Syracuse University

SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1998

A Global Communication Optimization Technique Based on Data-
Flow Analysis and Linear Algebra

Mahmut Kandemir
Syracuse University

P. Banerjee
Northwestern University

Alok Choudhary
Northwestern University

J. Ramanujam
Louisiana State University

Follow this and additional works at: https://surface.syr.edu/eecs

0 Part of the Computer Sciences Commons

Recommended Citation

Kandemir, Mahmut; Banerjee, P,; Choudhary, Alok; and Ramanujam, J., "A Global Communication
Optimization Technique Based on Data-Flow Analysis and Linear Algebra" (1998). Electrical Engineering
and Computer Science. 24.

https://surface.syr.edu/eecs/24

This Working Paper is brought to you for free and open access by the College of Engineering and Computer
Science at SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an
authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/24?utm_source=surface.syr.edu%2Feecs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

A Global Communication Optimization Technique Based on

Data-Flow Analysis and Linear Algebra

M. KANDEMIR* P.BANERJEE A.CHOUDHARY! J. RAMANUJAM! N.SHENOY'

Abstract

Reducing communication overhead is extremely importaristributed-memory message-passing archi-
tectures. In this paper, we present a technique to improveramication that considers data access patterns
of the entire program. Our approach is based on a combinafitraditional data-flow analysis and a lin-
ear algebra framework, and works on structured programb wegnditional statements and nested loops
but without arbitrary goto statements. The distinctivetdeas of the solution are the accuracy in keep-
ing communication set information, support for generajrathents and distributions including block-cyclic
distributions and the ability to simulate some of the presi@pproaches with suitable modifications. We
also show how optimizations such as message vectorizatiessage coalescing and redundancy elimina-
tion are supported by our framework. Experimental results@veral benchmarks show that our technique
is effective in reducing the number of messages (an averbge% reduction), the volume of the data

communicated (an average 3% reduction), and the execution time (an averag26dt reduction).

Keywords: communication optimizations, message vectorizationtridiged memory machines, paral-

lelism, data-flow analysis, global optimizations.

*Dept. Electrical Engineering and Computer Science, Syatiniversity, Syracuse, NY 13244. (mtk@ece.nwu.edu)
fDept. Electrical and Computer Engineering, Northwesteniversity, Evanston, IL 60208. (banerjee@ece.nwu.edu)
tDept. Electrical and Computer Engineering, Northwesteniversity, Evanston, IL 60208. (choudhar@ece.nwu.edu)
$Dept. Electrical and Computer Engineering, LouisianaeSthiiversity, Baton Rouge, LA 70803. (jxr@ee.Isu.edu)
TDept. Electrical and Computer Engineering, Northwesteniversity, Evanston, IL 60208. (nagaraj@ece.nwu.edu)

1 Introduction

Distributed memory multiprocessors such as the IBM SP-2thedntel Paragon are attractive for high
performance computing in that they offer potentially higlls of flexibility, scalability and performance.
But the need for explicit message passing resulting frontable of a globally shared address space renders
programming these machines a difficult task. The main obdtehind the efforts such as High Perfor-
mance Fortran (HPF) [39] and Fortran D [30] is to raise thell@f programming by allowing the user
to write programs with a shared address space view augmevitiedlirectives that specify data mapping.
The compilers for such languages are responsible for juauitiig the computation, inserting the necessary
commands that implement the required message passingdessto non-local data.

On such machines, the time (cost) to access non-local dasadly orders of magnitude higher than ac-
cessing local data. For example, on the Intel Paragon tleegsor cycle time i80 nanoseconds whereas the
remote memory access time is betw@én000 and30, 000 nanoseconds depending on the distance between
communicating processors [29]. Therefore, it is impertivat the frequency and volume of non-local ac-
cesses are reduced as much as possible. In particular, Bageepassing programs, the startup cost for the
messages can easily dominate the execution time. For egamplthe Intel Paragon the message startup
time is approximatelyi, 720 times the transfer time per word; in the IBM SFhis figure is around60
[16]. These figures indicate that optimizing communicat®wery important. Several software efforts have
been aimed at reducing the communication overhead. The gaaihof these optimizations is to increase
the performance of programs by combining messages in v&avi@ys to reduce the overall communication
overhead. The most common optimization technique usedduqurs researchers is message vectorization
[51, 8, 30, 11, 10]. In message vectorization, instead afahainsertingsendandrecvoperations just before
references to non-local data, communication is hoistediterdoops. Essentially this optimization replaces
many small messages with one large message, thereby rgdbheinumber of messages. For example, con-
sider the program fragment shown in Figure 1(a) and assuat@lirarrays are distributed across processors
block-wise in the second dimension. Figures 1(b) and (civshaively inserted messages and message vec-

torization respectively, for a processpibefore loop bounds reduction (a technique to allow progesso

execute only those iterations which have assignments ttt 1o local memory [30]) and guard insertion
(a technique that guarantees correct execution of statsmétfin loop nests). The notaticgend{B,q,n}
means that elements of arrag should be sent to processsirrecv{B,q,n} is defined similarly. For this
discussion, we are not concerned with exactly which elemare sent and received. Notice that the ver-
sion in Figure 1(c) reduces the message startup cost as svifledatency. Some of the researchers [30, 2]
also considered message coalescing which is a techniquedhdines messages due to different refer-
ences to the same array, and message aggregation whichnemmbessages due to references to different
arrays to the same destination processor into a single gessageneral, due to private physical memory
spaces, generating communication code for message-gassinitectures might be very difficult, because
it requires the correct non-local elements to get transteto the memories of the processors that will use
them. Optimizing compilers for data-parallel language®anate this time consuming task of deriving node
programs based on the data distribution specified by theanuger.

The main problem with the optimizations mentioned abovéas they optimize communication for a
single nest at a time. This restriction prevents a compilemfperforming inter-loop optimizations such
as global elimination of redundant communication. To ség ttonsider Figure 1(d) which shows the
global optimization of the same program fragment via elation of redundant communication. Notice
that, compared with the message-vectorized program inr&igy(c), this version reduces both the number
of messages and the communication volume.

Recently a number of authors have proposed techniques basgata-flow analysis to optimize com-
munication across multiple loop nests [18, 22, 35, 13, 49, Mbst of these approaches use a variant of
Regular Section Descriptors (RSD) introduced by Callahahiennedy [12]. Two most notable represen-
tations are Available Section Descriptor (ASD) [22] andt&erCommunication Descriptor (SCD) [49, 50].
Associated with each array that is referenced in the progsam RSD that describes the portion of the array
being referenced. Although this representation is comrgrior simple array sections such as those found in
pure block or cyclic distributions, it is hard to embed atigent and general distribution information into it.

Apart from inadequate support for block-cyclic distritmris, working with section descriptors may some-

DO j = 2, 255 DO j = 2, 255

DO ¢ = 1, 255 DO ¢ = 1, 255
A(i,j)=B(i,j)+B(i,j-1) send {B,p+1,1}, recv {B,p-1,1}
END DO A(i,7)=B(i,7)+B(i,j-1)
END DO END DO
END DO
DO j = 2, 255 DO j = 2, 255
DO ¢ = 2, 256 DO ¢ = 2, 256
C(i,7)=B(i,5-1)+C(i,7) send {B,p+1,1}, recv {B,p-1,1}
END DO C(i,7)=B(i,j-1)+C(7,7)
END DO END DO
END DO
(a) (b)
send {B,p+1,255}, recv {B,p-1,255} send {B,p+1,256}, recv {B,p-1,256}
DO j = 2, 255 DO j = 2, 255
DO ¢ = 1, 255 DO ¢ = 1, 255
A(2,5)=B(,7)+B(i,j-1) A(e,5)=B(,5)+B(i,j-1)
END DO END DO
END DO END DO

send {B,p+1,255}, recv {B,p-1,255}

DO j = 2, 255 DO j = 2, 255
DO ¢ = 2, 256 DO ¢ = 2, 256
C(i,5)=B(i,j-1)+C(i,j) C(i,7)=B(i,j-1)+C(i,j)
END DO END DO
END DO END DO
(c) (d)

Figure 1: (a) A code fragment. (b) Naive communication ptaest. (c) Message vectorization. (d) Global
communication optimization.

times result in overestimation of the communication set&esregular sections are not closed under union
and difference operators. The resulting inaccuracy maynieatt with the number of data-flow formulations
to be evaluated, thus defeating the purpose of global corwation optimization.

This problem can be illustrated using the program fragmemtgin Figure 2(a) assuming that arrays
andy are distributed block-wise across two processom@nd1. The RSDs corresponding to these two com-
munications are also shown next to the loop statementscétitat all communication is from processor
to processot. The problem here is that a data-flow approach based on RS&stbine these communi-
cations will be unable to represent the combined communpitas an RSD. This means that even if all the
communication can be hoisted above tha&op, the two communications can only be concatenatedtiegul

in redundant communication as these two sets have some comlements. Moreover, since the commu-

real X(1000), Y(1000) for (i =1; 1 <= 49; i +=4) {
process_element (i) ;

pot=1,T }
DO ¢z = 0, 49 -=--=-=-==-—-—- > S; = (1:200:4) for (i = 50; i <= 197; i++) {
Y(i+500) = X(4x%i+1) if (Mod(i-1,4) == 0) {
END DO process_element(i);
}
DO j = 17, 99 ——-———=——=-—- > S; = (50:300:3) if (Mod(i+1,3) == 0
Y(j+500) = X(3xj-1) %& -i-16 <= 12%Div(-i-10,12)) {
END DO process_element(i);
}
DO ¢ = 1, 1000 }
X(2) = £(Y(),X(2)) for (i = 200; i <= 299; i += 3) {
END DO process_element (i) ;
END DO }
(a) (b)

Figure 2: (a) An example code fragment that shows the shoitags of RSDs. (b) Code generated by using
the Omega to enumerate the communication set inpf@cess_element () is an implementation specific
function to handle enumerated elements.

nication cannot be taken out bfoop because of a data dependence [52, 48], the redundantwaication
will occur T times.

On the other hand, we represent these sets in our framewdtk:as{[d] : 3(a: d =1 + 4o andl <
d < 197)} andS; := {[d] : (o : 1 +d = 3acand50 < d < 299)}. Then by using the Omega library
[31], we derive the code shown in Figure 2(b) which can enareeall the elements ifi; + .S;. As a result,
each element will be communicated once and only once. ltldHmistressed that the same problem with
RSDs can occur with set difference) operations. For instance, the RSD difference betw@er1000:3)
and (1:1000:7) cannot be represented as a single RSD. Unfortunately, #ueunacies originating from
the union (and difference) operations on the RSDs accumalsthe data-flow process proceeds, making
the final communication sets imprecise.

In this paper, we make the following contributions:

(1) We show that the problem global communication optimization faregular scientific codes can be
cast in a linear algebra framework. This allows the compibeeasily apply traditional loop-based
optimization techniques such as message vectorizatiossage coalescing, message aggregation
as well as global optimizations such as redundant commtimicalimination and communication

hoisting.

(2) We present two different approaches, primarily for lingg communication and minimizing the num-
ber of messages, respectively, that are aimed at reducinghcmication overhead and show the trade-
off between these two. Both these approaches are accusig; the linear algebra framework pro-
posed by Ancourt et al. [7], they are able to handle the ogtition problem at the granularity of

individual array elements.

(3) We show that the global communication sets resultingnfoair analysis can be enumerated by our use
of the Omega library [42, 31] from the University of Marylanglithough the Omega library works on
the Presburger formulas and the best known asymptotic upperd of any algorithm for verifying
the Presburger formulas @(222"), the library is much more efficient for the practical cases trise

in compilation.

(4) We compare our approach both qualitively and quantitite the previous work which focused on a

single loop nest at a time.

The remainder of this paper is organized as follows. SeQidniefly describes some important con-
cepts such as control flow graphs, interval analysis, degpaelanalysis and the linear algebra framework
used throughout the paper. We present our approach in detdéction 3 and show how it uses both the
linear algebra framework and data-flow analysis. Sectioisdudses the effect of hoisting communication
vis-a-vis reducing the number of messages. In Section 5,ragept details of communication generation.
Section 6 reports experimental results om6anode IBM SP-2 distributed-memory message-passing ma-
chine and shows that our technique is effective in reducingber of communication messages, volume of

communication and execution time. Section 7 discussetetbl@ork and Section 8 concludes the paper.

2 Preliminaries

The main idea of this work is to show that a global communicatptimization problem can be put into
a linear algebra framework and that doing so might be usafplactice. Our approach gives the compiler

the ability to represent communication sets globally asabties and inequalities as well as to use poly-

hedron scanning techniques to perform optimizations secredundant communication elimination and
global message coalescing which were not possible unddoabenest based communication optimization

schemes. The following subsections give information alfoeibasic concepts used throughout the paper.

2.1 Control Flow Graph (CFG)

We concentrate on structured programs with conditiondéstants and nested loops but without arbitrary
goto statements. Our technique, however, can be extenddeatovith jumps out of loops as well. We
assume that array subscript functions, loop bounds anditoamal expressions are affine functions of en-
closing loop indices and symbolic constants. We also asghatethe number of processors is known
beforehand.

A basic blockis a sequence of consecutive statements in which the flonndfal@nters at the beginning
and leaves at the end without the possibility of branchirgepkmay be at the end [4]. @ontrol flow graph
(CFG) is a directed graph constructed by basic blocks angsepts the flow-of-control information of the
program.

For our purposes, the CFG can be thought of as a directed gfaph (V,) where eachw € V
represents either a basic block or a (reduced) interval riqaesents a loop, and eaehe &£ represents
an edge between blocks. In this paper, depending on thextpmte use the ternrmodeinterchangeably
for a statement, a block or an interval. Two unique noglemd¢ denote the start and terminal nodes,
respectively, of a CFG. One might think of these nodes as dustatements. It is assumed that every
noden € V lies on a path frons to £. We define the sets of all successors and predecessors oka nod
n assucc(n) = {m | (n,m) € £} andpred(n) = {m | (m,n) € £}, respectively. We say node
dominatesiode;j in the CFG, if every path from to j goes through. We write this relation ag € dom(i).
The CFGs we consider have the following properties in aolditi(a) emptyelsebranches are added to
if/fendif constructs; (b) all the non-local references in lib@p boundsandif-conditionsare taken just above
the respective constructs; and (c) like [22], any edge tbasdlirectly from a block with more than one

successor, to a block with more than one predecessor is $piig last transformation, shown in Figure 3,

Figure 3: An example application of the edge-split transfation to eliminate critical edges-the edges going
from a node with more than one successor to a node with moneathe predecessor.

eliminates all critical edges [38].

2.2 Interval Analysis

We assume that prior to our analysis, the compiler has peddrall loop level transformations [9, 48, 52] to
enhance parallelism (e.g., loop permutation, loop distidn) and optimize communication. Our technique
is based orninterval analysisperformed on the CFG. As explained in [5], the interval as&lyconsists of
a contraction phase and aexpansionphase. For programs written in a structured language, @mvat
corresponds to a loop, and there is a well defined algorithpattition a CFG into disjoint intervals [4]. We
use a version of the interval detection algorithm that iiest Tarjan’s intervals [45].

The contraction phase collects information about what reegeted and what is killed inside each in-
terval. Then the interval is reduced to a single node andtate with the information collected. This is
a recursive procedure and stops when the reduced CFG com@aimore cycles. In other words, the main
purpose of this phase is to percolate the influence of each twthe outside into an increasingly more
global context.

After the contraction phase, the expansion phase is run.adh step of this phase, a node (reduced
interval) is expanded, and the information regarding théesain that interval is computed. In our case, at
each step of the expansion phase, communication requir¢dedntervals (loops) is determined.

Figure 4 shows the two phases of the interval analysis foxxamele CFG. In this figure, as shown by
the dashed arrows, the contraction phase proceeds frono léftht, whereas the expansion phase proceeds

in the reverse direction. As an example, the block markel 3vit represents an interval (a loop) containing

1,2,3/4

Contraction Phase
Expansion Phase

Figure 4: An example application of interval analysis basedarjan intervals. First, the contraction phase
is run and then the expansion phase is executed.

blocks3 and4. It is also possible to adapt our approach to work with ireflow graph, which is basically
a CFG with an interval structure imposed on it [27, 28, 37].
It should be noted that since we assume that our input prageaenstructured, irreducible (intermediate)

CFGs [4] can not occur during our analysis.

2.3 Data Dependence

Let S, andS, be two statements (not necessarily distinct) enclosed stedédoops. Adata dependenaee-
termines which iterations of the loops can be executed iallghr A flow dependencexists from statement

S, to statementS, if S, writes a value that is subsequently (in sequential execptiead bysS,. Such a
dependence implies that instancesSgfand .S, must execute as if some of the nest levels must be executed
sequentially. Aranti-dependencexists betweeis, andsS, if S, reads a value that is subsequently modified
by S,. An output dependencexists betweerd, andS, if S, writes a value that is subsequently written
by S, as well. Data dependences éwep-independenif the accesses to the same memory location occur
in the same loop iteration; if the accesses occur in diffel@op iterations they are said to bsop-carried

Note that in that case not all loop nest levels need to caritito the dependence. The outermost loop level
that contributes the dependence is saiddoy that dependence. In-depth discussion of data dependence

analysis techniques is beyond the scope of this paper andecBound elsewhere [48, 52].

2.4 Linear Algebra Framework

HPF-like languages provide compiler directives that allbw user to perform data allocation onto local
memories. The compiler then uses these distribution dwescto partition computation across processors.
It has been shown in [7] that linear algebra provides a pawédmework to generate code for distributed-
memory message-passing machines, taking into accountileormipectives.

Most of the compilers for distributed-memory message-ipgsmachines use thewvner-computeaule,
which simply assigns each computation to the processowothas the data being computed [30, 51, 8]. In
this paper, we also assume the owner-computes rule; ouefrank, however, can be modified to handle
the cases where this rule is relaxed. In such cases, the Lid@®mees can also introduce communication.
For clarity of the presentation, we do not consider relatimgowner-computes rule in this paper.

Our approach uses the affine framework introduced by Anceudl. [7]. In this framework, data
arrays, templates and processors are all declared as @argggds as in HPF [39]. The data arrays are
first aligned to templates and then these templates arebdisttl across the memories of the processors.
Consider the following program fragment under a compilasecheme based on HPF-like directives and the
owner-computes rule. &yclic(C) attribute indicates that the template (or array) dimengmoguestion
will be partitioned into blocks of siz€ and these are assigned to processors in a round-robin fashie

block andcyclic (1) are just two common cases for the genergtlic (C) distribution.

real X(a;:a,)
IHPF$ template T(#;:%,)
'HPF$ processors PROC(p;:py)
'HPF$ align X(j) with T(axj+[3)

'HPF$ distribute T(cyclic(C)) onto PROC

DO i = i, iy
X(’YL*Z""QL) = ... X(")’R*Z’"'QR)

END DO

10

Let R, =X(yr*i+01) andRzr = X(yg*i+0r). In the rest of the paper, for the sake of simplicity, we will
sometimes refer to the subscript expressions as data J@leypents when the intention is clear. Assuming

p andq denote two processors, we define the following sets.

Own(X,q) = {d|deXandisownedby}
Compute(X,Rz,q) = {i|~yL *i+ 6, € 0wn(X,q)andi; <i <i,}
View(X,Rr,q) = {d|Fest.s € Compute(X,R,q)andd =X(yg *xt+6z)andi; < <1i,}
CommSet (X,Rz,p,q) = O0Own(X,q)NView(X,Rg,p)-

Intuitively, the setiwn (X, q) refers to the elements mapped onto proceggtrough compiler directives.
The similarOwn sets are defined for other arrays as well. The set of iteratforbe executed by due

to a LHS referenceR ; is given byCompute (X,R.,q). Of course, during the execution of this local
iteration set, some elements (local or non-local) denoetthé® RHS referenc® ¢ will be required; the set
View(X,Rz,q) defines these elements. FinallymmSet (X,R%,p,q) defines the elements that should
be communicated from processpto processop due to referenc® .

It should be noted that in general there may be more than orieférence, and the computation may
involve multi-dimensional arrays and a multi-level nestwhich cased andi denote data and iteration
vectors respectively. Also in the most general case;, andyy are matrices, and, 6, andfy are vectors.

The definition of théwn set above is rather informal. For a more precise definitiamtale into account

the block-cyclic distribution and define tlden set as

Own(X,q) = {d|3t,c,lsuchthat =axd+pgandt =C*«Pxc+Cxq+1

andae; < d < a, andp; < q < p,andt; <t <t,and) <1< C -1},

whereP = p, — p; + 1. In this formulation,t = « * d + (§ represents alignment information amnd=
C xP x c + C x q + 1 denotes the distribution information. In other words, eapty element is mapped

onto a point in a local two-dimensional array. This point tenrepresented by a pait,{) and gives the

11

local address of the data item in a processor. Sirbpkeck and cyclic (1) distributions can easily be
handled within this framework by setting = 0 and1 = 0, respectively. As an example, Figure 5(a)
shows the global and local addresses of a one-dimensiorgl distributed in block-cyclic manner across
three processors with = 4. Figures 5(b) and (c), on the other hand, illustrate twostisional views of
the global and local addresses, respectively. For eaclegsoc the horizontal dimension corresponds to
coordinate whereas the vertical dimension denbteor example, thé5'" element of the (global) array is
mapped onto Processbmwith ¢ = 4 and1 = 3 as local coordinates.

The relationt = a * d + 8 can be generalized by adding a replication maktiwhich eliminates the
replicated dimension from the equationéx t = a* d+ (. In the case where no replication is specifigd,
is the identity matrix. Also, in order to take the collapsaghensions (the dimensions that are not distributed
across processors) into account, another projection xritdan be used) xt = C«Pxc + C * q + 1.
All the elements on a collapsed dimension are stored on tine gmocessor. Notice that these projection
matrices are only useful if we adhere to a matrix form for diédieg the relations. We do not need them
if the relations are described on a per dimension basis. drrdkt of the paper we assume that identity
alignment is used and arrays are directly distributed acppecessors. For an in-depth discussion of the

linear algebra framework for compiling distributed-mem@rograms, we refer the reader to Ancourt et al.

[71

2.5 Parafrase-2 and Omega Library

Parafrase-2 [41] is used as the front end in our compilatiaméwork. It is a parallelizing compiler imple-
mented as a source to source code restructurer that coobstseral passes for analysis, transformation,
parallelism detection and code generation. In order toiolike loops that enumerate the elements in the
ownership and communication sets, we use the Omega libBafy This library is essentially a set of C++
classes for manipulating integer tuple relations and ssfieed using Presburger formulas. We implemented
a framework that obtains data access information from Pasef2 internal structures and feeds them into

the Omega library; when all the required sets have beenrwatahe framework converts these sets back to

12

Processor 0

Processor 1

Processor 2

o 1t 22 3 4 5t e 7T 8" 9 100 11°
124 13° 145 157) 16 170 185 197 | 20* 215 226 237
245 259 260 27'' | 28% 297 30" 31" | 32° 330 340 35!
3612 373 38!t 391° | 40t 4113 42 4315 | 4412 4513 46 4710
48'649'7 50'® 519 || 52'6 537 54'8 55" || 56'6 57T 588 59!
6020 61% 622 63 || 6420 65% 662 67 | 68%° 69* 70%* 71?3
(a) Global and local addresses. Superscripts denote Iddadsses.
Processor 0 Processor 1 Processor 2
0,0 0,1 0,2 03[04 05 0,6 0,708 09 0,10 0,11
L0 1,1 1,2 1,3|1,4 1,5 1,6 1,7| 1,8 1,9 1,10 1,11
2,0 2,1 22 2324 25 26 27|28 29 210 211
3,0 3,1 3,2 33(34 35 36 37|38 39 3,10 3,11
4,0 4,1 4,2 43|44 45 4,6 4,7(4,8 49 410 4,11
50 5,1 52 53|54 55 56 57|58 59 510 511

(b) Two-dimensional view of global addresgesp = C + 1) for processop.

Processor O

Processor 1

Processor 2

0,0
1,0
2,0
3,0
4,0
5,0

0,1 0,2
1,1 1,2
2,1 2,2
3,2
4,2
5,2

)

)

(@2 B SN V]
— =

)

0,3
1.3
2,3
3,3
4,3
5,3

0,0
1,0
2,0
3,0
4,0
5,0

0
1
2

v s W

1
,1
1

,1
1
,1

0,2
1,2
2,2
3,2
4,2
5,2

0,3
1,3
2,3
3,3
4,3
5,3

0,0
1,0
2,0
3,0
4,0
5,0

0,2
1,2
2,2
3,2
4,2
5,2

0,3
1,3
2,3
3,3
4,3
5,3

Figure 5: Global and local addresses of the accessed elemkatone-dimensional array along with the
two-dimensional view for a three-processor case Witk- 4. Each array element has a unique location
(c,1) in a given processor. Non-local elements are accommodatedtbnding the local space along the

dimension.

(c) Two-dimensional view of local addresses 1) for processop.

13

internal Parafrase-2 structures.

3 Data-flow Analysis using a Linear Algebra Framework

In this section, we define our data-flow framework in detaikst: we introduce some important sets and

operations on them.

3.1 Definition of Sets and Operations

Communication Descriptors and Communication Sets A communication descriptazan be defined as
apair(R,S), whereR is an array identifier (name) ar&#lis thecommunication seissociated wittR. The
exact definition of a communication set depends on the coimevhich it is used. Throughout our analysis,
a communication set is defined{atg\ d is owned byg and is required by (or should be transferred to or has
already been transferred tp)} except for theKILL set, which defines the set of elements written (killed) by

g. In these set definitiong refers to a multi-dimensional array element.

Operations on Communication Sets Since we define a communication set as a list of equalities and
inequalities (this is how the Omega library represents ja B&an be represented &s= {J\ P(cf)} where
P(.) is a predicate. Lefd | P(d)} and{d | Q(d)} be two communication sets. We define the operations

+¢ —¢, @andn,. on communication sets as follows:

{d| P()} +.{d| Qd)} = {d|P(d)orQ(d)}

-

{d| P()} —{d| Qd)} = {d|P(d)andnoQ(d))}

{d|P(d)}n.{d]| Q(d)} {d'| P(d) andQ(d)}

Note that the operations ‘or’, ‘and’ and ‘not’ can be perfearby using the corresponding Omega opera-

tions on sets which contain equalities and inequalities.

Operations on Sets of Communication Descriptors LetD = (R, S) be acommunication descriptor. We

define two functions: a functio®/’ from communication descriptors space to array identifipee; and a

14

function M from communication descriptors space to communicatios ggdce such thaf (D) = R and

M(D) = S.
SupposeDS; andDS,, are two sets of communication descriptors. Three operstioamely+4, —q4,

andn,, are defined on these sets as follows:

DS1+4DS2 = {D|DeDS;andvD' € DS» N (D) # N (D)}
U{D | D € DS> andvD’ € DS:1 N (D) # N (D)}

U{D | 3D' € DS:1,D" € DS» st. N (D) = N(D') = N(D") andM (D) = M(D') +. M(D")}

DS1 —aDS> = {D|DeDSandvD' € DS, N (D) # N (D)}

U{D | 3D' € DS:1,D" € DS» st. N (D) = N(D') = N(D") andM (D) = M(D') — M(D")}

DS1Ng DS-

{D| 3D’ € DS1,D" € DS» st. N(D) = N(D') = N(D") andM(D) = M(D') Nn. M(D")}

When there is no ambiguity, we also usgandu, instead of+. and+,, respectively. It should be noted
that although these operations are similar to those giveadng et al. [18], there is an important difference.
Since we keep the communication sets accurately in termgualigies and inequalities, we can optimize
(e.g., coalesce) communication messages even if the nessdagnot have the same communication pattern
(e.g., broadcast, point-to-point) or identical sendegneer sets. Most of the previous approaches to global
communication optimization cannot optimize these kindsetsages mainly due to their representation of
communication sets.

It should be noted that our analysis works with sets of etjaaland inequalities. As compared with the
previous approaches based on RSDs, our technique may bersloworder to alleviate this problem, we
do not operate on the contents of the sets in every data-floatien to be evaluated; instead we represent
the sets with symbolic names and postpone the real comguitati them until the end of the analysis where
the communication code should be generated. For exampbposa that a data-flow equation requires
combining two set$, = {[z] : Q;(x)} andS, = {[y] : Q2(y)} whereQ; andQ, are predicates consisting

of equalities and inequalities. Instead of forming the{$et: Q:(z) V Qa(z)} immediately and using it in

15

subsequent computations, our approach represents thengset abstractly as, + S,. When the whole
process is finished, the resulting sets are re-written imgesf equalities and inequalities and ieplify
utility of the Omega library is used to simplify them. Our exjgnce shows that this approach requires a
manageably small symbolic expression manipulation su@at is fast in practice (see Section 6 for a cost

analysis of the compilation time). Next we present our data framework.

3.2 Local (Intra-Interval) Analysis

In order to make the data-flow analysis task easier, the CRBeoprogram is traversed prior to the local

analysis phase, and for each LHS reference a pointer igisitothe header of all enclosing loop nests. This
allows the compiler to reach a LHS reference inside a looplkdyiduring the data-flow analysis. The local

analysis part of our framework computiesLL, GEN andPOST_GEN sets for each interval. Then the interval

is reduced to a single node and annotated with this infoomati

i iy

Let R, (i) andRx(z) be the data elements obtained from refereri@gsand Rz, respectively, with
a specific iteration vector. The computation of th&ILL set proceeds in the forward direction; that is,
the nodes within the interval are traversed in topologicat erder. LetkILL(i,q) be the set of elements
written (killed) by processog in nodei, andModified(i,q) be the set of elements that may be killed

along any path from the beginning of the interval to nad@cluding nodei). Then,

KILL(i,q)

{J| d € Own(X,q) and3r, R, st.d = R, (?) andi; < 7'< z;} ,

Modified(i,q) = (U Modified(j,q))UKILL(i,q)

jepred(i)

assuming thallodified (pred (first(i)),q) =@ wherefirst (i) is the first node in.. If last (i) is

the last node i, then
KILL(i,q) = Modified(last(i),q).

This last equation is used to reduce an interval into a nod#ticél thati is used to denote a node in the

CFG whereas s used for an iteration vector. In order to see how the coatjnrt of theKILL set proceeds,

16

1 DO i = i, %u

2 X(1-2,4) = Y(@-1,i-1) + X(@,1)
3 D0 j = ji, ju

4 X(i,5) = Y(i-2,i+2)

5 IF (cond)

6 X(i-1,j+2) = Y(i-2,5-2)
7 Y(i,5) = ...

8 ELSE

9 X(i+1,7-3) = Y(i+3,5-3)
10 END IF

11 Z(i,j) = Y(i-4,7)

12 END DO

13 END DO

Figure 6: An example program fragment. In this fragmentetare two intervals corresponding to thand
7 loops, respectively.

consider Figure 6. In this example there are two intervatseesponding to the and: loops. We concentrate
only on the computation of tHeILL sets for arrayX (the computation of th&ILL sets of other arrays can
be performed in a similar manner). The analysis starts vhighfirst node of the innermost interval (the

loop), and proceeds as follows:

KILL(4,q)
Modified(4,q)
KILL(5,q)

Modified(5,q)

KILL(6, q)
Modified(6,q)
KILL(7,q)

Modified(7,q)

KILL(9,q)

Modified(9,q)

{d| d € own(X,q) and3s, j st.d = X(1, 7) andi; <1 < i, andj; < 7 < ju}.
KILL(4,q)

0

Modified(4,q) UKILL(5, q)

Modified(4,q)

{(ﬂ de Own(X, q) and3s, j st. d= X(r— 1,7+ 2)andi; <1 <i,andj; <y < ju}
Modified(5,q) UKILL(6,q)

0

Modified(6,q) UKILL(7,q)

Modified(6,q)

{d|d e own(X,q) and3, jst.d = X(1+ 1,7 — 3) andi; < < i, andj; < 7 < ju}.

Modified(5,q) UKILL(9, q)

17

KILL(10,q) = 0
Modified(10,q) = [Modified(7,q)U Modified(9,q)] UKILL(10,q)
= Modified(7,q)UModified(9,q)
KILL(11,q) = 0
Modified(11,q) = Modified(10,q)UKILL(11,q)
= Modified(10,q)
= [Modified(7,q)UModified(9,q)]
= KILL(4,q) UKILL(6,q) UKILL(9,q)
= {d|deown(X,q) and(Fr,jst.d=X(,5) ord =X(1— 1,7+ 2) ord = X1 + 1,7 — 3))

andizSZSiu andle]Sju}'

Sincelast(3,q) = 11, at this point we can reduce the innermost interval into gleinode and annotate

it by its KILL set:

KILL(3,q) = Modified(11,q).

Then the analysis continues with the first node of the outenval (loop):

KILL(2,q) = {d|d € Own(X,q)anddist.d =X(z—2,2) andi; <1 < i,}.
Modified(2,q) = KILL(2,q)
Modified(3,q) = Modified(2,q)UKILL(3,q)

{J| d € Dwn(X, q) and (Ez,g std=X(z,))ord=X(1—1,7+2)ord=X(1+ 1,7 — 3)

ord = X(1 — 2,2)) andi; <1 < i, andj, << ju} .
Sincelast(1,q) = 3, at this point we can reduce the interval into a single node
KILL(1,q) = Modified(3,q).

Although for the sake of presentation we show the analysis imeterms of communication sets, the data-

18

flow analysis is actually performed on sets of communicatescriptors, since in general there may be

accesses to several arrays. That isKhEL set for a program that refers to arra§§ is as follows

Since we concentrate on computation of #ELL set for a single array, we usILL(i,q). Similar
simplification will be used for presentation of the compiatatof theGEN (i,q,p) andPOST_GEN(i,q,p)
sets as well.

GEN(i,p,q) isthe set of elements required by procegstyrom processoy at nodei with no preceding
write (assignment) to them. The computation of @& proceeds in the backward direction, i.e., the nodes
within each interval are traversed in reverse topologioa srder. The elements that can be communicated
at the beginning of a node are the elements required by anytd&nce within the node except the ones
that are written by the owner before being referenced. Mdfiat this process involves considering all the
LHS references within an interval for a given RHS referertbés leads to an exponential cost. However,
there are two factors that make the analysis affordablest,Rine scope of the analysis is a single interval
(loop nest). In practice the number of distinct referencea loop nest is a small value. Second, since, as
mentioned earlier, prior to analysis we keep pointers td_BIS references within a loop nest, we do not

have to traverse the parse tree once more to search for thedfel®nces.

Assumingz = (11,...,1,) ands = (¢},...,2,), let# < 7’ mean that’ is lexicographically less than or
equal tor; ands/ <7 mean that, = »; for all j < k, and(ay;, ..., 2,) < (2, ..., 7). Since a node can refer to
multiple RHS references, we first defigen(i, Rz, p, q) as the set of elements to be sent by procegsor

processop at nodei due to referenc& . In that case we can compute

GEN(i,p,q) = [Jegen(i, R p,q).
Rr

For the sake of explanation, we assume one RHS referenceoder and use onlg¢EN(i,p,q) in the
following. The extension to the multiple RHS reference pedeis straightforward. Letomm(i,p,q)
be the set of elements that may be communicated at the begiohintervali to satisfy communication

requirements from the beginning ofto the last node in the interval that containsThen, for an arrax,

19

we have

GEN(i,p, q) {J| 7Y st.i; <7< i, andd € Own(X,q) andd = Rz (7) and

R (7) € Dun(Y, p) and not (Elj’, R sti] <7< i, andd = Rc'(7) andj’<1eve1(i)77’) } ,

Comm(i,p,q) = (ﬂ Comm(s,p,q))UGEN(i,p,q).

s€succ(i)

In addition, we use the following equation to reduce an irgkinto a single node:
GEN(i,p,q) = Comm(First(i),p,q)

In the definition ofGEN, R« denotes the RHS reference, aRg¢ denotes the LHS reference of the same
statement. R;’, on the other hand, refers to any LHS reference within theesanterval. Notice that
while R /' is a reference to the same arrayRg, R can be a reference to any array (e.g., airay the
formulation above)level (i) gives the nesting level of the interval (loop), with the wallicorresponding
to the outermost loop in the nest. If the dependence is ladgpiendent the textual positions of the references
in the nest may also need to be taken into account when comgpiliGEN set. In that case the formulation
of the GEN set should contain terms showing the precedence relatietwgekn references. For the sake of
simplicity, we assume that all the dependences that we alendevith are loop carried.

After the interval is reduced, th&EN set for it is recorded, and an operat®ris applied to the last part

of this GEN set to propagate it to the outer interval:
F(7=6h) = J=x-1)-

As an example consider Figure 6 on page 17 once more, thiscimeentrating on the computation GEN
sets due to array. Notice that arrayr is written only in statement (ling). The analysis starts with the last

statement of the innermost intervallpop):

GEN(11,p,q) = {d|3,jst.i; <1 <i,andj, << j, andd € Oun(Y,q) andd = Y (1 — 4,) and

20

Z(1,7) € Oun(Z,p) and not(3¢', /', st.d = Y (', ') andi; < o' < i, andyj; < J' < j,

and(x' =1 andy’ <))}

To keep the presentation simpler, we do not show the renatiiN sets in this interval. The analysis

proceeds as follows.

Comm(11,p,q) = GEN(11,p,q)
GEN(10,p,q) = 0
Comm(10,p,q) = Comm(11,p,q)U GEN(10,p,q)
— Comn(11,p,9)
Comm(9,p,q) = Comm(10,p,q)U GEN(9,p,q)
GEN(7,p,q) = 0
Comm(7,p,q) = Comm(10,p,q)U GEN(7,p,q)
Comm(7,p,q) = Comm(10,p,q)
Comm(6,p,q) = Comm(7,p,q)U GEN(6,p,q)
GEN(5,p,q) = 0
Comm(5,p,q) = Comm(6,p,q)N Comm(9,p,q)
Comm(4,p,q) = Comm(5,p,q)U GEN(4,p,q)

= [Comm(6, p,q) N Comm(9, p, q)] U GEN(4, p, q)
= [[GEN(11,p,q) UGEN(6,p,q)] N [GEN(11,p,q) U GEN(9,p,q)]] U GEN(4,p, q)
[GEN(11,p,q) U GEN(6, p,q) U GEN(4,p,q)] N [GEN(11, p,q) U GEN(9, p,q) U GEN(4,p, q)]

[GEN(11, p, q) U GEN(4, p, q)] U [GEN(6, p,q) N GEN(9, p, q)]

Sincefirst (3) = 4, the innermost interval can now be reduced as follows.

GEN(3,p,q) = Comm(4,p,q)
= ({cﬂ T, gsti; <1<y, andj < <7, andd € Own(Y,q) andd = Y(1—4,y) and

-

Z(1,9) € 0wn(Z,p) and not(F', y', st.d =Y (+',4") andi; <+' < i, andj <y < j,

21

and(/' =7 andy’ <))}

U{d | Fn,pst.iy <2 < iy andj; < 5 < j, andd € Own(Y,q) andd = Y (2 — 2,5 + 2) and

X (1,7) € Own(X,p) and not(3/, 5/, st.d = Y («',7') andi, < +' < i, andj; < J' < ju

and(+' =+.andy’ <))}

U

({d'| 3,y st.i) <1 < i, andj; < 5 < j, andd € Own(Y, q) andd = Y (2 - 2,5 - 2) and
X(2—1,5+2) € 0wn(X,p) and not(3/', 5/, st.d = V(') andi; < ¢ < i, andj, < 5’ < ju
and(/' =7 andy’ <))}

N{d | Jr,gst.iy <@ < iy andj; < < j, andd € Oun(Y, q) andd = V(2 + 3,7 — 3) and
X(1+1,7—3) € 0un(X,p) and not(3', 5/, st.d = Y(«', ') andi, < o' < i, andj; < 5’ < ju

and(+' =.andy’ <)}

After GEN(3,p,q) is recorded, the compiler appligSoperator taGGEN(3,p,q). The effect of this operator

for this example is
(/' =randy’ <j) ~ (/' <wor(d =2andy <y)).

That is, at this point the compiler takes into account flowedtefences carried by thdoop as well. Then

we continue with the last statement of the outer intervéddp):

Comm(3,p,q) = GEN(3,p,q)

Comm(2,p,q) = Comm(3,p,q)UGEN(2,p,q).
Sincefirst (1) = 2, the outer interval can now be reduced:
GEN(1,p,q) = Comm(2,p, q).

Sincei is the index of the outermost interval, there is no need tdyaiye F operator after this reduction.

We should emphasize that computing @B sets gives us all the communication that can be vectorized or

22

coalesced above a loop nest; i.e., our analysis easily ésnabssage vectorization and message coalescing
[30]. Finally, POST_GEN(i,p,q) is the set of elements required by procegsémom processor at nodei

with no subsequent write to them. For an arkay

POST_GEN(i,p,q) = {J| I, Yst.i; <7< iy, andd € Own(X,q) andd = R (?) and

R(7) € 0un(Y,p) and not(37, R’ st.i; < 7'< i, andd = Rz'(7) andi=<1even(s) j)} .

The computation oP0OST GEN(i,p,q) proceeds in the forward direction. Its computation is samtb

those of th&ILL(i,q) andGEN(i,p,q) sets, so we do not discuss it in detail.

3.3 Data-flow Equations

In our framework, any communication incurred is placed atiibginning of the nodes. Here, we concentrate
on the computation of a communication set calk@tVv. The actuaksendandrecv sets used by the code
generator are produced in a later pass of the compiler freRROV sets discussed here using two projection
functions as explained in Section 5. Our data-flow analyai:&éwork consists of a backward and a forward
pass. In the backward pass, the compiler determines setgattbments that can safely be communicated
at specific points. The forward pass eliminates redundamnmanication and determines the final set of
elements (if any) that should be communicated at the beginof each node. The data-flow equations
that we present here are aggressive in the sense that a cacatimmincurred by a non-local reference is
hoisted to the highest point possible in the CFG. Later iriSee we discuss how to refine this approach to
control communication hoisting. The input for the equagi@onsists of th€EN(i,p,q),KILL(i,q) and
POST_GEN(i,p,q) sets for each as computed during the local analysis.

The data-flow equations for the backward analysis are giyelBduations (1) and (2) in Figure 7. The
symboln in this figure denotes);. SAFE_IN(i,p,q) andSAFE_OUT(i,p,q) are the sets of communication
descriptors; these denote the elements thatsafely be communicated at the beginning and end of node
i, respectively. Equation (1) says that an element shouldbberwnicated at a point if and only if it will

be used in all of the following paths in the CFG. This is thedamental rule that our data-flow analysis

23

Backward Analysis:

SAFE_OUT(i,p,q) = ﬂ SAFE_IN(s, p,q) 1)
s€succ(i)
SAFE_IN(i,p,q) = (SAFE-OUT(i,p,q) —aKILL(i,q)) +a GEN(i,p,q))
Forward Analysis:
RECV_IN(i,p,q) = [RECV.0UT(j,p,q) ®)
jEpred(i)
RECV(i) = GEN(i, p,q) —a RECV_IN(i,p,q) if 3k € succ(i) andk ¢ dom(i) @)
Py = SAFE_IN(i,p,q) —a RECV_IN(i, p, q) otherwise

. _ RECV_IN(i, p,q) —a KILL(i,q) if 3k € succ(i) andk ¢ dom(i)

RECV-OUT(i,p,q) = { ((RECV(i, p, q) 44 RECV_IN(i, p,q)) —a KILL(i, q)) 4« POST_GEN(i,p,q) otherwise ®)

Figure 7: Data-flow equations for optimizing communicatidihe optimization process involves a backward
analysis followed by a forward analysis. At the end, for eactheRECV(i,p,q) setis computed.

as well as some of the previous approaches like [35] adhere&dquation (2), on the other hand, gives
the set of elements that can safely be communicated at thanieg of nodei, and makes use of the
GEN andKILL sets. Intuitively, an element can be communicated at thenbiegy of nodei if and only
if it is either required (generated) by nodeor it reaches the end of node(in the backward analysis)
and is not overwritten (killed) in it. It should be noted thiithe elements contained IBAFE_IN sets
are directly communicated without any further analysigréhwould be significant amounts of redundant
communication. The task of the forward analysis phase ifintreate redundant communication.

The data-flow equations for the forward analysis are giveregyations (3), (4) and (5) in Figure 7;

these equations observe the following two rules:
(1) anode should not fetch data needed by a successor uniigssinates that successor; and
(2) asuccessor should ignore what a predecessor has meeifar unless that predecessor dominates it.

RECV_IN(i,p,q) andRECV_OUT(i,p,q) denote the set of communication descriptors containingelie
ments thahave beemommunicated so far (at the beginning and end of the apdespectively) fromy to p.
On the other han®RECV (i,p,q) denotes the set of communication descriptors containiegligments that

shouldbe communicated from to p at the beginning of node and is finally used by the communication

24

generation portion of the compiler to generate the acaatiandrecvcommands as explained in Section 5.
Equation (3) simply says that the communication set amgjivina join node can be found by intersecting
the sets for all the joining paths. Equation (4) is used to mate theRECV set which corresponds to the
elements that can be communicated at the beginning of theeagkpt the ones that have already been com-
municated RECV_IN). The elements that have been communicated at the end ofing@lat is,RECV_QUT

set) are simply the union of the elements communicated upetd@éginning ofi; the elements communi-
cated at the beginning df provided that the condition in equation (5) is not satisfiextcépt the ones that
have been overwritten (killed) i) and the elements communicated withiand not written subsequently
(POST_GEN), again provided that the condition in the equation is ntisBad. It should be emphasized that
all these sets are communication descriptor sets, and tlee of operations as indicated by the parenthesis

is important.

3.4 Global Data-flow Analysis

Our approach starts by computing tGEN, KILL andPOST_GEN sets for each node. Then the contraction
phase of the analysis reduces the intervals from innerroastitermost and annotates them wWittN, KILL
andPOST_GEN sets. When a reduced CFG with no cycles is reached, the erpgpisase starts arRECV
sets for each interval is computed, this time from outerni@$tnermost. There is one important point to
note: before starting to process the next inner graphREH_IN set of the first node in this graph is set to

theRECV set of the interval that contains it. More formally, in theparsion phase, we set
RECV—IN(iaPaq)kthpass = RECV(i,p’q)(kfl)thpass. (6)

This assignment then triggers the next pass in the expamdiase. Before the expansion phase starts
RECV_IN(i,p, q)wp““ is set tof). Figure 8 shows the overall algorithaoMM-0PT followed by compiler
to generate theendandrecv sets. Notice that due to Equations (1) and (2) in Figure 7 andatan only
be communicated when it &feto do so (i.e., the semantics of the program is preservedhdriorward

analysis, th&ECV sets contain only the elements needed to be communicatedfdhe no stale data is used

25

INPUT: A connected CFG.
OUTPUT: A processed CFG with optimized communication calls.

Step (a) Pre-processing phase:

(a.1) The CFG is traversed and in each loop a pointer for each LHlbses is stored;
(a.2) The CFG is traversed to add empty else branches to “if” cantgrand to eliminate the critical edges;
(a.3) The “dominance” relation for each node in the CFG is computed
Step (b) Initialization phase: For each node in the initial CF®ILL, GEN andPOST_GEN sets are computed in terms of symbolic
set names;

Step (c) Contraction phase: Until a CFG with no cycles is reached, recursively each CF@aisdled by reducing its intervals
and annotating each interval by KSLL, GEN andPOST_GEN sets;

Step (d) Expansion phase: For each intermediate CFG, the following is repeated:

(d.1) Using data-flow Equations (1) and (2) in Figure 7, 8A€E_IN sets are computed in backward direction;
(d.2) Using data-flow Equations (3), (4) and (5) in Figure 7,REeV sets are computed in forward direction;
(d.3) The CFG is expanded; the equation (6) is used to trigger tteefttav activity in the new CFG;
Step (e) Substitution phase: The symbolic set names in the result®BCV sets are replaced with actual sets consisting of
equalities and inequalities;

Step (f) Set generation phase: The Omega library is called to genera@endandrecv sets used by the code generator from the
RECV sets.

Figure 8: Communication optimization algorith@aMM-0PT based on data-flow analysis. This algorithm
computes theendandrecvsets.

and the correctness is ensured.

3.5 Example

We use the synthetic benchmark program shown in Figure 9(@pge 29 to illustrate our framework. We
concentrate on the communication placement at the highet @G that is acyclic. Figure 9(b) shows
the message vectorized program with communication caflsrdé¢he loop bounds reduction and guard in-
sertion. The notatiogend{B,q} means that some elements of areaghould be sent tq; recv{B,q} is
defined similarly. We omitted from the figure the number ohedsits communicated to make the code look
clear. In this example communication arises only due toregiges to arrag. A loop-based communica-
tion analysis places eiglsendand eightrecv calls (in fact these are themselves loop nests) for eight RHS
references marked as bold in Figure 9(b). The communicaidnts for these references are just above the

corresponding loop nests. For example, communicationinedjdue to referencB(i-1,j-1) inline 33in

26

Table 1: Data-flow sets for the example shown in Figure 9. G KILL, andPOST_GEN sets are obtained
after local analysis; and tt8&AFE_IN andRECV sets are obtained after global analysis.

| Line | GEN | KILL | POST.GEN | SAFEIN | RECV |
2 Sa [0 ((((Ss1 +c Sas) —c S38) +¢ S33) +¢ S11) +¢ Sa S4 +c¢ S11 +¢ Sa33
9 S [0 (((Ss1 +¢ Sas) —c Sag) +¢ Sa3) +¢ S11 0
23 Sas [0 (((Ss51 +¢ Sas) —c Sag) +¢ S33) +¢ So2s (S25 +¢ S33) —c (S4 +¢ S11 +¢ S33)
30 Sas [0 ((Ss51 +c Sa5) —c S38) +c S33 0
36 [] S3s [] (S51 +c S45) —c Ss3g []
43 Sas [] 0 S51 +c Sas S51 +c¢ Sas
49 Ss1 [] [] Ss1]

Figure 9(b) would be performed in lirg. Notice that in this example arrayis written only once (in line
38).

Without loss of generality, assume that after local analytbieGEN andKILL sets are obtained as shown
in the second and third column of Table 1 respectively. Theesponding line numbers are shown in the
first column. Notice that for this exampk®ST GEN(i,p,q) is () for everyi (column4). The fifth column
in Table 1 shows th€AFE_IN sets for arrayB after backward analysis corresponding to the lines given in
the first column of the same table. Notice that the commuioicatetS,5; cannot be hoisted above the line
22 due to the conditional branch. The sixth column, on the ottaed, shows the fin®8ECV sets for the
same array after the forward analysis and simplificationstidd that write to arrag in line 38 kills all the
communication before it.

For this example, the data-flow analysis framework achiévedollowing:

e The communication sets due to referenBés-1, j) andB(i-1,j+1) in line 45 of Figure 9(b) are

combined; that is our approach handles message coalessilg e

e Communication due to referengé€i-1, j-1) in line 51 is combined with the communication in line

45; and this combined communication can be performed aboed in

e Similarly, the communication sets due to references irsld® 11 and4 can be combined and per-

formed above line in Figure 9(b).

e The communication in lin@2 is reduced in volume (from, 032 elements per processor 30024

elements per processor).

27

e The communications in lineg, 8, 29 and48 are entirely eliminated.

e Overall, for a single processor, sixteen communicatiofsdaightsendand eightrecy) are replaced

by six communication calls.

The resulting optimized program is shown in Figure 9(c) htidd be emphasized that the final communica-
tion sets are precise, i.e., there is no overestimation.eb\@r, these communication sets can be enumerated
using the Omega library [31]. Notice that since all commatian sets are enumerated in terms of abstract

processorg andq; in general, if desired, message aggregation can also berped easily.

3.6 Extension for Inter-procedural Analysis

Itis relatively straightforward to extend our analysis tonwinter-procedurally. In a simple inter-procedural
setting, our approach can be used as follows. We first builallagcaph [4] where each node corresponds
to a procedure and there is a directed edge between two medmsd P, if and only if Py callsP,. We
assume that there is no recursive procedure call. We theersethe call graph in two steps corresponding
to backward and forward analyses. In the backward analysstraverse the graph in such a way that a
node is visited only after all of the nodes it calls have beisited. When a nodg,, is visited, the compiler
runs our algorithm for the backward analysis. After the dlon terminates, we summarize this node’s
communication by using three se@EN, KILL, andPOST_GEN. Notice that these three sets completely define
the communication behavior 8f,. Subsequenthp,, is transformed to a new single node, and annotated by
these sets (of course, all formal parameters are repladidagiual parameters). When the whole program
is reduced to a single node, the forward analysis startss flihie we traverse the call graph in such a way
that a node is visited only after all the nodes that call itehaeen visited. During the visit of a node, we
compute th®kECV sets for each node of it.

It should be noted that there are several inter-procedunaineunication optimization algorithms (e.g.,
[25],[26],[15]) with different degrees of sophisticatioand the detailed analysis of communication opti-
mization across procedure boundaries is beyond the scapésqiaper. However, we believe that for most

of the algorithms found in the literature, the summarizethswnication information represented BEN,

28

'HPF$ processors PROC(0:3) 'HPF$ processors PROC(0:3) 'HPF$ processors PROC(0:3)
'HPF$ distribute (cyclic(4),x) 'HPF$ distribute (cyclic(4),x) 'HPF$ distribute (cyclic(4),x)
onto PROC :: A, B, C, D onto PROC :: A, B, C, D onto PROC :: A, B, C, D
implicit none implicit none implicit none
integer i, j, cond integer i, j, cond integer %, j, cond
real A(128,128), B(128,128), real A(128,128), B(128,128), real A(128,128), B(128,128),
€(128,128), D(128,128) €(128,128), D(128,128) €(128,128), D(128,128)
DO i =2, 127
’ 1 a{B,p+1} |, B,p-1 a{B,p+1} |, B,p-1
e end{3.p b] [reevtzp-13 send{3.p b [reevtzp-13
C(i,7)=C(i,j)+B(i-1,j-1)+1 2 DO =2, 127 00 i =2, 127
END DO 3 DO j = 64, 127 DO j = 64, 127
END DO 4 C(i,7)=C(%,7)+B(i-1,j-1)+1 C(i,5)=C(i,j)+B(i-1,j-1)+1
D0 ¢ = 2, 127 5 END DO END DO
D0 j = 2, 31 6 END DO END DO
A(i,j)=((E(i-)1),/j-1)+E(i—l,j-l) 7 | send{B,p+1} |, | recv{B,p-1} Dguz; 2'2 12371
+B(4,5))/3.0 =2,
END DO 8 | send{B,p+1} |, | recv{B,p-1} A(Z,J>=((B(z-)1),/-1>+E(z-1,1-1)
+B(i,))/3.0
END DO 9 D07 =2, 127 o oo
IF(cond .GT. 0.0) THEN 10 DOj- o2 a1
D0 ¢ = 2, 127 CAN . END DO
DO j -2, 127 1 AGL7)=(B(i-15-1)+B(i-14-1) IF(cond .GT. 0.0) THEN
CCi,j)=AGi,) +C (i,) 4D (i, §)+1 2 e BIDI3:0 DO i =2, 127
END DO DO j = 2, 127
END DO 14 END DO C(i,7)=A(i,j)+C(i,7)+D(i,5)+1
ELSE 15 IF(cond .GT. 0.0) THEN END DO
b0 i - 2. 127 16 DO i = 2, 127 END DO
DDZ S Mo 17 DD j = 2, 127 ELSE
7oz e fel 18 C(i,5)=A(i,5)+C(i,5)+D(i,)+1
A(i,7)=B(i-1,5-1)+1 19 END DO send{B,p+1} |, recv{B,p-1}
E?DIDDED 20 END DO D0 ¢ = 2, 127
ENDLE 21 ELSE DO j = 2, 127
D0 i =2, 31 22 send{B,p+1} | recv{B,p-1} Eﬁ;i;){])ﬂ(i-l,j-l)’fl
oo j =2, 127 o 23 D0 7 = 2, 127 END DO
D(i,j)=(B(i,7)*B(i,j)) 24 D0 j = 2, 127 ENDIF
*Bi-1,j-1)+1 2% A(1,5)=B(-15-1)+1 D0 =2 31
EEQ'DDED 26 END DO D0 j - 2 107
DO G = 1. 127 27 END DO D(i,j)=(B(i,5)*B(i,5))
i=1, 28 ENDIF +B(i-1,7-1)+1
DO j = 1, 127 S !
B(5,5)=B(i,j)-C(i,5)+A(i,5) 29 | send{B,p+1} | recv{®,p1} END DD
END DO 30 DO i =2, 31 D0 i = 1. 127
END DO 31 DO j = 2, 127 Dﬂl T
;s 82 DU, =BG, I)*E (. 5)) B(H,1)B(i,1) (i,) A,)
D0 j = 2, 127 33 +B(i-1,-1)+1 e ;){] > > -
A(i,j)=(B(i-1,5) 34 END DO END DO
+B(i-1,5+1))/2.0 35 END DO
END DO 36 DO i =1, 127 send{B,p+1} | recv{B,p-1}
END DO 37 D0gj=1t,127 . D0 7 = 2, 127
b0 @ =2, 127 38 B(i,7)=B(i,j)-C(i,j)+A(i,j) D0 j =2, 127
D0 j =2, 127)) 39 END DO A(i j)=EB(i—1)
E;ézbjn)=(ﬂ(z,])+5(z-1,J-l))/2.0 40 END DO +B(i-1,741))/2.0
END DO 41 | send{B,p+1} |, | recv{B,p-1} END DO
END DO
END 42 | send{B,p+1} |, | recv{B,p-1} DO i = 2, 127
43 DO 7 = 2, 127 D0 j =2, 127 o
44 DO j = 2, 127 C(i,j)=(B(z,7)+B(i-1,5-1))/2.0
45 A(i,)=(B(i-1,)+B(i-15+1)) /2.0 END DO
46 END DO END DO
47 END DO END
48 | send{B,p+1} |, recv{B,p-1}
49 DO 4 = 2, 127
a) Original program. 50 D0y =2, 127
(&) Original prog B C(i,j)=(B(i,)+B(i-1j-1)) /2.0
52 END DO
53 END DO (c) Global communication optimization.
54 END
(b) Message vectorized program.

Figure 9: A synthetic benchmark program (a) with messageovieed (b) and globally optimized (c) ver-
sions. The message vectorized program is obtained usingdpelar vectorization approach based on
dependence-analysis. After determining the outermogt &avhich the vectorization can be applied, the
item wise messages are combined and are lifted out of thesnglloops. The globally optimized version
is generated using the approach discussed in this paper.

29

Table 2: PossibléP(i) predicates to control communication hoisting. Any logiceambination of those
predicates can also be used. Note that changifig changes behavior of the optimization algorithm com-
pletely. With appropriaté®(i) predicates most of the previous optimization algorithnts lwa simulated.

[P(i) I COMMENT [
KILL(i,q) # 0 avoids message splitting
GEN(i,p,q) = 0 avoids hoisting too far - clustering
Buffer_Length(i) > limit avoids protocol delays and hot spots
Number_of Buffers(i) > limit avoids buffer pressure

KILL, andPOST_GEN would be sufficient to optimize communication inter-progedly.

4 Hoisting Communication vs. Minimizing the Number of Messages

The approach explained so far is focused on hoisting contation as far as possible, and in general,
results in reduction in communication volume as well as neintb messages. However, as also pointed out
by others, hoisting the communication too eagerly can, usdme circumstances, lead to excessive buffer
requirement [35] and an increase in the number of commuoitaglls inserted [13]. In particular, failing
to take resource constraints into account may affect theecress of the communication placement. For
example, if the buffer requirements exceed the maximuniablai buffer, the program may stall [37]. One
way to prevent these problems is to avoid hoisting commuinicaaggressively and to reduce breaking of
messages into smaller ones. Since the optimal placemewnahanication is NP-hard [17], we present a
simple heuristic that stops accumulating communicatida as soon as it encounters a node that satisfies
a predicateP(i). The content of this predicate depends on a specific implatien. A few alternatives
are presented in Table 2. For example, in [35], the thirdaédtiive has been used. An implementation can
also employ a combination of these alternatives. As an el@nepnsider the predicate obtained by the
conjunction of the first and second alternatives; i3) = {KILL(i,q) # 0 and GEN(i,p,q) = 0}.

The data-flow equations given in Figure 11 on page 31 are \B1jas to those shown in Figure 7 on
page 24. The only difference is in the computation of SAEE_IN(i,p,q) set in which the predicate is

taken into account. The reason for this is to prevent a conmation set from breaking into smaller sets

30

S- X *+Sc t oS- s * oy
e
s s s
@ (b) © (d)

Figure 10: Handling communication during backward analysia node using different approaches: (a),
(b), and (c) by the approach given in Figure 7; (a), (b), andydthe approach given in Figure 11.

Backward Analysis:

SAFE_OUT(i,p,q) = ﬂ SAFE_IN(s,p, q) Q)
s€succ(i)
. _ [GEN(i,p,q) if P(i)
SAFE_IN(i,p,q) = { (SAFE_OUT(i, p,q) —a KILL(4,q)) +a GEN(i,p,q) otherwise ®

Forward Analysis:

RECV_IN(i,p,q) = [RECV.0UT(j,p,q) €C)
jepred(s)
RECV(i) = GEN(i,p,q) —a RECV_IN(i,p,q) if 3k € succ(i) andk ¢ dom(i) (10)
Py = SAFE_IN(i, p,q) —a RECV_IN(i,p,q) otherwise
. RECV_IN(i,p,q) —a KILL(i,q) if 3k € succ(i) andk ¢ dom(i)
RECV-OUT(1, p, q) { ((RECV(4, p, q) +a RECV_IN(i, p,q)) —a KILL(i, q)) +4 POST_GEN(i,p,q) otherwise (11)

Figure 11: Data-flow equations for optimizing communicatid’hese equations are very similar to those
presented in Figure 7. The only difference is the use of7#e) predicate to control communication
hoisting.

each requiring a message of its own. This also eliminateesafrthe complexity of the resultant code. A
possible impact of the new approach is shown in Figure 10higfigure S and Sk denote thesEN and
KILL sets respectively for the node shown. The two approachesilded in this paper behave similarly for
the cases shown in Figures 10(a) and (b). But when a noderperfonly writes and no reads, the approach
in Figure 7 still hoists the communication as shown in Figl®é) whereas the approach in Figure 11 stops
hoisting as shown in Figure 10(d). That is, the new approas chot issue a communication call unless
there are additional elements required by the node. Thigyrim reduces the number of communication
calls.

To compare our hew approach with the previous one (Figuredf)sider the example program frag-

ment given in Figure 12 on page 33, a modified version of thiepgag of the program shown in Figure 9.

31

Table 3: Data-flow sets for the example shown in Figure 12.: Thggressive communication hoisting
results in excessive number of communication messagetorBo€Communication hoisting is controlled to
minimize the number of messages.

[Line [[GEN][KILL][POST-GEN | SAFE_IN Il RECV [[Loop Based]|

1 [S3 [((S18 +¢ S13) —c S8) —¢ S3 ((S18 +c S13) —c Ss) —c S3 [)
6 [Ss [(S18 tc S13) —c Ss ((S18 tc S13) —c S8) —c (((S18 +c S13) —c S8) —c S3) [
11 Si3 9 9 S18 tc S13 (S18 +c S13) —c ((S18 +c S13) —c S8) S13
16 S1s 0 0 S18 0 S18

[Line [[safrEn] RECV 0
1 [[
6 [[
11 S18 +c Si3 S18 +c S13
16 Sis []

Columns two, three and four of the top part of Table 3 show&He KILL andPOST_GEN sets respectively
corresponding to the line numbers given in the first columhe Tifth and sixth columns of the top part of
Table 3 show th&AFE_IN andRECV sets respectively of the previous approach. Although waintgome
reduction in communication volume, the number of messagéwée which is larger than that of the loop
based approach (colunm) that uses message vectorization alone. The bottom paghdé B, on the other
hand, presentSAFE_IN andRECV sets obtained by our new approach. In that case the numbees¥ages
is 1 and we have reduction in communication volume as well.

The main advantages of the new approach are less computiatieuring the compilation, less com-
plex sendrecv loops and reduced number of communication messages. Hovireveal programs when
a communicated array is written by the owner processor, lsigally written entirely; therefore, two ap-

proaches discussed behave similarly in practice.

5 Communication Generation

Our communication code generator uses the Omega librany ffoiversity of Maryland [42, 31]. After the
RECV(i,p,q) sets are obtained in terms of symbolic expressions, theyeangtten in terms of equalities
and inequalities. Then the Omega library is called to geadreesendandrecvloops.

Let us now consider the example given in Figure 9 (and Tab@nig more to show how the communi-

cation sets are generated. We first concentrate on the catigguofS, +. S11 +. S33. The compiler keeps

32

'HPF$ processors PROC(0:3)

'HPF$ distribute (cyclic(4),*) onto PROC :: A, B, C, D
real A(128,128), B(128,128), €(128,128), D(128,128)
1 DO ¢ = 32, 63

DO j =1, 63
B(2,5)=D(%,7)+2

END DO

END DO

DO i = 1, 31

DO j =1, 63
B(¢,5)=B(¢,7)-C(3,5)+A(3,5)

9 END DO

10 END DO

11 DO ¢ = 2, 127

12 D0 j = 2, 127

13 ACi,j5)=(B(i-1,5)+B(i-1,5+1))/2.0

14 END DO

15 END DO

16 DO ¢ = 2, 127

17 DO j = 2, 127

18 C(z,7)=(B(z,7)+B(i-1,5-1))/2.0

19 END DO

20 END DO

0 N O wWwN

Figure 12: An example program fragment to show solution ® phoblem due to aggressive hoisting.
Aggressive communication hoisting does not work for thigraple.

this set as a symbolic expression until the code generatiasgwhere it inserts equalities and inequalities
corresponding t&,, S11, andSss, and then calls the Omega library to enumerate the elemEigare 13
shows the communication sets 8§, Si1, S33 and S’ = S, +. S11 +. S33 as represented in Omega.
A set element in this figure is represented as a quadrlgle,d;,ds] meaning that the array element
indexed by[d;,d>] should be transferred fror to p. Later in code generation, the projection function
projr = {[q,P,d1,da] — [q,ds,do]} is applied to this set to generate tleev set, and similarly the pro-
jection functionprojs := {[P,p,d1,d2] — [p,d1,ds]} is applied to generate theendset, for a particular
processoP. Notice that derivingsendandrecvsets from a common set ensures correctness. In Figuie 13,
andc; denote the coordinates of an element to be communicatee isotlirce (sending) processor whereas
Il andcy denote its coordinates in the target (receiving) processoandcs, on the other hand, refer to
coordinates of the LHS reference in the same statementcétiat the bounds ol are adjusted in the
appropriate directions to accommodate the received (ooahl elements; and the entire procedure works
on the local address space similar to the one shown in Figajeoh page 13.

After the projection functions are applied, the code getoerpart of the Omega library is called to

33

Sq4 = {[q,p,dl,dz}:H(i,cl,ll,cz,lg,a«;,lg:2§i§3]/\]661 449+ =d1A0<g<3A0< 1 <3Ai—-1=d;
Al6ez +4p+ 13 =iAN0<Il3 <3A16ca +4p+lo =di A -1 <1 <3A0<p<3AN2<dr+1<12TAp#q)};

St = {la,p,d1,d2]: 3(i,c1,l1,60,l0,e3,13 :2<i<127TA16c1 +4q+11 =di A0<q<3A0<1 <3ANi—1=d;
Al6es +4p+13 =i A0 <3 <3A16cs +dp+lr =di A —1<lp<3A0<p<3A2<dy+1<3LAp#q)k
Sss = {la,p.di,da]: (i, c1,l1, e, 02, 03,03 :2 < i <127 A16c1 +4q+1 =di AO< q<3A0<I1 <3Ai—1=d
Al6es +4p+13 =iA0<l3 <3A16cs+dp+lr =di A —1<Ilp<3A0<p<3A64<dy+1<127TAp+#aq)k;
S" = {la,q+1,d1,d2]:FHa:d1 =3 +4g+16aA0<qg<2A1<dr <126A4q+3<d; <4q+19)}

U{[q,p,d1,do] 1 4p+ 15 < dj <4q+3A1<dy <126Aq<3A0< p}

U{[q,p,d1,d2] : (@ :1<d;1 <49+99A1<d2 <30Aq<3A13+d; <4q+16aAdp+16a<1+d; A0<p)}
U{[q,q+ 1,d1,d2] : H(aw:d1 =34+ 49+ 16aN0<q<2A1<dp <30A4q+3<d; <4q+115)}
U{[q,p,d1,d2] : (@ :1<d; <4q+99AN63<dy <126Aq<3A13+d; <4gq+16aAndp+16a<1+d1 A0<p)}
U{laq,q+ 1,d1,d2] : I :d1 =3+ 49+ 16aN0<q<2A63<dy <126AN4q+3<d; <4q+ 115}

Figure 13: Omega Relations corresponding to for the exastmevn in Figure 9. The actuaéndandrecv
sets are derived from these Omega representations usijegtioa functions.

generate the loops to enumer&ied, , do| and[p, d;, ds] triples. Finally, the loops are converted to Fortran
and the internal data structures of the compiler are upd#&s@n example, the code enumerating the triples
for (Sos +¢ S33) —¢ (S4 +c S11 +¢ S33) is shown in Figure 14(a) on page 35 as C code forstedset
and in Figure 14(b) for theecv set. In these codegrocess(.) is an implementation-specific function
that handles the resulting elements. These codes enuntieeatéements and only the elements that should
be communicated betweenandp. The remaining sets are computed and enumerated similislidyice
that redundant equalities and inequalities can be eliméthbefore the code generation phase by using the
‘simplify’ utility provided by the Omega library.

As a final note, although our use of Omega library increasestimpilation time as compared to the
previous approaches based on RSDs, this increase was resLanfor the programs we experimented with
and was more than compensated by the run-time gains dueitoizgd communication as explained in the

next section.

6 Experiments

In this section we report experimental results for eighgpams that exhibit regular communication behav-

ior. The salient characteristics of these programs arengivdable 4 on page 3@ddx andeflux are two

34

if (P == 3) { if (P >=1 && P <= 3) {

for (j = 31; j <= 111; j += 16) { for (j = 4%P+31; j <= 4xP+111; j += 16) {
for (k = 31; k <= 62; k++) { for (k = 31; k <= 62; k++) {
process_element(0,j,k); process_element (P-1,j,k);
} }
} }
} }
if (P >= 0 && P <= 2) { if (P == 0) {
for (j = 4%P+35; j <= 4%P+115; j += 16) { for (j = 31; j <= 111; j += 16) {
for (k = 31; k <= 62; k++) { for (k = 31; k <= 62; k++) {
process_element (P+1,j,k); process_element(3,j,k);
} }
} }
} }
(a) sendset. (b) recvset.

Figure 14: Codes for enumeratiti§os +. Ss3) —c (S4 +¢ S11 +c S33) for the example shown in Figure 9
for a specific processa. process_element () is an implementation specific function that handles the set
of elements to be communicated.

subprograms from the Perfect Club Benchmarks. Rj¢ro m code is a modified version afydro. To
obtain this version two modifications have been made to tbgram aimed at highlighting the difference
between our two global optimization techniques. Firstsbeond loop nest is distributed over its statements.
Second, the loop bounds in the first loop nest are reduced4th of the original values. ThREFS column
shows the number of references in the program in questiomeskehec REFS column gives the number of
references that require communication. THER column shows how many times the outermost timing loop
has been iterated for each program. Except for some hareldc(mall) values of array dimensions, the
size of each dimension of an array used in the experimengs te $he value shown in thi&IZE column. In
tred?2 for 8 and16 processors we usdif) and120, respectively, as theIZE parameter. ThBISTR column
shows how the highest dimensional arrays in the programiatébtited. A D’ in a dimension means that
the dimension is distributed across processors whil€ deénotes a non-distributed dimension as in HPF
[39].

The distributed dimensions shown in the table arelstdistributions for these programs as far as
the communication is concerned. For example, selectifg,a) distribution fortomcatv would prevent
message-vectorization. For each distributed dimensiomxperimented witour different distributions
block (BLK), cyclic (CYC), cyclic(4) €YC(4)), and cyclic(7) €YC(7)). The last two distributions are taken

into account to demonstrate the effectiveness of our appreath block-cyclic distributions where most

35

Table 4: Programs in our experiment set and their charatiesi TheREFS column shows the number of
references in the program whereas th&EFS column gives the number of references that require commu-
nication. TheITER column shows how many times the outermost timing loop has iieeated for each
program. Each dimension of an array used in the experimsststito the value shown in tis& ZE column.
TheDISTR column shows how the highest dimensional arrays in the progare distributed. AD in a
dimension means that the dimension is distributed acrazsepsors while & denotes a non-distributed
dimension.

| PROGRAM | SOURCE ARRAYS | REFS | C REFS | DISTR | SIZE | ITER | BRIEF DESCRIPTION
hydro Livermore nine 2D 52 10 (*,D) 400 20 2D hydrodynamics
hydro_m Livermore nine 2D 52 10 (*,D) 400 20 modified hydro
adi Livermore three 3D, three 1D 33 6 (*,D,*) 400 10 iterative method
tomcatv Spec92 seven 2D, two 1D 75 20 (D, *) 400 10 2D mesh generation
swim Spec92 fourteen 2D 196 43 (D, *) 513 20 | water equation solver
addx Perfect Club five 3D, one 2D 72 32 (D, *,%) 194 1 mesh related comp.
eflux Perfect Club four 3D, one 2D 76 13 (D, *,%) 5000 10 mesh related comp.
tred2 Eispack two 2D, two 1D 42 22 (D, *) 60/120 1 matrix reduction

of the previous techniques fail. Two cyclic factors, naméland 7, are selected arbitrarily, one being
power of two whereas the other one is prime. Gupta and Bangz]d note that fottred?2 the block-cyclic
distribution is the best choice. We also found thatddx block-cyclic distribution performs best (depending
on the number of processors used).

We have found that excepiydro m for all of these programs our two global optimization apuitoes
given in Figures 7 and 11 result in the same optimized codee&ch program exceplydro_m we experi-
ment with two different versions of the code. These version does not perform any global communication
optimization but does perform message-vectorization.att, fa direct application of the owner-computes
rule without any optimization results in run-time resotutti In run-time resolution the ownership and com-
munication for each reference are computed at run-time.ceSeach processor must execute the entire
iteration space to compute ownership, this method resulegge amounts of overhead. Communication for
resolution programs is also very inefficient as it involvemsmission of a large number of small messages
[40]. Instead we considered the message-vectorized vensth loop bounds reduction as these version.
Since most of the compilers for message-passing architecapply some kind of message-vectorization,
we felt that it would be unfair to compare our method againsttime resolution without loop bounds re-

duction. Notice however, even in a single loop nest our dloptimization approach subsumes most local

36

optimizations including message-vectorization, messagéescing, and message-aggregation. For all the
programs excepiydro_m we refer to the globally optimized version agt. In thehydro m code,opt
refers to the approach given in Figure 7 whereas* denotes the approach given in Figure 11. For all
the programs and the versions, we also applied an optiraizdtiat we callcommunication pattern reuse
For example, assuming @ ,D) distribution for all arrays, in a statement such¥s,j) = Y(i,j — 1) +
Z(i,j — 1), arraysY andZ have the same communication structure; therefore, we cagrge communica-
tion loops only once and reuse it with a different name foiheatay. This optimization has not been fully
implemented yet.

We now briefly discuss the implementation status of our fraork. We have finished the implementa-
tion of local communication analysis, Omega—Parafrasa staticture interfacing, and communication loop
generation parts. Currently, the global communicationyais part and communication pattern reuse op-
timizations are being implemented. Experimenting witliegtént message combining techniques (different
P(i) predicates) and extension to an inter-procedural settiagn our future plans. Below, we present the
first results from our implementation.

We measure the effectiveness of our approach in terms df thifierent but correlated parameters: num-
ber of communication messages acralsprocessors, data volume to be communicated aelbpsocessors
and execution time. The number of messages and the comrtianigalume are counted dynamically dur-
ing the execution. The execution times are obtained oé @ode IBM SP-2 at the Center for Parallel and
Distributed Computing at Northwestern University. Eacld@of this machine ha28 MB memory,2 GB
disk, and an IBM Powerprocessor.

Tables 5 through 12 give the number of communications, tiencenication volume and the execution
times (in seconds) for our programs for these andopt versions. Table 13 on page 43 summarizes the
improvement in number of messages for our programs.hly@to m there are two rows corresponding to
our two methodsdpt andopt* from top). Overall there is 82% reduction in the number of messages.
Improvement withl6 processors is slightly higher than that wittprocessors. This is because with fte

processors in general there are more communication mesgaggtimize. It is also interesting to note that

37

our optimization technique achievag$’% improvement with block-cyclic distributiorC§C (4) andCycC(7))
where most of the previous techniques fail. As expectedhfdtro m our second approach which controls
communication hoisting performs better than aggressivgting.

Table 14 shows the percentage improvement in communicatittime across all processors. We note
that in both8 and16 processor cases we have on aversifé improvement over thease version. Consid-
ering block-cyclic distributions alone, we have @ improvement. As mentioned earlier these counts are
collected dynamically at run-time using the performancalysis tools available on the SP-2. Also it should
be emphasized that most of the improvementad@handtomcatv result from a single nest, meaning that
an aggressive loop level optimizer that applies a comhinatf vectorization, coalescing, and aggregation
could also obtain similar improvements.

Finally, Table 15 gives the improvement in execution tim&e. note that the performance improvement
for some programs such agdro, adi, tomcatv, andswim is very good whereas farf lux andtred?2 the
improvement is only modest. This is due to the fact that tmroanication for this second group of codes
is either small compared to the total execution time or diffito optimize. Therefore, there is not much
opportunity for improvement. Overall we ha2é% improvement. Our approach improves performance
in all cases, and more importantly we se@7& improvement in block-cyclic distributions showing that
through a global analysis it is possible to optimize comroation globally even in the existence of block-
cyclic distributions.

Having established the benefits of our global optimizatippraach, we now quantify the additional
costs incurred by our approach at compile-time and run-tifitee results of our cost analysis are summa-
rized in Tables 16 and 17. All the compilation times shownha test of the paper have been obtained
on a Model 712/60 HP workstation with1@2 MHz PA RISC processofG4 KB first-level cache,l MB
second-level cache and2&6 MB memory.

Table 16 shows the compilation times in milliseconds for programs under different distributions.
For each distribution the compilation time is divided intoge componentsGLO is the time it takes for

our global data-flow analysis to rugME is the time the Omega library takes to generate communitatio

38

Table 5: Results forydro on IBM SP-2.

(a): # of communications for different versions.

of PROCS = 8

of PROCS

= 16

version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 1,410 1,440 1,440 1,440 3,005 3,880 3,880 3,880
opt 1,120 1,280 1,280 1,280 2,424 2.560 2,560 2,560

(b): Communication volume in MBytes for different versions

of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(%,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 2.1 108.9 27.1 14.8 5.1 111.0 28.8 17.1
opt 1.9 97.0 24.2 12.0 4.3 99.1 26.0 13.9

(c): Execution times in secs for different versions.

of PROCS = 8 # of PROCS = 16
version || (*,BLK) | (*,CYC) | (*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 4.12 4.75 5.09 4.83 2.81 3.33 3.83 3.06
opt 3.07 3.74 3.87 3.37 2.11 2.75 2.94 2.80

Table 6: Results foriydro_m on IBM SP-2.
(a): # of communications for different versions.

of PROCS = 8 # of PROCS = 16
version || (*,BLK) | (*,CYC) | (*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 1,540 1,604 1,604 1,604 3,318 3,810 3,810 3,810
opt 1,110 1,227 1,227 1,227 2,400 2.611 2,611 2,611
optx* 1,110 1,180 1,180 1,180 2,330 2.555 2,555 2,555

(b): Communication volume in MBytes for different versions

of PROCS = 8 # of PROCS = 16
version || (*,BLK) | (*,CYC) | (*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 2.0 75.4 19.1 11.0 4.9 85.2 19.8 11.7
opt 1.8 17.0 4.2 3.1 4.1 17.8 4.3 3.9
opt* 1.8 5.9 3.2 2.8 3.9 6.6 4.4 4.1

(c): Execution times in secs for different versions.

of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 3.65 4.96 3.97 3.99 2.40 2.82 3.10 2.88
opt 2.67 3.05 3.14 2.98 1.90 1.99 1.97 1.98
optx* 2.30 2.82 2.95 2.81 1.73 1.80 1.87 1.78

39

Table 7: Results foadi on IBM SP-2.

(a): # of communications for different versions.

of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 710 968 968 968 1,640 1,922 1,922 1,922
opt 288 480 480 480 644 960 960 960
(b): Communication volume in KBytes for different versions
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(%,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 20.1 187.2 46.8 27.0 84.0 187.2 46.8 27.0
opt 11.4 94.0 23.3 13.0 53.9 94.0 23.3 13.0
(c): Execution times in secs for different versions.
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 0.58 0.79 0.64 1.11 1.08 1.13 1.10 1.98
opt 0.43 0.52 0.47 0.58 0.81 0.87 0.88 0.84
Table 8: Results fotomcatv on IBM SP-2.
(a): # of communications for different versions.
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 140 6,396 1.612 932 300 6,498 1,694 998
opt 56 124 124 124 120 252 252 252
(b): Communication volume in MBytes for different versions
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 0.35 19.2 4.9 2.8 0.75 19.2 4.9 2.8
opt 0.086 6.1 1.5 0.86 0.11 6.1 1.5 0.86
(c): Execution times in secs for different versions.
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 1.39 3.19 2.39 2.41 1.30 2.25 2.26 2.29
opt 1.06 1.31 1.44 1.34 0.88 1.06 1.09 1.07

40

Table 9: Results foswim on IBM SP-2.

(a): # of communications for different versions.

of PROCS = 8

of PROCS = 16

version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 3,967 120,142 31,598 17,593 8,215 125,142 34,598 21,593
opt 3,678 84,182 22,358 13,753 7,615 88,182 26,358 19,753
(b): Communication volume in MBytes for different versions
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(%,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 7.4 240.2 62.2 37.9 15.8 248.0 68.0 42.4
opt 7.1 163.8 44 .4 26.0 14.2 168.0 48.5 30.1
(c): Execution times in secs for different versions.
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 11.31 36.55 21.14 19.64 7.03 19.22 12.20 12.24
opt 10.48 25.47 18.47 16.13 6.71 11.12 10.78 10.31
Table 10: Results foiddx on IBM SP-2.
(a): # of communications for different versions.
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 91,470 92,014 91,462 93,646 98,078 98,622 98,614 101,342
opt 57,266 57,538 57,190 58,626 61,426 61,698 61,690 63,466
(b): Communication volume in MBytes for different versions
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 0.37 0.38 0.37 0.37 0.40 0.40 0.40 0.41
opt 0.23 0.23 0.23 0.24 0.26 0.26 0.26 0.27
(c): Execution times in secs for different versions.
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 5.18 6.65 5.10 5.44 5.99 6.48 6.89 5.70
opt 3.33 4.94 4.12 3.16 3.08 4.79 4.07 3.36

41

Table 11: Results fosf1lux on IBM SP-2.

(a): # of communications for different versions.

of PROCS = 8

of PROCS

= 16

version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 203 470 470 470 435 950 950 950
opt 84 408 408 408 180 816 816 816
(b): Communication volume in MBytes for different versions
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(%,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 0.07 30.3 7.4 4.3 0.15 30.3 7.4 4.3
opt 0.04 30.1 7.0 4.0 0.09 30.1 7.0 4.0
(c): Execution times in secs for different versions.
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 5.90 13.10 13.10 12.96 4.22 7.46 8.78 7.41
opt 5.76 12.90 12.97 12.01 3.99 7.28 6.98 6.72
Table 12: Results fotred2 on IBM SP-2.
(a): # of communications for different versions.
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 1,706 1,759 1,740 1,721 2,028 2,300 2,286 2,280
opt 1,650 1,719 1,718 1,711 1,988 2,015 2,004 1,996
(b): Communication volume in MBytes for different versions
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 11.5 12.1 11.9 11.9 14.2 15.5 15.1 15.2
opt 11.1 11.8 11.4 11.3 13.7 15.0 14.7 14.7
(c): Execution times in secs for different versions.
of PROCS = 8 # of PROCS = 16
version || (*,BLK) [(*,CYC) [(*,CYC(4)) [(*,CYC(7)) || (*,BLK) | (*,CYC) [(*,CYC(4)) [(*,CYC(7))
base 0.83 0.90 0.80 0.76 0.91 1.16 0.90 0.89
opt 0.78 0.78 0.73 0.69 0.90 1.05 0.82 0.79

42

Table 13: Percentagé improvements in # of messages.

of PROCS = 8 # of PROCS = 16

program || (*,BLK) | (*,CYC) [(x,CYC(4)) [(x,CYC(7)) [[(*,BLK) [(*,CYC) | (*,CYC(4)) [(*,CYC(T)
hydro 21 11 11 11 19 34 34 34
hydro_m 28 24 24 24 28 31 31 31
hydro_m 28 26 26 26 30 33 33 33
adi 59 50 50 50 61 50 50 50
tomcatv 60 98 92 87 60 96 85 75
swim 7 30 29 22 7 29 24 9
addx 37 37 37 37 37 37 37 37
eflux 47 13 13 13 59 14 14 14
tred2 3 2 1 1 2 12 12 12

[average | 33 33 32 30 | 33 37 35 33 ||

Table 14: Percentagé&d) improvements in communication volume.
of PROCS = 8 # of PROCS = 16
program || (*,BLK) | (*,CYC) | (*,CYC(4)) | (x,CYC(7)) [(*,BLK) | (*,CYC) | (*,CYC(4)) [(,CYC(7))
hydro 10 11 11 19 16 11 10 19
hydro_m 10 77 78 72 16 79 78 67
hydrom 10 92 83 75 20 92 77 65
adi 43 50 50 52 36 50 50 52
tomcatv 83 68 69 69 85 68 69 69
swim 4 32 29 31 10 32 29 29
addx 38 39 38 35 35 35 35 34
eflux 43 1 5 7 40 1 5 7
tred2 3 2 4 5 4 3 3 3
[average || 27 42 41 40 | 29 41 39 38 ||

loops; andREM is the remaining time in compilation including parsing amdle generation. The extra time

required to write intermediate code into disk files is exelddrom these figures.

The first three columns of Table 17 show the percentage§Ifoy OME andREM in compilation time

considering all the distributions used in the programs. @ltRecolumn gives us the sum of the colunti

andOME and represents the percentage of the compilation time tiraglobal optimization approach takes

(global analysis + generating communication loops). Weseaathat on the averagé% of the compilation

time is spent on our global approach. However it is also irgrarto observe how much compilation time

the base version using the Omega library would take. If we do not usg ginbal optimization but still

use an Omega-based loop-level optimization, the percestafjcompilation time the Omega library takes

to generate communication loops are shown under colufm We see that even if we do not use the

43

Table 15: Percentagé& improvements in execution time.

of PROCS = 8 # of PROCS = 16

program || (*,BLK) | (*,CYC) [(x,CYC(4)) [(x,CYC(7)) [[(*,BLK) [(*,CYC) | (*,CYC(4)) [(*,CYC(T)
hydro 25 21 24 30 25 17 23 8
hydro_m 27 39 21 25 21 29 36 30
hydro.m 37 43 26 30 28 36 40 36
adi 26 34 27 48 25 23 20 58
tomcatv 24 59 40 44 32 53 52 53
swim 7 30 13 18 5 42 12 16
addx 36 26 19 41 49 32 41 41
eflux 2 2 1 7 5 2 21 9
tred2 6 13 9 9 1 9 9 11

[average || 21 30 20 28 | 21 27 29 29 ||

global framework, just using the Omega library také$: of the compilation time on the average. Ther
column shows the differenc&P—L0OP) between the global optimization approach and the loop eesstd
optimization approach, both using the Omega library. Wetkatthe additional burden of our framework
over the existing framework is onli4%.

We can conclude that a hypothetical global optimizationreggh using RSDs to represent communi-
cation sets may be able to eliminate at m8t of the compilation time. This is a theoretical bound as we
do not know of any RSD based framework withro costhat can handlelock-cyclicdistributionsglobally.
Given the gains in execution time, we believe that the exterleead that our approach incurs at compile-
time is tolerable. In general, over several runs, the extragglation time will be amortized. Moreover, we
can expect the Omega-like tools to be much faster in thedutur

TheRUN column shows the percentages of execution times spent eutaxg the communication loops
(without communication statements). On the average, o7ilyf the execution time is spent on communi-
cation loops; therefore, the overhead incurred by our Onfiegzd approach at run-time is reasonable.

We also compared the compilation time taken by our Omegaebg®bal approach with that of an
approach based on processor-tagged descriptors (PTDgs)ad4nhanced form of RSDs built on top of
Parafrase-2. PTDs provide an efficient way of describingibiged sets of iterations and regions of data,
and are based on a single set representation parametesizib Iprocessor location for each dimension

of a virtual mesh. Table 18 shows the overall compilationeinof the Omega-based approadhH), the

44

Table 16: Compilation times in milliseconds for differenstributions. For a given distribution, the compi-
lation time is divided into three component®.Q is the time it takes for our global data-flow analysis to run;
OME is the time the Omega library takes to generate communit#diops; anREM is the remaining time in
compilation including parsing and code generation.

BLK cYC CYC(4) CcYC(7)
program |[GLO | OME | REM [[GLO | OME | REM [[GLO | OME | REM [[GLO | OME | REM
hydro 157 | 1,883 | 1,414 || 211 | 1,945 | 1,466 || 213 | 2,267 | 1,176 || 213 | 2,280 | 1,466
hydrom || 166 | 1,900 | 1,290 [[188 | 1,906 | 1,400 || 199 | 2,444 | 1,176 || 180 | 2,200 | 1,366
adi 161 955 | 1,100 [| 161 970 | 1,134 || 174 984 | 1,100 || 176 976 | 1,132
tomcatv || 167 | 2,308 [1,100 || 200 | 2,616 | 1,232 || 217 | 3,008 | 1,200 || 217 | 2,867 | 1,186
swim 300 | 2,967 | 1,800 || 284 | 3,817 | 1,834 [266 | 3,767 | 1,834 || 384 | 3,783 | 1,834
addx 200 | 1,283 | 1,155 || 254 | 1,367 | 1,184 || 198 | 1,417 | 1,184 || 242 | 1,555 | 1,180
eflux 183 | 2,017 | 1,104 || 184 | 2,082 | 1,106 || 187 | 2,300 | 1,134 || 187 | 2,117 | 1,130
tred2 180 | 2,417 | 1,334 || 183 | 2,584 | 1,334 || 184 | 2,466 | 1,366 || 187 | 2,484 | 1,360

[[average [| 189 [1,966 [1,245 [[208 | 2,161 [1,274 [[205 | 2,332 [1,271] 223 | 2,283 [1,269

PTD-based approaclrTD), and the percentage increag®) when going fronPTD to OME for pure block
(BLK) and pure cyclic¢YC) distributions, as the PTDs cannot compile for generallloglic distributions.
The results show that using Omega instead of an RSD-likeoapprincreases the compilation tirig to

27%, averaging ori9% for both block and cyclic distributions.

7 Related Work

Several papers have address the problem of generatingdddeg¢ss and communication sets for HPF pro-
grams where arrays are distributed using the general ldgche distributions [7, 14, 24, 33, 34, 46, 47]. Of
these, Ancourt et al. [7] use a linear algebra frameworlg tbhders their approach general. The rest of the
approaches are very efficient for a restricted class of nmgspiConsidering the lack of generality of these
approaches, their use in the communication optimizatidriseokind discussed in this paper appears to be
limited.

Most of the previous efforts considered communicationroation at loop level. Although each ap-
proach has its own unique features, the general idea hastbearse of an appropriate combination of
message vectorization, message coalescing and messaggadign [10, 11, 30, 51, 8, 52].

More recently some researchers have proposed technigsed ba data-flow analysis in order to op-

45

Table 17: Cost analysis of our approach catdistribution types. On the average, half the compilatianeti
is spent in generating the communication loops. All the @alare in percentages of the total compilation
time (except th&UN column). The run-time overhead of executing these loopstizery high.

BREAKDOWN (%)
program GLO | OME | REM GLP LOP DIF RUN
hydro 5 57 38 62 48 14 6
hydro_m 5 59 36 64 48 16 6
adi 7 43 50 50 36 14 4
tomcatv 5 66 29 71 47 24 5
swim 5 63 32 68 58 10 9
addx 8 50 42 58 54 4 8
eflux 5 63 32 68 54 14 7
tred2 3 62 35 65 55 10 9
Taverage || 6] 8] 36 64 50 4] 7]

Table 18: Total compilation times (in milliseconds) of then€ga-based approach and the PTD-based ap-
proach. ThedME column and th@TD column gives the compilation times obtained using the OntEged
and the PTD-based approaches, respectively. Tiigecolumn shows the percentage increase when going

from PTD to OME.

program BLK CYC
OME PTD INC OME PTD INC
hydro 3,454 | 2,715 27 3,622 | 2,927 24
hydro_m 3,356 | 2,644 25 3,494 | 2,801 25
adi 2,216 | 2,044 8 2,265 | 2,086 9
tomcatv 3,575 | 3,148 14 || 4,048 | 3,290 23
swim 5,067 | 4,426 15 5,935 | 5,015 18
addx 2,638 | 2,241 18 2,805 | 2,615 7
eflux 3,304 | 2,650 25 3,372 | 2,814 20
tred2 3,931 | 3,355 17 || 4,101 | 3,390 21

|| average || 3,443 | 2,903 | 19 || 3,705 | 3,117 | 19 ||

46

timize communication across multiple loop nests. Agrawal &altz [1] present a framework for partial
redundancy elimination for communication optimizationdiata-parallel programs with irregular data ac-
cess patterns. Amarasinghe and Lam [6] present severaithlgs to optimize communication on machines
with distributed address spaces. Their approach usdagherite treerepresentation to eliminate redundant
messages within a single loop nest. Although, their teaieig also based on data-flow information, they
do not allow loop nests within conditionals.

Granston and Veidenbaum [19] propose an algorithm thaiegppbmbined flow and dependence anal-
ysis to programs with parallel constructs. Their algoritiatects partial redundancies across loop nests and
in the presence of conditionals. However their approacloigiivectly applicable to programs with general
data distributions.

Gong et al. [18] describe optimizations that reduce comupatitan overhead and execution time. Their
optimizations include elimination of redundant commuti@a and combining messages. However their
approach cannot handle general types of distributions, theg offer no optimizations to eliminate the
excessive number of communication calls due to split ofmrat

Gupta et al. [22] present a framework to optimize commuivcabased on data-flow analysis and avail-
able section descriptors. Their approach is aggressivaptoiing the locally available data but fails to
support general block-cyclic distributions, and the repreation that they use makes it difficult to embed
alignment and distribution information. Moreover, the commication set information they compute may
not be precise.

Hanxleden and Kennedy [27, 28] present a code placemengfvark for optimizing communication
caused by irregular array references. Although the frannkeygoovides global data-flow analysis, it treats
arrays as indivisible entities; thus, it is limited in exjpilog the information available in compile-time.
In contrast, Kennedy and Nedeljkovic [32] offer a globaladfibw analysis technique using bit vectors.
Although this approach is efficient, it is not as precise asapproach presented in this paper. They do not
give any clue how their method can be extended to handle giyee block-cyclic distributions.

Kennedy and Sethi [35, 36, 37] show the necessity of incatpay resource constraints into a global

47

communication optimization framework. They take into agutdimited buffer size constraint and illustrate
how strip-mining improves the efficacy of the communicat@acement. Their approach works with mul-
tiple nests but not for general block-cyclic distributior&ince they do not give any experimental results, a
direct quantitive comparison of this work with ours is nospible. Their work defines a data-flow variable
calledSAFE which can be used in a similar manner as our prediggte). Kennedy and Sethi [35, 36, 37]
do not use a linear algebra framework; later work from the Bhboject at Rice [2, 3] includes the use of
the Omega library for message optimizations.

The IBM pHPF compiler [13, 23] achieves both redundancy ielition and message combining glob-
ally. But message combining is feasible only if the messdge® identical patterns, or one pattern is a
subset of another. The general block-cyclic distributjidrevever, can lead to complicated data access pat-
terns and communication sets which, we believe, more @iyctsin be represented within a linear algebra
framework.

Yuan et al. [49, 50] present a communication optimizatioprepch based on array data-flow analysis.
The cost of the analysis is managed by partitioning the dpétion problem into subproblems, and solving
the subproblems one at a time. Since that approach is alsal lmesRSDs, it has difficulty in handling
block-cyclic distributions.

Adve et al. [2, 3] describe an integer set based approachralysis and code generation for data
parallel programs that uses the Omega library [31]. Theysican performing message vectorization and
message coalescing for general access patterns. Theioanedih also work with computation decomposi-
tion schemes that are not based on the owner-computes hésePpapers do not show how their techniques
handle global communication optimization for multiple fooests in the case of block-cyclic distributions.

Interval analysis used in this paper was first introduced bgnfand Cocke [5]. They used it to solve
several data-flow problems; the analysis was then exteng&dss and Steenkiste [20] to array sections.
The approach proposed by Gupta et al. [22] mentioned abdivnesehe technique by Gross and Steenkiste
using loop-carried dependences.

In this paper we used ideas from the linear algebra frame\ujriknd data-flow analysis [5, 4] devel-

48

oped for performing optimizations on the CFG represemntatibthe programs. We have shown that these
two techniques blend together in a nice manner, which mageking with the global communication opti-
mization problem feasible even in the presence of geneoakbtyclic distributions. We should emphasize
that the data-flow equations given by Figures 7 and 11 aretemlyepresentative solutions to show how the
global communication problem can be put into the linear laigdramework. We believe most of the pre-
vious approaches can also be put into this framework by fiéidg the communication and ownership sets
in terms of equalities and inequalities. This would not ogilye those approaches the capability to handle
arbitrary alignments and distributions, but also providih accuracy in manipulating the communication

sets.

8 Summary

Management of accesses to non-local data to minimize corigation costs is critical for scaling perfor-
mance on distributed-memory message-passing machingiisipaper, we presented a global communi-
cation optimization scheme based on two complementannigobs: data-flow analysis and linear algebra
framework. The combination of these techniques allows usptomize communication globally and use
polyhedron scanning techniques to enumerate global corcation sets effectively for HPF-like align-
ments and distributions including block-cyclic distritmts. Our framework takes into account control flow
and achieves message vectorization, message coales@sgage aggregation and redundant communica-
tion elimination all in a unified framework. The cost of theadysis is managed by keeping the communica-
tion sets symbolically until the end of the data-flow anayshere the Omega library is called to generate
actual sets in terms of equalities and inequalities. Thexgntal results demonstrate the effectiveness
of our approach in reducing the number of messages and theneobf the data to be communicated. Fu-
ture work will address the development of performance n®teprovide the compiler with the ability to

estimate the profitability of message aggregation and soaig globally.

49

Acknowledgments

The authors would like to thank Evan Rosser for his help itelling the Omega library and Omega calcu-
lator, a high level interface to the Omega library. The matgresented in this paper is based on research
supported in part by Prof. A. Choudhary’s NSF Young Investig Award CCR-9357840, the NSF grant
CCR-9509143, DOE AV-6193 and the Air Force Materials Comdhander contract F30602-97-C-0026.
The work of P. Banerjee is supported in part by the NSF undantg€CR-9526325 and in part by the
DARPA under contract DABT-63-97-C-0035. The work of J. Ranjam is supported in part by the NSF

Young Investigator Award CCR-9457768 and the NSF grant ®2R3422.

References

[1] G. AGRAWAL and J. SALTZ. Inter-procedural data flow basgmtimizations for distributed memory

compilation.Software Practice and Experienc/(5): 519-545, 1997.

[2] V. ADVE, J. MELLOR-CRUMMEY, and A. SETHI. An integer setdmework for HPF analysis and

code generation. Technical Report TR97-275, Computen8ei®ept., Rice University, 1997.

[3] V. ADVE and J. MELLOR-CRUMMEY. Advanced code generatifam High Performance Fortran. In
Languages, Compilation techniques, and Run-time Systn&céhlable Parallel SystemS§,. Pande
and D. Agrawal (Eds.), Chapter 18, Lecture Notes in Compbitéence Series, Springer-Verlag, 1998

(to appear).

[4] A. V. AHO, R. SETHI, and J. ULLMAN.Compilers: Principles, techniques, and toofsddison-

Wesley, Reading, MA, second edition, 1986.

[5] F. E. ALLEN and J. COCKE. A program data flow analysis pioe. Communications of the ACM,

19(3):137-147, March 1976.

50

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

S. AMARASINGHE and M. LAM. Communication optimizatiomd code generation for distributed
memory machines. IRroc. SIGPLAN’93 Conference on Programming Language Deaigl Imple-

mentationpages 126-138, Albuquerque, NM, June 1993.

A. ANCOURT, F. COELHO, F. IRIGOIN, and R. KERYELL. A linealgebra framework for static

HPF code distributionScientific Programmingy(1):3-28, Spring 1997.

V. BALASUNDARAM, G. FOX, K. KENNEDY, and U. KREMER. An irgractive environment for
data partitioning and distribution. Bth Distributed Memory Computing Conferen&harleston, SC,

April 1990.

U. BANERJEE.Loop parallelization Kluwer Academic Publishers, 1994,

P. BANERJEE, J. A. CHANDY, M. GUPTA, E. W. HODGES 1V, J. GIOLM, A. LAIN, D. J.
PALERMO, S. RAMASWAMY, and E. SU. The PARADIGM compiler foistributed-memory mul-

ticomputerslEEE Computer28(10):37-47, October 1995.

Z. BOZKUS, A. CHOUDHARY, G. FOX, T. HAUPT, and S. RANKA. Aompilation approach
for Fortran 90D/HPF compilerd.anguages and Compilers for Parallel Computing, Banerjee et

al. (Eds.), Lecture Notes in Computer Science, Volume 768ep 200-215, 1994.

D. CALLAHAN and K. KENNEDY. Analysis of inter-procedat side effects in a parallel program-

ming environmentJournal of Parallel and Distributed Computing(5):517-550, October 1988.

S. CHAKRABARTI, M. GUPTA, and J.-D. CHOI. Global commigation analysis and optimization.
In Proc. ACM SIGPLAN’96 Conference on Programming Languagaddeand Implementatiopages

6878, Philadelphia, PA, May 1996.

S. CHATTERJEE, J. GILBERT, F. LONG, R. SCHREIBER, and ENG. Generating local addresses
and communication sets for data-parallel progradasirnal of Parallel and Distributed Computing,

26(1):72-84, April 1995,

51

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

B. CREUSILLET and F. IRIGOIN. Inter-procedural arraggion analyses. IRroc. 8th International
Workshop on Languages and Compilers for Parallel Compuages 46—-60, Columbus, Ohio, Au-

gust 1995.

I. FOSTER. Designing and building parallel programsidison-Wesley Publishing Company, Read-

ing, MA 01867.

M. GAREY and D. JOHNSONComputers and intractability: A guide to the theory of NP-

completenes3V. H. Freeman and Company, 1979.

C. GONG, R. GUPTA, and R. MELHEM. Compilation techniguer optimizing communication on
distributed-memory systems. Iroc. International Conference on Parallel Processivgplume I,

pages 39-46, St. Charles, IL, August 1993.

E. GRANSTON and A. VEIDENBAUM. Detecting redundant asses to array data. Proc. Super-

computing’91 pages 854-865, Albuquerque, NM, November 1991.

T. GROSS and P. STEENKISTE. Structured data-flow amafgs arrays and its use in an optimizing

compiler. InSoftware-Practice and Experienoml 20, no 2, pages 133-155, February 1990.

M. GUPTA and P. BANERJEE. Demonstration of automatitagaartitioning techniques for paralleliz-
ing compilers on multicomputer$EEE Transactions on Parallel and Distributed SysteB(2):179—

193, March 1992.

M. GUPTA, E. SCHONBERG, and H. SRINIVASAN. A unified detaw framework for optimizing
communicationLanguages and Compilers for Parallel Computikg, Pingali et al. (Eds.), Lecture

Notes in Computer Science, Volume 892, pages 266—282, 1995.

M. GUPTA, S. MIDKIFF, E. SCHONBERG, V. SESHADRI, D. SHIBS, K. WANG, W. CHING,
and T. NGO. An HPF compiler for the IBM SP-2. Proc. Supercomputing 95%an Diego, CA,

December 1995.

52

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. K. S. GUPTA, S. D. KAUSHIK, C.-H. HUANG, and P. SADAYAAN. Compiling array expres-
sions for efficient execution on distributed-memory maekidournal of Distributed and Parallel

Computing,32(2):155-172, February 1996.

M. W. HALL, S. HIRANANDANI, K. KENNEDY, and C.-W. TSENGInter-procedural compilation
of Fortran D for MIMD distributed-memory machines. Rroc. Supercomputing’92Minneapolis,

MN, November 1992

M. W. HALL, B. MURPHY, S. AMARASINGHE, S. LIAO, and M. LAM Inter-procedural analysis
for parallelization. InProc. 8th International Workshop on Languages and Comgpifer Parallel

Computerspages 61-80, Columbus, Ohio, August 1995.

R.v. HANXLEDEN and K. KENNEDY. A code placement frameskand its application to commu-

nication generation. Technical Report CRPC-TR93337-FCRRice University, October 1993.

R. v. HANXLEDEN and K. KENNEDY. Give-n-take — a balancedde placement framework. In
Proc. ACM SIGPLAN'94 Conference on Programming Languagsidieand ImplementatiorQr-

lando, FL, June 1994.

J. L. HENNESSY and D. A. PATTERSOIN.omputer Architecture: A Quantitative Approadhorgan

Kaufmann Publishers, San Mateo, CA, 1990.

S. HIRANANDANI, K. KENNEDY, and C. TSENG. Compiling Foan D for MIMD distributed-

memory machinesCommunications of the ACN85(8):66—80, August 1992.

W. KELLY, V. MASLOV, W. PUGH, E. ROSSER, T. SHPEISMAN, dbAVID WONNACOTT. The
Omega Library interface guide. Technical Report CS-TRE534dS Dept., University of Maryland,

College Park, March 1995.

K. KENNEDY and N. NEDELJKOVIC. Combining dependencedatata-flow analyses to optimize
communication. IfProc. 9th International Parallel Processing Symposipages 340-346, Santa Bar-

bara, CA, April 1995.

53

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

K. KENNEDY, N. NEDELJKOVIC, and A. SETHI. A linear-timalgorithm for computing the mem-
ory access sequence in data parallel programBrde. the Fifth ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming§anta Barbara, CA, pages 102-111, July 1995.

K. KENNEDY, N. NEDELJKOVIC, and A. SETHI. Communicatiogeneration for cyclic(k) distri-
butions. InLanguages, Compilers, and Run-Time Systems for Scalalgp@ersB. Szymanski and

B. Sinharoy (Eds.), Chapter 14, Kluwer Academic Publish&®96.

K. KENNEDY and A. SETHI. A constrained-based commutima placement framework, Technical

Report CRPC-TR95515-S, CRPC, Rice University, 1995.

K. KENNEDY and A. SETHI. A communication placement frawork with unified dependence and
data-flow analysisProc. 3rd International Conference on High Performance @ating, Trivandrum,

India, December 1996.

K. KENNEDY and A. SETHI. Resource-based communicagtecement analysid.anguages and
Compilers for Parallel Computind). Sehr et al. (Eds.), Lecture Notes in Computer Scienceyriel

1239, pages 369-388, Springer-Verlag, 1997.

J. KNOOP, O. RUTHING, and B. STEFFEN. Optimal code motidheory and practiceACM Trans-

actions on Programming Languages and Systdig}):1117-1155, July 1994,

C. KOELBEL, D. LOVEMEN, R. SCHREIBER, G. STEELE, and MOBEL. High Performance

Fortran Handbook The MIT Press, 1994.

D. J. PALERMO, E. SU, J. A. CHANDY, and P. BANERJEE. Commiuation optimizations used in
the PARADIGM compiler for distributed-memory multicompeus. InProc. International Conference

on Parallel ProcessingSt. Charles, IL, August 1994,

C. POLYCHRONOPOULOS, M. B. GIRKAR, M. R. HAGHIGHAT, C..ILEE, B. P. LEUNG, and

D. A. SCHOUTEN. Parafrase-2: an environment for paralietjz partitioning, synchronizing, and

54

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

scheduling programs on multiprocessorsPhoc. the International Conference on Parallel Processing

St. Charles IL, August 1989, pages Il 39-48.

W. PUGH. A practical algorithm for exact array depencermanalysisCommunications of the ACM,

35(8):102-114, August 1992.

E. SU, A. LAIN, S. RAMASWAMY, D. J. PALERMO, E. W. HODGESJ and P. BANERJEE. Ad-
vanced compilation techniques in the PARADIGM compilerdtributed-memory multicomputers.
In Proc. 9th ACM International Conference on Supercomputpages 424-433, Barcelona, Spain,

July 1995.

E. SU, D. J. PALERMO, and P. BANERJEE. Processor taggadriptors: a data structure for compil-
ing for distributed-memory multicomputers. Rroc. Conf. on Parallel Architectures and Compilation

TechniquesMontreal, Canada, August 1994.

R. E. TARJAN. Testing flow graph reducibilityournal of Computer and System Scien®355-365,

1974.

A. THIRUMALAI and J. RAMANUJAM. Efficient computation baddress sequences in data-parallel
programs using closed forms for basis vectalsurnal of Parallel and Distributed Computing,

38(2):188-203, November 1996.

A. VENKATACHAR, J. RAMANUJAM, and A. THIRUMALAI. Communication generation for

block-cyclic distributionsParallel Processing Letterg,(2):195-202, June 1997.

M. WOLFE. High Performance Compilers for Parallel Computji&ddison-Wesley Publishing Com-

pany, CA, 1996.

X.YUAN, R. GUPTA, and R. MELHEM. An array data flow analgdased communication optimizer.
In Proc. 10th Annual Workshop on Languages and Compilers faalleh Computing,Minneapolis,

Minnesota, August 1997.

55

[50] X. YUAN, R. GUPTA, and R. MELHEM. Demand-driven data fl@malysis for communication opti-

mization.Parallel Processing Letterg,(4):359-370, December 1997.

[51] M. GERNDT. Updating distributed variables in local cputations. InConcurrency — Practice and

Experience2(3), pages 171-193, September 1990.

[52] H. ZIMA and B. CHAPMAN.Supercompilers for parallel and vector computek&M Press, 1991.

56

	A Global Communication Optimization Technique Based on Data-Flow Analysis and Linear Algebra
	Recommended Citation

	tmp.1284992644.pdf.5yfyr

