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ABSTRACT

A general decoding method for cyclic codes is

presented which gives promise of substantially

reducing the complexity of decoders at the cost of

a modest increase in decoding time (or delay).

Significant reductions in decoder complexity for

binary cyclic finite-geometry codes are demonstrated,

and two decoding options for the Golay code are presented.
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SECTION I

INTRODUCTION

The major problem in the practical application of

error-correcting codes is the complexity of decoding.

One of the basic decoding complexity trade-offs is

that between decoding time and hardware cost. Decoding

algorithms range from expensive combinatorial schemes

that operate in minimum time to slow sequential schemes

that require a minimal amount of hardware. Surprisingly,

there seem to be few decoding schemes in the middle

range where one would expect to find the economical

operating points. Consideration of this time-hardware

trade-off has led to the discovery of a new decoding

technique -- decoding by sequential code reduction -­

that gives promise of significantly reducing the com­

plexity of combinatorial decoders at the cost of a

modest increase in decoding time (or delay). This

scheme applies to all cvclic codes and perhaps to other

codes as well. Significant reductions in decoder

complexity have alreadv been demonstrated for a number

of cyclic codes.

In Section 2, a general bounded-distance decoding

algorithm for cyclic codes is formulated and sequential
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code reduction is introduced bv means of an example.

The application of sequential code reduction to finite­

geometry codes is considered in Section 3, and some

preliminary results are given. In Section 4, some

implementation options for the Golay (23,12) code are

presented. Section 5 contains a discussion of the

results.

We have assumed that the reader is familiar with

coding theory at the level of, say, W. W. Peterson and

E. J. Weldon, Jr. 's "Error-Correcting Codes", 2nd

Edition, (M.I.T. Press, 1972). For the sake of

simplicity, only binary cyclic codes will be considered

in this report.
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SECTION 2

SEQUENTIAL CODE REDUCTION

In this section we introduce the concept of

sequential code reduction by means of an example. The

standard bounded-distance decoding algorithm for cyclic

codes is formulated and then applied to the (7,4)

Hamming code in the form of a conventional 2-step

majority logic decoding algorithm. It is then shown

how this combinatorial algorithm can be converted to a

sequential code reduction algorithm at the cost of an

increase in decoding time. This is followed by a

brief discussion of the basic ideas involved in sequential

code reduction.

2.1 Bounded-distance decoding of cyclic codes

A bounded-distance decoding algorithm for an

(n,k) t-error-correcting code is guaranteed to correct

all errors of weight t or less. A few bounded-distance

decoding algorithms (e.g. majority logic decoding)

correct some patterns of more than t errors, but this

excess correction capability is due to accident rather

than design and can be considered a bonus obtained at

no extra cost.
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Let C = (cO' ••• 'cn _I ) be the transmitted code

word, e = (eO, ••. ,en - l ) the error vector and

C + e = r = (rO, ... ,rn _1 ) the received word, where 1+'

denotes vector addition over GF(2). (All arithmetic

in this report is over GF(2) unless otherwise stated.)

Let H be a reduced parity check matrix for the code
~ ~ ~ ~ ~ ~

and e = (eO, .•• ,en - l ) and c = (cO, ••• ,en - l ) the decoder's

estimate of e and c respectively. WH(x) will denote the

Hamming weight of x. Since we are considering cyclic

codes only, the decoding algorithm need only be capable

of correctly determining Co whenever t or fewer errors

have occurred. A general algorithm to do this is the

following:

General Bounded-Distance Decoding Algorithm

1. Calculate the syndrome s = Hr

2. Solve for eO in

He = s

Step 2 of this algorithm may be viewed in the following

way. There are 2k solutions to the linear matrix
~

equation He = s. The effect of the nonlinear constraint

wH(e) ~ t is to reduce the number of solutions from 2k

to exactly 1 (under the assumption that wH{e) ~ t). This

reduction is traditionally accomplished in one step
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using a nonlinear (over GF(2» combinational logic circuit.

However -- and this is the basis for decoding by sequential

code reduction -- there is no reason why this can't be

accomplished sequentially, in stages.

This basic idea can perhaps best be illustrated by

means of an example. We will consider the decoding of

the (7,4) single-error-correcting Hamming code, first

by a conventional 2-step majority decoding algorithm

and then by 2-stage sequential code reduction.

2.2 Decoding algorithms for the (7,4) code

The matrix

Ii 1 1 0 1 0 0I,
I

H = 11 1 0 1 0 0 1
I

!l 0 1 0 0 1 1
L-

is a reduced parity check matrix for the (7,4) code.

The first step of the general bounded-distance decoding

algorithm given above is to calculate the syndrome

s H r

I:~l
,-i 1 1 0 1 0

-l I -
o I i r O! I I

I

= I 1 1 0 1 0 0 1 r l :

LS 3J I i

1 0 1 0 0 1 1 r 2 :L_
I

r
3

t

I
I

r 4 i
I

r S !
I

r 6 I
- _l
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A

The second step is to solve for eO in the equation

A

H e s

-A .... .. "-

I 1 1 0 1 0 0 eO lSI!
A

1 1 0 1 0 0 1 el = r s21I
A I lS3)1 0 1 0 0 1 1 e 2 !I A ,

J

e 3 1I A I
e 4 1

I A IleSIA I

e 6J
subject to the constraint

The number of solutions for e in the unconstrained

I , ., 2k 2 4 161near equat10n 1S = = . The problem is to

find the one solution for e that also satisfies the

nonlinear constraint. In majoritv logic decoding,

this is accomplished bv deriving new parity checks

from the old (the syndrome) using the nonlinear

majority function. These new parity checks are valid

only under the assumption that WH(e) < t. The effect

of adding these parity checks to the syndrome, and the

corresponding rows to the parity check matrix H, is to

increase the rank of H and thereby decrease the number

of solutions for e. New parity checks are added until

the rank of H is n, in which case there is a unique

solution for e.
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(Actually, as we shall see in this example, it is only

necessary to add parity checks until the solutions

for e all have the same value for eO.>

For example, consider the new parity check 54 =

maj{O,sl,s2}. Since sl and s2 are orthogonal on

" "eO and e l , 54 will give the correct value of eO + e l
"

if WHee) ~ 1, i.e.

-----~S4 = maj{O,sl,s2} = eO + e 1

which we can think of as the product

A.

[1 1 0 0 0 0 0]

~o1 = IS41.
e

1

e
2

A.

e 3 !
~4i
" I

e S !
"

j

! e 6 !
L -i

Adding this new equation to the original set gives

A

rSl!1 1 1 0 1 0 0 eO
"

I
S2j1 1 0 1 0 0 1 e 1

" =
1 0 1 0 0 1 II

~21
i

oj
s3i

J
1 1 0 0 0 0

(

e 3 J 5 4 1 ~
" , t- ....L

e41
I ~51
1;6 1
I.. J
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Since the addition of the new row has increased the

rank of H from 3 to 4, the number of solutions for

~ has been reduced from 24 = 16 to 23 = 8. In similar

manner, we can define two other new parity checks

s5 = maj{o,sl,s3~

s6 = maj~O,s4,s5~

Adding these two new paritv checks further extends the

decoding equation to

1

1

1

1

1

1

1

1

o

1

o

o

1

o

1

a

1

o

o

1

o

o

o

o

1

o

o

o

o

o

o

o

1

o

o

o
I
f

Ol
t

The rank of H is now 6, so there are 21 = 2 solutions

for e. However, both solutions have eO = s6 and the

process of reducing the solution space by the addition

of new parity checks may be terminated.

"-

The final step of the algorithm is to obtain Co

from



9

The corresponding conventional 2-step majority logic

decoder is shown in Figure 1.

Let 8 4 ,54 ',54 ", etc., denote the sequence of

outputs from the upper left majority gate that results

when the received word r is ring-shifted in the buffer.

Since s4
~= eO + e

l
and the code is Cyclic, we have

~~
54 = eO + e l

, ,_/'"~
S4 = e 1 + 8 2

.. ~~
54 = 8

2
+ e

3

5 VI
4

But note that

It is therefore not necessary to have a separate majority

gate to calculate 55 if we are willing to store 5 4 ,54 ',

54'" etc., and implement the equation

55 = 54 + 54'·

The resulting 2-stage sequential code reduction decoding

circuit is shown in Figure 2.
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Figure 1. Conventional 2-step Majoritv Decoding Circuit

o
..-_----ll ----.-.--~J.-

Figure 2. 2-stage Sequential Code Reduction Circuit.
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2.3 Sequential code reduction: the basic idea

Essentially what we have done in the circuit of

Figure 2 is to use only the upper branch of the combination

majority logic decoding tree of the decoder in Figure 1

by inserting a one-word delay between the two levels of

majority logic. This concept is illustrated more generally

in Figure 3. The trick is to use the cyclic property of

the code at each level, not just the last. In general,

this allows us to reduce the combinational complexity of

the decoder from an exponential function of the number

of levels to a linear function, at the cost of a linear

increase in buffer storage and decoding time (or delay

if additional buffering is used).

The term "sequential code reduction" comes from the

fact that we have a different decoding problem for a

different code at each stage of the reduction process.

Thus, once we obtain 5 4 ,54 ',54 ", etc. (Figure 2),

we have a new decoding problem: single-error-correction

for the triple-error-correcting (7,1) code. This is

because the new parity checks 5 4 ,54 ', etc., obtained by

a nonlinear process, correspond not to words in the dual

of the original (7,4) code, but to words in the dual of

the (7,1) code. It is important to note that once the

new parity checks have been found, we are not tied



(a) Combinational decoding tree

(b) Sequential code reduction

Figure 3. Sequential Code Reduction: Basic Idea

12
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in any way to the decoding method used at the previous

stage. In fact, error-trap decoding at the second stage

of sequential code reduction of the (7,4) code is

probably a better choice than majority logic decoding.

And we could have used some other decoding method at

the first stage as well. This means that sequential

code reduction algorithms take a variety of forms because

of the wide choice of decoding schemes at each stage of

the decoding process. The choice depends on the subcode

being decoded at that stage and on design considerations

imposed by the intended application.
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SECTION 3

APPLICATION TO FINITE-GEOMETRY CODES

We now consider the application of sequential code

reduction to binary cyclic Euclidean-geometry(l,2) and

projective-geometry(l,3,4,5,6) codes. In this section,

we will only allow sequential code reduction algorithms

of the following restricted form: a majority logic

decoder with 2t orthogonal parity checks and one majority

gate at each stage of the decoding process. The resulting

algorithms are probably not optimal with respect to

implementation complexity, but they are so simple that

it is questionable whether further optimization would be

worth the effort. More important for our present purposes,

the use of a standard decoding algorithm allows us to

make general statements about classes of codes. The class

of finite-geometry codes is particularly suitable from

this standpoint because a great deal is known about the

application of L-step orthogonalization(7,8) to these codes

and it is possible at least in all cases that we have

investigated -- to convert a conventional L-step majority

decoding circuit to an L-stage sequential code reduction

circuit of the restricted type specified above. The

example in the previous section was an instance of such a
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conversion. We remark here that L-step orthogonalization

does not always decode a finite-geometry code up to its

true minimum distance, and this will be true of the

corresponding restricted sequential code reduction

algorithms. Since one of our purposes here is to compare

the relative complexities of L-step orthogonalization

and sequential code reduction, we will consider decoding

only up to dML , the minimum distance guaranteed by

L-step orthogonalization.

3.1 Euclidean-geometry codes

The points of EG(m,2 s ), the m-dimensional Euclidean

geometry over GF(2 s ), can be taken to be the elements of

GF(2ms ). A k-flat in EG(rn,2 s ) is the set of points

e l ek ros
where a , •.. ,a are a fixed set of k elements of GF(2 )

that are linearly independent over GF(2 s ) and SI, ... ,Sk

range over all possible values in GF(2 s ). The (r,s)th-order

binary Euclidean-geometry (EG) code of length n = 2ms - 1

is the largest cyclic code whose dual code contains the

polynomials corresponding to all r+l-flats in EG(m,2 s ) that

do not pass through the origin. In what follows, the

term "flatU will be used to denote both the point set and

the associated polynomial.
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Let a be a primitive element of GF(2ms ) and h(x)

the parity check polynomial of the (r,s)th-order EG code.

Then at is a root of h(x) if l~ (t) < r,
s -

where the s-weight of t (denoted Ws(t» is the largest

number of multiples of 25 -1 whose radix 2 expansions are

disjoint and covered by the radix 2 expansion of t. (9)

(E.g., for s = 2, m = 3, the 2-weight of t = 7 = 000111

is W2 (7) = 1 and the 2-weight of t = 15 = 001111 is

W2 (15) = 2). For s = 1, s-weight reduces to the usual

definition of Hamming weight. A combinatorial expression

for the degree of h(x), and hence the dimension of the

th . (10)(r,s) -order EG code, has been obta~ned by Hamada

and Lin(ll).

The minimum distance guaranteed by L-step orthogonal­

ization for the (r,s)th-order EG code of length n = 2ms - 1

is

2(m-r)s - 1
d =

ML 2 5 _ 1

Chen(l2) has shown that

steps are sufficient to orthogonalize this code, where fxl

denotes the least integer greater than or equal to x, and

that this is the minimum number of steps possible. We

next consider necessary and sufficient conditions for the

conversion of the L-step conventional majority decoding

algorithm to a restricted L-stage sequential code reduction

algorithm.



17

The generator of a cyclic code of length n is usually

taken to be the code polynomial of least degree that

divides all other code polvnomials modulo xn - 1. For

purposes of the present discussion, it is convenient to

generalize this somewhat and say that any code polynomial

that divides all code polynomials modulo xn - 1 is a

generator of the code. A necessary and sufficient

condition for the existence of an L-stage restricted

sequential code reduction algorithm is that at each stage

of majority decoding there exist a flat that divides

each member of a set of 2t flats orthogonal on a flat of

lower dimension at the next stage. A sufficient but

not necessary condition is that there exist a flat which

is a generator of the subcode containing all flats at

that stage. Suppose f(x) is a flat in the subcode

generated bv hex). Then f(x) is a generator of the subcode

if and only if GCD(f(x}, xn - 1)= h(x). We will call

such a flat a IIgenerator flat".

Suppose at a given stage in the decoding of an

th . th(r,s) -order EG code, we are decod1ng a (k,s) -order

EG subcode. A k+l-flat f(x) in the dual of the subcode

is a generator of the dual if and only if the roots of

f(x) are exactly those at for which W (t) < k. It hass

been verified by computer that there exists a generator

k-flat in EG(rn,2 s ) for all ros < 11 and k = l, ..• ,m. Thus,

thall (r,s) -order EG codes of length n < 2047 can be decoded
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by an L-stage sequential code reduction algorithm of the

restricted type considered in this section. A comparison

of complexity and decoding time for conventional L-step

majority decoding and L-stage sequential code reduction

for some representative EG codes is given in Table I.

Table I. Decoding Complexity for Some EG Codes

Although we conjecture that the set of k-flats in

EG(m,2 s ) contains a generator flat for all k,m and s, we

have not been able to show this. However, it will be

shown that all cyclic Reed-Muller (RM) codes can be decoded

by a restricted sequential code reduction algorithm,

although possibly not in the minimum number of stages

given by Chen.

It is well known that the rth-order cyclic RM code(7,13,14)

(the (r,l)th-order EG code) is r+l-step orthogonalizable.

In this case, r+l-flats are used to obtain r-flats, r-flats

to obtain r-l-flats, etc., until the O-flat corresponding

to eO is obtained. We now prove the following theorem.
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Theorem: The r+l-step conventional majority decoding

algorithm for the rth-order cyclic RM code can be converted

to an r+l-stage restricted sequential code reduction algorithm.

The proof of this theorem requires the following lemmas.

Lemma 1: Let f and g be the k-flats

f: a j eO
+ SI C1

e 1 + .•• + Sra
e k S.£GF(2)= ex

1.

a j
alex

e l + ••• + Bra
e k S.£GF(2)g: =

1.

in EG(m,2). Then f(a t ) t for all t such that= g(cx )

WI(t) = k.

(Proof) Let h be the k+l-flat

· eO e 1 e kh: a J = BOa + 8l a + ••• + 8ka , 8i E GF(2)

in EG(m r 2). Then heat) = 0 for all t such that WI(t) ~ k

and in particular for W1(t) = k. But since BO can take

only the values 0 and 1, hex) = f(x) + g(x) and 0 =

heat) = feat) + g(at ) from which we see that feat) = g(at ).

Q.E.D.

f:

in EG(m,2) where e i = eO+i for i = l, .•• ,k. Then feat) ~

o for all t such that W1 (t) = k.

(Proof)
eo e kFirst note that since the points a , ... ,a

are necessarily linearly independent over GF(2), f does

not pass through the origin. By lemma 1, we know that
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g: a·e:GF (2) •
1.

So it suffices to show that g(a
t

) ~ 0 for all t such that

Wl(t) = k. If W1(t) = k, the radix 2 expansion of twill

be of the form

+.•• +

Then, since the characteristic of the field is two and

8.
2 ) ta· = a., g(a ) can be written as

1 1

t
g(o. ) =

= L
!3.EGF(2)

].

e.
r e 2 Jn (Sla I + ••• +

j=l

Each term in this expression is one of the possible products

of k elements from the k x k array
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•

where one element is chosen from each of the k rows,

and the sum is taken over all possible values of Bl , •• ,8k •

Now note that any product which includes two or more

elements from the same column of the array will occur

an even number of times in the summation and will

therefore not contribute to the sum. This is because if

two elements are chosen from the same COlU~l, then there

· t" 1 t"· th f h· h 1~s some 0 ner co umn, say ne J , rom W 1C no e ement

was selected and two identical terms will result from

the summation over 6 .•
J
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Clearly the only products that contribute to the sum are

those for which one element is selected from each row and

column of the array and 8. = 1 for i = l, ... ,k. The sum
1

of these terms is just the determinant of the matrix

r- eI e
e1 2 e 2 1

2ex ex

82 82e1 2 e 22
ex ex

K =

Hence g(ext ) = det(K).

. e
k'

ex
ek2 J

11.
2 J

Now let X. = ex
J

Then

e l e 2 e k
Xl Xl . . . Xl

t det e l e 2 e kg(ex ) = X2 X2 . . . X2

= det
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which is a van der Monde determinant. To show that

t
~ 0, it is necessarv to verify that XI ~ XI9(a )

1 J

for i ~ j . But if XI = XI then
1. J

el e,
61 6. 81

2 l. 2 J -
2 ] (2 J. J 1) 0 (mod 2m-l)a = ex or - -

61 - 81
so that 2 ~ J = 1 (mod 2m-I) which is possible

only if e. = e. since t < 2m - 1. Thus g(a
t

) = f(a
t

) ~ 0
]. J

for W1(t) = k.

Q.E.D.

(Proof of the theorem) By lemma 2, we can always find

a k-flat f in EG(m,2), not passing through the origin,

such that f(a
t

) ~ 0 for all t such that W1 (t) = k.

We know that it is always possible to find 2t k+l-flats

f 1 , ••• ,f2t that are orthogonal on f. If f has no roots

at for which W
1

(t) > k, then f is a generator flat.
t l t

So u all the roots of f(x)assume that a , ••• , CJ. are

for which W1(t i ) > k, i = l, .•. ,u. Since f 1 , ••. ,f2t

are orthogonal on f, f 1 +c, •.. ,f2t+c are orthogonal on

f+c for any code word c in the dual of the kth-order

RM code. Of course f+c is not in general a flat in the

dual of the (k-l)st-order RM code, but if it is a

generator of the dual then all k-flats can be obtained

from f+c, which serves the same purpose. Thus we will

have proven the theorem if we can show that it is always

possible to find a code word c in the dual of the kth-order

st
RM code such that f+c is a generator of the (k-l) -order

code. Every word in the dual of the kth-order RM code
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has at as a root if Wl(t) < k+l. So we choose c to be

a word in the dual of the kth-order RM code which also

vhas as roots all ~ such that Wl(v) > k+l and v ~ t i

for i = l, ... ,ll. Then the onlv roots f and c have in

common ,are the at for which Wl(t) < k. But since

every nonzero element of GF(2m) is a root of either f

or 0, this means that the roots of f+c are just those

at for which Wl(t) < k. Hence, f+c is a generator of the

dual of the (k-l)st-order RM code and this argument holds

for each stage of the decoding process from k = r to

k = O.

Q.E.D.

This result can be improved using Chen's result on

the minimum number of steps required to orthogonalize

an (r,s)th-order EG code. He showed that whenever

k ~ rand k ~~, it is always possible to find 2t k-flats

orthogonal on a O-flat. Since all O-flats are generators,

the reduction from the (k-l)st-order RM code to (2m - 1, 0)

code (technically the -1st-order RM code) can be accomplished

in one stage of sequential code reduction. This leads

immediately to the following upper bound on the number of

stages of sequential code reduction actually required.

oroll ry Every r -order RM code can be dec using

a restricted sequential code reduction algorithm of at

most r - v + 2 stages, where v = min(r'l~J)and LXJ denotes

the integer part of x.
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We now give an example to illustrate the implementation

of restricted sequential code reduction for EG codes.

Example: nd mThe 2 -order RM code of length 2 - 1 = 31 is

a triple-error correcting (31,16) BCH code that can be

orthogonalized in two steps. Using conventional majority

logic decoding (IS) , the decoder requires one buffer, 7

majority gates and 36 parity checks. The corresponding

sequential code reduction circuit requires 2 buffers,

2 majority gates and 12 parity checks, and the decoding time

is twice that for the conventional decoder.

We know that the dual of the 2nd-order RM code

contains all 3-flats that do not pass through the origin,

and that we can find 2t = 6 3-flat orthogonal on a 2-flat.

In particular, the six 3-flats

fl(x) = I + x + x4 + x8 + xl2 + x l3 + xIS + x17

f 2 (x) = I + x 2 + x 4 + x 9 + x l2 + xIS + x 22 + x 27

f
3

(x) 1 + x 3 + x 4 + xlI + x 12 + xIS + x 2S + x 28=

f 4 (x) 1 + x 4 + xI2 + xl4 + x15 + x
I8 + x 20 + x 30=

fS(x) 1 + x 4 + xS + x6 + x
12 + x12 + xIS + 16= x

f
6

(x) 1 + x4 + x12 + xIS + x 19 + x21 + x 26 29= + x

are orthogonal on the 2-f1at f 1 ' (x) 1 + x4 + x12 + x15=
and the six 2-flats
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£1' (x) 1 + x4
+ x12

+ x15=

£2 ' (x) 1 + x 8
+ x24 + x

30=

£3' (x) = 1 + x 16 + x l7 + x 29

f 4 '(x) = I + x 7 + xIS + x 28

£5' (x) = 1 + x 20 + x 21 + X
22

£6' (x) = 1 + x 9 + xlI + 13x

are orthogonal on the O-flat f"(x) = 1. Since deg

GCD(f1 ' (x), x 31 - 1) = 6, fl'(x) has only six roots

from among the 31st roots of unity. But there are exactly

six values of t in the range 0 < t < 31 for which

W1(t) ~ 1. Then f l ' (x) must be a generator of the dual

of the 1st-order RM (31,6) code. Hence the 2-flats

f 1 ' (x), ... ,f6 ' (x) can be expressed as multiples of f l ' (x)

modulo x
3l

- 1. In particular, fi(x) = ai(x)fl'(x)

(mod x 31 - 1) where

a1(x) = 1

a
2

(x) = 1+x4+x12+x15

a
3

(x) = 1+x+x2+x4+x6+xlO+x12+x13+x15+x17+x18+x24

a
4

(x) = 1+x3+x4+x8+x16+x19

as(x) = 1+x+x2+x3+x4+x5+x6+x9+xlO+x12+x16+x19+x20+x2l+x23+x24

a
6

(x) = 1+x+x2+x3+x5+x6+x7+x8+xlO+x16+x19+x20+x21+x24

The resulting sequential code reduction circuit is shown in

Figure 4.
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Figure 4. Sequential Code Reduction Circuit for the (31,16) Code.
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3.2 Projective-geometry codes

The points of PG(m,2 s ), the m-dimensional projective

s
geometry over GF(2 ), can be taken to be the cosets in

the mUltiplicative group of GF(2(m+1)s) with respect to

the contained multiplicative group of GF(2 s ). The coset
j1 j2 j2 s -1

{a ,a , ••• a } will be denoted by (a j ) where j =

min(jl,j2,···j2 s _1). Note that under this convention, the

( 0 1 n-l (m+l)cosets are ex.), (0. ), ••• , (0. ) where n = (2 S - D!
(2 s - 1).

A k-flat in PG(m,2 s ) is defined to be the set of all

points (cosets)

· eO e 1 e k s
(a) = (BOa + Bla + ••• + Bka ), Bi EGF(2 )

eO e 1 e kwhere a , a , ••• ,~ are a fixed set of k+l elements of

GF(2(m+l)s) that are linearly independent over GF(2 s )

and BO,81 , ..• ,8k range over all possible values in GF(2 s )

except that not all a can be simultaneously zero. With

each flat we associate in the natural way a polynomial

(rn+1)s sof degree less than n = (2 -1)/(2 -1). In what

follows, the term "flat" will be used to denote both the

point set and the associated polynomial. thThe (r,s) -order

projective-geometry (PG) code of length n = (2(m+1)s_1)/

(2 5 -1) is the largest cyclic code whose dual code contains

all r-flats in PG(m,2 s ).

Let a be a primitive element of GF(2(m+l)s) and hex)

the parity check polynomial of the (r,s)th-order PG code.
s

Then a t (2 -1), t ~ 0, is a root of hex) if Ws (t(2 s -I» < r.

A combinatorial expression for the degree of h(x), and hence

the dimension of the (r,s)th-order PG
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code, has been obtained by Hamada (lO) and Lin (11) •

~or the (r,s)th-order PG code, the minimum distance

guaranteed bV L-step orthogonalization is

2s (m-r+l) - 1
dML = s + 1.

2 - 1

Chen(12) has shown that the (r,s)th order PG code of

length n = (2(m+l)s - 1)/(2s - 1) can be orthogonalized in

~

L = 1 + I 10g2
t

steps. By an argument analogous to that used for EG codes,

it can be shown that a sufficient condition for the conversion

of the conventional L-step majority decoding algorithm to

the corresponding restricted sequential code reduction

algorithm is the existence of generator flats in PG(m,2 s ).

It has been verified by computer that there exists a k-flat

that is a generator flat in PG(m,2 s ) for all (m + 1)5 ~ 12

and k = l, ... ,m. Thus, all PG codes of length n < 5461 can

be decoded by a restricted L-stage sequential code reduction

algorithm. A comparison of complexity and decoding time for

conventional L-step majority decoding and L-stage sequential

code reduction is given in Table II for some representative

PG codes.
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Table II. Decoding Complexity for Some PG Codes.
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SECTION 4

TWO DECODING OPTIONS FOR THE GOLAY CODE

In this section, we present two implementation

options for sequential code reduction of the (23,12)

Golay triple-error-correcting code. This code is

not L-step orthogonalizable, so a sequential code

reduction algorithm of the restricted type considered

in the previous section is not applicable. Since the

Golay code has only two cyclic subcodes, the (23,1)

and (23,0) codes, the decoder will have at most two

stages.

The decoder shown in -Figure 5(a} consists of a

majority decoder with 56 nonorthogonal parity checks

and one majority gate at the first stage, and a

majority decoder with 6 orthogonal parity checks and

one majority gate at the second stage.

The decoder shown in Figure 5(b) has the same first

stage as the decoder in Figure 5(a), but utilizes an

error-trap decoder at the second stage. This configura­

tion, a slight variation of a decoder devised by

Sc~andt(16), decodes in ti~ T rather than 2T. This

is possible because the decoder need only decode the
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k = 12 information bits and because the ll-error­

correcting (23,1) code is only required to correct

triple errors. (This configuration requires that

the check bits of a code word be transmitted before the

information bits.)
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Figure 5. Two Sequential Code Reduction Circuits for the
Golay Code
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SECTION 5

DISCUSSION

We have shown that sequential code reduction is

applicable to a number of cyclic codes and that significant

reductions in decoder complexity can be obtained at the

cost of a modest increase in decoding time. In particular,

we have shown that all finite-geometry codes of length

n ~ 2047 can be decoded by a restricted L-stage sequential

code reduction algorithm using 2t orthogonal parity checks

and one majority gate at each stage. We conjecture that

any L-step orthogonalizable code can be decoded up to

d
ML

by a restricted algorithm of this form. If our

conjecture proves out, then it becomes possible to consider

the use of very long L-step orthogonalizable codes, on the

order of 104 or even 105 bits in length, in practical

error-control systems. Very long codes are important in

practice because channels with memory require long codes

and most real channels are of this type. It might be

argued that very long L-step orthogonalizable codes are

inferior to, say, very long BCH codes, but from a

practical point of view this is irrelevant because it is

not economically feasible to decode very long BCH codes.

The only long codes used in practice are those constructed

from short codes by interleaving, concatenation, etc.
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These codes are also inferior to efficient cyclic codes

of the same length and the overall decoding process is

often complex. Sequential code reduction may make very

long L-step orthogonalizable codes, and perhaps other

cyclic codes as well, competitive with coding systems

based on interleaving and concatenation. We might note

here that majority sequential code reduction looks

particularly promising because of its inherent capability

to correct many error patterns of weight greater than t.

The longer the code, the more significant this extra

capacity becomes.



ADDENDUM

While this paper was in preparation, some

related work by researchers in the U.S.S.R. (17,18)

was brought to our attention (19) . To our knowledge,

their results have not yet been published in English.

36
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