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a b s t r a c t  

The potential impacts of underwater noise on marine mammals are widely recognised, but uncertainty 
over variability in baseline noise levels often constrains efforts to manage these impacts. This paper 
characterises natural and anthropogenic contributors to underwater noise at two sites in the Moray Firth 
Special Area of Conservation, an important marine mammal habitat that may be exposed to increased 
shipping activity from proposed offshore energy developments. We aimed to establish a pre-develop-
ment baseline, and to develop ship noise monitoring methods using Automatic Identification System 
(AIS) and time-lapse video to record trends in noise levels and shipping activity. Our results detail the 
noise levels currently experienced by a locally protected bottlenose dolphin population, explore the rela-
tionship between broadband sound exposure levels and the indicators proposed in response to the EU 
Marine Strategy Framework Directive, and provide a ship noise assessment toolkit which can be applied 
in other coastal marine environments. 

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved. 
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reproduction in any medium, provided the original author and source are credited. 
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7258. 
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1. Introduction 

Acoustic measurements in the Northeast Pacific indicate that 
underwater noise levels in the open ocean have been rising for at 
least the last five decades due to increases in shipping (Andrew 
et al., 2002; McDonald et al., 2006; Chapman and Price, 2011) cor-
related to global economic growth (Frisk, 2012). Closer to shore, 
escalations in human activity, including shipping, pile-driving 
and seismic surveys, have transformed coastal marine soundscapes 
(Richardson et al., 1995; Hildebrand, 2009) with uncertain conse-
quences for the ecosystems that inhabit them. 

These large-scale changes in the acoustic environment are of 
particular concern for marine mammals (Tyack, 2008), which rely 
on sound as their primary sensory mode. There is growing 
evidence that marine mammals perceive anthropogenic noise 
sources as a form of risk, which is then integrated into their 
ecological landscape, affecting their decision-making processes 
(Tyack, 2008). Noise also has the potential to mask important 
acoustic cues in marine mammal habitats, such as echolocation 

and communication (Erbe, 2002; Jensen et al., 2009), and may dis-
rupt their prey (Popper et al., 2003) affecting foraging. These 
anthropogenic pressures may lead to physiological stress (Wright 
et al., 2007; Rolland et al., 2012), habitat degradation, and changes 
in behaviour (Nowacek et al., 2007) including evasive tactics (Wil-
liams et al., 2002; Christiansen et al., 2010) and heightened vocali-
sation frequency (Parks et al., 2007), rate (Buckstaff, 2004), or 
duration (Foote et al., 2004). The cumulative cost of these re-
sponses can alter the animals’ activity budget (Lusseau, 2003) 
and energy balance, which may have downstream consequences 
for individual vital rates (e.g. survival or reproductive success) 
and, ultimately, population dynamics. Efforts are underway to de-
velop a framework to predict such population consequences of 
acoustic disturbance (PCAD; National Research Council, 2005). 

Detailed investigation of these chronic and cumulative effects 
will require longitudinal studies of ambient noise trends in marine 
habitats with concurrent assessment of marine mammal fitness 
and population levels. However, long-term ambient noise data 
(on the scale of several or more years) are limited to the Northeast 
Pacific (e.g. Andrew et al., 2002; McDonald et al., 2006; Chapman 
and Price, 2011) and data for other ocean basins and coastal re-
gions are rare and comparatively brief (e.g. Moore et al., 2012; Širo-
vić et al., 2013). In the European Union (EU), a regulatory 
framework which seeks to rectify this knowledge deficit is cur-
rently developing guidelines for ambient noise monitoring (EU, 
2008; Tasker et al., 2010; Van der Graaf et al., 2012; Dekeling 
et al., 2013). The Marine Strategy Framework Directive (MSFD) will 
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ascertain baseline noise levels and track year-on-year trends with a 
view to defining and attaining ‘Good Environmental Status’ in EU 
territorial waters by 2020. There is no specific requirement for 
long-term monitoring of the acoustic impact of human activities 
on marine mammal populations, though a proposed register of 
high-amplitude impulsive noise (e.g. pile driving, seismic surveys) 
could act as a proxy indicator of high-amplitude acoustic distur-
bance (Van der Graaf et al., 2012). For ambient noise (including 
noise from shipping), current recommendations are to monitor 
two 1/3-octave frequency bands (63 and 125 Hz), targeting areas 
of intensive shipping activity (Van der Graaf et al., 2012; Dekeling 
et al., 2013). Consequently, many key marine mammal habitats 
may not be included in monitoring programs. While such habitats 
may sustain less pressure from anthropogenic noise, they may, 
nevertheless, be more vulnerable to increases in underwater noise 
levels (Heide-Jørgensen et al., 2013). 

This study characterises baseline noise levels in the inner Moray 
Firth, a Special Area of Conservation (SAC) for a resident population 
of bottlenose dolphins (Tursiops truncatus), and an important hab-
itat for several other marine mammal species. The Moray Firth also 
provides an important base for the development of oil and gas 
exploration in the North Sea, and there are now plans to develop 
this infrastructure to support Scotland’s expanding offshore 
renewables industry (Scottish Government, 2011). These develop-
ments will increase recent levels of vessel traffic to fabrication 
yards and ports within the SAC such as those at Nigg and Invergor-
don (New et al., 2013) and at the Ardersier yard (Fig. 1). Establish-

ing current baseline levels will enable future noise monitoring to 
quantify the acoustic consequences of this expected increase, sup-
porting analyses of any associated effects on marine mammal pop-
ulations. In characterising key contributors to underwater noise 
levels in the SAC, we also advance methods for ship noise monitor-
ing by combining Automatic Identification System (AIS) ship-track-
ing data and shore-based time-lapse video footage, and explore 
whether underwater noise modelling based on AIS data could 
accurately predict noise levels in the SAC. These methods can be 
applied in other coastal regions to evaluate the contribution of ves-
sel noise to marine soundscapes. Finally, we explore whether noise 
levels in frequency bands proposed for the MSFD (1/3-octave 
bands centred on 63 and 125 Hz) are effective indicators of broad-
band noise exposure from shipping. 

2. Methods 

2.1. Study site 

The inner Moray Firth was designated a Special Area of Conser-
vation (SAC) for bottlenose dolphins under the European Habitats 
Directive (92/43/EEC), since at least part of the north-east Scotland 
population spends a considerable proportion of time in this area 
(Cheney et al., 2013). Long-term monitoring of the population’s 
size suggests that it is stable or increasing (Cheney et al., 2013). 
Within the SAC, dolphins have been observed to use discrete 

Fig. 1. Map of study area. PAM units were deployed at The Sutors and Chanonry. Meteorological data for Chanonry were acquired from a weather station at Ardersier; time-
lapse footage for The Sutors was recorded from Cromarty (see text). 
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foraging patches around the narrow mouths of coastal estuaries 
(Hastie et al., 2004; Bailey and Thompson, 2010; Pirotta et al., in 
press). Other marine mammal species are also regularly sighted 
in the area: harbour seal (Phoca vitulina), harbour porpoise (Phoco-
ena phocoena), grey seal (Halichoerus grypus), and, further offshore, 
minke whale (Balaenoptera acutorostrata) and other smaller delphi-
nid species (Reid et al., 2003). In addition to the bottlenose dolphin 
SAC, six rivers around the Firth are SACs for Atlantic salmon (Salmo 
salar), while the Dornoch Firth is an SAC for harbour seals (Butler 
et al., 2008). 

Two locations were selected for underwater noise monitoring: 
The Sutors (57�41.150N, 3�59.880W), at the entrance to the Crom-
arty Firth, and Chanonry (57�35.120N, 4�05.410W), to the southwest 
(Fig. 1). Both locations are deep narrow channels characterised by 
steep seabed gradients and strong tidal currents, heavily used by 
the dolphins for foraging (Hastie et al., 2004; Bailey and Thompson, 
2010; Pirotta et al., in press). The Sutors supports commercial ship 
traffic transiting in and out of the Cromarty Firth, while Chanonry 
is on the route to and from Inverness and to the west coast of Scot-
land via the Caledonian Canal (Fig. 2). Water depths at the deploy-
ment sites were 45 m (The Sutors) and 19 m (Chanonry). Proposed 
development of fabrication yards for offshore renewable energy at 
Nigg, Invergordon and Ardersier yard (Fig. 1) are expected to in-
crease levels of ship traffic in the SAC. 

2.2. Acoustic data 

Several consecutive deployments of single PAM devices (Wild-
life Acoustics SM2M Ultrasonic) were made at the two sites during 
summer 2012. The units were moored in the water column ~1.5 m 
above the seafloor. The periods covered by the deployments are 
shown in Table 1. Gaps in the time series at The Sutors were caused 
by equipment malfunctions. Noise was monitored on a duty cycle 
of 1 min every 10 min at a sampling rate of 384 kHz and 16 bits. 
This regime allowed for detection of ship passages with a similar 

time resolution to the AIS data ( 10 min; see below) while also 
providing recordings of marine mammal sounds up to 192 kHz. 
Additionally, noise was recorded at 192 kHz, 16 bits during the 
remaining 9 min of the duty cycle. These data were only used for 
detailed analysis of illustrative events. 

The PAM units were independently calibrated using a piston-
phone in the frequency range 25–315 Hz. This calibration agreed 
with the manufacturer’s declared sensitivity to within ±1 dB, and 
so the manufacturer’s data were used for the entire frequency 
range (25 Hz–192 kHz). Acoustic data were processed in MATLAB 
using custom-written scripts. The power spectral density was 
computed using a 1-s Hann window, and the spectra were then 
averaged to 60-s resolution using the standard Welch method 
(Welch, 1967), producing a single spectrum for each 1-min record-
ing. These were then concatenated to form a master file for subse-
quent analysis. Spectral analysis revealed low-amplitude tonal 
noise from the recording system at various frequencies above 
1 kHz (Merchant et al., 2013). This system noise contaminated a 
small proportion of the frequency spectrum (<0.1%) and was omit-
ted from the analysis. The analysis also showed that the noise floor 
of the PAM units was 47 dB re 1 lPa2, exceeding background 
noise levels above 1.5 kHz. Although anthropogenic, biotic and 
abiotic sounds could still be detected and measured at these high 
frequencies, background noise levels above 1.5 kHz could not 
be determined. 

2.3. Ancillary data 

Automatic Identification System (AIS) ship-tracking data were 
provided by a Web-based ship-tracking network (http://www.shi-
pais.com/) for the duration of the deployments (Fig. 2). Time-lapse 
footage was recorded at both sites using shore-based digital 
cameras (Brinno GardenwatchcamTM GWC100) whose field of view 
included the PAM locations. One camera was positioned on the 
Lighthouse Field Station, Cromarty (The Sutors; 57�40.980N, 
4�02.190W) and the other at Chanonry Point (57�34.490N, 
4�05.700W; see Fig. 1). 

Meteorological data were acquired for the Chanonry site from a 
weather station at Ardersier ( 4 km SE of deployment; Fig. 1) 
using the Weather Underground open-access database (http:// 
www.wunderground.com/). The dataset included precipitation 
and wind speed measurements made at 5-min intervals. The 
POLPRED tidal computation package (provided by the National 
Oceanography Centre, Natural Environment Research Council, 
Liverpool, UK) was used to estimate tidal speeds and levels at 
10-min intervals (to match the acoustic data) in the nearest 
available regions to each site. 

An autonomous underwater acoustic logger (C-POD, Chelonia 
Ltd., www.chelonia.co.uk) was independently deployed at each of 
the two sites as part of the bottlenose dolphin SAC monitoring 
programme (Cheney et al., 2013). C-PODs use digital waveform 
characterisation to detect cetacean echolocation clicks. The time 
of detection is logged together with other click features, which 
are then used by the click-train classifier (within the dedicated 
analysis software) to identify bottlenose dolphin clicks. Here, the 
data from the C-PODs were used only to confirm dolphin occur-
rence at the two sites throughout the deployment periods. More 
detailed analysis is ongoing and will be reported elsewhere. 

2.4. AIS data analysis 

Peaks in the broadband noise level were attributed to AIS vessel 
movements using the technique developed by Merchant et al., 
2012b. The method applies an adaptive threshold to the broadband 
noise level, which identifies brief, high amplitude events while 

Fig. 2. AIS shipping density in the inner Moray Firth for the duration of the 
deployments (13 June–27 September 2012). Grid resolution: 0.1 km. 

Table 1 
Periods covered by successful PAM deployments at each site during summer 2012. 

Deployment Start date End date 

The Sutors 

Chanonry 

1 
2 
3 
1 
2 

13 June 
14 July 
07 September 
20 July 
10 August 

07 July 
23 July 
27 September 
10 August 
01 September 

http://www.shipais.com/
http://www.shipais.com/
http://www.wunderground.com/
http://www.wunderground.com/
http://www.chelonia.co.uk
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adapting to longer-term variation in background noise levels. The 
adaptive threshold level (ATL) takes the form 

tþW=2ATLðtÞ ¼min ½SPLðtÞ� =2 þ C ð1Þt W

where SPL (t) is the sound pressure level [dB re 1 lPa2] at time t; W 
is the window duration [s] over which the minimum SPL is com-
puted, and C is the threshold ceiling [dB], a specified tolerance 
above the minimum recorded SPL. In this study, a window duration 
of 3 h and a threshold ceiling of 12 dB was used – a more conserva-
tive threshold than in previous work (3 h, 6 dB; Merchant et al., 
2012b) – in order to exclude persistent but variable low-level noise 
from the fabrication yard at Nigg (Fig. 1) which was not associated 
to vessel movements. A narrower frequency range (0.1–1 kHz, not 
0.01–1 kHz) was also used to calculate the broadband noise level, 
since the spectrum below 100 Hz was contaminated by flow noise 
(see Section 3). 

AIS analysis was only conducted for The Sutors, which had high 
(>80%) temporal coverage. Coverage at Chanonry was more spo-
radic, such that only a few illustrative examples could be produced. 
By comparing AIS vessel movements to the acoustic data, peaks in 
noise levels were classed as due to: (i) closest points of approach 
(CPAs) of vessel passages; (ii) due to other AIS vessel movements; 
and (iii) unidentified. To compute the sound exposure attributable 
to each event, noise levels exceeding the adaptive threshold on 
either side of each peak were considered to form part of the same 
event. 

3. Baseline noise levels 

3.1. Chanonry 

Ambient noise levels differed significantly between the two 
sites (Fig. 3). Compared to The Sutors (Fig. 3b), noise levels at Cha-
nonry were relatively low, with only occasional vessel passages 
(Fig. 3a). Variability in ambient noise levels at Chanonry was lar-
gely attributable to weather and tidal processes, as example data 
in Fig. 4 illustrate. Higher wind speeds were associated to broad-
band noise concentrated in the range 0.1–10 kHz (Fig. 4a and b), 
while a Spearman ranked correlation analysis (Fig. 4d) shows a 
broad peak with maximal correlation to wind speed at 500 Hz, 
consistent with the spectral profile of wind noise source levels 
(Wenz, 1962; Kewley, 1990). The influence of rain noise was less 
apparent, perhaps because of low rainfall levels during the deploy-
ment, though the peaks in rainfall rate appear to correspond to 
weak noise peaks at 20 kHz, which would agree with previous 
measurements (e.g. Ma and Nystuen, 2005). 

Tide speed was correlated to noise levels at low and high fre-
quencies (Fig. 4d). The high (20–100 kHz) frequency component 
was attributable to sediment transport, which can generate broad-
band noise with peak frequencies dependent on grain size (Thorne, 
1986; Bassett et al., 2013). Sublittoral surveys of the area show a 
seabed of medium sand, silt, shell and gravel in the vicinity of 
the deployment (Bailey and Thompson, 2010), which approxi-
mately corresponds to laboratory measurements of ambient noise 
induced by this grain size (Thorne, 1986). The low frequency 
component was caused by turbulence around the hydrophone in 
the tidal flow (Strasberg, 1979) known as flow noise, which is 
pseudo-noise (i.e. due to the presence of the recording apparatus) 
and not a component of the acoustic environment. Comparison of 
the tide speed (Fig. 4c) with the periodic low-frequency noise 
peaks in Fig. 4a shows that flow noise was markedly higher during 
the flood tide, possibly owing to fine-scale variations in tidal flow 
or the orientation of the PAM device in the water column. There 
was also a correlation to tide level at 6 kHz (Fig. 4d). This may 
have been caused by wave action on the shingle beach near the 
deployment: at higher tides, waves can reach further up the beach 
face and displace more shingle, and the composition of shingle and 
incline also vary up the beach face. 

3.2. The Sutors 

Noise levels at The Sutors (Fig. 3b) were highly variable in the 
range 25 Hz–1 kHz, and the spectrum featured more frequent ves-
sel passages (these appear as narrow, high-amplitude vertical lines 
with peaks typically between 0.1 and 1 kHz) than Chanonry 
(Fig. 3a). There were also two instances of rigs being moored with-
in or towed past The Sutors: firstly from 16–23 June, and the sec-
ond at the end of the final deployment on 27 September (Fig. 3b). 
The vessels towing and positioning the rigs [using dynamic posi-
tioning (DP)] produced sustained, high-amplitude broadband noise 
concentrated below 1 kHz. 

The stronger influence of anthropogenic activity at The Sutors is 
also evident in the diurnal variability of noise levels recorded 
(Fig. 5a). While the median noise levels at Chanonry were only 
weakly diurnal, the Sutors data show a marked rise in the range 
0.1–1 kHz during the day, corresponding to increased vessel noise. 
Mean levels (Fig. 5b) are largely determined by high-amplitude 
events (Merchant et al., 2012a), in this case particularly loud vessel 
passages, which were both louder (Fig. 5b) and more variable 
(Fig. 5c) at The Sutors. The week-long presence of rig-towing ves-
sels evident in Fig. 3a was omitted from The Sutors data as this 
high-amplitude event would otherwise entirely dominate the 
mean levels for The Sutors in Fig. 5b. Note that the median levels 

Fig. 3. Ambient noise spectra: (a) Chanonry, and (b) The Sutors. Frequency range: 25 Hz–100 kHz; temporal resolution: 60 s. 
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Fig. 4. Effect of weather and tides on ambient noise in Chanonry. (a) 1/3 octave band spectrum from 26 to 31 August, 60-s resolution; (b) rainfall and mean wind speed 
recorded at Ardersier; (c) tide level and speed predicted by POLPRED model, and (d) spearman ranked correlation coefficient of each process across frequency range for entire 
dataset. 

(Fig. 5a) are likely to be raised by the noise floor of the PAM device 
above 10 kHz (Merchant et al., 2013), and do not represent abso-
lute values. 

3.3. Bottlenose dolphin occurrence and vocalisations 

The analysis of C-POD data confirmed that the two sites were 
heavily used by bottlenose dolphins throughout the deployment 
periods. The animals were present in both locations every day (with 
the exception of 28 August in Chanonry) with varying intensity. The 
mean number of hours per day in which dolphins were detected 
was 8.3 (standard deviation = 4.8; range = 1–18) in The Sutors and 
7.3 (standard deviation = 3.0; range = 0–15) in Chanonry. 

Bottlenose dolphin vocalisations were also recorded on the PAM 
units (Fig. 6a). There was considerable overlap between the 
frequency and amplitude ranges of vocalisations and ship noise ob-
served, indicating the potential for communication masking. Sam-
ple spectra from Chanonry of a passing oil tanker (Fig. 6b) and 
bottlenose dolphin sounds (Fig. 6a) clearly illustrate that observed 
vocalisations in the range 0.4 to 10 kHz coincide in the frequency 
domain with ship noise levels of higher amplitude during the ves-
sel passage. Although underwater noise radiated by the vessel in 
Fig. 6b extends as high as the 50 kHz echosounder, masking at high 
frequencies is likely to be localised due to the increasing absorp-
tion of sound by water as frequency increases (Jensen et al., 
2011). This is apparent in the form of the acoustic signature: the 
highest frequencies are only visible at the closest point of approach 
(CPA), while low-frequency tonals are evident more than 30 min 
before the vessel transits past the hydrophone, when AIS data indi-
cates it was 9 km away. Note also the upsurge in broadband (rather 
than tonal) noise following the CPA, as cavitation noise from the 

propeller becomes more prominent in the wake of the vessel. 
These effects can be observed more intuitively in the time-lapse 
footage (paired with acoustic and AIS data) documenting this pas-
sage included in the Supplementary material. 

Whether masking occurs and whether this has a significant im-
pact will depend on the specific context (Ellison et al., 2012), 
including the physiological and behavioural condition of the ani-
mals, and will vary with the extent to which the signal-to-noise ra-
tio of biologically significant sounds is diminished by the presence 
of vessel noise (Clark et al., 2009). Estimates of effective communi-
cation range (active space) in the absence of vessels for bottlenose 
dolphins in the Moray Firth range from 14 to 25 km at frequencies 
3.5 to 10 kHz, depending on sea state (Janik, 2000). More detailed 
analysis would be required to estimate the extent to which vessel 
passages reduce this active space (e.g. Hatch et al., 2012; Williams 
et al., in press). 

4. Monitoring future ship noise trends 

4.1. AIS analysis 

Analysis of the AIS vessel movements in relation to peaks re-
corded in broadband (0.1–1 kHz) noise levels at The Sutors site 
identified 62% of peaks as due to AIS vessel movements, with 
38% unidentified. This was a similar ratio to that reported by Mer-
chant et al. (2012b), who observed a ratio of 64% identified to 36% 
unidentified in Falmouth Bay, UK. The 62% of peaks identified was 
composed of 52% attributed to vessel CPAs, with the remaining 10% 
due to other vessel movements which were clearly distinct from 
CPAs, such as acceleration from or deceleration to stationary posi-
tions (see example in Supplementary material). Fig. 7 shows an 
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Fig. 5. Hourly variability in noise levels at both sites in 1/3 octave bands. Left column: Chanonry; Right column: The Sutors. (a) Median, (b) RMS mean, and (c) broadband 
(0.1–1 kHz) level. 

Fig. 6. Sample spectra recorded at Chanonry. (a) Vocalisations and echolocation clicks of bottlenose dolphins on 12 August at 17:50. Spectra have the same frequency range 
but (a) has a finer amplitude range; and (b) oil tanker with closest point of approach (CPA) at 04:30 on 18 August. 

example ship identification of a 125-m vessel at its CPA; examples current 300 GT gross tonnage threshold (IMO et al., 1974) not 
illustrating identification of a decelerating AIS vessel and an carrying AIS transceivers may also contribute significantly to noise 
unidentified non-AIS vessel captured on time-lapse footage (see exposure in some areas, and other sources of anthropogenic 
Section 4.2) are provided in the Supplementary material. noise such as seismic surveys and pile driving may occasionally 

Modelling underwater noise levels using AIS data has been be more significant, though their spatiotemporal extent is gener-
proposed as a way to map noise exposure from shipping to enable ally more limited. 
targeted mitigation measures (Erbe et al., 2012; NOAA, 2012). To investigate the feasibility of AIS noise modelling in the Mor-
However, the efficacy of such an approach will depend on the ay Firth, the sound exposure attributable to AIS-identified and 
proportion of anthropogenic noise exposure accounted for by unidentified noise periods for each day of uninterrupted AIS cover-
vessels with operational AIS transmitters. Vessels below the age was calculated for The Sutors. These periods were computed as 
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Fig. 7. AIS analysis example with time-lapse footage. (a) Still of time lapse footage showing vessel whose CPA occurred at 09:00 on July 4; (b) map of AIS movements in 6-h 
period centred on CPA. Black cross denotes location of PAM unit in The Sutors, circles indicate CPAs labelled with Maritime Mobile Service Identity (MMSI) number; (c) range 
of AIS transmissions from PAM unit versus time; (d) 1/3 octave spectrum of concurrent acoustic data; and (e) broadband level in frequency range 0.1–1 kHz, showing peak 
identification using adaptive threshold. 

the cumulative sound exposure from the period surrounding a measure of sound exposure appropriate for the assessment of po-
noise peak during which the noise level was above the adaptive tential acoustic impacts to marine mammals from sources such 
threshold. So for example, the ‘above threshold’ and ‘peak above as shipping (Southall et al., 2007). Note that SEL is a logarithmic 
threshold’ data in Fig. 7e were counted towards the cumulative measure, so the sum of the component parts of the total SEL does 
sound exposure of the AIS-identified component for that day. approximate the whole, but in linear space. During the presence of 

The 24-h sound exposure level (SEL) of each component (total the rig-towing vessels operating with DP from June 16–23 (see 
SEL, AIS-identified SEL, and SEL from unidentified peaks) is Fig. 3b) the noise level was consistently high, such that only two 
presented in Fig. 8a for the range 0.1–1 kHz. SEL is a cumulative peaks were recorded by the adaptive threshold (both of which 

Fig. 8. Broadband SEL per day for days with uninterrupted AIS coverage of The Sutors. (a) 0.1–1 kHz, (b) 1–10 kHz. Noise exceeding the adaptive threshold was attributed to 
AIS vessel movements or classed as unidentified. ‘Rig towed using DP’: this data did not exceed the adaptive threshold, but was attributable to AIS vessels (see text). (c) Mean 
SPL per day for four 1/3 octave frequency bands, including those proposed for use in the MSFD (63 and 125 Hz). 
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were AIS-identified vessels). As the rig-towing vessels were using 
AIS, their presence would be included in an AIS-based noise model, 
though their source levels are likely to be significantly elevated by 
the use of DP, which may not be accounted for by a generic ship 
source level database. 

For all but four of the remaining days with uninterrupted AIS 
coverage, the AIS-identified peaks generated the vast majority of 
sound exposure recorded in this range (Fig. 8a). On two of the four 
days (24 June and 8 September), unidentified peaks produced mar-
ginally greater sound exposure than AIS-identified peaks. This may 
have been caused by the particularly close presence of a non-AIS 
vessel or vessels in combination with only small or relatively distant 
AIS-tracked vessels on these days. On 7 July and 23 July, no peaks 
were recorded at all, and total sound exposure was 20 dB lower 
than the minimal levels recorded with detectable ship passages. 

Since small vessels (which are not obliged to carry AIS 
transceivers) may emit noise with peak levels at up to several 
kHz (Kipple and Gabriele, 2003; Matzner et al., 2010), the 24-h 
SEL in the 1–10 kHz bandwidth was also computed (Fig. 8b) to ana-
lyse whether higher frequencies were more dependent on uniden-
tified peaks, which are likely to originate from small vessels. This 
analysis retained the peak classification data used for the 0.1– 
1 kHz range. As expected, the recorded levels were consistently 
lower than at 0.1–1 kHz. Only one day (26 June) showed a signifi-
cant difference, with unidentified sound exposure more dominant 
than in the lower frequency band. This demonstrates that sound 
exposure generated by AIS-carrying vessels at the study site was 
generally greater than that produced by non-AIS vessels for the 
range of both frequency bands (0.1–10 kHz). Consequently, a mod-
elling approach based on vessel movements derived from AIS data 
should account for the majority of variability in noise exposure, 
provided the ship source levels input to the model are sufficiently 
accurate and acoustic propagation models are sufficiently predic-
tive. Future work could explore whether this is achievable through 
implementation of such models and comparison with recorded 
data. 

4.2. Time-lapse footage 

In addition to analysis of AIS movements, time-lapse footage 
was also reviewed to explore the potential for corroboration of 
AIS vessel identifications, detection of non-AIS vessels responsible 
for unidentified noise peaks, and characterisation of unusual 
acoustic events. The frame presented in Fig. 7a corresponds to 
the timing of the noise peak at around 09:00 presented in 
Fig. 7c–e, and confirms the previous identification of this vessel 
from the CPA of its AIS track. An example in the Supplementary 
material of a noise peak unidentified by AIS also shows a small ves-
sel in the field of view of the time-lapse camera (although it is dif-
ficult to distinguish). Two examples of time-lapse footage paired 
with acoustic and AIS data are provided in the Supplementary 
material as videos, which demonstrate the potential for this meth-
od to be used as a quick review tool of ship movements and under-
water noise variability in coastal environments. They also provide 
an intuitive and informative educational tool to highlight the im-
pact of ship noise on marine soundscapes and the potential for 
masking, behavioural and physiological impacts to marine fauna. 
As these examples illustrate, improving the visual and temporal 
resolution and the field of view would significantly enhance the 
power of this method for vessel monitoring and identification in 
coastal waters. 

4.3. MSFD frequencies 

The MSFD proposes to monitor underwater ambient noise in EU 
waters, using two 1/3-octave frequency bands (63 and 125 Hz) as 

Fig. 9. Relationships between broadband SEL (0.05–1 kHz) per day and mean SPL 
per day at The Sutors for four 1/3 octave frequency bands, including those proposed 
for use in the MSFD (63 and 125 Hz). 

indicators of shipping noise levels (EU, 2008; Tasker et al., 2010). 
Ships also generate noise above these frequencies – as was ob-
served in this study [Figs. 5a and 6b] – though at higher frequen-
cies sound is attenuated more rapidly by water and so is 
generally more localised. To assess whether higher frequency 
bands may be appropriate indicators for noise exposure from ship-
ping, we compared mean noise levels in 1/3-octave frequency 
bands centred on 63, 125, 250 and 500 Hz (Fig. 8c) with daily 
broadband sound exposure levels in the range 0.05–1 kHz. This 
wider frequency band (0.05–1 kHz) approximately corresponds 
to the nominal range of shipping noise (0.01–10 kHz; Tasker 
et al., 2010), but avoids the greatest levels of flow noise, which in-
creases with decreasing frequency (Strasberg, 1979). All four bands 
were highly correlated with noise exposure levels in the wider fre-
quency band (Fig. 9), but this relationship was strongest at 125 Hz. 
The reduced correlation in the 63 Hz band may have been caused 
by the noise related to tidal flows (Fig. 4) or low-frequency propa-
gation effects characteristic of shallow water environments (Jensen 
et al., 2011). These effects may also limit the efficacy of the 63 Hz 
band as an indicator of anthropogenic noise exposure in other shal-
low water, coastal sites. 

5. Discussion 

The measurements of underwater noise at The Sutors and Cha-
nonry establish baseline noise levels within the Moray Firth SAC 
during the summer field season, providing an important bench-
mark against which to quantify the acoustic impact of any future 
changes in shipping activity or other anthropogenic sources. The 
recordings revealed conspicuous differences in overall noise level 
and variability between the two sites (Fig. 3): shipping traffic 
and industrial activity related to the fabrication yard at Nigg and 
port activities at Invergordon (Fig. 1) were the dominant sources 
of noise at The Sutors, generating strongly diurnal variability in 
median noise levels (Fig. 5a). In contrast, median levels at Chanon-
ry were comparatively low (Fig. 5a), with only occasional vessel 
passages (Fig. 3a) and variability determined by weather and tidal 
processes (Fig. 4). Analysis of daily noise exposure at The Sutors 
highlighted the extent to which ship noise raises the total noise 
exposure above natural levels: on two days when no ship passages 
were detected, total daily noise exposure was 20 dB lower than 
normal in the 0.1–10 kHz range (Fig. 8). 

Both sites used in this study are important foraging areas for the 
population of bottlenose dolphins in the inner Moray Firth (Hastie 
et al., 2004; Bailey and Thompson, 2010; Pirotta et al., in press) and 
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dolphins were confirmed to use them regularly throughout the 
deployment periods. Since the population appears to be stable or 
increasing (Cheney et al., 2013), the current noise levels we present 
are not expected to pose a threat to dolphin population levels. Nev-
ertheless, the difference in baseline soundscape between the two 
foraging areas could influence how these sites may be affected 
by any future increases in shipping noise. While The Sutors is cur-
rently expected to experience greater increases in traffic associated 
with offshore energy developments, dolphins may already be 
accustomed to higher noise levels in this area. On the other hand, 
Chanonry is currently much quieter, meaning that a smaller in-
crease in shipping noise could result in a greater degradation of 
habitat quality. 

Analysis of noise levels at The Sutors in conjunction with AIS 
ship-tracking data demonstrated that the majority of total sound 
exposure at the site was attributable to vessels operating with 
AIS transceivers (Fig. 8). This indicates that modelling of noise lev-
els based on AIS-vessel movements (e.g. Erbe et al., 2012; Bassett 
et al., 2012) should account for most of the noise exposure 
observed experimentally, provided other model parameters (ship 
source levels, acoustic propagation loss profiles) are sufficiently 
accurate. This result suggests that models based on planned 
increases in vessel movements in the Moray Firth (Lusseau et al., 
2011; New et al., 2013) may be able to forecast associated 
increases in noise exposure, and is a promising indication that 
AIS-based noise mapping could be successfully applied to target 
ship noise mitigation efforts in other marine habitats. However, 
caution should be exercised in extrapolating from this result since 
in areas further from commercial shipping activity, the dominant 
source of ship noise may be smaller craft not operating with AIS 
transceivers. 

This study also introduces the pairing of shore-based time-lapse 
footage with acoustic and AIS data as a tool for monitoring the 
influence of human activities on coastal marine soundscapes. The 
method enabled identification of abnormally loud events such as 
rigs being towed past the deployment site, and facilitated detec-
tion of non-AIS vessels responsible for noise peaks and corrobora-
tion of AIS-based vessel identification (Fig. 7). With improved 
resolution and field of view, time-lapse monitoring could facilitate 
more detailed characterisation of non-AIS vessel traffic in coastal 
areas, enhancing understanding of the relative importance of small 
vessels to marine noise pollution. 

Comparison of spectra documenting bottlenose dolphin vocali-
sations and a ship passage at Chanonry (Fig. 6) highlights the po-
tential for vocalisation masking by transiting vessels. 
Odontocetes use echolocation to navigate and to find and capture 
food (Au, 1993). Disruption to these activities caused by acoustic 
masking could thus affect energy acquisition and allocation, with 
long-term implications for vital rates (New et al., 2013). A noisier 
soundscape could also lead to degradation of the dolphin popula-
tion’s habitat (Tyack, 2008) such as through effects on fish prey 
(Popper et al., 2003). Moreover, social interactions could be af-
fected by vocalisation masking since sound is critical for communi-
cation among conspecifics. Future work could investigate the 
extent to which the effective communication range – which has 
been estimated for this population in the absence of vessels (Janik, 
2000) – is reduced by the presence of vessel noise (e.g. Erbe, 2002; 
Hatch et al., 2012; Williams et al., in press). A rise in noise from 
ship traffic could also induce anti-predatory behavioural responses 
(Tyack, 2008) and increase individual levels of chronic stress 
(Wright et al., 2007; Rolland et al., 2012). Research efforts should 
thus aim to characterise dolphin responses to ship noise in this 
area, and to understand whether increased ship traffic has the po-
tential to alter the animals’ activity budget. 

The study also highlighted some important issues for the imple-
mentation of the European MSFD. Our measurements show that 

low-frequency flow noise may dominate in areas of high tidal flow, 
potentially contaminating noise levels at 63 and 125 Hz – frequen-
cies at which the current legislation proposes to monitor ambient 
noise (EU, 2008; Dekeling et al., 2013). Flow noise is a form of 
pseudo-noise caused by turbulence around the hydrophone (Stras-
berg, 1979), and is not actually present in the environment. While 
noise from shipping was more dominant than flow noise at both 
sites (Fig. 5), flow noise exceeded non-anthropogenic noise levels 
below 160 Hz at the Chanonry site (Fig. 4), and so may influence 
measurements in areas of low shipping density. Since flow noise 
decreases with increasing frequency (Strasberg, 1979), higher fre-
quency bands would be progressively less susceptible to flow noise 
contamination than those at 63 and 125 Hz. 

Comparison of the proposed 1/3-octave frequency bands with 
those at 250 and 500 Hz (Fig. 9) indicates that the 250 Hz band 
may be as responsive to noise exposure from large vessels as the 
125 Hz band, and may perform better than the 63 Hz band in shal-
low water. Although peak frequencies of commercial ship source 
levels are typically <100 Hz (e.g. Arveson and Vendittis, 2000; 
McKenna et al., 2012), low-frequency sound may be rapidly atten-
uated in shallow water depending on the water depth (Jensen 
et al., 2011), meaning received ship noise levels may have higher 
peak frequencies than in the open ocean. The 250- and 500-Hz 
bands are also likely to contain a greater amount of the noise from 
small vessels (since their spectra can peak at up to several kHz 
(Kipple and Gabriele, 2003; Matzner et al., 2010)), which may be 
the dominant source of ship noise in some coastal areas. Inclusion 
of noise levels at frequencies greater than 125 Hz may therefore be 
particularly informative for MSFD noise monitoring in shallow 
waters. 

A wider concern for the efficacy of the MSFD with regard to 
shipping noise is the proposed focus (Van der Graaf et al., 
2012; Dekeling et al., 2013) of ambient noise monitoring on high 
shipping density areas. While it is important that the most 
acoustically polluted waters are represented in noise monitoring 
programs, it is arguably the case that habitats most at threat 
from anthropogenic pressure should be given greater weight. If 
noise levels in high shipping areas are to determine whether a 
member state of the European Union attains ‘Good Environmen-
tal Status’, there is a risk that more significant changes to the 
marine acoustic environment in less polluted areas will be 
overlooked. 
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