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ABSTRACT

This paper presents techniques for dynamic load balancing
in heterogeneous computing environments. That is, the
techniques are designed for sets of machines with varying
processng cgpabilities and memory capadties. These
methods can aso be gplied to homogenous g/stems in
which the dfedive cmmpute spead or memory avail ability is
reduced by the presence of other programs runrning outside
the target computation. To handle heterogeneous g/stems, a
predse distinction is made between an abstrad quantity of
work, which might be measured as the number of iterations
of a loop a the wunt of some data structure, and the
utili zation of resources, measured in seamnds of processor
time or bytes of memory, required by that work. Once that
digtinction is clealy drawn, the modificaions to existing
load belancing techniques are fairly straight-forward. The
effediveness of the resulting load balancing system is
demonstrated for a large-scde particle simulation on a
network of heterogeneous PC's, workstations and
multi processor servers.

INTRODUCTION

The use of networks of personal computers, workstations
and symmetric multiprocessors as a @mputing platform
requires improved dynamic load balancing techniques.
Unlike traditional multicomputers, such as the Cray T3D/E
or the Intel Paragon, the computers in a typicd network are
often not of the same processng performance nor do they
have the same available memory. As a result, most existing
techniques for dynamic load hbalancing, which consider
computing resources to be homogeneous, are insufficient
(Watts and Taylor 1998k Will ebeek-LeMair and Reeves
1993 Xu and Lau 1997). Those techniques which have
addressed heterogeneous environments have primarily been
geaed towards manager-worker or task-queue problems
(Bowen et al. 1992 Li and Dorband 1997 Lin and

Raghavendra 1992 Zhou et al. 1993 rather than the single-
program, multiple-data (SPMD) style of scientific
computations (Cap and Strumpen 1993 Henriksen and
Keunings 1993. Our work addresses load balancing on
heterogeneous g/stems for large-scde scientific simulations.
These techniques involve relatively ssmple modifications to
existing methods alrealy in the literature. Consequentially,
they can be incorporated into many existing load balancing
systems, alowing wsers to leverage a wider variety of
madiines for a mputation than previoudy possble.
Experiments conducted on a network compaosed of PC's
runnng Windows NT, together with workstations and
multi processor servers runring various versions of Unix,
demonstrate the dfedivenessof these techniques.

Before one can addressthe problem of load balancing
in a heterogeneous environment, it is necessary to make
clea digtinctions among certain terms. When deding with
homogenous computing environments, notions of “load,”
“work,” “utilization,” and “runtime” ae often used
interchangeebly. This is perfedly accetable becaise an
abstrad quantity of work, say 100 iterations of a fluid flow
solver over a 100000-cdl grid partition, presumably
requires the same exeaution time on every madine. In
heterogeneous environments this is definitely not the cese. If
a problem is charaderized by abstrad, agorithmic
considerations aich as the number of operations or the count
of data structures, this will trandate differently into
procesor or memory usage depending on the particular
madhine on which the problem is run. So, a distinction must
be made between the quantities which are invariant acossa
set of computers and those which vary acwording to the
computer in question. We refer to the former, abstrad
algorithmic quantities as the load of a @mputer. For
example, in a particle smulation, a partition of the problem
may contain 125000 particles. The load for that region
could be taken to be 125000. On one machine, processng
those particles might require five compute sewmnds per
iteration and on another machine require ten seconds per
iteration. We refer to this variant quantity as the utili zation.
The degree to which a particular computer is utilized by a
certain load is determined by that computer’s capacity.



BASIC METHODOLOGY

The heterogeneous dynamic load balancing techniques
presented here ae amodification to the homogeneous load
balancing framework presented previousy (Watts and
Taylor 1998h. That framework achieves load balance by
dynamicadly relocating tasks from computer to computer, as
well as increasing or deaeasing the number of tasks by
dynamicdly dividing or merging them. The process occurs
in six phases:

1. Load measurement: The loads of the tasks on a
computer are determined, and those loads are summed
to yield the total load at ead computer.

2. Profitability determination: Once the loads of the
computers are determined, the dedsion is made to
continue if the improvement possbhle with load
balancing justifiesits cost.

3. Load transfer calculation: Theided quantities of load
to transfer between computers are cdculated.

4, Task selection: Tasks are seleded for exchange
between computers to mee the ided transfer quantities.
This process may be repeaed severa times urtil
transfer quantiti es are alequately met, and tasks may be
divided to increase the options avail able.

5. Task migration: Tasks data structures are transferred
to their new locations.

6. Granularity adjustment: Tasks may be divided to
make better use of multiple procesors aring memory
or merged to reduce system overhead.

This decomposition all ows different components of the load
balancing framework to be replacal in a plug-and-play
fashion, providing the aility to customize it for particular
applications or computing environments.

HETEROGENEOUS METHODOLOGY

Each of the @ove phases must be modified for use in
heterogeneous environments. As dated above, the
modificaions primarily entail the distinction between load
and utilization, as well as the incorporation of computer
cgoadties.

Load measurement

In determining the load of atask, there ae two options. One

isto use astrad, algorithmic quantities such as the number

of operations or data structures. If the load of task j is taken

to bel;, then the load of computeriis Lj = Y |; , whereT; is
i

the set of tasks mapped to that computer. In that case, the

utili zation of computer i isgivenby U, = % , Where C; isthe

computer’s cgpadty. Similarly, the utilizaions due to the

tasks are given by u; = #() , where M () isthe cmputer
]

to which task j is mapped.

As a semond option, one can measure the utili zaion
using system fadliti es. For example, one might use system
cdls to get the CPU time or amount of memory used by a
task. In that case, one simply reverses the éove formulas to
cdculate the astrad loads: |; =Cy,(j)u; givesthe load of

atask. The resulting task loads and utili zations are summed
to yield the wmputers total loads and utili zaions,
respedively.

Of course, in both of the @ove caes, it is asaumed that
one knows the resource cgadty of a given computer. The
cgpadty can be determined in a number of ways. If the
cgpadty measured is processng speed, a benchmarking
program—posshly the target applicaion with a smaller test
problem—can be used to determine the relative speeds of
various machines. These offline performance numbers,
along with other statistics, such as the machines memory
cgpadties, can be put into a file which isrea at the start of
the computation. A third method is to use both invariant
algorithmic quantities and system-measured utili zation
numbers. For example, one might use the number of cdlsin
agrid partition as well as the CPU time required to process
those cdls. By dividing the former by the latter, one can
cdculate the cagadty of the system dynamicdly during
exeadtion.

If the gplication is run in the presence of externa
programs which also compete for system resources, the
cgpadties must be ajusted. For example, one might divide
the processng capadty for a given madiine by its “load
average,” which is a measure of the aserage number of
processes competing for CPU time.

Profitability determination

In a heterogeneous environment, determining whether load
balancing is worthwhile is substantially the same & in the
heterogeneous case. The degreeof load balanceis given by

eff = Yag

max
where Ugq and Upy are the average and maximum
utili zations over the computers, respedively.

Load balancing would be onsidered whenever the
efficiency falls below a user-spedfied minimum of eff;,. If
one is attempting to balance the run time of the macines,
load balancing should be undertaken if the time required for
load balancing is exceaded by the improvement in exeaution
time that would result from a better load distribution. If one



is attempting to balance some other quantity, such as
memory, a possble aiterion would be to load balance
whenever the physicd memory cgpadty of any macine is
excedaled, since the resulting page swapping will probably
severely degrade the gplication’s performance

Load transfer calculation

The step most affeded by consideration of heterogeneous
systems is that of ided load transfer cdculation. The
literature @ntains a number of agorithms for cdculating
how much load to transfer among computers, including the
hierarchicd balancing method, the generalized dmensional
exchange, and hea diffusion methods (Boillat 199Q
Cybenko 1989 Heirich and Taylor 1995 Watts and Taylor
1998h Will ebeek-LeMair and Reeves 1993 Xu and Lau
1997).

Before discussng the spedfics of the modified
algorithms, it is important to reiterate the fad that these ae
load transfer cdculation algorithms. However, the goa of
these dgorithms is not necessarily to balance the loads of
the computers in the sense of making them equal. Instead,
the dgorithms ghould reassgn load in such a way that the
load at eat computer is propational to that computer’s
cgoadty. In other words, the dgorithms baance the

computers  utilizations by determining the ided
redistribution of their loads.
The hierarchicd balancing method (HBM) is a

rearsive gproad in which the computers are divided into
two partitions, and the total load is cdculated for eah
partition. The load transfer from the first partition to the
seoond is that necessary to make their respedive loads per
computer equal

P+P,

where L; and L, are the loads of the two partitions of
computers, and P, and P, are the number of computers in
ead partition.

In the cae of a heterogeneous g/stem, we seek to
establish that the load per capacity (i.e., the utilization) is
equal in ead partition. Thus, the transfer becomes
ALy, = S2l=Gike

C,+C,
where C, and C, are the total cgpadties of the two partitions.
In both the homogeneous and heterogeneous cases, the two
partitions are then reaursively divided and halanced
independently.

In the generalized dmensional exchange, the “links’
between adjacant computers are mlored so that no computer
has two links of the same wlor. The wlors are iterated over,
and a omputer transfers load to or from its neighbor along
the link of ead color until an adequately balanced state is

readed. The load transfer acawmulation between two
computersi andj at step kis

ALK = AL AL - L)
where A is a @mnstant between 0 and 1 For a detailed
discussgon of the seledion of A see(Xu and Lau 1997). Note
that the loads of the omputers are ajusted to acount for
previous load transfers.

For the heterogeneous case, the transfer must be
weighted to acount for the relative cgadties of the two
computers. The resulting transfer iteration becomes

k-1 k-1
ALY = ALK i i
S R

Finaly, the hea diffusion algorithm can be modified to
acommodate heterogeneous g/stems. Most presentations of
hea diffusion solve the underlying partia differential
equation wsing explicit methods (Boillat 1990 Cybenko
1989 Willebe&k-LeMair and Reeves 1993 Xu and Lau
1997. The problem with these methods is that they are
unstable for large time steps. To solve this problem, implicit
methods can be used (Heirich and Taylor 1999. Figure 1
gives the implicit heterogeneous hea diffusion algorithm as
exeauted by a particular computer i. (Unfortunately, there is
insufficient space to present the full derivation of this
somewhat complex algorithm.) In that figure, N; is the set of
network neighbors of computer i; a is the acaracy of the
algorithm and istypicdly set to be 1-eff ., .

Task selection

Oncethe ided load transfer quantities have been cdculated,
the next step is to determine which tasks to transfer or
exchange among computers to meed those quantities. The
problem of seleding which tasksto transfer is esentialy the
subset sum problem, for which polynomia time
approximation algorithms exist. An aternative gproad,
however, is to formulate the problem in terms of the 0-1
knapsac problem, allowing transfer cost to be fadored into
the dedsion process (Watts and Taylor 1998&). For
example, one might wish to reduce the dfed that task
transfer has on an application’s communicaion locdity.

The seledion processis repeaed multiple times urtil
the transfer quantities are adequately achieved or no further
progressis made. If the tasks are too coarse-grained, it may
be impaossble to balance the load. If the user has provided
the gpropriate suppart routines, one can divide the data
structures of a given task to produce multiple smaller tasks.
One way to seled tasks for division is to choose athreshold
and dvide ayy tasks whose utilizations exceal that
threshold. If the division of tasks results in a better, but still
inadequate load halance the threshold would then be
lowered so that more tasks would be divided. This would



diffuse(...)
AL; ;=0 foral jON;

C;
D; =1+a )
itn, Ci +C;

C.
T, =a '
AR}

while eff <eff;,do
L{O:=1,
for k:=1to m do

K)oy — 0 k-1
L§>._Di1Er§>+ Ti,; LY >E
i,

end for

AL =AL;  + D7 L LO - L Cror all
i i P e i
I

JON;
L= L™

end while
end dffuse

Figure 1. Heterogeneous diff usion algorithm.

continue until an adequate load balanceis achieved, urtil no
benefit results from finer granularity, or urtil further task
divisons are impossble, posdsbly due to algorithmic
considerations.

Task migration

A task can be transferred from one cmputer to another if
the user provides three functions—one function to write the
state of the task to the network, another function to read the
task's date from the network, and a third function to
continue exeaution of the mmputation. The transfer of atask
from one mputer to another is complicaed in the
heterogeneous case by the fad that the underlying data
structures may be represented dfferently on different
computers. For example, integers may be 32 a 64 htsin
length and may be stored in either big-endian (most
significant byte first) or little-endian (least significant byte
first) fashion. The communication layer must thus provide

conversion between the data types of the respedive
madhines.

Note that the tasks with which a migrated task
communicates must be notified of the task’s new locdion.
Moreover, if the gplication is not quiescent at the time of
load balancing, it may be necessary to forward messages to
the tasks new locdions. ldedly this process would be
acomplished by the underlying concurrent programming
library and would use mpletely locd, asynchronous
protocols to re-establish communicaion (Taylor et al.
1996.

Granularity adjustment

Once tasks have arived at their new computers, it may be
beneficial to increase or reduce the number of tasks on a
given computer. For example, on a computer with more than
one procesor, there may be too few tasks to use dl of the
processors. In that case, tasks whose utili zations exceeal the

average @mputer utilization should be divided.
Spedficdly, divide atask if its utilization exceeds :ﬁ“_g ,

where U, is the average utili zation per computer and effy,
is the minimum desired computational efficiency.

RESULTS

The heterogeneous load balancing framework described
above was applied to a large-scde @ncurrent particle
simulation (Rieffel et al. 1997). This applicaion uses a
technique cdled drea simulation monte calo (DSMC). The
DSMC method solves the Boltzmann equation by simulating
individual particles. Since it is imposshble to simulate the
adual number of particles in a redistic system, a smaller
number of macaoparticles are used, eat of which represents
a large number of red particles. The simulation of milli ons
of these maaoparticlesis made pradicd by decoupling their
interadions. First, the space through which the particles
move is divided into a grid. Particle llisions are
considered only for those particles within the same grid cdll.
Furthermore, the wllisions are not deteded by path
intersedion but are instead determined by a stochastic model
whose inputs include the relative velocities of the particles
in question. Statisticd methods are used to recver
maaoscopic properties sich as temperature and density.

The DSMC tedhnique described above was
implemented using the Scdable Concurrent Programming
Library (SCPlib). This library has been applied to a variety
of large-scdeindustrial simulations and is portable to awide
range of platforms. On ead of these platforms, the library
provides a mmmon set of low-level functionality, including



message-passng, thread management, synchronizaion, 1/0O,
and performance monitoring.

The SCPlib programming model is based on the
concept of a oncurrent graph of communicaing tasks
(Taylor et al. 1996. A task is comprised o a thread of
exeaution, a set of communication ports and the user’s date.
In the cae of the DSMC applicdion, eadt task is a partition
of the grid. The thread exeautes the DSMC algorithm over
that partition, transferring particles to and from neighboring
partitions via the @mmunicaion ports. These
communication ports automaticaly convert basic data types
between different architedures, and they effedively hide the
mapping of tasks to computers. Because of this, tasks can be
relocated during the murse of computation for the purpose
of load balancing. The load balancing framework in SCPlib
uses the hea diffusion algorithm for transfer quantity
cdculation, cost functions to improve @mmunicaion
locdity during task seledion, and finaly, fadliti es for task
divison to asdst in the task seledion and granularity
adjustment phases.

The DSMC applicaion was applied to a 54,000-cdl
box grid containing 432000 particles. This problem was
partitioned uniformly to run on a network of 10 PC's,
workstations and multiprocesor servers conneded via a
10/100 Mbit/sec Ethernet switch. This network included
singe- and dua-procesor Del PC's, a Silicon Graphics
Origin 200 two-procesr server, two Indigo 2 and three
Indy workstations, a Sun SparcServer and a Digita
Equipment AlphaStation. Included in that list are machines
with both 32-and 64bit words as well as big- and littl e-
endian byte orderings. These madiines are described in
greder detail in Figure 2. Note that the performance of the
madines for a small DSMC benchmark problem varied by a
fador of almost 40, and the available memory varied by
over afador of four.

required an average of 141 seomnds ead. Next, a
homogeneous load balancing strategy was used with CPU
time & the task loads. Although CPU time is adualy a
utili zation metric and not a load metric, it can be used as the
load if the computers are mnsidered to be homogeneous. If
a cgadty-invariant quantity such as the particle count were
used, no tasks would have been moved, since d of the
computers initially had the same number of particles. Asin
al the remaining cases, load balance was adhieved by
dynamicdly repartitioning the problem and redistributing
the resulting partitions acrding to the methods described
above. After homogeneous load balancing, simulation steps
required 65 semnds ead. Also, in subsequent load
balancing steps, computers continued to transfer large
numbers of tasks, without improving the step time. This was
due to the @sence of computer cgpadty estimates, the
utili zations of the computers did not vary as the load
balancing algorithms expeded. For example, transferring 10
seoonds of work from one computer to another might change
the utili zation of the latter computer by much more or much
less that 10 seowonds. In the third test case, a small
benchmark problem, roughy 20% as large & the full
problem, was run on eath machine. Using these static
cgpadty estimates, the problem was balanced. The time per
step dropped to 2.5 seaonds. Unlike the homogeneous case,
the number of tasks transferred dropped off rapidly after the
first two load balancing rounds. A few tasks continued to be
transferred in subsequent load balancing rounds, however,
due to the diff erences between the capadty estimates and the
adual cgpadties of the mmputers. In the final test, the
computers capadties were cdculated dynamicdly by
dividing the total number of particles on ead computer by
the CPU time required to process them. This improved
performance even more, reducing the step time to 20
seoonds. No further task transfers took place dter the third
load balancing round, as the cgadty estimates were quite

Processor Memory | Operating Relative exad. These results are summarized in Figure 3. Becaise
(MB) System Spedd the improvement numbers in Figure 3 were skewed by the
30 MHz Sparc 128 SunosS4.1.3 10 presence of a very sow computer (the SparcServer), which
iggmx 2|4th(;10 %‘L :DFllg;(tz' ;JN'X 3.2 g'g made the unbalanced case extremely slow, another round of
133MH2 RA600 62 RIX 6.2 60 tests were @nducted in which that machine was omitted.
133MHz R4600 64 IRIX 6.2 6.0 The results from those tests are given in Figure 4.
150MHz R4400 288 IRIX 6.2 6.8
200MHz R4400 128 IRIX 5.3 8.6 Scenario Step Time (sed | Improvement
200MHz Pentium 64 WindowsNT 4.0 | 130 No LB 141 None
180MHz R10000(x2) 128 IRIX 6.4 380
266MHz Pentium Il (x2) | 256 WindowsNT 4.0 | 390 Homogeneous LB 6.5 2.2x
Heterogeneous LB 25 5.6x
Figure 2: Procesor architedures, memory capadties, with static cagpadties
operating systems and relative speeds of computers in Heterogeneous with 20 7 1x
heterogeneous testbed. dynamic capadties

Four experiments were nducted. First, the problem
was run without load balancing. In this case, time steps

Figure 3: Results of load balancing experiments for entire

heterogeneous testbed.




Scenario Step Time (se¢) | Improvement
No LB 4.3 None
Homogeneous LB 5.2 None
Heterogeneous LB 24 1.8x

with static cgadties

Heterogeneous LB 20 2.2

with dynamic

cgpadties

Figure 4: Results of load balancing experiments for
heterogeneous testbed without the dowest machine.

CONCLUSION

As this work has down, substantial improvements in
performance ae posshle when one takes into acount the
individual resource caadties of the computers on which a
concurrent applicaion is running. The extensions required
to existing load balancing frameworks are fairly simple
ones. These modifications can be mbined with our
previous work on vedor load balancing techniques (Watts et
al. 1997 to smultaneously redistribute the utilization of
multiple resources, such as both processng time and
memory. Coupled together, these techniques allow the
effedive use of madcines with disparate memory and
computational cgpabiliti es.
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