
Effective-medium theories for predicting hydrodynamic transport properties
of bidisperse suspensions
Sangkyun Koo and Ashok S. Sangani 
 
Citation: Phys. Fluids 14, 3522 (2002); doi: 10.1063/1.1503352 
View online: http://dx.doi.org/10.1063/1.1503352 
View Table of Contents: http://pof.aip.org/resource/1/PHFLE6/v14/i10 
Published by the American Institute of Physics. 
 
Related Articles
Clouds of particles in a periodic shear flow 
Phys. Fluids 24, 021703 (2012) 
The dynamics of a vesicle in a wall-bound shear flow 
Phys. Fluids 23, 121901 (2011) 
A study of thermal counterflow using particle tracking velocimetry
 
Phys. Fluids 23, 107102 (2011) 
Particle accumulation on periodic orbits by repeated free surface collisions 
Phys. Fluids 23, 072106 (2011) 
Drag force of a particle moving axisymmetrically in open or closed cavities 
J. Chem. Phys. 135, 014904 (2011) 
 
Additional information on Phys. Fluids
Journal Homepage: http://pof.aip.org/ 
Journal Information: http://pof.aip.org/about/about_the_journal 
Top downloads: http://pof.aip.org/features/most_downloaded 
Information for Authors: http://pof.aip.org/authors 

Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://pof.aip.org/?ver=pdfcov
http://careers.physicstoday.org/post.cfm?ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Sangkyun Koo&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Ashok S. Sangani&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.1503352?ver=pdfcov
http://pof.aip.org/resource/1/PHFLE6/v14/i10?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3685537?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3669440?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3657084?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3614552?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3606394?ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://pof.aip.org/about/about_the_journal?ver=pdfcov
http://pof.aip.org/features/most_downloaded?ver=pdfcov
http://pof.aip.org/authors?ver=pdfcov


PHYSICS OF FLUIDS VOLUME 14, NUMBER 10 OCTOBER 2002
Effective-medium theories for predicting hydrodynamic transport
properties of bidisperse suspensions

Sangkyun Koo and Ashok S. Sangania)

Department of Chemical Engineering and Materials Science, Syracuse University,
Syracuse, New York 13244

~Received 27 December 2001; accepted 9 July 2002; published 5 September 2002!

Effective-medium theories for predicting conditionally averaged velocity field and hydrodynamic
transport coefficients of monodisperse suspensions are extended to bidisperse suspensions. The
predictions of the theory are shown to agree very well with the results of direct numerical
simulations of bidisperse suspensions with hard-sphere configurations up to volume fractions at
which phase separation in bidisperse hard-sphere systems are observed. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1503352#
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I. INTRODUCTION

Effective-medium theories use simple models for det
mining conditionally averaged fields, and hence, the eff
tive properties of suspensions. The advances in algorit
for computing multiparticle interactions in recent years ha
allowed us to estimate accurately various effective proper
of monodisperse suspensions, i.e., suspensions of equi-
particles in a viscous fluid. Results for hydrodynamic tra
port coefficients, such as the self- and collective-mobility
the particles, the effective viscosity of the suspension,
the permeability of a fixed array of particles, determined
ing rigorous numerical methods~Brady and Bossis;1 Ladd;2

Mo and Sangani3! have been shown to be in good agreem
with the estimates obtained using an effective-medi
theory for monodisperse suspensions of spherical particle
a viscous fluid~see, e.g., Speltet al.4!. Although these nu-
merical methods can be used to estimate the propertie
bidisperse and polydisperse suspensions often encounter
practice, the results covering wide range of parameter va
are not available in the literature. One of the problems
presenting the results for these suspensions is the rather
parameter space required for characterizing these sus
sions. For example, for the case of bidisperse suspension
transport coefficients must be determined as functions of
individual volume fractions and the size ratio of the particl
The spatial configurations of these suspensions may a
tionally depend on the nature of nonhydrodynamic interp
ticle forces. Thus, it is desirable to develop approxim
theories that can be used to estimate hydrodynamic pro
ties more readily than rigorous numerical simulations.3

The present study is concerned with the modificatio
that may be made to yield estimates for bidisperse sus
sions, i.e., suspensions containing particles of two dist
sizes. These suspensions are encountered frequently in
tice and it is not clear at the outset how the effective-medi
theory that is commonly used for monodisperse suspens

a!Telephone: 315-443-4502; fax: 315-443-2559; electronic m
asangani@syr.edu
3521070-6631/2002/14(10)/3522/12/$19.00
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may be extended to predict the properties of bidisperse
pensions. A detailed comparison of the numerical simulat
results for conditionally averaged fields and various transp
properties of bidisperse suspensions with those predicte
modified effective-medium theories is necessary for this p
pose.

In Sec. II an effective-medium theory for monodisper
suspensions is reviewed and several possible ways of m
fying it are considered to treat bidisperse suspensions
Sec. III the results of numerical simulations for various h
drodynamic transport coefficients of bidisperse suspens
and conditionally averaged velocity fields are presented
compared with the predictions of two selected modifi
effective-medium theories. The simulation results are
tained by modifying the method described in Sangani a
Mo.5 It is shown that modified effective-medium theorie
yield reasonably accurate estimates of the hydrodyna
transport coefficients and the conditionally averaged velo
ties.

II. EFFECTIVE-MEDIUM THEORIES

As mentioned earlier, effective-medium theories es
mate the conditionally averaged fields, and hence the ef
tive properties of a suspension, by solving suitably avera
equations for a relatively simple model which captures so
of the important multiparticle effects. The first step in dev
oping the theory is to derive an equation for the conditiona
averaged velocity and to introduce appropriate closures,
the second step is the construction of a model to evaluate
unknown constants appearing in the closures. As an exam
let us consider sedimentation of equi-sized particles thro
a viscous fluid when the Reynolds number based on the
ticle radius and their average velocity is small. The suspe
ing fluid motion satisfies

]s i j

]xj
1r fgi50, ~1!

wheres i j is the stress at pointx in the fluid,r f the density of
the fluid, andgi the acceleration due to gravity. The stre

:

2 © 2002 American Institute of Physics
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3523Phys. Fluids, Vol. 14, No. 10, October 2002 Effective-medium theories
inside the sedimenting particle satisfies a similar equa
with r f replaced by the particle densityrp . Ensemble aver-
aging these equations subject to the presence of a pa
with its center at origin,0, yields

]^s i j &1

]xj
~xu0!1r~x!gi50, ~2!

with

r~x!5r f1~rp2r f !^x&1~xu0!. ~3!

Here,x(x) is a particle phase indicator function whose val
is unity whenx lies inside a particle and zero otherwise. T
conditional average of this function may be expressed a

^x&1~xu0!5E
ux2x8u<a

P~x8u0!dVx8 , ~4!

whereP(x8u0) is the probability density for finding a particl
with its center atx8 given the presence of a particle at th
origin. Note that̂ x&1 approachesf, the volume fraction of
the particles, asr[uxu→`. For suspensions with an isotro
pic pair probability density a closure relation for the stress
introduced

^s i j &152^p&1d i j 1m~r !F]^ui&1

]xj
1

]^uj&1

]xi
G , ~5!

where^p&1 is the conditionally averaged pressure andm(r )
is the viscosity of the suspension. The conditionally avera
pressure and velocity are required to approach, respecti
the unconditionally averaged pressure and velocity asr→`

^p&1→^p&05rsgixi , ^ui&1→0 as r→`, ~6!

wherers5r f1(rp2r f)f is the suspension density. The a
erage sedimentation velocity of the particles equals the c
ditionally averaged velocity evaluated atr 50.

To determine the sedimentation velocity, the above se
equations is solved for a simple effective-medium mode
which m(r ) is taken to equal the suspending fluid viscos
m f in the exclusion regiona,r ,R and equal to the effec
tive viscositym* of the suspension forr .R. Similarly, ^x&1

is taken equal to zero in the exclusion region and equal tf
in the effective-medium. The exclusion radiusR is chosen
such that the behavior of the conditionally averaged velo
obtained from the effective-medium model agrees with
rigorous behavior asr→`. The latter is obtained by recog
nizing that the apparent hydrodynamic force on the test p
ticle at origin as ‘‘seen’’ from a large distance from the pa
ticle must balance the net force due to gravity. This appa
force obtained by integrating (^s i j &12^s i j &0)nj on the sur-
face of a sphere of large radius—nj being the unit outward
normal on the surface—is given by

Fap52~rp2r f !giE @^x&1~xu0!2f#dVx . ~7!

The integral in the above equation equals the volume of
particle multiplied by the zero wave number structure fac
S(0) so that the apparent force on the particle isS(0) times
the force on the same particle in a very dilute suspens
The zero wave number structure factor is defined by
Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
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S~0!5E @P~xu0!2P~x!#dVx . ~8!

It is easy to show that the apparent force for t
effective-medium model with an exclusion radius ofR is
given by

Fap52~4p/3!gi@rpa31~R32a3!r f2rsR
3#. ~9!

In order that the effective-medium model predicts corr
behavior for the conditionally averaged stress, and hence
velocity, at large distances from the test particle, the appa
force calculated from~9! must be the same as that calculat
from ~7!. This requiresR to be given by

R35a3@12S~0!#/f. ~10!

The results of numerical simulations for monodispe
suspensions presented by Ladd2 and Mo and Sangani3 corre-
spond to hard-sphere molecular configurations. The z
wave number structure factor for the hard-sphere molec
systems is well approximated forf,0.5 by the Carnahan–
Starling approximation

S~0!5
~12f!4

114f14f224f31f4 . ~11!

Sedimentation velocity and other hydrodynamic transp
properties such as the effective viscosity and the permea
ity of hard-sphere random suspensions have been determ
by solving the Stokes flow equations rigorously~Ladd;2 Mo
and Sangani3!. The effective-medium estimates obtaine
with R determined using~10! and ~11! have been shown to
be in very good agreement with the rigorous results~Sangani
and Mo;6 Speltet al.4!. It is natural, therefore, to extend th
above method for determiningR to estimate the properties o
bidisperse suspensions.

Let us consider a bidisperse suspension with the part
radii ai , densitiesrpi , and volume fractionsf i , i 51, 2.
Now the conditionally averaged stress, given that a part
of radiusa1 is centered at origin, satisfies

]^s i j &1

]xj
~xu0,a1!1Fr f1 (

k51

2

~rpk2r f !^xk&1~xu0,a1!G50,

~12!

wherexk (k51, 2) are the indicator functions fork-species
particles. The apparent force on the particle as seen f
large distances from the particle is obtained by integrat
the body force term in the above expression over the en
space to yield

F1
ap52~4p/3!g(

k51

2

~rpk2r f !ak
3Sk1 , ~13!

with the zero wave number structure factor defined by

Si j 5E @P~x,ai u0,aj !2P~x,ai !#dVx , ~14!

where P(x,ai u0,aj ) is the probability density for finding a
particle of radiusai in the vicinity of x given that a particle
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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3524 Phys. Fluids, Vol. 14, No. 10, October 2002 S. Koo and A. S. Sangani
of radiusaj is centered at origin andP(x,ai) is the ~uncon-
ditional! probability density for finding a particle of radiusai

at x.
An effective-medium model to estimate the sedimen

tion velocity of the particles in bidisperse suspensions c
sists of assuming that the particle of species 1 is centere
origin and acted upon by the gravitational force due to
mass. Outside this particle, species 1 is uniformly distribu
for r .R11 with volume fractionf1 and, likewise, species 2
for r .R12 with volume fractionf2 ~see Fig. 1!. A similar
model may be used to determine the conditionally avera
velocity with a particle of species 2 centered at origin. T
density and the effective viscosity of the effective-mediu
are augmented according to the density of the particles
each species and the stresslet induced by them. In order
the apparent forces on the particles in the effective-med
model agree with the rigorous results@cf. ~13!#, we must
choose

Ri j
3 5ai

3~d i j 2Si j !/f i , ~15!

whered i j is the Kronecker delta function.
The above effective-medium model requires a kno

edge of zero wave number structure factorsSi j for bidisperse
suspensions. The present study will be concerned w
bidisperse suspensions corresponding to bidisperse h

FIG. 1. A schematic representation of the effective-medium model.
Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
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sphere configurations. For very dilute bidisperse suspens
(f5f11f2!1) the structure factors for the hard-sphe
systems can be shown easily to be given by

Si j 5d i j 2f i~ai1aj !
3/ai

3, ~16!

so thatRi j →ai1aj in the limit f→0. The structure factors
for non-dilute bidisperse suspensions can be estimated u
the method outlined by Ashcroft and Langreth.7 The neces-
sary formulas are given in Appendix A.Ri j decreases mono
tonically as the volume fraction is increased. An example
seen in Fig. 2 which showsRi j for the size ratiol5a1 /a2

50.5 andf250.1. The decrease inRi j occurs due to higher
probability of finding a pair of particles separated by a d
tance close toai1aj as can be seen from Figs. 3 and 4 whi
show the radial distribution functionsg11 and g22 for the
hard-sphere bidisperse systems withf250.1 at two selected
values off1 . A radial distribution functiongi j is the pair
probability density normalized byP(aj ) so that its value is
unity at r 5`. For hard-sphere bidisperse systems th
functions can be determined using the formulas given in A
pendix B. The sharp rise ing11 at r 52l51 for f150.35 is
responsible forR11 to decrease to such an extent thatR11 is,
in fact, even lower thanl, the nondimensional radius o
species 1. In other words, the effective-medium model
particle 1 would require that the species 1 be uniformly d
tributed starting from a radial distanceR11 that is less than
the radius of the particle—clearly a model that is physica
meaningless. This difficulty arises wheneverf1 is greater
than a critical value that depends onl and f2 . Figure 5
shows this critical value forl50.5 and 0.7. The criticalf1

is seen to decrease asf2 is increased orl is decreased.
It is interesting to note that hard-sphere bidisperse s

pensions undergo phase separation beyond a critical valu
f2 for given f1 and l. Dinsmoreet al.8 have carried out

FIG. 2. Ri j /a2 as a function off1 for f250.1 andl50.5.
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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3525Phys. Fluids, Vol. 14, No. 10, October 2002 Effective-medium theories
experiments with bidisperse collidal systems and obser
phase separation for the conditions shown in Fig. 5. As s
from this figure the phase transition appear to occur bey
the value off2 for which R11,a1 .

For dense bidisperse suspensions withR11,a1 the
effective-medium model described above cannot be used
course, this problem could also arise for monodisperse
pensions that have configurations other than the hard-sp
configurations examined in previous studies. Thus, we m

FIG. 3. Radial distribution functiong11 at two different values off1 , 0.35
~solid line! and 0.15~dotted line!, with f250.1 andl50.5.

FIG. 4. Radial distribution functiong22 at two different values off1 , 0.35
~solid line! and 0.15~dotted line!, with f250.1 andl50.5.
Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
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consider other variants of the effective-medium model. It
required that the model to be chosen should satisfy the
lowing criteria: ~i! The leading order behavior of the cond
tionally averaged velocity at large distances from the part
must agree with its rigorous behavior;~ii ! the effective prop-
erties estimated using the model should be reasonably a
rate at least for the case of monodisperse suspensions
~iii ! extension to bidisperse suspensions must be natura

The idea that the medium in the immediate vicinity
the test particle must be a clear fluid, i.e., that the proper
of the medium fora,r ,R must be the same as that of th
suspending fluid, is meaningful when the clustering of p
ticles is not significant, or, equivalently, the radial distrib
tion function at contact (r 52a) is not too large. For suspen
sions whoseR defined by~10! is less thana, we must allow
for the presence of the particles in the immediate vicinity
the test particle. Thus, a more general effective-medi
model might assume that the medium immediately close
the particle corresponds to a suspension with a volume f
tion fc up to radiusRc and to a suspension with volum
fraction f for r .Rc with both fc and Rc to be specified.
The condition that the apparent force on the particle be
same as given by~7! gives one relation betweenfc andRc

fc~Rc
32a3!5f~Rc

32R3!, ~17!

whereR is given by~10!. Thus one may arbitrarily chooseRc

and then use the above equation to estimate the volume
tion fc in the immediate vicinity of the particle. One simp
choice for monodisperse suspensions isRc52a. The exten-
sion to the bidisperse suspensions will then be natural w

FIG. 5. The critical values off1 as a function off2 beyond whichR11

becomes less thana1 for two different size ratios:l50.7 and 0.5. The
unfilled circles indicate the conditions where phase separation is experim
tally observed and the filled circles are the conditions with no phase s
ration for l50.5 @Dinsmoreet al. ~Ref. 8!#. The star represents the cond
tions for which the numerical are carried out withf15f250.175 andl
50.5.
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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3526 Phys. Fluids, Vol. 14, No. 10, October 2002 S. Koo and A. S. Sangani
Rc,i j 5ai1aj . Equation~17! may likewise be extended t
allow for the presence of the two species in the immed
vicinity of the test particle.

Unfortunately, this modified effective model~EM I! does
not work as well as the original effective-medium mod
~EM! based on exclusion of particles fora,r ,R as can be
seen from Figs. 6 and 7 which show the predictions of
sedimentation velocity and effective viscosity of suspensi
with monodisperse, hard-sphere configurations. The cir
represent the results determined using rigorous nume
simulations~Ladd2!. At f50.45 the nondimensional sed
mentation velocity and effective viscosity are, respective
0.136 and 5.629 using the EM I model and 0.042 and 5.
using the EM model, the rigorous values being 0.046 a
5.6.

The two models described above involve some arbitr
choices: EM sets the volume fraction of the particles foa
,r ,R to zero while EM I setsRc52a. A model with no
arbitrary choice was proposed by Chang and Acrivos i
series of papers~Acrivos and Chang;10,11 Chang and
Acrivos9!. According to this model, henceforth to be referr
to as the EM II model, the density and other properties of
medium are allowed to vary continuously. For example,
density is taken to be given by~3!. Likewise, the effective
viscosity of the medium is taken as

m~r !5m f1~m* 2m f !^x&1~r u0!/f. ~18!

Here, ^x&1 (r u0) is the conditional average of the partic
volume fraction given a particle at origin as defined in~4!.
For suspensions in which the pair probability density is

FIG. 6. Sedimentation velocity as a function off for monodisperse, hard
sphere suspensions. The thick-dotted, long-dashed, and solid lines ar
spectively, the predictions by EM, EM I, and EM II theories. The fille
circles indicate simulation results by Ladd~Ref. 2!.
Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
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dependent of the orientation of the pair, the volume integ
in ~4! can be reduced using simple geometrical consid
ations to an integration overR:

^x&1~r !5npE
r 2a

r 1a

g~R!~2R2R2/r 2r 1a2/r !RdR.

~19!

Figures 6 and 7 also show predictions of sedimentation
locity and effective viscosity obtained by this model. We s
that the predictions obtained by this model are better than
EM I model but not as good as those obtained by the E
model. The extension to bidisperse suspensions is stra
forward for this model.

Although our primary objective in the present study
the development of effective-medium approximations
which it is sufficient to compare the results of numeric
simulations for hard-sphere configurations with the pred
tions obtained from approximate theories, it may be no
that the numerical simulation results by Ladd2—and hence
the theory predictions—are also in very good agreement w
the experiments by Buscallet al.12 for the sedimentation ve
locity and by van der Werffet al.13 for the high-frequency
effective viscosity of nearly monodisperse suspensions.

In summary, the effective-medium model based onR
given by ~10! gives the best estimates for the monodispe
suspensions. Its application to bidisperse suspensions, h
ever, is limited to volume fractions for whichRi j .aj . When
this condition is not satisfied, the EM II model may be pr
ferred to EM I or EM. Therefore, the results of numeric
simulation for bidisperse suspensions will be compared w
the EM and EM II models.

FIG. 7. Effective viscosity as a function off for monodisperse, hard-spher
suspensions. The thick-dotted, long-dashed, and solid lines are, respec
the predictions by EM, EM I, and EM II theories. The filled triangles ind
cate simulation results by Ladd~Ref. 2!.
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3527Phys. Fluids, Vol. 14, No. 10, October 2002 Effective-medium theories
III. NUMERICAL METHOD

The Stokes equations of motion for monodisperse
bidisperse suspensions were solved using the method of
tipole expansion outlined in Sangani and Mo5 which uses a
fast summation method that requires computational ef
that scales roughly with the number of particles. The veloc
induced by each particle was expressed in terms of m
poles of up to third order~i.e., Ns53 in the notation of
Sangani and Mo5!. This amounts to 26 unknowns per pa
ticle. The lubrication effects require even greater values
Ns , and hence multipoles, to determine hydrodynamic tra
port properties accurately. Since including the lubrication
fects explicitly according to the scheme outlined by Sang
and Mo5 slows down the convergence rate of the iterat
method used in the algorithm, and since modifying t
method for monodisperse suspensions outlined in San
and Mo5 to account for the lubrication effects in bidisper
suspensions requires considerably more effort, it was cho
to carry out calculations with greaterNs for one configura-
tion and apply the correction obtained from the single c
figuration to the results obtained byNs53.

In addition to calculating the overall properties such
the sedimentation velocity and the effective viscosity,
predictions for the conditionally averaged velocity fields o
tained using the effective-medium theories will be also co
pared with those obtained numerically. For this purpose,
velocity of the fluid or a particle at selected points in t
basic unit cell was computed as described in Koch a
Sangani.14 Typically, the velocity was evaluated at 51
points, and, withN particles per unit cell, this provides 512N
velocity versus distance from a particle data points per c
figuration. The conditional averaged velocity and hydrod
namic transport coefficients were obtained by averaging o
10 to 20 configurations. The number of particlesN used in
simulation was 1024 in most cases.

IV. EFFECTIVE-MEDIUM CALCULATIONS

The conditionally-averaged velocity and hence prop
ties such as the sedimentation velocity, permeability, and
fective viscosity were determined by solving the effectiv
medium equations numerically. The conditionally averag
velocity satisfies

¹•$@m~r !@¹u1~¹u!1##%1r~r !g2¹p5m~r !u/k* ~r !,
~20!

whereu and p are, respectively, the conditionally averag
velocity and pressure, andk* is the Darcy permeability. The
term on the right-hand side of the above equation mus
used only for the case of fixed array of particles, e.g., in
calculation of permeability. For that case the viscosity to
used is Brinkman viscosity, which is taken to be the same
the fluid viscositym f . For particles free to move the visco
ity must be taken to be given by~18!. In all calculations the
mean flow was chosen such that the conditionally avera
velocity is axisymmetric aroundx1-axis. Thus, it is possible
to introduce a stream function to simplify the equations
motion. The stream function can be expressed as a func
of r times a function ofm
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c5 f n~r !Qn~m!, ~21!

wherem5cosu, u being the polar angle measured from t
x1-axis, andQn is the integral of the Legendre function~see,
e.g., Leal15!. For determination of permeability and sedime
tation velocity we taken51, and that for the viscosity cal
culation, n52. The functionf n(r ) must be determined by
numerical integration of the equations of motion.

The above calculations apply to infinitely extended ra
dom suspensions. Numerical simulations are carried out w
N particles placed in a unit cell of a periodic array. For t
sedimentation and self-diffusivity problems, for which th
conditionally averaged velocity decays only as 1/r , we must
account for the effect of finiteN before the comparison be
tween the two can be made. The velocity in the infinite m
dium due to a point force is given by

ui52
F j

ap

4pm* Fd i j

1

r
2

]2

]xi]xj
S r

2D G . ~22!

For periodic suspensions 1/r and r /2 in the above must be
replaced by, respectively, spatially periodic functionsS1 and
S2 defined by Hasimoto.16 In the numerical simulation the
angular average ofu1 is computed. The angular average
S1 and the derivatives ofS2 were determined separately an
compared with the angular averages of 1/r and the deriva-
tives of r /2 to obtain a correction factor for accounting fo
finite N. Accordingly, the velocity computed using th
effective-medium was multiplied by the correction factor

C~r !5122.8r /h, ~23!

h being the unit cell size related to the volume fractions a
radii of each particles and the number of particles.

V. RESULTS

Table I shows the results for sedimentation velocities
bidisperse suspensions. The volume fractions of the two s
cies are equal,f15f25f/2. We see that EM provides
slightly more accurate estimates than EM II. Forf50.35
and l50.5 the EM theory cannot be applied sinceR11

,al. The EM II theory predictions are in reasonable agre
ment with the numerical results for this case. It may be no
that the smaller particles actually move against the gra
for this case—a result that is in qualitative agreement w
the EM II predictions. Figure 8 compares the predictions
the conditionally averaged velocity with those obtained n
merically. We see excellent agreement in all cases with

TABLE I. A comparison of theoretical predictions and numerical simulati
results for sedimentation velocityU nondimensionalized by the termina
velocity of an isolated sphereU0 .

f l

(U/U0)1 (U/U0)2

simulation EM EM II simulation EM EM II

0.1 0.7 0.221 0.197 0.201 0.517 0.486 0.48
0.1 0.5 0.095 0.074 0.059 0.524 0.486 0.46
0.35 0.7 0.028 0.023 0.010 0.111 0.096 0.08
0.35 0.5 20.003 20.014 0.116 0.092
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FIG. 8. A comparison of the conditionally averaged velocity^u1&1 nondimensionalized by superficial velocityU as a function ofr from numerical simulations
~filled and unfilled circles! with that from the effective-medium theories, EM~thick-dotted lines! and EM II ~solid lines!. The upper lines and filled circles
correspond to the case when a larger sphere is at origin, and the lower lines and unfilled circles correspond to the case with a smaller sphere a~a!
f50.1, f150.05, andl50.7. ~b! f50.1, f150.05, andl50.5. ~c! f50.35,f150.175, andl50.7. ~d! f50.35,f150.175, andl50.5.
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predictions from both the EM and EM II models in goo
agreement with each other and with the data obtained f
numerical simulation.

The sedimentation velocities of noncolloidal bidisper
particles have been measured by Hoyoset al.17 for the size
ratios of 0.6 and 0.35. The reduction in the velocity
smaller particles observed by these investigators is m
smaller than the results obtained here indicating that the
crostructure of sedimenting bidisperse suspensions mus
significantly different from the hard-sphere microstructu
for which the numerical simulations are carried out.

Table II shows results for short time self-diffusivity i
bidisperse colloidal suspensions with hard-sphere sp
configurations. The short time self-diffusivity in very dilut
Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
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suspensions is given by the Stokes–Einstein relation

D05b0kT5
kT

6pm fa
, ~24!

whereb0 is the mobility, defined as velocity with which
particle will move when acted upon by a force of unit ma
nitude, k is the Boltzmann constant, andT is the absolute
temperature. To determine the short time self-diffusivity
bidisperse suspensions, a force of unit magnitude is app
to one of the particles in the suspension and its velocity
computed. The results shown in Table II were obtained
averaging over 20 numerical experiments. We see that
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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estimates by the two effective-medium theories agree w
each other and that these estimates are lower than the
puted values of self-diffusivities.

Table III shows the results for the effective viscosity
hard-sphere bidisperse suspensions. The effective viscos
related to the average stresslets~Batchelor18! induced by the
particles of each species by

m* 5m f@11n1S11n2S2#, ~25!

with the limiting values ofSj in very dilute suspensions be
ing given by (Sj )0510paj

3/3. Here,nj is the number density
of the particles of speciesj. Once again the estimates o
tained by the two effective-medium theories are in go
agreement with each other and somewhat greater than
computed values of the stresslets. Comparison for the co
tionally averaged velocities is shown in Fig. 9.

Wagner and Woutersen19 and Jones20 have determined
average stresslets for dilute hard-sphere bidisperse sus
sions to O(f) using pair interactions calculations. The
analyses show that the effective viscosity of bidisperse s
pensions having the same volume fraction as a monodisp
suspension is smaller and that the effective viscosity
creases as the size ratiol decreases. The decrease, howev
is generally small. For example, the effective viscosity o
monodisperse suspension withf50.1 is 1.300 times the sus
pending fluid viscosity according to the dilute theory and t
for a bidisperse suspension withf15f250.05 andl50.5
is 1.299. These estimates were obtained from the theore
results presented by Jones.20 These dilute theory estimate
may be compared with the numerical simulations of Ladd
monodisperse suspensions which gave the effective visco
ratio of 1.311, and the present study for bidisperse susp
sions which gives forf15f250.05 andl50.5 an effective
viscosity that is 1.294 times the suspending fluid viscos
~The results obtained in the present study were limited t
small number of configurations, and therefore, may not

TABLE II. A comparison of theoretical predictions and numerical simu
tion results for short time self-diffusivityD scaled by the value for very
dilute suspensionsD0 .

f l

(D/D0)1 (D/D0)2

simulation EM EM II simulation EM EM II

0.1 0.7 0.794 0.782 0.778 0.733 0.742 0.73
0.1 0.5 0.832 0.792 0.790 0.736 0.711 0.70
0.35 0.7 0.332 0.355 0.371 0.303 0.322 0.33
0.35 0.5 0.355 0.373 0.287 0.293

TABLE III. A comparison of theoretical predictions and numerical simu
tion results for stresslet scaled by its value for very dilute suspensions

f l

S1/(S1)0 S2/(S2)0

simulation EM EM II simulation EM EM II

0.1 0.7 1.170 1.185 1.166 1.193 1.213 1.12
0.1 0.5 1.154 1.180 1.126 1.200 1.222 1.22
0.35 0.7 2.499 2.494 2.302 2.763 2.628 2.49
0.35 0.5 2.470 2.281 2.904 2.649
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accurate to third decimal place.! The dilute theory result tha
the viscosity of a suspension is relatively insensitive to
size ratio of particles apparently applies even to nondil
suspensions as the results in Table II would suggest. T
for example, the effective viscosity of suspensions withf1

5f250.35/2 andl50.7 is 3.30 times the suspending flu
viscosity. The corresponding result for a monodisperse s
pension withf50.35 is 3.332 and a bidisperse suspensio
with l50.5 is 3.35.

Finally, Table IV shows the results for pressure drop
bidisperse fixed bed of particles given by

¹P5n1F11n2F2. ~26!

The limiting values of the force being the Stokes drag, i
F0,j526pmajU, U being the superficial velocity of the
fluid through the bed. We see an excellent agreement am
the two theories and the simulation results. As seen in F
10, the conditionally averaged velocities are also well d
scribed by the effective-medium theories.

VI. SUMMARY

The hydrodynamic transport coefficients of bidisper
suspensions depend on a relatively large number of par
eters, e.g., the volume fractions of the individual species
the size ratio of the particles, and therefore, it is not pract
to compute these properties and tabulate them for easy
erence. Thus, simple theories that provide reasonably a
rate estimates are useful. Two effective-medium theor
EM and EM II, have been considered. The former cannot
used beyond some values of the volume fractionf1 of the
smaller species for givenf2 and size ratio~cf. Fig. 5! for
which the EM II approximation is more useful. Both theori
give reasonably accurate results whenf1 is less than the
critical value given by Fig. 5. The effective-medium theori
are shown to give quite accurate profiles of the conditiona
averaged velocities in the suspensions.
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APPENDIX A: STRUCTURE FACTORS FOR BINARY
MIXTURES OF HARD SPHERES

Lebowitz21 has obtained a generalized Percus–Yev
equation for determining radial distribution functions in b
disperse and polydisperse systems. For bidisperse sys
the result can be expressed in the form

gi j ~r !@exp2~bw i j ~r !!21#5exp2~bw i j !Ci j ~r !, ~A1!

wheregi j (r )[P(r ,ai u0,aj )/ni is the radial distribution func-
tion, ni being the number density of thei th species,Ci j is the
direct correlation function representing the effect of addin
particle at a distancer from the origin in a system ofN21
particles with one of the particles being of radiusaj centered
at origin, w i j is the pair potential, andb is a con-
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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FIG. 9. A comparison of the conditionally averaged radial velocity^ur&1 , nondimensionalized byga2 , as a function ofr from numerical simulations~filled
and unfilled circles! with that from the effective-medium theories, EM~thick-dotted lines! and EM II ~solid lines!. The lower lines and filled circles correspon
to the case when a larger sphere is at origin, and the upper lines and unfilled circles correspond to the case with a smaller sphere at origin.~a! The volume
fractionsf50.1, f150.05, andl50.7. ~b! f50.1, f150.05, andl50.5. ~c! f50.35,f150.175, andl50.7. ~d! f50.35,f150.175, andl50.5.
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stant related to the inverse of temperature. For hard-sp
systems the pair potential is, if course, zero forr .ai1aj

and infinity otherwise. Thus, the quantity inside the squ
bracket on the left-hand side of the above equation vanis

TABLE IV. A comparison of theoretical predictions and numerical simu
tion results for drag forceF scaled by the value for an isolated sphereF0 .

f l

(F/F0)1 (F/F0)2

simulation EM EM II simulation EM EM II

0.1 0.7 2.479 2.415 2.468 3.169 3.238 3.23
0.1 0.5 2.251 2.293 2.287 3.942 3.950 3.96
0.35 0.7 9.900 10.586 10.707 16.673 17.641 17.6
0.35 0.5 8.650 9.273 23.518 24.88
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for r .ai1aj and the above equation cannot be used dire
to determinegi j for such values ofr. Note that the direct
correlation functions also vanish forr .ai1aj . Neverthe-
less, it is possible using the above equation as a star
point, and using the method of functional Taylor expansi
to determine bothCi j for r ,ai1aj andgi j for r .ai1aj , as
was done by Lebowitz.21 Ashcroft and Langreth7 showed
that the structure factors are related to the Fourier transfo
of the direct correlation functions. We give here the resu
obtained by these investigators for reader’s convenienc
the notation used in the present study and then specialize
results obtained to zero wave number structure factors.

The direct correlation functionsCi j (r ) are given by
~Lobowitz21!
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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FIG. 10. A comparison of the conditionally averaged velocity^u1&1 , nondimensionalized by superficial velocityU, as a function ofr from numerical
simulations~filled and unfilled circles! with that from the effective-medium theories, EM~thick-dotted lines! and EM II ~solid lines!. The lower lines and filled
circles correspond to the case when a larger sphere is at origin whereas the upper lines and unfilled circles correspond to the case with a smalat
origin. ~a! f50.1, f150.05, andl50.7. ~b! f50.1 andf150.05, andl50.5. ~c! f50.35,f150.175, andl50.7. ~d! f50.35 andf150.175, andl
50.5.
ffi
2C11~r !5a11b1r 1dr3, r ,2a1 ,

2C22~r !5a21b2r 1dr3, r ,2a2 ,

2C12~r !5a1 , r ,a22a1

5a11@bR214kdR31dR4#/r ,

a22a1,r ,a21a1 ,

~A2!

whereR5r 2(a22a1), k5a22a1 , anda1 and a2 are the
radii of small and large spheres, respectively. The coe
cientsa i , bi , b, andd are given by
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a15
]P

]f1
, a25l23

]P

]f2
, ~A3!

2a1b15b1526@f1G11
2 1 1

4f2~11l!2lG12
2 #, ~A4!

2a2b25b2526@f2G22
2 1 1

4f1l23~11l!2lG12
2 #,

~A5!

2a2b523~11l!@l22f1G111f2G22#G12, ~A6!

2a1
3d5g15 1

2@f1a11l3f2a2#, ~A7!
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where P5(f11l2f2)(11f1f2)23f1f2(12l)2@1
1f11l(11f2)#(12f)23 andG11, G22, andG12 are the
radial distribution functions atr 52a1 , 2a2 , and a125a1

1a2 , respectively,

G115@~11 1
2f!1 3

2f2~l21!#~12f!22,

G225@~11 1
2f!1 3

2f1~l2121!#~12f!22, ~A8!

G125F S 11
1

2
f D1

3

2

12l

11l
f1~f12f2!G~12f!22.

As mentioned above Ashcroft and Langreth7 showed that
the Fourier transform of the correlation functions are rela
to the structure factors. Their results can be specialize
zero wave numbers to yield

S11~0!5H 12n1Ĉ11~0!2
n1n2Ĉ12

2 ~0!

12n2Ĉ22~0!
J 21

,

S22~0!5H 12n2Ĉ22~0!2
n1n2Ĉ12

2 ~0!

12n1Ĉ11~0!
J 21

,

~A9!

S12~0!5n1
1/2Ĉ12~0!$@12n1Ĉ11~0!#

3@12n2Ĉ22~0!#2n1n2Ĉ12
2 ~0!%21,

S21~0!5n2
1/2Ĉ12~0!$@12n1Ĉ11~0!#

3@12n2Ĉ22~0!#2n1n2Ĉ12
2 ~0!%21.

Here, Ĉi j (0) are the Fourier transforms of the direct corr
lation functions in the limit of zero wave numbers

2n1Ĉ11~0!524f1H a1

3
1

b1

4
1

g1

6 J ,

2n2Ĉ22~0!524f2H a2

3
1

b2

4
1

g1

6l3J , ~A10!
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2n1
1/2n2

1/2Ĉ12~0!5
fx1/2~12x!1/2

x1~12x!l3 H a1~12l!324l3

3F12l

2l S b12

3
1

g12

4
1

g1

5 D
1

b12

4
1

g12

5
1

g1

6

1a1S 1

3
1

12l

4l
1

12l

4l2 D G J ,

where

x5
n2

n11n2
,

g1252g1

12l

l
, ~A11!

b12523l~11l!~l22f1G111f2G22!G12.

Note thatb1 , b2 , and g1 are given in the expressions fo
b1 , b2 , andd, respectively@cf. ~A4!, ~A5!, and~A7!#.

APPENDIX B: RADIAL DISTRIBUTION FUNCTIONS
FOR BINARY MIXTURES OF HARD SPHERES

Lebowitz21 has given expressions for the radial distrib
tion functions gi j for binary mixtures of hard spheres b
solving the generalized Percus–Yevick equation. His so
tions for gi j are given in terms of their Laplace transform
These need to be inverted to determinegi j as functions ofr
for the purpose of calculations based on EM II theo
Throop and Bearman22 have used a numerical method fo
inverting the Laplace transforms. Later, Leonardet al.23 pro-
vided an explicit expression forgi j using the inversion pro-
cedure described by Throop and Bearman.22 However, the
formulas given by these later investigators are incorrect.

We, therefore, followed the calculation procedure f
gi j (r ) given by Throop and Bearman.22 The inversion inte-
grals of the Laplace transforms forgi j (r ) are given by
rg11~r !5
1

12j1
(

m50

`
1

2p i E s@H2L2~s!exp~2sa2!#@ I ~s!#m exp@s~r 22a122a2!#ds

@F~s!#m11 ,

rg22~r !5
1

12j2
(

m50

`
1

2p i E s@H2L1~s!exp~2sa1!#@ I ~s!#m exp@s~r 22a122a2!#ds

@F~s!#m11 , ~B1!

rg12~r !5 (
m50

`
1

2p i E S F12~j2a2
32j1a1

3!~a22a1!2a12S 12
1

2
f D Gs2~112f! D @ I ~s!#ms2 exp@s~r 2a12!#ds

@F~s!#m11 ,

wherej i5pni /6, ni being the number density of speciesi. H, L1(s), L2(s), F(s) and I (s) are given by

H572j1j2~a22a1!,

L1~s!512j2@~11 1
2f!112j1a1

2~a22a1!#a2s21@12j2~112f!22Ha1#s1H,

L2~s!512j1@~11 1
2f!112j2a2

2~a12a2!#a1s21@12j1~112f!22Ha2#s1H, ~B2!
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F~s!5H1@12~j11j2!~112f!22H~a11a2!#s272~j1a1
21j2a2

2!2s2224~j1a1
21j2a2

2!~12f!s32~12f!2s4,

I ~s!5L2~s!exp~22sa1!1L1~s!exp~22sa2!2H exp@22s~a11a2!#.
to

if-

e-
re

ch.

er-

c-
rops

L.
ory

ites

s.

rly

ted

en-
nf.

in

g
id

r

ility
ical

ing
,

ua-
es,’’

n-
ustic

par-

nd
luid

al

for

ix-

dial
ap-
The integrals in~B1! can be expressed as equal
2p iRm

i j using the residue theorem where

Rm
i j 5

1

~m21!! (t i
lim

s→t i

S dm21

dsm21 @~s2t i !
m#

3 (
k51

2 wk
i j ~s!exp~s@r 2ck

i j ~a1 ,a2!# !

@F~s!#m D , ~B3!

wheret i correspond to the four roots ofF(s)50. Here,wk
i j

are polynomials ins and are given by

w1
115

2L2~s!s

12j1
J~s!, w2

115
Hs

12j1
J~s!,

w1
225

2L1~s!s

12j2
J~s!, w2

225
Hs

12j2
J~s!, ~B4!

w1
125H F12~j2a2

32j1a1
3!~a22a1!2a12S 12

1

2
f D Gs

2~112f!J s2J~s!,

w2
1250,

where J~s!5 (
q150

q11q2

(
q250

1q35

(
q350

m21
~m21!!

q1!q2!q3!

3L2~s!q1L1~s!q2~2H !q3.

ck
i j are linear combinations ofa1 anda2

c1
1152~m2q2!a112~m2q121!a2 ,

c2
1152~m2q2!a112~m2q1!a2 ,

c1
2252~m2q221!a112~m2q1!a2 , ~B5!

c2
2252~m2q2!a112~m2q1!a2 ,

c1
1252~m2q22 1

2!a112~m2q12 1
2!a2 , c2

1250.

Now gi j (r ) can be determined by carrying out the d
ferentiation in~B3!. Since the contour integrals in~B1! equal
the sum of the residuesRm

i j for r 2ck
i j (a1 ,a2).0 and are

zero otherwise, the evaluation ofgi j as a function ofr is
limited by the differentiation orderm. Calculation ofgi j (r )
at large r requires higher order differentiation which b
comes quite cumbersome. In the present study, the diffe
tiation was carried out up tom54 which is sufficient to
determinegi j for r ,8a112ai . Beyond this distance,gi j (r )
was taken to be unity in our calculations.
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