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ABSTRACT 

Watershed 1 (W1) at the Hubbard Brook Experimental Forest in New Hampshire, 

with chronically low pH and acid neutralizing capacity (ANC) in surface water, was 

experimentally treated with calcium silicate (CaSiO3; wollastonite) in October 1999 

to assess the role of calcium (Ca) supply in the structure and function of base-poor forest 

ecosystems. Wollastonite addition significantly increased the concentrations and fluxes of 

Ca, dissolved Si, and ANC and decreased the concentrations and fluxes of inorganic-

monomeric Al (Ali) and hydrogen ion (H
+
) in both soil solution and stream water in all 

sub-watersheds of W1. Mass balances indicate that 54% of the added Ca remained 

undissolved or was retained by vegetation during the first six years after treatment. Of the 

remaining added Ca, 44% was retained on O horizon cation exchange sites. The Ca:Si 

ratio in the dissolution products was greater than 2.0, more than twice the molar ratio in 

the applied wollastonite. This suggests that Ca was preferentially leached from the 

applied wollastonite and/or Si was immobilized by secondary mineral formation. 

Approximately 2% of the added Ca and 7% of the added Si were exported from W1 in 

streamwater in the first six years after treatment. Watershed-scale Ca amendment with 

wollastonite appears to be an effective approach to mitigating effects of acidic deposition. 

Not only does it appear to alleviate acidification stress to forest vegetation, but it also 

provides for the long-term supply of ANC to acid-impacted rivers and lakes downstream. 

 

Key words: Acidification, Calcium amendment, Hubbard Brook, Soil horizons, Soil 

solution, Stream water, Wollastonite 
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INTRODUCTION 

 In spite of decreases in acidic atmospheric deposition, previous studies in acid-

impacted watersheds in the northeastern U.S. have observed limited increases in stream 

pH and acid neutralizing capacity (ANC) due to concomitant decreases in basic cation 

concentrations (CB). This muted response has been attributed to the depletion of 

exchangeable calcium (Ca) from soils (Driscoll et al. 1989, Likens et al. 1996, Driscoll et 

al. 2001, Palmer et al. 2004, Warby et al. 2005), the result of historic, long-term elevated 

inputs of strong acids in atmospheric deposition, coupled with decreases in atmospheric 

deposition of basic cations (Gbondo-Tugbawa and Driscoll 2003) and, at some sites, the 

accumulation of Ca by biomass uptake (Markewitz et al. 1998).  

 Calcium is the major basic cation on the soil exchange complex and in drainage 

waters, and a critical controller of the acid-base status in soils and aquatic ecosystems 

(Driscoll et al. 1989, Lawrence et al. 1995). Acid-sensitive watersheds in the northeastern 

U.S. are characterized by shallow deposits of surficial materials, soil minerals with slow 

rates of chemical weathering and associated Ca supply, and low concentrations and pools 

of exchangeable basic cations in soil (Landers et al. 1988, April and Newton 1985, 

Driscoll 1991, Eilers and Selle 1991, Nezat et al. 2004). A geochemical consequence of 

low Ca
2+

 supply and low ANC in forest watersheds receiving elevated acidic deposition 

is the mobilization of aluminum (Al) from soil to drainage waters (Cronan 1994, Cronan 

and Schofield 1990, Palmer et al. 2004, Cho et al. 2010). Due to these responses, the 

supply of Ca plays a critical role in regulating the acid-base status of forest soils and 

drainage waters and the associated structure and function of forest and aquatic 

ecosystems.  
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 Forest liming (usually by the addition of calcium carbonate: CaCO3) has been 

used to mitigate the acidification of soil and surface water. Previous forest liming studies 

have shown increases in exchangeable Ca, cation exchange capacity, and base saturation 

in soil accompanied by decreases in exchangeable acidity and exchangeable Al. Liming 

has also been demonstrated to induce increases in Ca, pH, and ANC and decreases in Ali 

in stream water (Blette and Newton 1996, Cirmo and Driscoll 1996, Driscoll et al. 1996, 

Hindar 2005, Huber et al. 2006, Löfgren et al. 2009, Newton et al. 1996).  

In this study, 3,800 kg/ha of wollastonite (CaSiO3) pellets (66 keq Ca/ha) with a 

pellet diameter of 1.5 - 4 mm and average 16-µm particle size was added to a watershed 

at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire. We investigated 

the role of Ca supply in regulating the chemistry of soil, soil water and stream water in 

the northern hardwood forest prior to and after the wollastonite treatment. We 

constructed whole-watershed and sub-watershed mass balances for Ca and Si to assess 

the fate of the added wollastonite. We examined the responses of soils, soil solution, and 

stream water at three elevation/vegetation zones in the watershed in response to the 

experimental manipulation. We hypothesized that the Ca supplied in the wollastonite 

application would alter the acid-base status the ecosystem by: (1) increasing soil pools of 

exchangeable Ca and decreasing soil pools of exchangeable Al; and (2) increasing fluxes 

of Ca and Si and decreasing fluxes of H
+
 and Al in soil solutions and stream water. We 

also hypothesized that (3) there would be distinct horizonal patterns in the acid-base 

response to the experimental treatment across sub-watersheds of the treated watershed.  

By calculating  mass balances and mineral solubilities, we: (1) determined the likely 

sources and/or sinks of Ca and Si that occur within and between sub-watershed 
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ecosystems; (2) examined the mechanisms of Ca and Si mobilization and immobilization; 

and (3) evaluated the overall changes in the biogeochemistry of the entire watershed. 

  

STUDY SITE AND METHODS 

Study area and wollastonite application  

The Hubbard Brook Experimental Forest (HBEF) lies in the southern portion of 

the White Mountain National Forest in central New Hampshire, U.S.A. (43
o
56’N, 

71
o
45’W; Figure 1). The experimental watersheds at the HBEF exhibit a high degree of 

spatial variability in soils, vegetation, and biogeochemical processes across the landscape 

(Cho et al. 2010, Johnson et al. 2000). Soils at the HBEF are predominately Spodosols 

(Typic Haplorthods) derived from glacial till (Johnson et al. 1991a, b). Generally shallow 

flow-paths of water occur at the highest elevations, while at lower elevations deposits of 

glacial till are thicker and facilitate somewhat deeper hydrologic flow-paths (Johnson et 

al. 2000). The watersheds of the HBEF generally exhibit a pattern common in 

mountainous forest landscapes throughout the Northeast, with low rates of Ca
2+

 supply 

by weathering and the diminution of the effects of acidic deposition with decreasing 

elevation (Johnson et al. 1981, Driscoll 1991). The HBEF has a humid-continental 

climate, which is characterized by long and cold winter periods (average: –9
o
C in 

January), and short, cool summers (average: 10
o
C in July), having an average annual 

precipitation of 1,395 mm, 25-33% of which falls as snow (Federer et al. 1990). 

Watershed 1 (W1) has an area of 11.8 ha, a stream channel area of 0.18 ha, and an 

elevation range from 488 m to 747 m. In October of 1999, 45 x 10
3
 kg of wollastonite 

(CaSiO3), a readily–weatherable calcium-silicate mineral, was applied to W1 by 
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helicopter. The addition of wollastonite was relatively uniform across the catchment 

(Peters et al. 2004). 

Watershed 1 has northern hardwood species (sugar maple: Acer saccharum; 

American beech: Fagus grandifolia; and yellow birch: Betula alleghaniensis) on the 

lower 90 % of the watershed, and a montane, boreal transition forest of red spruce (Picea 

rubens), balsam fir (Abies balsamea) and white birch (Betula papyrifera) at high 

elevation (Juice et al. 2006). For this analysis, W1 was divided into three distinct 

landscape zones, based on elevation.  The high-elevation spruce-fir-white birch sub-

watershed (SFB) is characterized by relatively flat topography, shallow soils and 

flowpaths, frequent bedrock outcrops, and a canopy dominated by spruce, fir, and white 

birch.  The SFB sub-watershed accounts for approximately 2.95 ha of the catchment area 

and 451 m
2
 of the streambed area. The high-elevation hardwood sub-watershed (HH) has 

steep slopes, somewhat deeper soils, often lying on bedrock with no C horizon, and 

deciduous canopy vegetation. The HH sub-watershed occupies approximately 4.84 ha of 

the catchment area and 740 m
2
 of the streambed area. Finally, the low-elevation 

hardwood sub-watershed (LH) is dominated by still deeper soils, dense glacial till, 

deciduous canopy trees, and accounts for approximately 4.01 ha of the sub-watershed 

area and 613 m
2
 of the streambed area. 

 

Collection and analysis of samples 

 The amount of precipitation has been measured daily at rain gauge 1 (RG1), 

located 50 m from the W1 stream gauging station, from rain gauge 2 (RG2) in the HH 

zone, and from rain gauge 3 (RG3) in the SFB zone (Figure 1). The weekly precipitation 
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concentrations of Ca
2+

, H
+
, and SO4

2-
 used in this study were obtained from the National 

Atmospheric Deposition Program website (NADP, http://nadp.sws.uiuc.edu, NH02, 

Hubbard Brook, Grafton county, NH with elevation: 250 m (latitude:43.9433, longitude: 

-71.7029)). For the Si concentration in precipitation, data from samples collected and 

analyzed weekly by the Cary Institute of Ecosystem Studies in Millbrook, NY were used 

(www.hubbardbrook.org). Ratios of dry to wet deposition were used to estimate dry 

deposition fluxes. Dry deposition data from CASTNet site WST109, in Woodstock, NH 

(elevation 258 m; latitude: 43.945; longitude: -71.7008) were used to compute wet:dry 

ratios (Chen and Driscoll 2005). Stream flow is measured continuously at the stream 

gauging station at the base of W1, which has a sharp-crested V-notch weir. In this study, 

data for precipitation amount and stream flow were obtained from the Hubbard Brook 

Ecosystem Study website (www.hubbardbrook.org). 

Collection of soil samples and methods for the chemical analyses of soil are 

detailed in Cho et al. (2010). Soil solution samples were collected at monthly intervals 

from zero-tension lysimeters, which were constructed of PVC troughs filled with acid-

washed quartz sand and placed below the O, Bh, and Bs horizons. To assess spatial 

differences in biogeochemical cycles, soil solutions were sampled from 6 lysimeters in 

the SFB sub-watershed, 3 in the HH sub-watershed, and 4 in the LH sub-watershed, 

respectively (Figure 1). Stream water samples were also collected at monthly intervals 

longitudinally at five sites (1 site in the SFB, 2 in the HH, and 2 in the LH) as part of a 

long-term monitoring program (Figure 1). Details of the analytical methods used for soil 

solution and stream water are listed in Table 1. All water analyses were conducted using 

previously described quality assurance and quality control (QA/QC) protocols (Cho et al. 
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2009). We used a water year beginning on October 1 and ending on September 30 to 

calculate water and solute annual fluxes for all data sets between 1997 and 2005, since 

the addition of wollastonite to W1 was conducted in October of 1999. While this 

definition of the water year coincides with the timing of the wollastonite addition, it 

differs from the definition commonly used at the HBEF (June 1 – May 31: Likens and 

Bormann 1995; Likens et al. 1998; Johnson et al. 2000).  

 

Calculation of soil pools and fluxes 

 Soil pools of Ca and Al were calculated by multiplying exchangeable Ca and Al 

concentrations by their corresponding soil masses per unit area. Testing for significant 

changes between the pre- and post-treatment period in each of the three sub-watersheds 

was done using the two-sample t-test for independent samples (MINITAB version 14; 

statistical software) to determine significant changes using an α = 0.05. 

 Yearly solute fluxes in precipitation were determined by multiplying the solute 

concentrations for each month by the accumulated daily precipitation for the month of 

sample collection, and summing these values for each water year. In these calculations, 

we used the concentrations in wet deposition at the NADP collection site and 

precipitation quantity obtained from the rain gauges in each of the three sub-watersheds. 

For the estimation of yearly solute fluxes in soil water, the growing season (GS) and the 

non-growing season (NGS) were defined from May 1
st
 to September 30

th
 and from 

October 1
st
 to April 30

th
, respectively. Soil water fluxes were computed by subtracting 

evapotranspiration, which was partitioned by horizon using the distribution of fine root 

biomass (38, 41, and 21% at Oa, Bh, and Bs horizons in the SFB sub-watershed; 33, 47, 
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20% at Oa, Bh, and Bs horizons in the HH; 42, 36, 21% at Oa, Bh, and Bs horizons in the 

LH, respectively; Fahey and Hughes 1994), from precipitation (Dittman et al. 2007). 

Total evapotranspiration was calculated as the difference between precipitation amount 

and stream flow. Evapotranspiration for the NGS was assumed to be zero. Yearly solute 

fluxes in soil water were determined by multiplying the calculated soil water flux for the 

GS and NGS by mean concentrations in each season and then summing the GS and the 

NGS. This approach is based on the assumption that water percolates vertically through 

the complete soil profile before emerging to the stream channel (i.e. no short circuiting 

through shallow flow paths). This simplified hydrologic model of soil water has been 

employed in previous studies at the HBEF (Dittmann et al. 2007). Solute fluxes in stream 

water were calculated by multiplying the measured solute concentrations for each month 

by the cumulative discharge for that month. Stream flow generated in each sub-watershed 

was estimated to be 25% in the SFB, 41% in the HH, and 34% in the LH sub-watershed, 

assuming that water yield in sub-watersheds was proportional to the area in each of the 

sub-watersheds (Johnson et al. 2000, Dittman et al. 2007). 

 

Mass balances 

 To determine whether the three elevational sub-watersheds in W1 were sinks or 

sources of Ca and Si, net outputs of Ca and dissolved Si were estimated for pre- (1997-

1999) and post-treatment (2000-2005) periods. Net production (output - input) of Ca and 

H4SiO4 for each horizon in the three sub-watersheds was determined by mass-balance 

calculations, assuming that: (1) precipitation, dry deposition, and the addition of CaSiO3 

were the input fluxes to the forest floor and streambed in each sub-watershed; (2) solute 
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transport through the soil profiles was vertical (Oa to Bh to Bs horizons) prior to 

discharge to the stream channel; (3) hydrologic losses and/or gains from underlying 

bedrock are negligible; and (4) the distribution of the added wollastonite was uniform 

across W1. Assumption (2), of vertical drainage of water through the soil profile prior to 

export to the stream channel, oversimplifies the soil hydrology, but has been invoked in 

previous mass balance analyses at the HBEF (Dittman et al. 2007, Johnson et al. 2000). 

Through hydrologic modeling, Federer et al. (1990) and Likens and Bormann (1995) 

suggested that assumption (3), of limited deep seepage from HBEF watersheds, is valid. 

Peters et al. (2004) reported a relatively uniform application of wollastonite to W1, 

supporting assumption (4). 

 

Mineral saturation indices 

 To evaluate the potential for Si precipitation in secondary minerals, we calculated 

the saturation index (SI) for five Si-bearing minerals (amorphous silica, quartz, kaolinite, 

allophane, and imogolite) using data from O horizon soil solutions (MINEQL+, chemical 

equilibrium modeling software, version 4.0). The SI values were used to assess the 

degree to which soil solutions were at or near equilibrium with the solubility of these 

mineral forms. The SI was calculated as: 

                                                   
log

p

p

Q
SI

K
=

                                                              (1) 

where Qp is the ion activity product and Kp is the thermodynamic solubility product  

(log Kamorphous silica = 2.710, log Kquartz = 4.006, log Kkaolinite = 5.726, log Kallophane = 7.020, 

log Kimogolite = 6.050) of the mineral phase of interest. Negative SI values indicate 

undersaturation with respect to a given solid phase, whereas positive SI values indicate 
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oversaturation, and a zero SI indicates chemical equilibrium (Cirmo and Driscoll 1996). 

Thus, a mineral phase would only be expected to form if its SI were positive.  The SI 

values were computed assuming closed atmospheric CO2 for soil solutions, and 

employing temperature and ionic strength corrections. 

 

RESULTS 

Precipitation quantity, chemistry, stream discharge 

 Annual precipitation was greatest in the HH zone and lowest in the SFB sub-

watershed during the study period, although within-watershed variation was small (Table 

2). Concentrations of both H
+
 (from 35 µmol/L in 1997 to 25 µmol/L in 2005) and SO4

2-
 

(from 15 µmol/L in 1997 to 12 µmol/L in 2005) in precipitation decreased over the study 

period, as did the dry to wet deposition ratio of SO4
2- 

(from 0.20 in 1997 to 0.14 in 2005; 

Table 2). We observed no trends in Ca
2+

 (1.31±0.28 µmol/L) or Si (3.42±0.67 µmol/L) 

concentrations in precipitation. Annual stream flow in W1 fluctuated throughout the 

study period, decreasing from 970 mm in 1997 to 530 mm in 2001, and then increasing to 

a maximum of 1,140 mm in 2004. These patterns in stream discharge corresponded with 

the patterns in precipitation amount (Table 2). 

 

Soil chemistry 

 Prior to the wollastonite application, soil pools of exchangeable calcium (Ex-Ca) 

in the Oie, Oa, and upper mineral horizons were generally lower in the SFB than in the 

HH and the LH sub-watersheds (Table 3). Exchangeable Ca pools increased significantly 
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in O and mineral horizons in the SFB sub-watershed after the treatment. In other zones, 

the pool of exchangeable Ca in the Oie horizon increased significantly. 

 While Ca dominated the cation exchange complex in the Oie horizons, Al was the 

dominant exchangeable cation in the Oa horizon and upper mineral soil in all sub-

watersheds (Table 3). Exchangeable Al (Ex-Al) in the upper mineral horizon decreased 

significantly (p<0.05) in all sub-watersheds after the treatment. There were no significant 

differences in Ex-Al pools among sub-watersheds in Oie or mineral soil before or after 

treatment. In the Oa horizon, the largest pool of Ex-Al was found in the HH sub-

watershed before and after the wollastonite addition. Detailed analysis of the soil 

chemistry response to the wollastonite treatment can be found in Cho et al. (2010). 

 

Soil water chemistry 

 The wollastonite treatment increased concentrations and fluxes of Ca
2+

 and 

H4SiO4, and decreased H
+
 and Ali in the soil solutions in all sub-watersheds (Figures 2, 3). 

Increases in Ca
2+

 concentrations and fluxes were most evident in the first three years 

following treatment, and then decreased slightly after 2003. The magnitude of the 

increase in Ca
2+

 after wollastonite addition diminished with increasing soil depth, with 

smaller post-treatment increases observed in Bh and Bs soil solutions. Relatively rapid 

increases in dissolved Si concentrations and fluxes were also observed in the Oa soil 

solutions in all sub-watersheds immediately after treatment (Figures 2, 3). Significant 

increases in H4SiO4 in the Bh and the Bs soil solutions occurred either in the second or in 

the third year following wollastonite treatment. Concentrations and fluxes of Ali 

decreased throughout the soil profile in all sub-watersheds following treatment (Figures 2, 
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3). The magnitude of the decreases in Ali was greater in the SFB sub-watershed than in 

other sub-watersheds.  

 

Stream water chemistry 

 The wollastonite addition to W1 had a substantial influence on the stream 

chemistry, resulting in increases in Ca
2+

, H4SiO4, pH, and ANC, and decreases in Ali 

concentrations and fluxes in all sub-watersheds (Figures 4, 5). Average Ca
2+

 

concentrations increased by 244% in the SFB, 154% in the HH, and 174% in the LH 

zones immediately following treatment (2000 water year) compared to pre-treatment 

concentrations. Concentrations of Ca
2+

 then decreased somewhat through the end of the 

study period. Increases in dissolved Si concentrations and fluxes were particularly 

pronounced in the second year after treatment (2001) and these increases were followed 

by decreases in all sub-watersheds (Figures 4, 5). The magnitude of the initial increase 

and subsequent decrease in H4SiO4 was most evident at the SFB sub-watershed. The 

dissolution of the added wollastonite also resulted in increases in pH and ANC in all sub-

watersheds, although stream water in the sub-watersheds remained acidic. Concentrations 

and fluxes of Ali declined markedly in the SFB sub-watershed in 2003 and in both the 

HH and the LH sub-watersheds immediately following treatment. These distinct spatial 

patterns in Ali inversely followed the patterns of pH in all sub-watersheds, suggesting 

that the immobilization of Al is a function of pH increase. Solution chemistry from all 

three sub-watersheds moved towards positive ANC and non-toxic concentrations (< 2 

µmol/L) of Ali after treatment.  

  



 14 

Sub-watershed input-outputs budgets 

 Mass balance calculations for Ca and dissolved Si in the three sub-watersheds 

were made for the pre-treatment (1997-1999 water years) and the post-treatment (2000-

2005 water years) periods to quantify the sources and sinks of Ca and Si within the 

experimental watershed (Figures 6, 7). Average annual atmospheric inputs of Ca and Si, 

precipitation combined with estimated dry deposition, to each sub-watershed were 

considerably smaller than mean Ca and Si outputs in stream water from each sub-

watershed prior to treatment. Deposition inputs directly to the stream channel were much 

smaller than to the terrestrial system because the stream bed occupies only 1.53% of total 

area in each sub-watershed (Peters et al. 2004).  

 The inputs of Ca and Si from the wollastonite were applied approximately 

uniformly (Peters et al. 2004) to the area of the whole-watershed (118,000 m
2
). These 

total Ca and Si input values were converted into average annual fluxes for each sub-

watershed based on the terrestrial areas (SFB:  29,049 m
2
, HH: 47,640 m

2
, LH:  39,506 

m
2
), and stream channel areas (SFB: 451 m

2
, HH: 740 m

2
, LH: 614 m

2
) in each sub-

watershed, and by then dividing by the 6-year study period. Although the wollastonite 

was added in a single pulse, this computation allowed us to properly compare the fluxes 

of Ca and Si added in the wollastonite to the average annual fluxes of Ca and Si in 

precipitation and drainage water (Figure 7). 

 Net production or immobilization of Ca and Si in the Oa, Bh, and Bs horizons in 

the three sub-watersheds was calculated by subtracting the influxes to each horizon from 

the effluxes from that horizon. All values of net production in the Oa horizon in the three 

sub-watersheds were positive prior to treatment (Figure 6), indicating that the Oa horizon 
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in all sub-watersheds was a major source of Ca and dissolved Si. The decline in soil 

solution Ca and dissolved Si fluxes downward in the soil profile in all sub-watersheds, 

except the Bs horizon in the SFB sub-watershed, implies that Ca and dissolved Si were 

generally retained in mineral soils, and suggests that the Bh and the Bs horizons were net 

sinks of Ca and dissolved Si prior to wollastonite treatment.  

 Values of net Ca and Si production were uniformly negative in the forest floor 

and mineral soil following the wollastonite treatment, indicating that both elements were 

retained in the soil.  Immobilization of Ca and Si in the O horizon was much greater than 

in the mineral horizons in all three sub-watersheds (Figure 7). These high net 

immobilization values indicate that the forest floor was a large net sink for the added Ca 

and dissolved Si. Net production of Ca and Si in Bh and Bs1 horizons continued to be 

negative after the wollastonite addition, indicating that mineral soils remained sinks for 

Ca and Si. 

 

DISCUSSION 

Elevational patterns 

 Annual Ca fluxes in Oa soil solutions exhibited large changes in response to the 

wollastonite treatment compared with mineral soil solutions (Figure 3). This pattern was 

due to retention of much of the Ca derived from the dissolution of the added wollastonite 

in the O horizon, in part associated with deprotonation of soil organic functional groups 

and increases in cation exchange capacity (Cho et al. 2010). Mineral soil solution during 

the study period showed minimal changes in Ca
2+

, H
+
 fluxes and significant changes in 

dissolved Si and Ali fluxes compared with pre-treatment values (Figure 3). Treatment 
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effects were most prominent in the SFB sub-watershed, suggesting that wollastonite 

dissolution was greatest in the high elevation SFB zone. This condition is undoubtedly 

due to the relatively flat topography, saturated soils, and elevated concentrations of 

naturally occurring organic acids that promote mineral dissolution (Johnson et al. 2000). 

Enhanced wollastonite dissolution in the SFB sub-watershed has allowed for some 

penetration of Ex-Ca into the mineral soil. Using Ca/Sr and Sr isotope ratios, Nezat et al. 

(2010) inferred that some wollastonite-derived Ca has penetrated to deeper horizons. 

 In all sub-watersheds, the average annual fluxes of H
+
 and Ali in stream water 

were lower than those in the Bs horizon soil solution during the post-treatment period 

(Figures 3, 5). Conversely, Ca
2+

 fluxes in stream water were greater than in Bs soil 

solutions (Figure 7). These patterns indicate that seepage of soil water through the deeper 

mineral soil horizons results in additional neutralization of H
+
, immobilization of Ali, and 

release of Ca
2+

. Despite lower fluxes of Ca
2+

 and dissolved Si in Oa soil solutions in the 

LH sub-watershed compared with other sub-watersheds, Ca
2+

 and dissolved Si fluxes in 

stream water draining the LH sub-watershed were greater than those from other sub-

watersheds, suggesting that extended contact between percolating water and mineral soils 

was especially important in this sub-watershed (Figures 3, 5). These observations indicate 

that the biogeochemical effects of wollastonite treatment extended throughout the soil 

profile in the first six years after the addition. 

  

Mechanisms of Ca and Si mobilization and immobilization 

 The amount of Ca and dissolved Si derived from the dissolution of the added 

wollastonite (i.e. the “excess” Ca flux) was estimated by subtracting pre-treatment fluxes 
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from post-treatment values. Changes in throughfall Ca in response to the wollastonite 

manipulation were estimated by subtracting throughfall Ca fluxes at the untreated 

reference watershed (61 mol ha
-1

 yr
-1

 in the SFB sub-watershed; 76 mol ha
-1

 yr
-1

 in the 

HH; 69 mol ha
-1

 yr
-1

 in the LH, respectively, Lovett et al. 1996) from throughfall Ca 

fluxes in W1 after treatment (296 mol ha
-1

 yr
-1

 in the SFB sub-watershed; 350  

mol ha
-1

 yr
-1

 in the HH; 311 mol ha
-1

 yr
-1

 in the LH, respectively). These increases in 

throughfall fluxes were likely the result of dissolution of wollastonite caught in the 

canopy and uptake of wollastonite-derived Ca into foliage by trees. 

 The percent of the added Ca that has become labile was estimated by adding the 

measured increase in the pools of Ex-Ca (mean Ex-Ca pools in Oie and Oa horizons after 

treatment (2000, 2002) minus mean Ex-Ca pools in Oie and Oa horizons prior to 

treatment (1998)) in O horizons and the excess Ca in the O horizon soil water (mean Ca 

flux in the Oa soil solution after treatment (2000-2005) minus mean Ca flux in the Oa soil 

solution prior to treatment (1997-1999)), and dividing by the amount of Ca added in the 

wollastonite. We estimated that 59% of the Ca added from the wollastonite treatment was 

either dissolved and exported in soil water (7%) or added to O-horizon soil exchange 

sites (52%) in the SFB sub-watershed by the 6
th

 year following treatment. In the HH sub-

watershed, 42% of the added Ca was either dissolved and exported in soil solution (5%) 

or immobilized in the O-horizon by soil exchange (37%). Similarly, 43% of the Ca added 

in wollastonite was either dissolved and transported in soil water (1%) or retained in the 

O-horizon exchange complex (42%) in the LH sub-watersheds. Approximately 3.1% of 

the Ca added as wollastonite in the SFB, 1.6% in the HH, and 1.9% in the LH sub-

watersheds was ultimately exported via the stream outlets in each sub-watershed over the 
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6-year study period. This analysis suggests that 41% of the applied Ca in the SFB, 58% in 

the HH, and 57% in the LH sub-watersheds, respectively, remained undissolved or had 

been sequestered by vegetation in 2005. For the entire watershed, we estimate that 

approximately 54% of the added Ca remained undissolved or was retained by vegetation 

during the first 6 years after the wollastonite treatment. Of the remaining added Ca, 44% 

was retained on O-horizon cation exchange sites and 2% was exported in stream water on 

a whole-watershed basis (by 2005). Nezat et al. (2010) independently estimated that 2.6% 

of the wollastonite-Ca had been transported from W1 by October of 2008, nine years 

following treatment. 

 The Ca/Si ratios for the wollastonite dissolved in the three sub-watersheds were 

estimated by adding the excess Ca fluxes in O horizon soil water to the average annual 

increase in soil pools of exchangeable Ca in the O horizon, subtracting the increase in the 

net throughfall fluxes of Ca (throughfall flux in response to wollastonite treatment minus 

bulk precipitation flux), then dividing by the excess Si fluxes in the O soil solutions. The 

Ca:Si ratios for dissolving wollastonite were estimated to be 2.2 in the SFB, 2.2 in the 

HH, and 2.6 in the LH sub-watersheds, respectively. These ratios are much higher than 

the theoretical Ca:Si ratio of wollastonite (1.0) and the measured ratio for the material 

applied to W1 (0.923; Peters et al. 2004). Peters et al. (2004) suggested that Ca and Si 

from the added CaSiO3 minerals did not dissolve congruently, with Ca released 

preferentially over dissolved Si. Alternatively, dissolution may be approximately 

congruent, but dissolved Si released from wollastonite dissolution could be subsequently 

immobilized through precipitation of SiO2(s) or other secondary aluminosilicate minerals 

in the O horizon.  
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 Wollastonite has been observed to dissolve incongruently in laboratory 

experiments, with Ca released preferentially relative to Si, leading to the development of 

a leached layer, a layer of altered or secondary minerals whose components are derived 

from the dissolution of the parent phase (Peters et al. 2004, Weissbart and Rimstidt 2000, 

Xie and Walther 1994). Soil solutions in W1 O-horizons were undersaturated with 

respect to the solubility of amorphous Si (ASi) and allophane (SiO2·Al2O3·2.5H2O) 

during both non-growing seasons (NGS) and growing seasons (GS), before and after 

wollastonite treatment, except for allophane in the LH zone during the GS prior to 

treatment. The SI of quartz was near equilibrium or slightly oversaturated in all sub-

watersheds during both the NGS and the GS prior to wollastonite addition, and became 

more oversaturated after treatment (Table 4). Solutions were undersaturated or near 

equilibrium with respect to the solubility of kaolinite (Al2Si2O5(OH)4) and imogoilite 

(Al2O3·SiOH(OH)3) in the SFB and the HH sub-watersheds during both the NGS and the 

GS before the treatment, except in the LH sub-watershed (Table 4). Following the 

wollastonite manipulation, O-horizon soil solutions became oversaturated with respect to 

the solubility of both kaolinite and imogolite in all three sub-watersheds throughout the 

year (Table 4). The observed conditions of oversaturation with respect to the solubility of 

quartz, kaolinite, and imogolite suggest that the experimental treatment may have 

facilitated some immobilization of dissolved Si. However, it is unlikely that Si is 

precipitating as crystalline quartz. Since soil solutions were undersaturated with respect 

to amorphous Si and allophane following treatment, precipitation of these forms cannot 

explain the high Ca:Si ratios of dissolving wollastonite. Thus, the most likely 
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mechanisms are incongruent dissolution of the wollastonite and/or formation of kaolinite 

or imogolite. 

  

Acidification indicators 

 There are several critical chemical indicators of acid-base status in surface waters. 

Stream water: (1) is acidic when pH is less than 5.5 (Reuss et al. 1987); (2) exhibits 

chronic acidification when ANC is below 0 µeq/L (Driscoll et al. 2001); and (3) is 

potentially toxic to aquatic biota when Ali is greater than 2 µmol/L (Driscoll et al. 2001). 

Based on these acidification indicators, stream water in W1 was chronically acidic and 

had potentially toxic concentrations of Ali prior to the wollastonite treatment (Figure 8). 

Prior to wollastonite treatment, stream ANC throughout W1 was generally below 0 µeq/L 

with a minimum value of -83 µeq/L. Every stream water sample collected from W1 prior 

to treatment had an Ali concentration above the 2 µmol/L threshold (Figure 8). After 

treatment, stream water in the low-elevation hardwood sub-watershed showed some 

alleviation of conditions of chronic acidification and Al toxicity (Figure 8). The general 

pattern of decreasing acidity and Ali from SFB to HH to LH sub-watersheds persisted 

after wollastonite treatment, indicating that both dissolution of the added material and 

natural acid neutralization mechanisms contributed to the post-treatment patterns. The 

patterns of Ali fluxes in soil solutions (Figure 3) also suggest that decreases in Ali by the 

precipitation of Al(OH)3 or Al-Si minerals may partially contribute to these decreasing 

patterns of Ali concentrations in stream water. 

 The ANC was positively correlated with pH in W1 prior to (rpH-ANC = 0.718, 

p<0.001) and after treatment (rpH-ANC = 0.594, p<0.001). The concentration of Ali was 
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negatively correlated with pH during both pre-treatment (rpH-Ali = -0.620, p<0.001) and 

post- treatment (rpH-Ali = -0.433, p<0.001) periods, respectively (Figure 8). The gradients 

in the relationships between ANC and pH, and ANC and Ali became significantly less 

steep after the wollastonite application than before (ANCOVA using Levene’s test; P < 

0.05 in all cases). The steeper slopes  during the pre-treatment period (56.1 for ANC vs. 

pH and -14.2 for Ali vs. pH), compared with the lower slopes during the post-treatment 

period (12.9 for ANC vs. pH and -4.31 for Ali vs. pH), indicates that the control over 

ANC and Ali by pH is less profound after wollastonite addition. This interesting 

observation suggests that there has been a change in acid neutralization mechanisms in 

W1. The increase in Ca from both the direct input of wollastonite to stream bed and/or 

changes in soil processes likely contributed to increase ANC production and Al 

immobilization following treatment, respectively. Taken as a whole, these patterns 

indicate that increased Ca supply from the added wollastonite has greatly lessened 

acidification stress in W1 stream water during the post-treatment period. 

 

ANC Production and Immobilization of Ali 

 To further assess the effects of CaSiO3 treatment on ANC production and Al 

mobility, the relationships between the changes in annual Ali and ANC fluxes with 

changes in annual Ca fluxes in soil solutions and stream water were examined (Figures 9 

and 10). The changes in annual fluxes of Ali, ANC, and Ca in the three sub-watersheds 

were calculated individually for each water year following treatment (2000-2005) by 

subtracting the average flux in pre-treatment period (1997-1999 water years).  
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 The changes in annual Ali fluxes after the treatment were negatively correlated 

with changes in annual Ca fluxes in the Oa horizon soil solutions in watershed 1 (r 

= -0.703, p = 0.001, Figure 9). In the Bh and Bs horizon soil solutions, negative 

relationships were also evident between annual changes in Ali fluxes and Ca fluxes (r 

= -0.461 and p = 0.054 in the Bh soil solution, r = -0.449 and p = 0.062 in the Bs soil 

solution, Figure 9) but were not statistically significant. These patterns indicate that 

decreases in Ali fluxes after treatment are likely due to increasing pH, caused by the 

enhanced supply of Ca in drainage waters. The decreases in Ali fluxes were most evident 

in Oa horizon soil solutions, which showed the largest increases in annual Ca fluxes, 

compared with the Bh and Bs horizons (Figure 9).  

 In stream water, there was a significant positive correlation (r = 0.490, p = 0.039) 

between changes in annual ANC and Ca fluxes (Figure 10). Increases in ANC production 

were most evident in the SFB sub-watershed due to the greater increases in Ca flux in 

that sub-watershed compared with the hardwood sub-watersheds. Increases in annual 

ANC fluxes in the hardwood sub-watersheds were limited due to modest increases in 

annual Ca fluxes during the 2002-2003 water years (Figure 5). Immobilization of Ali in 

stream water was observed in all three sub-watersheds, corresponding to increases in 

annual Ca fluxes associated with enhanced Ca supply by wollastonite addition (Figure 

10). 

 

CONCLUSIONS 

 We observed increases in concentrations and fluxes of Ca, H4SiO4, and pH, and 

decreases in Ali in soil solutions and stream water, as well as increases in stream ANC, in 
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all three sub-watersheds after treatment. The impact of the wollastonite treatment was 

most evident in the forest floor, since most of the added Ca remained in the organic 

horizon. However, we found that post-treatment effects of the dissolution of the added 

wollastonite on Si and Ali in soil solution were also substantial in B horizon soil solutions 

and streamwater, indicating that wollastonite addition affected biogeochemical processes 

throughout the soil profile. Ca:Si ratios for the dissolving wollastonite suggests that the 

mineral is not dissolving congruently and/or Si is immobilized by precipitation of 

secondary minerals after dissolution. 

 Elevation and topography were important factors influencing the response of W1 

to wollastonite addition. The high-elevation SFB sub-watershed has relatively shallow 

soil depth and flowpaths, exhibiting a high water table and often saturated soil conditions. 

As a result, the responses of soil solutions and stream water in the SFB sub-watershed to 

the wollastonite application were relatively pronounced compared with the lower 

elevation hardwood sub-watersheds.  

The addition of wollastonite to W1 as a Ca amendment showed improvements of 

acid-base status in soil, soil solution, and stream chemistry during the study period. We 

anticipate that W1 will continue to respond to wollastonite treatment for the next few 

decades, since very little of the added Ca has left the ecosystem (Nezat et al. 2010) and 

approximately 44% of exchangeable Ca from the added wollastonite remains in exchange 

sites of the forest floor. The penetration of the added Ca to organic and mineral soils 

should continue to help regulate acid-base chemistry and mitigate the mobilization of Al 

to soil solutions and stream water. So far, wollastonite has proven to be an effective 
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amendment in this acidic, base-poor ecosystem, producing significant, but not 

overwhelming changes in drainage water chemistry. 
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Table 1. Analytical methods for soil water and stream water chemistry. 

 

Analyte Method Reference 

Ca
2+ 

 
Atomic absorption spectroscopy with 

flame atomic emission 
Slavin 1968 

Dissolved H4SiO4 
Molybdenum blue colorimetry with 

automated analysis 
APHA 1992 

pH Potentiometric measurement APHA 1992 

Acid neutralizing 

capacity (ANC) 
Strong acid titration, gran plot analysis Gran 1952 

Total monomeric Al 

(Alm) 

Colorimetric measurement following 

chelation with pyrocatechol violet 

McAvoy et al. 1992 

Palmer et al. 2004 

Organic monomeric 

Al (Alo) 

Same method as Alm, after passing 

sample through an ion exchange column 

McAvoy et al. 1992 

Palmer et al. 2004 

Inorganic monomeric 

Al (Ali) 
Calculated: Alm - Alo Driscoll 1984 

SO4
2-

 Ion chromatography (IC) Tabatabai and Dick 1983 

Dissolved organic 

carbon (DOC) 

Infrared (IR) CO2 detection with UV-

enhanced persulfate oxidation 
Dohrman 1984 
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Table 2. Precipitation amount, solute concentrations in wet deposition, dry to wet 

deposition ratios, and streamflow at Watershed 1 of the Hubbard Brook Experimental 

Forest – 1997 to 2005 water years (October 1 – September 30). 

 

Precipitation concentration
b
 (µmol/L) and dry to 

wet deposition ratio
c
 

Water 

year 

Sub-

water-

shed
a
 

Precip. 

(m) 
Ca

2+
 Si H

+
 SO4

2-
 

Streamflow 

(m) 

LH 1.48 

HH 1.52 1997 

SFB 1.36 

1.02 (0.30) 1.66 35.08 14.52 (0.20) 0.97 

LH 1.38 

HH 1.41 1998 

SFB 1.38 

1.57 (0.30) 3.56 32.21 13.40 (0.21) 0.91 

LH 1.45 

HH 1.47 1999 

SFB 1.39 

1.15 (0.30) 3.56 34.99 12.95 (0.19) 0.88 

LH 1.32 

HH 1.35 2000 

SFB 1.31 

1.80 (0.30) 3.86 39.17 14.95 (0.17) 0.83 

LH 1.10 

HH 1.12 2001 

SFB 1.10 

1.10 (0.30) 3.86 29.72 10.13 (0.16) 0.53 

LH 1.21 

HH 1.24 2002 

SFB 1.19 

1.57 (0.30) 3.56 33.50 13.16 (0.15) 0.58 

LH 1.37 

HH 1.38 2003 

SFB 1.35 

1.15 (0.30) 3.56 29.99 11.48 (0.15) 0.81 

LH 1.57 

HH 1.58 2004 

SFB 1.49 

1.40 (0.30) 3.56 29.65 11.89 (0.14) 1.14 

LH 1.43 

HH 1.46 2005 

SFB 1.39 

1.05 (0.30) 3.56 24.89 11.71 (0.14) 0.97 

a
Sub-watershed designations – LH: low-elevation hardwood; HH: high-elevation hardwood; SFB: 

spruce-fir-white birch.   

b
Precipitation chemistry obtained from the National Atmospheric Deposition Program (Ca, H, 

and SO4
2-

) and the Hubbard Brook Ecosystem Study (Si). See Methods for details. 

c
Numbers in parentheses are dry-to-wet deposition ratios obtained from Chen and Driscoll (2005).  
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Table 3.  Soil pools of exchangeable Ca and Al prior to (1998) and after (2000, 2002) 

wollastonite addition to watershed 1 of the Hubbard Brook Experimental Forest, New 

Hampshire. 

 

 

  Exchangeable Cation Pool (molc m
-2

)  

Horizon Year SFB HH LH 
Sub-watershed 

Differences
a
 

    

  Exchangeable Ca  

 1998 0.19 0.23 0.22 None 

Oie 2000 1.23
***

 1.04
***

 0.75
***

 SFB=HH>LH 

 2002 1.35
***

 1.25
***

 1.44
***

 None 

      

 1998 0.15 0.54 0.52 SFB<HH=LH 

Oa 2000 0.30
**

 0.59 0.52 SFB<HH=LH 

 2002 0.71
***

 0.77 0.66 None 

      

 1998 0.11 0.29 0.42 SFB<HH<LH 

Min.Soil 2000 0.15 0.15
***

 0.41 SFB=HH<LH 

 2002 0.25
***

 0.27 0.43 SFB=HH<LH 

      

  Exchangeable Al  

 1998 0.06 0.07 0.03 None 

Oie 2000 0.06 0.11 0.02 None 

 2002 0.06 0.04 0.03 None 

      

 1998 0.89 1.33 0.47 None 

Oa 2000 0.84 1.52 0.74 HH>LH 

 2002 0.72 0.85 0.51 None 

      

 1998 2.83 2.97 2.85 None 

Min.Soil 2000 1.88
**

 1.99
***

 2.08
**

 None 

 2002 2.08
*
 2.30

**
 2.62 None 

      

*, **, *** Post-treatment mean (2000 or 2002) is significantly different than pre-

treatment mean (1998), with P < 0.05, P < 0.01, and P < 0.001, respectively. 

a
 All contrasts tested at the α = 0.01 level of significance.
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Table 4. Saturation index (SI) of Si-bearing minerals in O horizon soil solutions during the non-growing season (NGS) and the 

growing season (GS), prior to and after wollastonite addition. A negative value indicates that solutions are undersaturated with respect 

to mineral solubility. A positive value indicates conditions of oversaturation. Shown are mean values and standard deviations. 

 

Season Treatment Sub-watershed
b
 ASi

a
 Quartz Kaolinite Allophane Imogolite 

SFB
b
 -1.31 ± 0.075 0.12 ± 0.074 -0.34 ± 0.132 -1.23 ± 0.056 -0.26 ± 0.056 

HHc -1.28 ± 0.076 0.14 ± 0.075 -0.77 ± 1.027 -1.46 ± 0.551 -0.49 ± 0.551 Pre-treatment 

LH
d
 -1.24 ± 0.026 0.19 ± 0.025 2.06 ± 1.523 -0.07 ± 0.751 0.90 ± 0.751 

SFBb -0.76 ± 0.154 0.66 ± 0.154 2.07 ± 1.439 -0.30 ± 0.652 0.67 ± 0.652 

HHc -0.82 ± 0.033 0.61 ± 0.032 0.84 ± 1.086 -0.88 ± 0.528 0.09 ± 0.528 

NGS 

Post-treatment 

LH
d
 -0.91 ± 0.060 0.51 ± 0.060 1.94 ± 0.374 -0.29 ± 0.158 0.68 ± 0.158 

SFBb -1.42 ± 0.053 -0.05 ± 0.053 0.08 ± 1.075 -1.40 ± 0.560 -0.43 ± 0.560 

HHc -1.21 ± 0.099 0.17 ± 0.098 -0.29 ± 0.925 -1.69 ± 0.507 -0.72 ± 0.507 Pre-treatment 

LH
d
 -1.22 ± 0.046 0.19 ± 0.025 3.10 ± 1.058 0.01 ± 0.546 0.98 ± 0.546 

SFBb -0.76 ± 0.153 0.61 ± 0.153 3.37 ± 1.395 -0.08 ± 0.723 0.89 ± 0.723 

HH
c
 -0.88 ± 0.259 0.49 ± 0.259 1.83 ± 1.708 -0.79 ± 0.894 0.18 ± 0.894 

GS 

Post-treatment 

LHd -0.89 ± 0.262 0.48 ± 0.261 2.56 ± 0.245 -0.42 ± 0.153 0.55 ± 0.153 

a
ASi = amorphous Si,  

bSub-watershed designations – LH: low-elevation hardwood; HH: high-elevation hardwood; SFB: spruce-fir-white birch.   
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Figure Captions 

 

Figure 1. Map of Watershed 1 at the Hubbard Brook Experimental Forest in New 

Hampshire, showing lysimeter locations and stream sample sites in spruce-fir-white birch 

(SFB), high elevation hardwood (HH), and low elevation hardwood (LH) sub-watersheds. 

 

Figure 2. Spatial and temporal patterns in concentrations of Ca
2+

, H4SiO4, pH, and Ali in 

soil water in Watershed 1 of the Hubbard Brook Experimental Forest. The Ca 

manipulation was conducted in October of 1999.  Annual average values are for water 

years (October 1
st
 to September 30

th
). SFB is the spruce-fir-white birch sub-watershed, 

HH is the high-elevation hardwood sub-watershed, and LH is the low-elevation 

hardwood sub-watershed. Error bars represent standard deviations for each water year. 

 

Figure 3. Solute fluxes (Ca
2+

, H4SiO4, H
+
, Ali) in soil solutions of three sub-watersheds 

of Watershed 1 at the Hubbard Brook Experimental Forest in New Hampshire prior to 

(open symbols) and following (filled symbols) the wollastonite treatment. Data are shown 

for water years beginning October 1
st
 and ending September 30

th
. 

 

Figure 4. Spatial and temporal patterns in concentrations of Ca
2+

, H4SiO4, pH, ANC, and 

Ali in stream water from Watershed 1 of the Hubbard Brook Experimental Forest. 

Wollastonite (CaSiO3) was added in October of 1999.  Annual values are expressed on a 

water-year basis (from October 1
st
 to September 30

th
). SFB is the spruce-fir-white birch 

sub-watershed, HH is the high-elevation hardwood sub-watershed, and LH is the low-
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elevation hardwood sub-watershed. Error bars represent standard deviations for each 

water year. 

 

Figure 5. Solute fluxes (Ca
2+

, H4SiO4, H
+
, Ali) of stream water in three sub-watersheds 

of Watershed 1 at the Hubbard Brook Experimental Forest in New Hampshire prior to 

(open symbols) and following (closed symbols) the wollastonite treatment. Data are 

shown for water years beginning October 1
st
 and ending September 30

th
. 

 

Figure 6. Fluxes of Ca and Si in sub-watersheds of Watershed 1 at the Hubbard Brook 

Experimental Forest prior to wollastonite application.  Values shown are averages for the 

1997-1999 water years. Fluxes are given in moles yr
-1

. Net production of Ca and Si in 

three soil layers is estimated as the difference between efflux in soil water and input to 

that layer from above.  For example, net Ca production in the SFB O horizon (+388 mol 

yr
-1

) is the soil solution flux (472 mol yr
-1

) minus precipitation input (84 mol yr
-1

).  Net 

production of Ca and Si in each sub-watershed is calculated as the difference between 

loss from the watershed (export in streamwater) and inputs to the watershed (precipitation 

and streamwater entering from the preceding sub-watershed).  For example, net 

production of Si in the HH sub-watershed (1,243 mol yr
-1

) is the stream export from the 

HH sub-watershed (2,947 mol yr
-1

) minus precipitation input (203+3 mol yr
-1

) and input 

from the SFB sub-watershed (1,498 mol yr
-1

). 

 

Figure 7. Fluxes of Ca and Si in sub-watersheds of Watershed 1 at the Hubbard Brook 

Experimental Forest after wollastonite treatment.  Values are averages for the 2000-2005 
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water years. Fluxes are given in moles yr
-1

.  Net production values were calculated as 

described in Figure 6. 

 

Figure 8. Relationships between pH and acid neutralizing capacity (ANC) and inorganic 

monomeric Al (Ali) in stream water of Watershed 1 at the Hubbard Brook Experimental 

Forest in New Hampshire prior to and after the wollastonite treatment. The outlined area 

represents conditions in which neither pH, ANC, nor Ali indicate conditions of chronic 

acidification. 

 

Figure 9. Relations between annual immobilization of inorganic monomeric Al (Ali) and 

annual changes in Ca fluxes of soil solutions of sub-watersheds in response to 

wollastonite addition to Watershed 1 at the Hubbard Brook Experimental Forest in New 

Hampshire during the 2000-2005 water years: SFB: spruce-fir-white birch sub-watershed, 

HH = high-elevation hardwood sub-watershed, and LH = low-elevation hardwood sub-

watershed. 

 

Figure 10. Relations between annual production of acid neutralizing capacity (ANC) and 

annual immobilization of inorganic monomeric Al (Ali), with annual changes in Ca 

fluxes of stream water of sub-watersheds in response to wollastonite addition to 

Watershed 1 at the Hubbard Brook Experimental Forest in New Hampshire during 2000-

2005 water years: SFB: spruce-fir-white birch sub-watershed, HH: high-elevation 

hardwood sub-watershed, and LH: low-elevation hardwood sub-watershed. 
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