New Hampshire, the site of our study, Smith et al. (1986) found 

that stream output of Fe from a small leachwater catchment only slightly exceeded bulk 

precipitation input, indicating a small net loss of Fe.  
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The objective of this study was to develop a more comprehensive Fe budget for the 

HBEF and thereby provide a better understanding of Fe biogeochemistry in northern forest 

ecosystems. For example, to our knowledge there is no mass balance study in the literature that 

has considered the fluxes of Fe(II) and Fe(III). Moreover, in addition to input-output budgets, an 

evaluation of internal transformations and fluxes, including the relative distribution of Fe(II) and 

Fe(III), is critical to understanding the transfer and cycling of Fe in soil and plants in forest 

ecosystems. Comparison of fluxes with the Fe pool sizes in soil horizons provides further insight 

into the mobility and bioavailability of Fe. The results of this study of Fe budgets and 

transformations are also evaluated in the context of podsolization theory. 

 

Site Description 

The HBEF is located in the White Mountain National Forest in central New Hampshire, 

USA (43º56’ N, 71º45’ W). This study was conducted in and near Watershed 6, the HBEF 

biogeochemical reference watershed (13.2 ha, elevation 549-792 m, slope 16°), and Watershed 1 

(11.8 ha, elevation 488-747 m, slope 19°), where wollastonite (calcium silicate) was applied in 

October 1998 as an experimental treatment to investigate the role of calcium supply in the 

structure and function of a forest ecosystem. Both Watershed 6 and Watershed 1 have 

southeasterly aspects. The climate at the HBEF is cool-temperate, humid-continental, with mean 

July and January temperatures of 19 and -9ºC respectively (at 450 m elevation). Annual 

precipitation averages ~140 cm and is distributed nearly evenly throughout the year. 

Approximately 30% of annual precipitation occurs as snow (Federer et al. 1989). The area is 

generally covered with glacial till derived from local bedrock with a depth ranging from zero 

along the ridge tops to several meters at the lower elevations (Palmer et al. 2004). The soils are 
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well-drained Spodosols, mostly Haplorthods (Johnson et al. 2000), with a well-developed 

organic horizon (3-15 cm; Likens et al. 1977) and underlain by impervious bedrock (Littleton 

Formation, schist). Higher elevation soils tend to be shallowest and soil depth increases with 

decreasing elevation (Lawrence et al. 1986). The vegetation of both Watershed 6 and Watershed 

1 is dominated by northern hardwood species, including American beech (Fagus grandifolia 

Ehrh.), sugar maple (Acer saccharum Marsh.), and yellow birch (Betula alleghaniensis Britt.). At 

higher elevations, balsam fir (Abies balsamea (L.) Mill), red spruce (Picea rubens Sarg.), and 

white birch (Betula papyrifera var. cordifolia Marsh.) are prominent. 

***FIGURE 1*** 

 

Methods 

Sample Collection 

To examine landscape patterns in Watershed 6, soil solution, stream water, throughfall 

and litterfall samples were collected by elevation zone. Tension-free lysimeters were installed 

immediately west of Watershed 6 in a low-elevation deciduous stand (600 m), a high-elevation 

deciduous stand (730 m), and in a coniferous stand (750 m) to collect soil solutions draining the 

Oa, Bh, and Bs horizons (Figure 1). The lysimeters were placed just outside of the Watershed 6 

boundary to minimize soil disturbance within the watershed. Three replicate lysimeters are 

located in each of the three stands. Thirteen additional lysimeters were sampled in Watershed 1. 

A detailed description of lysimeter design and installation is provided by Driscoll et al. (1988a).  

Soil water was collected from the lysimeters at approximately monthly intervals (March 

2006-February 2007). In conjunction with the monthly collection of lysimeter samples, grab 

samples of stream water were collected from six sites arranged longitudinally in Watershed 6 and 
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five sites in Watershed 1 (Figure 1). All lysimeter and stream samples were collected in 500 mL 

polyethylene or polypropylene bottles and stored at 4ºC prior to chemical analyses. Subsamples 

for Fe(II) analysis were taken shortly after collection and preserved with 1% hydrochloric acid 

(HCl) to minimize oxidation of Fe(II) to Fe(III) (Wilkin and Ptacek 2002). Throughfall collectors 

were installed immediately adjacent to each lysimeter plot in Watershed 6 (n = 9). These 

consisted of a wooden stand topped (~1.5 m above ground) with a 10-inch diameter polyethylene 

funnel connected with PVC tubing to a 1 L polypropylene bottle. Inserted in the base of the 

funnel was a plug of acid-washed polyester fibers to prevent large debris from washing into the 

sample containers. Throughfall samples were collected within 24 h following each of five 

precipitation events at the nine lysimeter sites in Watershed 6 during the summer of 2007. 

Field measurements of dissolved oxygen (DO) were taken throughout the year during 

collection of soil solution samples from lysimeters,. Soil solution was pumped into a separate 

collection bottle separate from the sample intended for chemical analysis and the electrode of a 

portable HI 9142 dissolved oxygen meter (Hanna Instruments, Woonsockett, RI) was 

immediately placed in the water and gently (so as not to introduce excessive air) stirred until a 

stable value was reached. These measurements are considered qualitative because of the inherent 

difficulty of preventing introduction of atmospheric oxygen during the pumping of water from 

lysimeters. We assume that solution in the lysimeter reservoirs was in equilibrium with soil 

oxygen partial pressures. 

Leaf litter samples for analysis of leachable Fe (including Fe(II) analysis) were collected 

from each of the vegetation zones at the conclusion of the leaf fall (late October to early 

November, 2007). Permanent litterfall traps (0.1 m
2
 each) were placed approximately 1 m above 

the ground in the vicinity of the lysimeter plots to measure litterfall mass. To collect leaves 
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immediately available for leachate Fe speciation analysis, the most recently fallen leaves were 

collected from the top of the forest floor adjacent to litter traps for chemical analysis. These 

samples were sorted into the dominant tree canopy species (sugar maple, American beech, 

yellow birch) prior to analysis. The leaves were bulked and homogenized to produce one sample 

per species per elevation zone. 

 

Laboratory Analysis 

Soil solution, throughfall, stream water, litter digests, and litter leachate were analyzed 

for total Fe and Fe(II). Total Fe was measured with a Perkin Elmer (Waltham, MA) Elan 6100 

inductively coupled plasma mass spectrometer (ICP-MS). In preparation for this analysis, 

samples were preserved with 1% nitric acid. Ferrous iron concentration was measured using the 

1,10-phenanthroline colorimetric method (Clesceri et al. 1998). This method includes 

acidification of the sample with hydrochloric acid to decouple Fe(II) ions from natural organic 

complexes. An addition of 1,10-phenanthroline, which has a very high affinity to form 

complexes with free Fe(II), produces a colored compound.  A Thermo Scientific (Waltham, MA) 

Spectronic 20D+ spectrophotometer was used to measure absorbance at 510 nm. To account for 

interference from color due to dissolved organic matter, each sample was also measured for 

absorbance at the same wavelength without 1,10-phenanthroline. The resulting value was 

subtracted from the absorbance obtained with 1,10-phenanthroline to obtain a net absorbance for 

each sample. Ferrous ammonium sulfate (Fe(NH4)2(SO4)2·6H2O) was used as a standard for 

Fe(II) analysis calibration and quality control. Ferric iron concentration was calculated as the 

difference between total Fe and Fe(II) concentration.  
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The pH of the samples was measured with an Orion Ross Sureflow (Thermo Scientific, 

Waltham, MA) glass combination electrode connected to a Brinkman (Westbury, NY) Metrohm 

716 DMS titration system. Samples were analyzed for DOC with a Teledyne Tekmar (Mason, 

OH) Phoenix 8000 TOC analyzer by infrared CO2 detection following UV-enhanced persulfate 

oxidation. To prepare for DOC analysis, samples were filtered through 0.7 µm Whatman 

(Maidstone, England) AH 934 glass fiber filters into 40 mL glass vials. 

Analysis of total Fe concentration was conducted on foliage samples representing the 

major tree species in each elevational vegetation zone using material from the Hubbard Brook 

sample archive. These samples were originally collected (by shotgun) in August, 2006 from the 

canopy near the Watershed 6 lysimeter sites as part of an ongoing yearly collection. The samples 

were subsequently dried and ground before archival. The samples were dry-ashed for 24 h at 

400°C in a Thermo Scientific (Waltham, MA) Lindberg Blue muffle furnace. The ash was 

digested with 10N nitric acid and the resulting solution diluted with deionized water. Total Fe 

analysis was conducted with ICP-MS as described previously. Certified apple leaf samples 

(Standard Reference Material 1515, National Institute of Standards and Technology, 

Gaithersburg, MD) were used as a quality control check. Mean recovery of Fe in the certified 

apple leaves was 90 ± 5%. 

Leaf litter was extracted for the determination of total Fe and Fe(II) concentration in 

leachates according to a method modified from Koseoglu and Acikgoz (1995). Litter was sorted 

by species and leaves were cut into small (~2x2 mm) squares using ceramic scissors and placed 

in 1N hydrochloric acid for 24 h. The leachate was analyzed for total Fe and Fe(II) as described 

above for the soil solution. 
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Computational Methods and Sources of Additional Data 

Watershed fluxes and landscape patterns were evaluated based on data from Watershed 6 

only. Additional data were used in this study from samples collected in Watershed 1. A 

comparison of data between Watershed 1 and Watershed 6 revealed no significant differences for 

Fe or DOC concentrations. Therefore, the data from the two watersheds were grouped for several 

of the analyses in this study, including horizonal and temporal patterns and relationships of Fe 

chemistry with DOC, pH, and dissolved oxygen. All analyses of vegetation zone patterns were 

conducted with Watershed 6 data only. Temporal analysis was based on seasonal mean 

concentrations of solutes (seasons defined as Spring = March, April, May; Summer = June, July, 

August; Fall = September, October, November; Winter = December, January, February). 

Soil solution fluxes were calculated with a correction for transpiration with an estimate of 

evapotranspiration (ET = precipitation – stream flow) during the growing season (defined as 15 

May-15 October, Dittman et al. (2007)). The ET was assumed to be distributed by soil depth 

according to the corresponding fine root mass of each horizon in each of the vegetation zones 

(Oa: 30-46%, Bh: 36-40%, Bs: 13-29%: T.J. Fahey, personal observation; Dittman et al. (2007)). 

Evapotranspiration was calculated for the watershed and this value was applied to each 

vegetation zone. Transpiration during the non-growing season was assumed to be zero. Flow 

draining each horizon was estimated as the difference between precipitation input and the 

calculated ET. Solute fluxes were calculated for each vegetation zone by multiplying the mean 

concentrations by the corresponding soil water fluxes for the growing and non-growing season. 

A whole-watershed flux was calculated by weighting the elevation zone fluxes by their 

respective areas (Spruce-Fir-Birch (SFB) = 20%, High Hardwood (HH) = 30%, and Low 

Hardwood (LH) = 50%). 
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Fluxes of stream water solutes were calculated by empirically modeling the concentration 

of dissolved Fe in as a function of stream discharge rate using the following equation: 

[ ] ( ) ( )[ ] ( )[ ]2111 log0841.0log0313.00885.0 −−− +−= sLsLLmolFe µ  Equation 1 

This function was modeled using data collected in this study and from data collected between 

1990 and 2000 (CE Johnson, unpublished data). Subcatchment Fe fluxes in stream water were 

calculated using stream flow rates prorated according to subcatchment area. 

Throughfall flux was calculated by determining mean Fe quantities per mm of 

precipitation averaged from the five storm events sampled and scaling a subsequent weighted 

mean value to all precipitation during the growing season (May 15-Oct. 15). The throughfall flux 

for the non-growing season (Oct. 16-May 14) was assumed to be equal to the portion of bulk 

precipitation flux occurring during that time period. The throughfall water flux for each event 

was assumed to be equal to that of precipitation with a subtraction of 11% to correct for canopy 

interception (Aber and Federer 1992). Throughfall fluxes from each elevation zone were 

weighted in the same manner as described for soil solutions to obtain a whole watershed flux. 

Annual leaf litterfall fluxes of Fe were estimated as equal to the total Fe content of 

foliage. The mean foliar Fe concentrations from the 2006 samples were multiplied by the total 

foliar biomass according to the 2002 Watershed 6 forest inventory survey for each species (TG 

Siccama, unpublished data), the most recent biomass survey data available at the time of our 

study. The values were weighted by tree species composition to obtain the total flux. 

 Values from other sources were used to provide a more complete Fe budget for Hubbard 

Brook. In particular, bulk precipitation input of Fe was reported by Smith et al. (1986) and 

updated to include more recent monitoring data.  Petras (1996) estimated Fe fractions for soil 

horizons and soil pools at Hubbard Brook based on data from soil pits in Watershed 5. 
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 One-way and two-way analyses of variance (ANOVA) were performed to determine 

whether differences and patterns for data groupings (e.g. soil horizons, elevational vegetation 

zones, seasons) were statistically significant. Paired t-tests were conducted to test for significant 

differences in soil water solute concentrations between specific seasons. Linear regressions were 

performed to analyze the correlation between data variables. 

 

Results 

Chemistry of Inputs to the Forest Floor: Throughfall and Litterfall 

 The volume-weighted average concentration of total dissolved Fe in throughfall in W6 

was 0.44 µmol L
-1

 (LH = 0.45 µmol L
-1

, HH = 0.43 µmol L
-1

, SFB = 0.44 µmol L
-1

; n=3 per 

vegetation zone per event). There were no significant differences in dissolved Fe concentrations 

between the elevation zones during any of the five precipitation events collected during the 

summer of 2007.  

 The concentration of total Fe in litterfall was estimated by analyzing foliage samples 

collected in August 2006. The mean species concentration of Fe in foliage was 42.9 µg g
-1

. The 

lowest Fe concentration values were found in conifer needles (red spruce = 25.7 µg g
-1

, balsam 

fir = 35.6 µg g
-1

). Among hardwood species, the lowest concentration was found in the white 

birch sample (40.6 µg g
-1

, collected at the spruce-fir-birch site). There were no significant 

differences between the mean Fe concentrations of sugar maple (49.2 µg g
-1

) and American 

beech (48.1 µg g
-1

; p=0.90). Sugar maple foliar Fe concentration also did not differ significantly 

from yellow birch (58.0 µg g
-1

; p=0.27), but yellow birch had a higher foliar Fe concentration 

than beech at each sampling elevation (p=0.01). 

***TABLE 1*** 
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 The readily leachable (1N HCl) Fe concentration in leaf litterfall was measured for the 

three major hardwood species: sugar maple, yellow birch, and American beech. Sugar maple had 

the lowest leachable Fe content, while yellow birch and beech showed higher values (Table 1). . 

Readily leachable Fe represented 23% of the total Fe content on average between the three 

species. Just over half of the readily leachable total Fe was in the reduced form (Fe(II)) for each 

of the three tree species (sugar maple = 53%, yellow birch = 53%, American beech = 61%). 

 

Chemistry of Drainage Waters: Soil Solution and Stream Water 

Patterns in the Soil Profile 

 In soil solutions of Watershed 6 and Watershed 1, Fe(II), Fe(III), DOC, and hydrogen ion 

all showed decreasing concentrations with increasing depth in the soil profile (Table 2). The 

decrease was significant across all soil depths for Fe(II) (Oa = 1.45 µmol L
-1

, Bh = 0.82 µmol L
-

1
, Bs = 0.58 µmol L

-1
, p = 0.02) and for DOC (Oa = 1530 µmol L

-1
, Bh = 730 µmol L

-1
, Bs = 510 

µmol L
-1

, p < 0.01). Although soil solution Fe(III) concentration showed decreasing values with 

depth (Oa = 2.58 µmol L
-1

, Bh = 2.09 µmol L
-1

, Bs = 1.52 µmol L
-1

), the difference was only 

significant between the Oa horizon and the Bs horizon (p = 0.02). Across all vegetation zones the 

increase of pH (decrease of hydrogen ion concentration) with increasing depth was significant 

through all three soil horizons (Oa = 4.25, Bh = 4.59, Bs = 4.75, p = 0.01). 

 

Elevational Patterns 

 Marked elevational landscape patterns were evident in the concentrations of dissolved Fe 

species, DOC and pH in soil solutions (Table 2) and stream water (Figure 2). For soil water 

draining each soil horizon and for stream water, Fe(II), Fe(III), DOC, and hydrogen ion 
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concentrations were highest in the spruce-fir-birch subcatchment and generally decreased with 

decreasing elevation through the high-elevation hardwood and low-elevation hardwood zones of 

W6. This pattern was significant across all three elevation zones for Fe(II) and pH (p ≤ 0.01). 

Significant differences were found for both Fe(III) and DOC concentrations between the spruce-

fir-birch zone and the low-elevation hardwood zone. The spruce-fir-birch subcatchment had 

higher concentrations of Fe(III) and DOC than the low-elevation hardwood zone for soil 

solutions across all soil horizons (p ≤ 0.03). 

***TABLE 2*** 

***FIGURE 2*** 

 No notable elevational vegetation zone patterns were evident in the distribution of Fe 

between the oxidized and reduced forms in the soil solutions. The percentage of total dissolved 

Fe as Fe(II) ranged from a low value of 16% in the soil water draining the Bh horizon in the low 

hardwood site to a high value of 44% in the solution draining the Oa horizon of the high 

hardwood zone. 

 The elevational patterns of Fe concentrations, as well as the soil horizonal patterns 

mentioned previously, have implications for the transport and retention of Fe (See Discussion 

section). 

 

Seasonal Patterns 

 Generally, seasonal changes of soil solution Fe and DOC concentrations were found only 

in the Oa horizon leachates (Figure 3). The concentrations of Fe(II) and DOC in soil water 

draining the Oa horizon were both significantly lower in the spring and winter than in the 

summer and fall (p ≤ 0.01). The concentrations of Fe(II) and DOC in the Oa horizon increased 
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from the spring to summer to fall, and decreased from fall to winter. For DOC, but not for Fe(II), 

the increase from the summer to the fall was significant (p < 0.01). A similar pattern was 

observed in the Fe(III) concentrations of the Oa soil solutions, although the highest values were 

observed in the summer samples. Seasonal patterns for the Fe(III) concentration, however, were 

not significant (p = 0.28). 

***FIGURE 3*** 

 Paired t-test analysis revealed that the same patterns observed in the Oa leachate were 

also evident in the lower mineral soil horizons. The lowest concentrations occurred during the 

spring and winter, and the highest in the summer and fall. The relative proportion of Fe(II) and 

Fe(III) in soil solutions did not exhibit any significant (p = 0.08) seasonal pattern.  

 

Relation of Iron Chemistry to Dissolved Organic Carbon and pH 

 Patterns in the concentration of dissolved Fe species was highly correlated with DOC and 

pH in soil solutions (Figure 4) and stream water (Figure 2). Within soil solutions, strong 

relationships existed for Fe(II) and Fe(III) with DOC. In each case the strength of the 

relationship increased with soil depth. For Fe(II) and DOC, the r
2
 values were lowest for solution 

draining the Oa horizon and increased with drainage through mineral soil (Oa, r
2
 = 0.55; Bh, r

2
 = 

0.69; Bs, r
2
 = 0.92). The same pattern was observed for Fe(III) vs. DOC (Oa, r

2
 = 0.18; Bh, r

2
 = 

0.85; Bs, r
2
 = 0.91), with notably lower r

2
 in the Oa horizon. The slopes of the Fe-DOC 

regression lines increase with soil depth for both Fe(II) and Fe(III). Concentrations of Fe were 

inversely correlated with pH of soil solutions and stream water (Figure 2). Note that DOC and 

soil solution pH are highly correlated (Fahey et al. 2005).  

***FIGURE 4*** 
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Discussion 

Chemistry of Inputs to the Forest Floor: Deposition, Throughfall, Litterfall 

 No sampling of precipitation was undertaken for this study, but Fe inputs in bulk 

precipitation were available based on a 19-year record of precipitation chemistry at Hubbard 

Brook (1983-2001). The mean bulk deposition value during these years was 3.5 mol ha
-1

 yr
-1

 (CE 

Johnson, unpublished data).  Smith et al. (1986) previously reported a mean flux of Fe in bulk 

precipitation of 8.7 mol ha
-1

 yr
-1

 for the period 1976-1985. This difference results from higher 

measured Fe concentrations in precipitation during the early years of that study, when Fe 

deposition was higher than in recent years. 

Atmospheric deposition of Fe and other metals is a combination of both wet and dry 

deposition and is derived from a variety of natural and anthropogenic sources. Parekh and 

Husain (1981) characterized the anthropogenic sources of Fe and other metal deposition to rural 

areas of New York State, concluding that Fe deposition was largely associated with iron and 

steel industrial activity, as well as soil disturbance.  

While the annual flux of Fe in bulk precipitation at Hubbard Brook may appear small 

(especially in comparison to soil pools; see below), it may serve as an important source of Fe to 

the canopy and forest floor. Additionally, deposition of metals in excess of natural historical 

levels could potentially alter soil chemistry, especially processes in the rhizosphere. Iron inputs 

in bulk precipitation represent about 7% of the value for soil solution draining the forest floor. 

Precipitation passes through the forest canopy and is deposited on the forest floor as 

throughfall. The concentration of elements in throughfall compared to precipitation is determined 

by a series of complex processes, including incident wet deposition, evaporation, washoff of 
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deposits in the canopy, foliar leaching, and uptake or sorption by foliage or epiphytic biota 

(Parker 1983). The flux of Fe in throughfall was 4.4 mol ha
-1

 yr
-1

, about 25% higher than the flux 

in bulk precipitation. While the processes affecting throughfall Fe flux are complex, this 

difference suggests that washoff of dry deposition or foliar leaching are contributing to increased 

Fe as precipitation passes through the canopy.   

Leaf litterfall is an important input of Fe to the forest floor. Unlike throughfall, litterfall 

represents Fe cycled through the ecosystem from root uptake. In the intrasystem cycle of forest 

ecosystems, litterfall is the dominant pathway for the return of nutrients to the soil (Schlesinger 

1997). 

The Fe content of leaf litterfall was estimated by measuring the concentration of Fe in 

fresh leaves. This value is an overestimate for litterfall if there is significant resorption of Fe 

during leaf senescence. Conversely, it is an underestimate if accretion of Fe in senescing leaves 

is taking place. Foliar Fe concentrations observed in our study were generally lower for each 

species than those reported by Gosz et al. (1972) for leaf litterfall at the HBEF. This difference in 

Fe concentration could be the result of interannual variation or indicative of accretion in 

senescing leaves. Killingbeck (1985) observed chinquapin oak in a gallery forest in Kansas 

resorbed 35% of its foliar Fe: however, he also observed that hackberry and red elm had 

significant accretion of Fe, while green ash and bur oak had neither significant resorption nor 

accretion. Tyler (2005) showed that most mineral elements, including Fe, increased in dry weight 

concentration during leaf senescence in European beech trees. For calculation and comparison 

purposes, we assumed that little change in foliar Fe content occurred during senescence. 

The Fe concentrations measured in foliage for this study were similar across the species 

sampled (Table 1). There was no elevational pattern (p = 0.30) in Fe concentration for the major 



18 

 

hardwood species. However, the lowest concentrations of Fe in foliage were found in the 

samples from conifers at the upper-elevation spruce-fir-birch site. Additionally, because conifer 

litterfall mass is lower than for deciduous forest (Fahey et al. 2005), we can infer that flux rates 

of Fe to soil from leaf litterfall are higher in the hardwood zones at Hubbard Brook. 

 

Leaching of Fe(II) and Fe(III) from Leaf Litter 

Following litterfall, some Fe from leaves can be leached and transported to deeper soil 

with percolating water. While autumnal litterfall represents a pulse flux of Fe to the forest floor, 

leaching from litter in the forest floor is a continual process of Fe transfer from the forest floor to 

the underlying soil horizons (Jones et al. 1994). Litter leachate is an initial source of dissolved 

Fe, as well as soluble organic compounds that can further mobilize Fe in the soil profile (Senesi 

et al. 1989; Senesi and Sposito 1989). 

In order to obtain an estimate of the concentration of readily leachable Fe and its 

distribution as Fe(II) and Fe(III), litter samples were extracted with hydrochloric acid. This 

method was chosen because HCl can rapidly extract Fe from leaf litter, while at the same time it 

is not so aggressive that it would be expected to alter the ratio of Fe(II) to Fe(III). Total Fe(II) 

measurements of litter are impractical because complete digestion procedures would result in 

oxidation of Fe. The measurement of readily leachable Fe is ecologically relevant because it may 

approximate what can naturally be leached from fresh leaf litter. 

The results of this experiment indicate that amounts of readily leachable Fe were 

relatively low when compared to the total Fe content of leaf litter (Table 1). The results also 

show that 50% or more of the Fe in litter leachate is in the reduced form (Fe(II)). Reduced Fe is 

the bioavailable form of Fe taken up by plants; ferric compounds are reduced prior to 
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assimilation (Chaney et al. 1972).  Consequently, it is not surprising to find large amounts of 

ferrous iron in vegetation. Within leaves Fe is a component of numerous enzymes and undergoes 

oxidation and reduction during the course of electron transport (Nason and McElroy 1963). This 

role may explain the nearly equal distribution between Fe(II) and Fe(III) in the leaf litter 

leachate. 

 

Chemistry of Drainage Waters: Soil Solution and Stream Water 

The concentrations of Fe(II), Fe(III), DOC, and hydrogen ion in soil solution decreased 

with depth in the soil profile at Hubbard Brook. The concentration of Fe species and DOC 

decreased further from the mineral soil to stream water. These results are consistent with theories 

of podsolization that predict translocation of Fe (and Al) from topsoil to subsoil as metal-organic 

complexes (e.g. de Coninck 1980; Dahlgren and Ugolini 1989). Petras (1996) quantified pools of 

soil Fe fractions by horizon at Hubbard Brook (Table 3). These data show that organically bound 

Fe pools increased with depth in the soil profile. Additionally, there was a large increase in the 

percentage of total Fe in organically bound forms from the E horizon to the Bh horizon (11.3% 

to 64.0%, Table 3). These data are consistent with long term accumulation of organically 

complexed Fe in the B horizons resulting from podsolization processes. 

The mechanisms responsible for immobilization of Fe and Al-organic complexes are not 

completely understood. Numerous mechanisms for immobilization in the lower B horizons have 

been proposed. Sauer et al. (2007) summarized these immobilization hypotheses, many of which 

suggest that the downward transport of metal-organic complexes terminates when the complexes 

reach a condition of insolubility. 
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 The ratios of mean DOC-to-Fe concentration decrease as solutions drain through the soil 

profile. This pattern holds for DOC-to-total Fe (Oa: 379, Bh: 251, Bs: 243), as well as both 

DOC-to-Fe(II) (Oa: 1050, Bh: 891, Bs: 874) and DOC-to-Fe(III) (Oa: 592, Bh: 349, Bs: 337). A 

decreasing carbon-to-metal ratio is indicative of decreasing solubility and increased 

immobilization in the mineral soils (McKeague et al. 1978; Schnitzer and Skinner 1963). 

Similarly, the slopes of the Fe-DOC regression lines (Figure 4) increase with depth in the soil 

profile, consistent with these podsolization theories. 

***TABLE 3*** 

***TABLE 4*** 

While possible that multiple mechanisms of immobilization act concurrently, based on 

the data available from our study and other studies of Hubbard Brook soils, it seems likely that 

organic complexes gain additional Al and Fe during downward transport until precipitation is 

induced by the changing metal-to-carbon ratio (McKeague et al. 1978). This mechanism explains 

the depleted concentration of labile Fe pools in the E horizon (leaving mostly residual Fe; Table 

3) and the high concentrations of organically bound Fe in the B horizons. Immobilization 

induced by the partial microbial breakdown of organic carrier molecules by microbes, as 

proposed by Boudot et al. (1989) and Lundström et al.(2000), could also result in the same 

horizonal patterns of reduced C:Fe in deeper soils, and the long-term accumulation of organic 

matter that is more recalcitrant and resistant to microbial breakdown. 

Distinct landscape patterns in the concentration of Fe(II), Fe(III), DOC, and hydrogen ion 

were observed based on elevation (and vegetation zone) in the drainage waters of Watershed 6. 

The concentration of each solute was highest at the highest sampling locations (spruce-fir-birch 

zone) and decreased with decreasing elevation. Dissolved Fe concentrations were highly 
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dependent on DOC concentrations. In the spruce-fir-birch zone, DOC concentrations were 

highest in part because of the recalcitrant nature of coniferous litter, cooler temperatures and 

greater soil moisture, which lead to reduced decomposition rates at higher elevation (Driscoll et 

al. 1988a). There is greater accumulation of organic matter with increasing elevation at Hubbard 

Brook, with the greatest amounts in the spruce-fir-birch zone (Gosz et al. 1976; Johnson et al. 

2000). The depth of mineral soil is lowest in the spruce-fir-birch zone (Lawrence et al., 1986; 

Johnson et al., 2000) and consequently, there are a limited number of adsorption sites to facilitate 

the immobilization of DOC (and DOC-metal complexes) draining through the soil profile to 

stream waters (McDowell and Wood 1984; Fuller et al. 1985). The solubility of Fe was also 

greater in drainage waters of the spruce-fir-birch zone, due to lower pH and higher 

concentrations of organic acids (Driscoll et al. 1988b). The increase of soil solution and stream 

pH within the lower hardwood zone corresponds to an increase of base cation inputs due to 

percolation of soil water through deeper mineral soils at lower elevations, where neutralization 

occurs via weathering and cation exchange (and declining concentrations of DOC) (Johnson et 

al. 1981). 

The seasonal patterns of Fe and DOC concentrations were most clearly expressed in the 

soil solution draining the Oa horizon. The highest Fe(II) and DOC concentrations were found 

during the summer and fall months, with lower values during the winter and spring. The 

observed seasonal pattern is likely due to enhanced decomposition of organic matter (and 

therefore DOC production) associated with higher temperatures and greater microbial activity 

during the summer months, as well as the inputs of fresh litter during the fall (Campbell et al. 

2000; Dittman et al. 2007). The Fe(II) in soil solution likely exists as organic-Fe complexes and 

therefore would follow a similar seasonal pattern to DOC. 
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The patterns were less evident and not statistically significant in the mineral soil horizons 

perhaps because of the capacity of the mineral soil to “buffer” the concentration of DOC 

(McDowell and Wood 1984). The adsorption of DOC to mineral compounds modulates the 

concentration of solution transported through the deeper soil. The concentrations of Fe species in 

stream water were relatively low throughout the year and the lower reaches showed no 

discernable seasonal patterns, likely for the same reasons as mentioned above with regard to the 

mineral soil. The stream water chemistry from the upper reaches of the watershed exhibited a 

seasonal pattern similar to the soil solution in the spruce-fir-birch zone. These seasonal patterns 

support the contention that stream water in the upper elevation sites is derived from shallow 

flowpaths (Lawrence et al. 1986). 

 

Relation of Iron Chemistry to Dissolved Organic Carbon, pH, and Dissolved Oxygen 

The concentrations of Fe(II), Fe(III), and DOC all showed similar patterns in soil solution 

and stream water. These patterns suggest that dissolved Fe species exist primarily as organic-Fe 

complexes. It is unlikely that elevated concentrations of Fe species would occur in the absence of 

organic ligands. The solubility of Fe(III) is very low in the absence of organic ligands and Fe(II) 

is not stable under oxidizing conditions (Sunda 2000). Both oxidized and reduced Fe were 

strongly correlated with DOC in soil solution and the strength of the regression relationships 

increased with depth in the soil profile. This may be due to the higher variability of DOC 

concentrations in solution draining the Oa horizon compared to the Bh and Bs horizons, as well 

as an increasing availability of Fe for complexation with depth in mineral soils. 

As with DOC, there was a strong relationship between the concentration of Fe species 

and pH which strengthened with depth in the soil profile. The patterns of pH and DOC were 
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similar because much of the free acidity results from the dissociation of organic acids. It is not 

clear if the relationship of concentrations of Fe species with pH was a pH effect or a 

manifestation of the correlative relationship between pH and DOC. 

Qualitative field measurements of dissolved oxygen in soil solutions were taken to 

determine whether oxygen concentrations were controlling oxidation-reduction chemistry and 

the distribution between Fe(II) and Fe(III) in soil solutions. These values ranged from nearly 

completely depleted (~0.1 mg L
-1

) to completely saturated with oxygen (~9 mg L
-1

). The lowest 

dissolved oxygen concentrations were observed during the summer and fall months, when 

microbial activity is highest (Groffman et al. 2001). The lowest concentrations were frequently 

found in the Oa horizon and increased with increasing depth in the soil profile. This pattern 

matches the negative correlation of dissolved oxygen concentrations with DOC in samples 

during the summer and fall months 

Although dissolved oxygen concentrations in soil solutions were low at times, this 

condition did not appear to promote widespread reduction of soil Fe(III). Interestingly, we found 

that the Fe(II)-to-Fe(III) ratio did not fluctuate significantly with variations in DO 

concentrations. The soils of Hubbard Brook are generally considered to be well-drained and it 

might be expected that DO concentrations are consistently high. Yet we consistently found that a 

significant fraction of total Fe was in the reduced form, and this fraction was not related to the 

concentrations of DO. If microbial reduction of Fe was a significant process, concentrations of 

Fe(II) would be expected to be several orders of magnitude higher, as in wetland pore waters 

(Thompson et al. 2009). Highly elevated Fe(II) concentrations, indicating reducing conditions 

(accompanied by odors of reduced sulfur compounds and lower sulfate concentrations) were 

observed only in a few isolated instances during our study (e.g., W1 high hardwood Oa horizon 
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during summer and fall months). While the water table level fluctuates temporally at Hubbard 

Brook, it may not be elevated for sufficiently long periods to promote high rates of Fe reduction. 

Additionally, oxygen depletion associated with elevated groundwater would need to coincide 

with conditions of high microbial activity, including warm temperatures and availability of labile 

carbon sources. Rochette and Cleary (2004) found evidence for Fe reduction in a New 

Hampshire Aquod (wet Spodosol) that was seasonally saturated (during the spring). It is possible 

that we underestimate the importance of Fe reduction due to the monthly sampling design. 

The concentration of Fe species appears to be much more strongly influenced by DOC 

concentrations than by dissolved oxygen concentrations, suggesting that Fe(II) is stabilized in 

solution and is resistant to oxidation. The most likely mechanism for this pattern is stabilization 

as an organic-Fe(II) complex. Kieber et al. (2001) found that Fe(II) accounted for more than 80% 

of total dissolved Fe in rainwater collected in coastal areas of North Carolina and New Zealand. 

They suggested organic ligands stabilized Fe(II) against oxidation and found that this effect was 

eliminated when organic molecules were degraded upon exposure to high-intensity ultraviolet 

(UV) radiation. Willey et al. (2008) found a class of Fe(II)-binding ligands comparable in 

strength to the ferrozine complex in the hydrophobic fraction of dissolved organic matter of 

rainwater. These compounds stabilized Fe(II) in highly oxidizing marine surface waters for more 

than 4 hr. It seems likely that organic complexes in Hubbard Brook drainage waters can stabilize 

Fe(II), greatly attenuating oxidation kinetics. 

 

Ecosystem Fluxes 

Mass balance calculations for Fe at Hubbard Brook showed that the forest ecosystem 

exhibited net retention of Fe (stream export of Fe is lower than input from bulk precipitation; 1.8 
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and 3.5 mol ha
-1

 yr
-1

, respectively). Moreover, Watershed 6 had relatively small fluxes of Fe to 

the forest floor, higher fluxes draining the forest floor through the soil profile, and lower fluxes 

again in stream water (Figure 5). Fluxes of Fe(II) and Fe(III) were calculated separately, except 

for bulk precipitation, throughfall, and total litterfall, for which the distribution between Fe(II) 

and Fe(III) was not available.  

***FIGURE 5*** 

There was a substantial increase in Fe transport in soil solutions relative to bulk 

precipitation, throughfall, and litterfall. Bulk precipitation and litterfall fluxes were similarly 

small (3.5 and 3.4 mol ha
-1

 yr
-1

, respectively). Throughfall flux (4.4 mol ha
-1

 yr
-1

) was only 

marginally higher than these inputs. Net throughfall flux (total throughfall – bulk precipitation) 

was 0.9 mol ha
-1

 yr
-1

.  

 The value for stream export of Fe reported here (1.8 mol ha
-1

 yr
-1

) is lower than the 

dissolved Fe flux reported by Smith et al. (1986) (7.3 ± 4.0 mol ha
-1

 yr
-1

, mean ± standard 

deviation). Smith et al. (1986) also found that an additional 3.2 ± 2.5 mol ha
-1

 yr
-1

 (mean ± 

standard deviation) of Fe was exported as course particulate matter rather than in dissolved form. 

Most of this elevated particulate flux is derived from the stream channel. We did not measure 

particulate matter for this study, and consequently, our Fe export should be considered an 

underestimate of total Fe export from the watershed.  

The fluxes in soil solution were markedly higher than inputs to the forest floor and 

decreased with depth in the soil (Oa = 52.5 mol ha
-1

 yr
-1

, Bh = 50.5 mol ha
-1

 yr
-1

, Bs = 19.7 mol 

ha
-1

 yr
-1

; Figure 5). The fluxes of Fe(II) and Fe(III) through the soil profile (Table 5) were similar 

to the horizonal patterns observed in Fe concentrations (Table 2). These fluxes are consistent 

with podsolization theory, which predicts translocation of Fe from the forest floor to mineral soil. 



26 

 

For both Fe(II) and Fe(III), the fluxes were highest draining the Oa horizon and decreased with 

depth in the mineral soil and stream water. The flux of Fe(II) in soil solution draining the Oa 

horizon (14.4 mol ha
-1

 yr
-1

) was considerably larger than the total amount of Fe in litterfall (3.4 

mol ha
-1

 yr
-1

), and therefore is much larger than the annual flux of Fe(II) in litter leachate. This 

pattern indicates that the forest floor serves as a net source of Fe(II) to soil solution resulting 

from Fe(II) release during decomposition of additional organic matter and/or reduction of soil 

Fe(III) compounds. Fine root turnover provides a flux of 7.2 mol Fe ha
-1

 yr
-1

 (TJ Fahey, 

unpublished data). Reduction of Fe(III) is known to occur in the rhizosphere (Pinton et al. 2007; 

Fimmen et al. 2008). Decomposition of fine roots, as well as exudates from live roots could 

contribute to the reduction of soil Fe(III) and the supply of Fe(II) to soil solution. The abiotic 

reduction of Fe(III) (hydr)oxides by dissolved organic matter has been demonstrated with 

Spodosol organic horizon extracts (Buerge and Hug 1998), and with forest floor leachates of 

both hardwood and conifer forests (Chorover and Amistadi 2001). Chemical reduction of Fe(III) 

by dissolved organic matter could explain the portion of the Fe(II) flux in soil solution not 

accounted for by known sources of Fe(II), such as leaching of litter or decomposition of fine 

roots. 

***TABLE 5*** 

The same general pattern of decreasing Fe fluxes with increasing soil depth occurred for 

each of the elevation zones with the exception of the high elevation hardwood zone (Table 5). In 

this subcatchment, the flux of Fe (especially Fe(III)) from the Oa horizon was markedly less than 

from the Bh horizon. The fluxes of Fe(II) and Fe(III) decreased with decreasing elevation also 

with the exception of the Oa horizon in the high elevation hardwood zone. 
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The fluxes of dissolved Fe through the soil profile are low when compared to the soil 

pools of total Fe or soluble + exchangeable Fe (Figure 5, Table 3). Based on the mean annual 

fluxes of Fe draining soil horizons, the average turnover time for soil Fe increases substantially 

with depth in the soil profile (for total soil Fe: Oa = 74.3 yr, E+Bh = 3010 yr, and Bs = 73,600 

yr; for soluble + exchangeable: Oa = 0.84 yr, E+Bh = 12.9 yr, and Bs = 33.5 yr). The soluble + 

exchangeable Fe fractions in bulk soil represent much larger percentages of total soil Fe in the 

upper horizons (Oa: 1.1%, E+Bh: 0.43%, and Bs: 0.05%). 

 

Conclusions 

 Several conclusions can be drawn from this study: 

1. Iron dynamics were closely coupled with DOC and pH (as a result of organic acid 

dissociation) in soil solution and stream water. Iron concentrations follow the horizonal, 

elevational, and temporal patterns of DOC concentrations in the drainage waters of 

forested watersheds at Hubbard Brook. Concentrations were highest in solutions draining 

the organic soil horizons and decreased with depth in the soil profile. Higher 

concentrations were found in the upper reach of the watersheds in the spruce-fir-birch 

zone where temperatures are cooler and decomposition of organic matter is slower. 

Concentrations of Fe species decreased with decreasing elevation. Iron concentrations in 

Oa soil solutions were highest during the summer and fall months, when DOC 

concentrations were highest due to enhanced microbial activity and input from leaf litter. 

2. The forest floor was a net source of Fe to the soil solution. Iron fluxes in solution 

draining the Oa horizon exceeded inputs (throughfall + litterfall) to the forest floor. 
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3. A large portion of total Fe fluxes in soils was in the form of Fe(II) relative to what may 

be expected in well-drained soils. The persistence of Fe(II) in solution, even when 

dissolved oxygen concentration were high, may be the result of stabilization as organic-

Fe(II) complexes. 

4. Ferrous iron was derived from decomposition and leaching leaf litter. Annual fluxes of 

Fe(II) from the Oa horizon exceeded the maximum possible contribution of litterfall. This 

indicates that Fe(II) was mobilized as soil Fe minerals were reduced (likely in the 

rhizosphere) and/or during decomposition of other organic materials. 

5. Patterns of Fe dynamics in forest soil at Hubbard Brook are consistent with podsolization 

theories. Fe fluxes decreased with depth in the soil profile, indicating the translocation of 

Fe from the forest floor to mineral soil.  
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Figure Captions 

 

Figure 1. Hubbard Brook experimental watersheds with sampling sites indicated. 

 

 

Figure 2. Elevational patterns of total Fe and DOC concentrations and pH for Watershed 6 

stream water. Shown are mean values and standard errors. Vertical dotted lines indicate 

approximate vegetation zone transitions. 

 

 

Figure 3. Seasonal mean concentrations of DOC, Fe(II), and Fe(III) in soil solution by soil 

horizon. Standard errors are represented by vertical bars.  

 

 

Figure 4. Relationship of DOC with: a) Fe(II) and b) Fe(III) in soil solution by soil horizon. 

 

 

Figure 5. Annual fluxes of dissolved Fe and soil Fe pools at Hubbard Brook. Flux calculations 

were based on Watershed 6 data. Soil pools are from Watershed 5 data (Petras 1996). 
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Table 1. Fe concentrations of litter (foliage) and litter leachate for the three major 

hardwood species. 

 Total Fe             

(µg g
-1

)  

Leachable Fe     

(µg g
-1

) 

Leachable Fe     

(% of total Fe) 

Leachable 

Fe(II) (µg g
-1

) 

Leachable 

Fe(III) (µg g
-1

) 

Sugar Maple 49.2 8.6 18 4.6 4.0 

Yellow Birch 58.0 13.7 24 7.2 6.5 

American Beech 48.0 12.2 25 7.1 5.0 

 

 

 

 

Table 2.  Mean concentrations of Fe(II), Fe(III), DOC and the pH for soil solutions of 

Watershed 6 by elevation zone and soil horizon. Values in parentheses represent standard 

deviations.  

  Fe(II)   

(µmol L
-1

) 

Fe(III) 

(µmol L
-1

) 

Fe(II) 

(%) 

DOC    

(µmol L
-1

) 

pH n 

Low 

Hardwood 

Oa 0.9 (0.5) 2.9 (1.8) 23 860 (93) 4.34 21 

Bh 0.5 (0.2) 2.4 (1.8) 16 480 (220) 4.85 22 

 Bs 0.1 (0.1) 0.2 (0.4) 39 220 (21) 4.91 23 

High 

Hardwood 

Oa 0.5 (0.1) 0.7 (0.2) 44 800 (270) 4.21 18 

Bh 0.9 (0.3) 4.8 (1.4) 16 1350 (54) 4.41 11 

 Bs 0.3 (0.3) 1.2 (1.7) 22 390 (200) 4.64 16 

Spruce-Fir-

Birch 

Oa 2.1 (0.5) 6.0 (4.7) 26 1640 (780) 4.09 19 

Bh 2.2 (0.8) 6.0 (1.0) 27 1360 (77) 4.23 18 

 Bs 1.5 (0.5) 3.9 (2.5) 27 860 (190) 4.52 16 
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Table 3. Pools of soil Fe fractions at Hubbard Brook (modified from Petras (1996)). 

Horizon Fe fraction Pool (mol ha
-1

) Percent of total Fe 

Oa Soluble + exchangeable 44 1 

 Inorganically bound 3 0 

 Organically bound 1600 41 

 Amorphous-oxide-bound 190 5 

 Residual 2000 51 

 Total 3900 100 

E Soluble + exchangeable 140 0 

 Inorganically bound 38 0 

 Organically bound 5900 11 

 Amorphous-oxide-bound 200 0 

 Residual 46,000 89 

 Total 52,000 100 

Bh Soluble + exchangeable 510 1 

 Inorganically bound 190 0 

 Organically bound 64,000 64 

 Amorphous-oxide-bound 1400 1 

 Residual 37,000 37 

 Total 100,000 100 

Bs1 Soluble + exchangeable 480 0 

 Inorganically bound 500 0 

 Organically bound 76,000 51 

 Amorphous-oxide-bound 15,000 10 

 Residual 61,000 41 

 Total 150,000 100 

Bs2 Soluble + exchangeable 180 0 

 Inorganically bound 560 0 

 Organically bound 220,000 17 

 Amorphous-oxide-bound 64,000 5 

 Residual 1,000,000 77 

  Total 1,300,000 100 
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Table 4. Summary of mean concentrations of DOC, Fe(total), Fe(II), and Fe(III). Standard 

deviations are indicated in parentheses.  

Horizon DOC            

(µmol C L
-1

) 

Fe(total)    

(µmol L
-1

) 

Fe(II)          

(µmol L
-1

) 

Fe(III)         

(µmol L
-1

) 

Oa 1530 (1200) 4.0 (3.6) 1.5 (1.1) 2.6 (2.7) 

Bh 730 (530) 2.9 (2.7) 0.8 (0.7) 2.1 (2.3) 

Bs 510 (650) 2.1 (4.2) 0.6 (1.0) 1.5 (3.2) 

 

 

 

Table 5. Annual fluxes of  Fe(II) and Fe(III) for drainage waters in Watershed 6. 

Elevation zone Horizon Fe(II) flux 

(mol ha
-1

 yr
-1

) 

Fe(III) flux 

(mol ha
-1

 yr
-1

) 

Spruce-Fir-Birch Oa 28.7 77.3 

 Bh 27.8 56.2 

 Bs 22.8 41.2 

 Stream 20.5 44.0 

High Hardwood Oa 8.5 10.7 

 Bh 12.4 59.7 

 Bs 5.2 12.9 

 Stream 4.0 3.8 

Low Hardwood Oa 12.3 38.8 

 Bh 5.0 19.2 

 Bs 1.6 1.3 

 Stream 0.3 1.5 

Watershed 6 Total Oa 14.4 38.1 

 Bh 11.8 38.8 

 Bs 6.9 12.8 

 Stream 0.3 1.5 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 

 

 

 

 

 

 

 



 

Figure 5. 
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