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Abstract

We have measured the autocorrelations for the Swendsen-Wang and the Wolff cluster

update algorithms for the Ising model in 2, 3 and 4 dimensions. The data for the Wolff

algorithm suggest that the autocorrelations are linearly related to the specific heat, in

which case the dynamic critical exponent zWint,E = α/ν. For the Swendsen-Wang algorithm,

scaling the autocorrelations by the average maximum cluster size gives either a constant

or a logarithm, which implies that zSWint,E = β/ν for the Ising model.

PACS numbers 05.50.+q, 11.15.Ha, 64.60.Ht.
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1. Introduction

The Monte Carlo cluster update algorithms of Swendsen and Wang (SW) [1] and

Wolff [2] can dramatically reduce critical slowing down in computer simulations of spin

models, and thus greatly increase the computational efficiency of the simulations (for

reviews of cluster algorithms, see refs. [3] [4] ). There is little theoretical understanding

of the dynamics of these algorithms. In particular, little is known as to why they seem

to eliminate critical slowing down completely in some cases, and not others. There is no

known theory which can predict the value of the dynamic critical exponent z for any spin

model, although a rigorous bound on z for the SW algorithm for Potts models has been

derived [5] . Another problem which is not well understood is why the SW and Wolff

algorithms give similar values of z for the 2-d Potts model [6] , but have very different

behavior for other models, such as the Ising model in more than two dimensions [7] [8] .

The measurement of dynamic critical exponents is notoriously difficult, and both very

good statistics and very large lattices are required in order to obtain accurate results. This

is certainly the case for the Ising model, where a number of different measurements have

given conflicting results. For the two dimensional Ising model, initial results suggested

z ≈ 1/3 for both the SW and Wolff algorithms [1][8]. Further work [7] gave z ≈ 1/4, and

it was later shown that the data were consistent with a logarithmic divergence, suggesting

that z = 0 [9] . Recent results show that it is very difficult to distinguish between a

logarithm and a small power [6].

Measurements on the three dimensional model have proven to be just as difficult, with

values of z for the SW algorithm ranging from 0.339(4) to 0.75(1) [1][7][10] . For the Wolff

algorithm, Tamayo et al. [8] obtained 0.44(10), while Wolff found a value of 0.28(2) for

the energy autocorrelations [7]. We have examined Wolff’s data and found that it also fits

well to a logarithm, so that z = 0 is also a possibility.

In four dimensions only one result is known, which is z = −0.05(15) for the Wolff

algorithm [8]. Simulations have also been done on the mean-field Ising model, which is

expected to give the same exponents as the Ising model in four or more dimensions [11]

. The mean-field data are consistent with z being 0 for the Wolff algorithm [8] and 1 for

SW [12] , with the latter result being supported by theoretical arguments.

2. Simulations

Due to the discrepancies between the various measurements of the dynamic critical

exponents, we have done numerical simulations of the Ising model in 2, 3 and 4 dimensions

using the SW and Wolff algorithms, with the aim of obtaining good statistics on fairly

large lattices, in order to get reliable values for the dynamic exponents. We measured the

time correlation function ρ(t) for the energy, and extracted the integrated autocorrelation

time [3] τ = 1
2 +
∑∞

t=1 ρ(t). The dynamic critical exponent z is given by τ ∼ Lz, where τ
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for the different lattice sizes is measured at the infinite volume critical point. We have used

the Potts formulation of the Ising model, for which the critical point in two dimensions is

known to be βc = log(1 +
√

2) ≈ 0.8813736 [13] . For the 3-d model we used the value

0.443308 [14] , while in the 4-d case we have used 0.29962 [15] . A detailed account of the

methods we used to do the measurements, fits and error estimates, is given in ref. [6].

Autocorrelations are traditionally measured between each update of the entire lattice,

so for the single cluster Wolff update, where only a fraction of the lattice sites are updated

at each iteration, the measured autocorrelation time τ ′ needs to be scaled by the ratio of

the average Wolff cluster size < |cW | > and the number of lattice sites Ld. The scaled

autocorrelation time

τ = τ ′ < |cW | > /Ld (1)

is what we present for the Wolff autocorrelations. Since this scaling ratio is an estimator

for the susceptibility [2], the dynamic critical exponent z′ for the unscaled autocorrelations

is given by z′ = z + (d− γ/ν), where ν is the critical exponent for the correlation length,

and γ is the critical exponent for the susceptibility, which diverges as Lγ/ν .

For the SW algorithm on the larger lattice sizes in two and three dimensions, we used

a parallel cluster labeling algorithm which we have developed [16] in order to run on large

parallel machines. For the other lattice sizes, we ran multiple simulations in parallel using

smaller shared memory machines and networks of workstations.

3. Results

Results for τint,E, the integrated autocorrelation time for the energy, are shown in

Figures 1(a), (b) and (c) for d = 2, 3 and 4 respectively. For d = 3 we have used a

log-log plot, with the straight lines representing χ2 fits to a power law, while for d = 2

and d = 4 we have used a log-linear plot, with the straight lines representing χ2 fits to a

logarithm. Note however that for d = 4 we plot log τint,E rather than τint,E for the SW

algorithm, since the SW autocorrelations increase as a power of L. The measured values

of the exponents from the fits to the data are shown in Table 1. For the Wolff algorithm in

all dimensions, and the SW algorithm in two dimensions, it is very difficult to distinguish

between a small exponent and a logarithmic increase in the autocorrelations (which would

imply that z = 0).

In Fig. 1 we also include the measured value of the specific heat CH , scaled by an

appropriate factor, in order to show that the bound of Li and Sokal [5]

τint,E ≥ constant× CH , zint,E ≥ α/ν (2)

is indeed satisfied by the SW algorithm. Here α is the critical exponent for the specific

heat (CH ∼ Lα/ν). No such bound has been proven for the Wolff algorithm [17] , although
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it appears from the figures that not only does the bound hold, but that there may actually

be equality in the exponents.

If we compare the results of fits to CH and τWint,E (the autocorrelations in the energy

for the Wolff algorithm), which correspond to the measured values of α/ν and zWint,E
respectively, then for d = 3 we find 0.32(1) and 0.33(1). In two and four dimensions α = 0,

and zWint,E is also consistent with zero. Hence the Wolff algorithm for the Ising model

seems to satisfy the surprisingly simple relations

τWint,E = a+ b× CH , zWint,E = α/ν, (3)

where a and b are constants. In Figure 2 we plot the difference τWint,E − (a+ b× CH) for

the various dimensions, with a and b chosen to minimize χ2 over a certain range of lattice

sizes (smaller values of L are excluded from the fit). We can see that in all cases, values of

a and b can be found such that the difference is zero within errors. Note that all the errors

shown here are purely statistical (one standard deviation). In two dimensions the best fit

is obtained with a ≈ −0.474 and b ≈ 0.957 (the data does not exclude the possibility that

b = 1, which would imply that τWint,E is just a constant plus CH). For the 3-d model the

additive constant a is consistent with zero, so that the autocorrelation time may be just

a multiple of the specific heat, with b ≈ 0.148. In four dimensions we find a ≈ 0.167 and

b ≈ 0.050.

The surprising simplicity of the result (3) led us to look for a similar relation for

the SW algorithm. The power of cluster update algorithms comes from the fact that

they flip large clusters of spins at a time. The relative average size of the largest SW

cluster, m =< |cmaxSW | > /Ld, is an estimator of the magnetization [18] , and the exponent

β/ν characterizing the divergence of the magnetization has values which are similar to

our measured values for the dynamic exponents of the SW algorithm. To investigate this

further, we have scaled the SW autocorrelations by m, in a similar manner to the scaling

of the Wolff autocorrelations in equation (1). If this gives a constant or a logarithm, then

τSWint,E diverges like the magnetization, and so we have zSWint,E = β/ν.

The SW autocorrelations scaled by m (and by an additional arbitrary constant, so

that these points are not entangled with others in the plots) are also shown in Fig. 1. For

d = 4 the results are very close to a constant, while for d = 3 they seem to approach a

constant as L increases. In two dimensions the scaled autocorrelations are not constant,

but they fit very much better to a logarithm than does the unscaled data, as can be seen

in Fig. 1(a), and fit very poorly to a power law. The data therefore support the assertion

that

m τSWint,E = a+ b× logL, zSWint,E = β/ν. (4)

Our measurements of zWint,E in 3-d and zSWint,E in 4-d give results which are very different

from the accepted values of α/ν (≈ 0.10 − 0.20) [19] [20] and β/ν (= 1) [15][21] , since
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corrections to scaling are known to be important for these quantities. If we do a simple

power law fit to the specific heat in 3-d and the magnetization in 4-d, we get results

which are also very different from the actual exponents, but which are very close to the

measured values of the corresponding dynamic exponents, as expected from relations (3)

and (4). Thus although we may not be able to measure the asymptotic behavior of the

autocorrelation times, finding simple relations between the autocorrelations and static

quantities whose asymptotic behavior is known enables us to infer the true values of the

dynamic critical exponents.

This is especially useful for the 2-d model, for which the autocorrelations grow so

slowly that any corrections to scaling could have a big effect. It is therefore very difficult

to say with any confidence that z = 0, even with data on very large lattices. The apparent

relation (3) seems to be the most compelling evidence so far that zWint,E is in fact zero for

the 2-d Ising model, while the relation (4) would imply that zSWint,E is actually 1/8, which

is not apparent from the usual fits to either a logarithm or a power law.

4. Conclusions

We have measured the autocorrelations and dynamic critical exponents of the SW and

Wolff cluster algorithms for the Ising model in 2, 3 and 4 dimensions. We have found what

appear to be surprisingly simple empirical relations between the autocorrelation times of

these algorithms and simple static quantities (the magnetization and specific heat). These

relations could perhaps stem from the fact that the dynamics of cluster algorithms are

closely linked to the physical properties of the system, since the Swendsen-Wang clusters

are just the Coniglio-Klein-Fisher droplets [22] , or “physical clusters” [18], from which the

critical behavior of the system may be described.

The relations (3) and (4) are certainly not general results, since for the 2-d q = 3 Potts

model we find that zW > α/ν and zSW > β/ν [5][6]. Also, it is quite surprising that these

empirical relations imply that zSW is not equal to zW for the 2-d Ising model, whereas

the two appear to be equal for the 2-d q = 3 Potts model. It is of course possible that

these relations are not exact, but merely good approximations. We are currently collecting

more data in order to check whether these results hold up with larger lattices and better

statistics, and we will present more detailed results in a future publication [23] .
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Dimension zint,E SW zint,E Wolff

2 0.25(1)∗ 0.25(1)∗

3 0.54(2) 0.33(1)∗

4 0.86(2) 0.25(1)∗

Table 1.

Measured dynamic critical exponents for Ising model cluster algorithms. Asterisks indicate

that the data is also consistent with a logarithmic divergence (zint,E = 0).
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Figure captions

Fig. 1. Autocorrelations τint,E for the Wolff and SW algorithms plotted against lattice

size L for the Ising model in (a) 2-d, (b) 3-d and (c) 4-d. Also shown is the specific heat

CH , and the SW autocorrelations scaled by the average maximum cluster size m. The

latter two quantities are also scaled by an arbitrary constant. The plots are log-linear for

(a) and (c), and log-log for (b). All error bars are shown, but are usually smaller than the

points. The lines are fits to a power law, logarithm, or constant.

Fig. 2. The difference τWint,E − (a + b × CH) between the Wolff autocorrelations and a

simple linear function of the specific heat, for the Ising model in (a) 2-d, (b) 3-d and (c)

4-d. The values of a and b are chosen so as to minimize the χ2, except in three dimensions,

where we have taken b = 0. The errors shown are almost all less than 1% of τWint,E.
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