
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1998

A Global Communication Optimization Technique Based on Data-A Global Communication Optimization Technique Based on Data-

Flow Analysis and Linear Algebra Flow Analysis and Linear Algebra

Mahmut Kandemir
Syracuse University

P. Banerjee
Northwestern University

Alok Choudhary
Northwestern University

J. Ramanujam
Louisiana State University

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kandemir, Mahmut; Banerjee, P.; Choudhary, Alok; and Ramanujam, J., "A Global Communication
Optimization Technique Based on Data-Flow Analysis and Linear Algebra" (1998). Electrical Engineering
and Computer Science. 24.
https://surface.syr.edu/eecs/24

This Working Paper is brought to you for free and open access by the College of Engineering and Computer
Science at SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an
authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/24?utm_source=surface.syr.edu%2Feecs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

A Global Communication Optimization Technique Based on

Data-Flow Analysis and Linear Algebra

M. KANDEMIR� P. BANERJEEy A. CHOUDHARYz J. RAMANUJAMx N. SHENOY{
Abstract

Reducing communication overhead is extremely important indistributed-memory message-passing archi-

tectures. In this paper, we present a technique to improve communication that considers data access patterns

of the entire program. Our approach is based on a combinationof traditional data-flow analysis and a lin-

ear algebra framework, and works on structured programs with conditional statements and nested loops

but without arbitrary goto statements. The distinctive features of the solution are the accuracy in keep-

ing communication set information, support for general alignments and distributions including block-cyclic

distributions and the ability to simulate some of the previous approaches with suitable modifications. We

also show how optimizations such as message vectorization,message coalescing and redundancy elimina-

tion are supported by our framework. Experimental results on several benchmarks show that our technique

is effective in reducing the number of messages (an average of 32% reduction), the volume of the data

communicated (an average of37% reduction), and the execution time (an average of26% reduction).

Keywords: communication optimizations, message vectorization, distributed memory machines, paral-

lelism, data-flow analysis, global optimizations.�Dept. Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY 13244. (mtk@ece.nwu.edu)yDept. Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208. (banerjee@ece.nwu.edu)zDept. Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208. (choudhar@ece.nwu.edu)xDept. Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803. (jxr@ee.lsu.edu){Dept. Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208. (nagaraj@ece.nwu.edu)

1 Introduction

Distributed memory multiprocessors such as the IBM SP-2 andthe Intel Paragon are attractive for high

performance computing in that they offer potentially high levels of flexibility, scalability and performance.

But the need for explicit message passing resulting from thelack of a globally shared address space renders

programming these machines a difficult task. The main objective behind the efforts such as High Perfor-

mance Fortran (HPF) [39] and Fortran D [30] is to raise the level of programming by allowing the user

to write programs with a shared address space view augmentedwith directives that specify data mapping.

The compilers for such languages are responsible for partitioning the computation, inserting the necessary

commands that implement the required message passing for access to non-local data.

On such machines, the time (cost) to access non-local data isusually orders of magnitude higher than ac-

cessing local data. For example, on the Intel Paragon the processor cycle time is20 nanoseconds whereas the

remote memory access time is between10; 000 and30; 000 nanoseconds depending on the distance between

communicating processors [29]. Therefore, it is imperative that the frequency and volume of non-local ac-

cesses are reduced as much as possible. In particular, in message-passing programs, the startup cost for the

messages can easily dominate the execution time. For example, on the Intel Paragon the message startup

time is approximately1; 720 times the transfer time per word; in the IBM SP-2 this figure is around360
[16]. These figures indicate that optimizing communicationis very important. Several software efforts have

been aimed at reducing the communication overhead. The maingoal of these optimizations is to increase

the performance of programs by combining messages in various ways to reduce the overall communication

overhead. The most common optimization technique used by previous researchers is message vectorization

[51, 8, 30, 11, 10]. In message vectorization, instead of naively insertingsendandrecvoperations just before

references to non-local data, communication is hoisted to outer loops. Essentially this optimization replaces

many small messages with one large message, thereby reducing the number of messages. For example, con-

sider the program fragment shown in Figure 1(a) and assume that all arrays are distributed across processors

block-wise in the second dimension. Figures 1(b) and (c) show naively inserted messages and message vec-

torization respectively, for a processorp before loop bounds reduction (a technique to allow processors to

2

execute only those iterations which have assignments that write to local memory [30]) and guard insertion

(a technique that guarantees correct execution of statements within loop nests). The notationsendfB,q,ng
means thatn elements of arrayB should be sent to processorq; recvfB,q,ng is defined similarly. For this

discussion, we are not concerned with exactly which elements are sent and received. Notice that the ver-

sion in Figure 1(c) reduces the message startup cost as well as the latency. Some of the researchers [30, 2]

also considered message coalescing which is a technique that combines messages due to different refer-

ences to the same array, and message aggregation which combines messages due to references to different

arrays to the same destination processor into a single message. In general, due to private physical memory

spaces, generating communication code for message-passing architectures might be very difficult, because

it requires the correct non-local elements to get transferred to the memories of the processors that will use

them. Optimizing compilers for data-parallel languages automate this time consuming task of deriving node

programs based on the data distribution specified by the programmer.

The main problem with the optimizations mentioned above is that they optimize communication for a

single nest at a time. This restriction prevents a compiler from performing inter-loop optimizations such

as global elimination of redundant communication. To see this, consider Figure 1(d) which shows the

global optimization of the same program fragment via elimination of redundant communication. Notice

that, compared with the message-vectorized program in Figure 1(c), this version reduces both the number

of messages and the communication volume.

Recently a number of authors have proposed techniques basedon data-flow analysis to optimize com-

munication across multiple loop nests [18, 22, 35, 13, 49, 50]. Most of these approaches use a variant of

Regular Section Descriptors (RSD) introduced by Callahan and Kennedy [12]. Two most notable represen-

tations are Available Section Descriptor (ASD) [22] and Section Communication Descriptor (SCD) [49, 50].

Associated with each array that is referenced in the programis an RSD that describes the portion of the array

being referenced. Although this representation is convenient for simple array sections such as those found in

pure block or cyclic distributions, it is hard to embed alignment and general distribution information into it.

Apart from inadequate support for block-cyclic distributions, working with section descriptors may some-

3

DO j = 2, 255 DO j = 2, 255DO i = 1, 255 DO i = 1, 255A(i,j)=B(i,j)+B(i,j-1) send fB,p+1,1g, recv fB,p-1,1gEND DO A(i,j)=B(i,j)+B(i,j-1)END DO END DOEND DODO j = 2, 255 DO j = 2, 255DO i = 2, 256 DO i = 2, 256C(i,j)=B(i,j-1)+C(i,j) send fB,p+1,1g, recv fB,p-1,1gEND DO C(i,j)=B(i,j-1)+C(i,j)END DO END DOEND DO(a) (b)send fB,p+1,255g, recv fB,p-1,255g send fB,p+1,256g, recv fB,p-1,256gDO j = 2, 255 DO j = 2, 255DO i = 1, 255 DO i = 1, 255A(i,j)=B(i,j)+B(i,j-1) A(i,j)=B(i,j)+B(i,j-1)END DO END DOEND DO END DOsend fB,p+1,255g, recv fB,p-1,255gDO j = 2, 255 DO j = 2, 255DO i = 2, 256 DO i = 2, 256C(i,j)=B(i,j-1)+C(i,j) C(i,j)=B(i,j-1)+C(i,j)END DO END DOEND DO END DO(c) (d)
Figure 1: (a) A code fragment. (b) Naive communication placement. (c) Message vectorization. (d) Global
communication optimization.

times result in overestimation of the communication sets, since regular sections are not closed under union

and difference operators. The resulting inaccuracy may be linear with the number of data-flow formulations

to be evaluated, thus defeating the purpose of global communication optimization.

This problem can be illustrated using the program fragment given in Figure 2(a) assuming that arraysX
andY are distributed block-wise across two processors,0 and1. The RSDs corresponding to these two com-

munications are also shown next to the loop statements. Notice that all communication is from processor0
to processor1. The problem here is that a data-flow approach based on RSDs tocombine these communi-

cations will be unable to represent the combined communication as an RSD. This means that even if all the

communication can be hoisted above thei loop, the two communications can only be concatenated resulting

in redundant communication as these two sets have some common elements. Moreover, since the commu-

4

real X(1000), Y(1000)DO t = 1, TDO i = 0, 49 -------------> Si = (1:200:4)Y(i+500) = X(4*i+1)END DODO j = 17, 99 -------------> Sj = (50:300:3)Y(j+500) = X(3*j-1)END DODO i = 1, 1000X(i) = f(Y(i),X(i))END DOEND DO (a)

for (i = 1; i <= 49; i += 4) {process_element(i);}for (i = 50; i <= 197; i++) {if (Mod(i-1,4) == 0) {process_element(i);}if (Mod(i+1,3) == 0&& -i-16 <= 12*Div(-i-10,12)) {process_element(i);}}for (i = 200; i <= 299; i += 3) {process_element(i);} (b)
Figure 2: (a) An example code fragment that shows the shortcomings of RSDs. (b) Code generated by using
the Omega to enumerate the communication set in (a).process element() is an implementation specific
function to handle enumerated elements.

nication cannot be taken out oft loop because of a data dependence [52, 48], the redundant communication

will occur T times.

On the other hand, we represent these sets in our framework asSi := f[d] : 9(� : d = 1 + 4� and1 �d � 197)g andSj := f[d] : 9(� : 1 + d = 3� and50 � d � 299)g. Then by using the Omega library

[31], we derive the code shown in Figure 2(b) which can enumerate all the elements inSi + Sj. As a result,

each element will be communicated once and only once. It should be stressed that the same problem with

RSDs can occur with set difference (�) operations. For instance, the RSD difference between(1:1000:3)
and(1:1000:7) cannot be represented as a single RSD. Unfortunately, the inaccuracies originating from

the union (and difference) operations on the RSDs accumulate as the data-flow process proceeds, making

the final communication sets imprecise.

In this paper, we make the following contributions:

(1) We show that the problem ofglobal communication optimization forregular scientific codes can be

cast in a linear algebra framework. This allows the compilerto easily apply traditional loop-based

optimization techniques such as message vectorization, message coalescing, message aggregation

as well as global optimizations such as redundant communication elimination and communication

hoisting.

5

(2) We present two different approaches, primarily for hoisting communication and minimizing the num-

ber of messages, respectively, that are aimed at reducing communication overhead and show the trade-

off between these two. Both these approaches are accurate; using the linear algebra framework pro-

posed by Ancourt et al. [7], they are able to handle the optimization problem at the granularity of

individual array elements.

(3) We show that the global communication sets resulting from our analysis can be enumerated by our use

of the Omega library [42, 31] from the University of Maryland. Although the Omega library works on

the Presburger formulas and the best known asymptotic upperbound of any algorithm for verifying

the Presburger formulas isO(222n), the library is much more efficient for the practical cases that arise

in compilation.

(4) We compare our approach both qualitively and quantitively to the previous work which focused on a

single loop nest at a time.

The remainder of this paper is organized as follows. Section2 briefly describes some important con-

cepts such as control flow graphs, interval analysis, dependence analysis and the linear algebra framework

used throughout the paper. We present our approach in detailin Section 3 and show how it uses both the

linear algebra framework and data-flow analysis. Section 4 discusses the effect of hoisting communication

vis-a-vis reducing the number of messages. In Section 5, we present details of communication generation.

Section 6 reports experimental results on a16 node IBM SP-2 distributed-memory message-passing ma-

chine and shows that our technique is effective in reducing number of communication messages, volume of

communication and execution time. Section 7 discusses related work and Section 8 concludes the paper.

2 Preliminaries

The main idea of this work is to show that a global communication optimization problem can be put into

a linear algebra framework and that doing so might be useful in practice. Our approach gives the compiler

the ability to represent communication sets globally as equalities and inequalities as well as to use poly-

6

hedron scanning techniques to perform optimizations such as redundant communication elimination and

global message coalescing which were not possible under theloop-nest based communication optimization

schemes. The following subsections give information aboutthe basic concepts used throughout the paper.

2.1 Control Flow Graph (CFG)

We concentrate on structured programs with conditional statements and nested loops but without arbitrary

goto statements. Our technique, however, can be extended todeal with jumps out of loops as well. We

assume that array subscript functions, loop bounds and conditional expressions are affine functions of en-

closing loop indices and symbolic constants. We also assumethat the number of processors is known

beforehand.

A basic blockis a sequence of consecutive statements in which the flow of control enters at the beginning

and leaves at the end without the possibility of branching except may be at the end [4]. Acontrol flow graph

(CFG) is a directed graph constructed by basic blocks and represents the flow-of-control information of the

program.

For our purposes, the CFG can be thought of as a directed graphG = (V; E) where eachv 2 V
represents either a basic block or a (reduced) interval thatrepresents a loop, and eache 2 E represents

an edge between blocks. In this paper, depending on the context, we use the termnodeinterchangeably

for a statement, a block or an interval. Two unique nodess and t denote the start and terminal nodes,

respectively, of a CFG. One might think of these nodes as dummy statements. It is assumed that every

noden 2 V lies on a path froms to t. We define the sets of all successors and predecessors of a noden as succ(n) = fm j (n;m) 2 Eg and pred(n) = fm j (m;n) 2 Eg, respectively. We say nodei
dominatesnodej in the CFG, if every path froms to j goes throughi. We write this relation asj 2 dom(i).
The CFGs we consider have the following properties in addition: (a) emptyelsebranches are added to

if/endifconstructs; (b) all the non-local references in theloop boundsandif-conditionsare taken just above

the respective constructs; and (c) like [22], any edge that goes directly from a block with more than one

successor, to a block with more than one predecessor is split. This last transformation, shown in Figure 3,

7

x

x

y
y

new node

Figure 3: An example application of the edge-split transformation to eliminate critical edges-the edges going
from a node with more than one successor to a node with more than one predecessor.

eliminates all critical edges [38].

2.2 Interval Analysis

We assume that prior to our analysis, the compiler has performed all loop level transformations [9, 48, 52] to

enhance parallelism (e.g., loop permutation, loop distribution) and optimize communication. Our technique

is based oninterval analysisperformed on the CFG. As explained in [5], the interval analysis consists of

a contractionphase and anexpansionphase. For programs written in a structured language, an interval

corresponds to a loop, and there is a well defined algorithm topartition a CFG into disjoint intervals [4]. We

use a version of the interval detection algorithm that identifies Tarjan’s intervals [45].

The contraction phase collects information about what is generated and what is killed inside each in-

terval. Then the interval is reduced to a single node and annotated with the information collected. This is

a recursive procedure and stops when the reduced CFG contains no more cycles. In other words, the main

purpose of this phase is to percolate the influence of each node to the outside into an increasingly more

global context.

After the contraction phase, the expansion phase is run. In each step of this phase, a node (reduced

interval) is expanded, and the information regarding the nodes in that interval is computed. In our case, at

each step of the expansion phase, communication required for the intervals (loops) is determined.

Figure 4 shows the two phases of the interval analysis for an example CFG. In this figure, as shown by

the dashed arrows, the contraction phase proceeds from leftto right, whereas the expansion phase proceeds

in the reverse direction. As an example, the block marked with 3; 4 represents an interval (a loop) containing

8

1 1 1 1,2,3,4

2,3,4

3,4

2 2

3

4

Contraction Phase
Expansion Phase

Figure 4: An example application of interval analysis basedon Tarjan intervals. First, the contraction phase
is run and then the expansion phase is executed.

blocks3 and4. It is also possible to adapt our approach to work with interval-flow graph, which is basically

a CFG with an interval structure imposed on it [27, 28, 37].

It should be noted that since we assume that our input programs are structured, irreducible (intermediate)

CFGs [4] can not occur during our analysis.

2.3 Data Dependence

LetSx andSy be two statements (not necessarily distinct) enclosed by nested loops. Adata dependencede-

termines which iterations of the loops can be executed in parallel. A flow dependenceexists from statementSx to statementSy if Sx writes a value that is subsequently (in sequential execution) read bySy. Such a

dependence implies that instances ofSx andSy must execute as if some of the nest levels must be executed

sequentially. Ananti-dependenceexists betweenSx andSy if Sx reads a value that is subsequently modified

by Sy. An output dependenceexists betweenSx andSy if Sx writes a value that is subsequently written

by Sy as well. Data dependences areloop-independentif the accesses to the same memory location occur

in the same loop iteration; if the accesses occur in different loop iterations they are said to beloop-carried.

Note that in that case not all loop nest levels need to contribute to the dependence. The outermost loop level

that contributes the dependence is said tocarry that dependence. In-depth discussion of data dependence

analysis techniques is beyond the scope of this paper and canbe found elsewhere [48, 52].

9

2.4 Linear Algebra Framework

HPF-like languages provide compiler directives that allowthe user to perform data allocation onto local

memories. The compiler then uses these distribution directives to partition computation across processors.

It has been shown in [7] that linear algebra provides a powerful framework to generate code for distributed-

memory message-passing machines, taking into account compiler directives.

Most of the compilers for distributed-memory message-passing machines use theowner-computesrule,

which simply assigns each computation to the processor thatowns the data being computed [30, 51, 8]. In

this paper, we also assume the owner-computes rule; our framework, however, can be modified to handle

the cases where this rule is relaxed. In such cases, the LHS references can also introduce communication.

For clarity of the presentation, we do not consider relaxingthe owner-computes rule in this paper.

Our approach uses the affine framework introduced by Ancourtet al. [7]. In this framework, data

arrays, templates and processors are all declared as Cartesian grids as in HPF [39]. The data arrays are

first aligned to templates and then these templates are distributed across the memories of the processors.

Consider the following program fragment under a compilation scheme based on HPF-like directives and the

owner-computes rule. Acyclic(C) attribute indicates that the template (or array) dimensionin question

will be partitioned into blocks of sizeC and these are assigned to processors in a round-robin fashion. Theblock andcyclic(1) are just two common cases for the generalcyclic(C) distribution.real X(al:au)!HPF$ template T(tl:tu)!HPF$ processors PROC(pl:pu)!HPF$ align X(j) with T(�*j+�)!HPF$ distribute T(cyclic(C)) onto PROCDO i = il, iuX(L*i+�L) = � � � X(R*i+�R) � � �END DO
10

LetRL = X(L*i+�L) andRR = X(R*i+�R). In the rest of the paper, for the sake of simplicity, we will

sometimes refer to the subscript expressions as data (array) elements when the intention is clear. Assumingp andq denote two processors, we define the following sets.Own(X; q) = fd j d 2 X and is owned byqgCompute(X;RL; q) = fi j L � i+ �L 2 Own(X; q) andil � i � iugView(X;RR; q) = fd j 9{ st. { 2 Compute(X;RL; q) andd = X(R � {+ �R) andil � { � iugCommSet(X;RR; p; q) = Own(X; q) \ View(X;RR; p):
Intuitively, the setOwn(X,q) refers to the elements mapped onto processorq through compiler directives.

The similarOwn sets are defined for other arrays as well. The set of iterations to be executed byq due

to a LHS referenceRL is given byCompute(X,RL,q). Of course, during the execution of this local

iteration set, some elements (local or non-local) denoted by the RHS referenceRR will be required; the setView(X,RR,q) defines these elements. Finally,CommSet(X,RR,p,q) defines the elements that should

be communicated from processorq to processorp due to referenceRR.

It should be noted that in general there may be more than one RHS reference, and the computation may

involve multi-dimensional arrays and a multi-level nest inwhich cased andi denote data and iteration

vectors respectively. Also in the most general case,�, L andR are matrices, and�, �L and�R are vectors.

The definition of theOwn set above is rather informal. For a more precise definition, we take into account

the block-cyclic distribution and define theOwn set asOwn(X; q) = fd j 9t; c; l such thatt = � � d+ � andt = C � P � c+ C � q+ l
andal � d � au andpl � q � pu andtl � t � tu and0 � l � C � 1g;

whereP = pu � pl + 1. In this formulation,t = � � d + � represents alignment information andt =C � P � c+ C � q+ l denotes the distribution information. In other words, eacharray elementd is mapped

onto a point in a local two-dimensional array. This point canbe represented by a pair (c,l) and gives the

11

local address of the data item in a processor. Simpleblock andcyclic(1) distributions can easily be

handled within this framework by settingc = 0 andl = 0, respectively. As an example, Figure 5(a)

shows the global and local addresses of a one-dimensional array distributed in block-cyclic manner across

three processors withC = 4. Figures 5(b) and (c), on the other hand, illustrate two-dimensional views of

the global and local addresses, respectively. For each processor, the horizontal dimension corresponds toc
coordinate whereas the vertical dimension denotesl. For example, the55th element of the (global) array is

mapped onto Processor1 with c = 4 andl = 3 as local coordinates.

The relationt = � � d + � can be generalized by adding a replication matrixV which eliminates the

replicated dimension from the equations:V � t = � � d+�. In the case where no replication is specified,V
is the identity matrix. Also, in order to take the collapsed dimensions (the dimensions that are not distributed

across processors) into account, another projection matrix Y can be used:Y � t = C � P � c + C � q + l.

All the elements on a collapsed dimension are stored on the same processor. Notice that these projection

matrices are only useful if we adhere to a matrix form for describing the relations. We do not need them

if the relations are described on a per dimension basis. In the rest of the paper we assume that identity

alignment is used and arrays are directly distributed across processors. For an in-depth discussion of the

linear algebra framework for compiling distributed-memory programs, we refer the reader to Ancourt et al.

[7].

2.5 Parafrase-2 and Omega Library

Parafrase-2 [41] is used as the front end in our compilation framework. It is a parallelizing compiler imple-

mented as a source to source code restructurer that consistsof several passes for analysis, transformation,

parallelism detection and code generation. In order to obtain the loops that enumerate the elements in the

ownership and communication sets, we use the Omega library [31]. This library is essentially a set of C++

classes for manipulating integer tuple relations and sets defined using Presburger formulas. We implemented

a framework that obtains data access information from Parafrase-2 internal structures and feeds them into

the Omega library; when all the required sets have been obtained the framework converts these sets back to

12

Processor 0 Processor 1 Processor 200 11 22 33 40 51 62 73 80 91 102 113124 135 146 157 164 175 186 197 204 215 226 237248 259 2610 2711 288 299 3010 3111 328 339 3410 35113612 3713 3814 3915 4012 4113 4214 4315 4412 4513 4614 47154816 4917 5018 5119 5216 5317 5418 5519 5616 5717 5818 59196020 6121 6222 6323 6420 6521 6622 6723 6820 6921 7022 7123
...

...
...

...
...

...
...

...
...

...
...

...

(a) Global and local addresses. Superscripts denote local addresses.

Processor 0 Processor 1 Processor 20; 0 0; 1 0; 2 0; 3 0; 4 0; 5 0; 6 0; 7 0; 8 0; 9 0; 10 0; 111; 0 1; 1 1; 2 1; 3 1; 4 1; 5 1; 6 1; 7 1; 8 1; 9 1; 10 1; 112; 0 2; 1 2; 2 2; 3 2; 4 2; 5 2; 6 2; 7 2; 8 2; 9 2; 10 2; 113; 0 3; 1 3; 2 3; 3 3; 4 3; 5 3; 6 3; 7 3; 8 3; 9 3; 10 3; 114; 0 4; 1 4; 2 4; 3 4; 4 4; 5 4; 6 4; 7 4; 8 4; 9 4; 10 4; 115; 0 5; 1 5; 2 5; 3 5; 4 5; 5 5; 6 5; 7 5; 8 5; 9 5; 10 5; 11
...

...
...

...
...

...
...

...
...

...
...

...

(b) Two-dimensional view of global addresses(c; p � C + l) for processorp.

Processor 0 Processor 1 Processor 20; 0 0; 1 0; 2 0; 3 0; 0 0; 1 0; 2 0; 3 0; 0 0; 1 0; 2 0; 31; 0 1; 1 1; 2 1; 3 1; 0 1; 1 1; 2 1; 3 1; 0 1; 1 1; 2 1; 32; 0 2; 1 2; 2 2; 3 2; 0 2; 1 2; 2 2; 3 2; 0 2; 1 2; 2 2; 33; 0 3; 1 3; 2 3; 3 3; 0 3; 1 3; 2 3; 3 3; 0 3; 1 3; 2 3; 34; 0 4; 1 4; 2 4; 3 4; 0 4; 1 4; 2 4; 3 4; 0 4; 1 4; 2 4; 35; 0 5; 1 5; 2 5; 3 5; 0 5; 1 5; 2 5; 3 5; 0 5; 1 5; 2 5; 3
...

...
...

...
...

...
...

...
...

...
...

...

(c) Two-dimensional view of local addresses(c; l) for processorp.

Figure 5: Global and local addresses of the accessed elements of a one-dimensional array along with the
two-dimensional view for a three-processor case withC = 4. Each array element has a unique location(c; l) in a given processor. Non-local elements are accommodated by extending the local space along thel
dimension.

13

internal Parafrase-2 structures.

3 Data-flow Analysis using a Linear Algebra Framework

In this section, we define our data-flow framework in detail. First, we introduce some important sets and

operations on them.

3.1 Definition of Sets and Operations

Communication Descriptors and Communication Sets A communication descriptorcan be defined as

a pairhR;Si, whereR is an array identifier (name) andS is thecommunication setassociated withR. The

exact definition of a communication set depends on the context in which it is used. Throughout our analysis,

a communication set is defined asf~d j ~d is owned byq and is required by (or should be transferred to or has

already been transferred to)pg except for theKILL set, which defines the set of elements written (killed) byq. In these set definitions~d refers to a multi-dimensional array element.

Operations on Communication Sets Since we define a communication set as a list of equalities and

inequalities (this is how the Omega library represents a set), it can be represented asS = f~d j P(~d)g whereP(:) is a predicate. Letf~d j P(~d)g andf~d j Q(~d)g be two communication sets. We define the operations+c,�c, and\c on communication sets as follows:f~d j P(~d)g+c f~d j Q(~d)g = f~d j P(~d) orQ(~d)gf~d j P(~d)g �c f~d j Q(~d)g = f~d j P(~d) and not(Q(~d))gf~d j P(~d)g \c f~d j Q(~d)g = f~d j P(~d) andQ(~d)g
Note that the operations ‘or’, ‘and’ and ‘not’ can be performed by using the corresponding Omega opera-

tions on sets which contain equalities and inequalities.

Operations on Sets of Communication Descriptors LetD = hR;Si be a communication descriptor. We

define two functions: a functionN from communication descriptors space to array identifiers space; and a

14

functionM from communication descriptors space to communication sets space such thatN (D) = R andM(D) = S.

SupposeDS1 andDS2 are two sets of communication descriptors. Three operations, namely+d, �d,
and\d, are defined on these sets as follows:DS1 +d DS2 = fD j D 2 DS1 and8D0 2 DS2 N (D) 6= N (D0)g[fD j D 2 DS2 and8D0 2 DS1 N (D) 6= N (D0)g[fD j 9D0 2 DS1;D00 2 DS2 st.N (D) = N (D0) = N (D00) andM(D) =M(D0) +c M(D00)gDS1 �d DS2 = fD j D 2 DS1 and8D0 2 DS2 N (D) 6= N (D0)g[fD j 9D0 2 DS1;D00 2 DS2 st.N (D) = N (D0) = N (D00) andM(D) =M(D0)�c M(D00)gDS1 \d DS2 = fD j 9D0 2 DS1;D00 2 DS2 st.N (D) = N (D0) = N (D00) andM(D) =M(D0) \c M(D00)g
When there is no ambiguity, we also use[c and[d instead of+c and+d, respectively. It should be noted

that although these operations are similar to those given byGong et al. [18], there is an important difference.

Since we keep the communication sets accurately in terms of equalities and inequalities, we can optimize

(e.g., coalesce) communication messages even if the messages do not have the same communication pattern

(e.g., broadcast, point-to-point) or identical sender/receiver sets. Most of the previous approaches to global

communication optimization cannot optimize these kinds ofmessages mainly due to their representation of

communication sets.

It should be noted that our analysis works with sets of equalities and inequalities. As compared with the

previous approaches based on RSDs, our technique may be slower. In order to alleviate this problem, we

do not operate on the contents of the sets in every data-flow equation to be evaluated; instead we represent

the sets with symbolic names and postpone the real computation on them until the end of the analysis where

the communication code should be generated. For example, suppose that a data-flow equation requires

combining two setsSx = f[x] : Q1(x)g andSy = f[y] : Q2(y)g whereQ1 andQ2 are predicates consisting

of equalities and inequalities. Instead of forming the setf[z] : Q1(z) _Q2(z)g immediately and using it in

15

subsequent computations, our approach represents the resulting set abstractly asSx + Sy. When the whole

process is finished, the resulting sets are re-written in terms of equalities and inequalities and thesimplify

utility of the Omega library is used to simplify them. Our experience shows that this approach requires a

manageably small symbolic expression manipulation support and is fast in practice (see Section 6 for a cost

analysis of the compilation time). Next we present our data flow framework.

3.2 Local (Intra-Interval) Analysis

In order to make the data-flow analysis task easier, the CFG ofthe program is traversed prior to the local

analysis phase, and for each LHS reference a pointer is stored in the header of all enclosing loop nests. This

allows the compiler to reach a LHS reference inside a loop quickly during the data-flow analysis. The local

analysis part of our framework computesKILL, GEN andPOST GEN sets for each interval. Then the interval

is reduced to a single node and annotated with this information.

Let RL(~i) andRR(~i) be the data elements obtained from referencesRL andRR, respectively, with

a specific iteration vector~i. The computation of theKILL set proceeds in the forward direction; that is,

the nodes within the interval are traversed in topological sort order. LetKILL(i,q) be the set of elements

written (killed) by processorq in nodei, andModified(i,q) be the set of elements that may be killed

along any path from the beginning of the interval to nodei (including nodei). Then,KILL(i; q) = n~d j ~d 2 Own(X; q) and9~{;RL st. ~d = RL(~{) and~il �~{ � ~iuo ;Modified(i; q) = 0@ [j2pred(i)Modified(j; q)1A [KILL(i; q)
assuming thatModified(pred(first(i)),q) = ; wherefirst(i) is the first node ini. If last(i) is

the last node ini, then KILL(i; q) = Modified(last(i); q):
This last equation is used to reduce an interval into a node. Notice thati is used to denote a node in the

CFG whereas~i is used for an iteration vector. In order to see how the computation of theKILL set proceeds,

16

1 DO i = il, iu2 X(i-2,i) = Y(i-1,i-1) + X(i,1)3 DO j = jl, ju4 X(i,j) = Y(i-2,i+2)5 IF (cond)6 X(i-1,j+2) = Y(i-2,j-2)7 Y(i,j) = ...8 ELSE9 X(i+1,j-3) = Y(i+3,j-3)10 END IF11 Z(i,j) = Y(i-4,j)12 END DO13 END DO
Figure 6: An example program fragment. In this fragment there are two intervals corresponding to thei andj loops, respectively.

consider Figure 6. In this example there are two intervals corresponding to thej andi loops. We concentrate

only on the computation of theKILL sets for arrayX (the computation of theKILL sets of other arrays can

be performed in a similar manner). The analysis starts with the first node of the innermost interval (thej
loop), and proceeds as follows:KILL(4; q) = f~d j ~d 2 Own(X; q) and9{; | st. ~d = X({; |) andil � { � iu andjl � | � jug:Modified(4; q) = KILL(4; q)KILL(5; q) = ;Modified(5; q) = Modified(4; q)[KILL(5; q)= Modified(4; q)KILL(6; q) = f~d j ~d 2 Own(X; q) and9{; | st. ~d = X({� 1; |+ 2) andil � { � iu andjl � | � jug:Modified(6; q) = Modified(5; q)[KILL(6; q)KILL(7; q) = ;Modified(7; q) = Modified(6; q)[KILL(7; q)= Modified(6; q)KILL(9; q) = f~d j ~d 2 Own(X; q) and9{; | st. ~d = X({+ 1; |� 3) andil � { � iu andjl � | � jug:Modified(9; q) = Modified(5; q)[KILL(9; q)

17

KILL(10; q) = ;Modified(10; q) = [Modified(7; q)[Modified(9; q)] [KILL(10; q)= Modified(7; q)[Modified(9; q)KILL(11; q) = ;Modified(11; q) = Modified(10; q)[KILL(11; q)= Modified(10; q)= [Modified(7; q)[Modified(9; q)]= KILL(4; q)[KILL(6; q)[KILL(9; q)= f~d j ~d 2 Own(X; q) and(9{; | st. ~d = X({; |) or ~d = X({� 1; |+ 2) or ~d = X({+ 1; |� 3))
and il � { � iu and jl � | � ju g:

Sincelast(3,q) = 11, at this point we can reduce the innermost interval into a single node and annotate

it by its KILL set: KILL(3; q) = Modified(11; q):
Then the analysis continues with the first node of the outer interval (i loop):KILL(2; q) = f~d j ~d 2 Own(X; q) and9{ st. ~d = X({� 2; {) andil � { � iug:Modified(2; q) = KILL(2; q)Modified(3; q) = Modified(2; q)[KILL(3; q)= n~d j ~d 2 Own(X; q) and

�9{; | st. ~d = X({; |) or ~d = X({� 1; |+ 2) or ~d = X({+ 1; |� 3)
or ~d = X({� 2; {)� andil � { � iu andjl � | � juo :

Sincelast(1,q) = 3, at this point we can reduce the interval into a single nodeKILL(1; q) = Modified(3; q):
Although for the sake of presentation we show the analysis here in terms of communication sets, the data-

18

flow analysis is actually performed on sets of communicationdescriptors, since in general there may be

accesses to several arrays. That is, theKILL set for a program that refers to arraysNi is as followsKILL(i; q) = fhN1; KILLN1(i; q)i; hN2; KILLN2(i; q)i; � � �g :
Since we concentrate on computation of theKILL set for a single array, we useKILL(i,q). Similar

simplification will be used for presentation of the computation of theGEN(i,q,p) andPOST GEN(i,q,p)
sets as well.GEN(i,p,q) is the set of elements required by processorp from processorq at nodei with no preceding

write (assignment) to them. The computation of theGEN proceeds in the backward direction, i.e., the nodes

within each interval are traversed in reverse topological sort order. The elements that can be communicated

at the beginning of a node are the elements required by any RHSreference within the node except the ones

that are written by the owner before being referenced. Notice that this process involves considering all the

LHS references within an interval for a given RHS reference;this leads to an exponential cost. However,

there are two factors that make the analysis affordable. First, the scope of the analysis is a single interval

(loop nest). In practice the number of distinct references in a loop nest is a small value. Second, since, as

mentioned earlier, prior to analysis we keep pointers to allLHS references within a loop nest, we do not

have to traverse the parse tree once more to search for the LHSreferences.

Assuming~{ = ({1; :::; {n) and~{0 = ({01; :::; {0n), let ~{0 � ~{ mean that~{0 is lexicographically less than or

equal to~{; and~{0�k~{ mean that{0j = {j for all j < k, and({0k; :::; {0n) � ({k; :::; {n). Since a node can refer to

multiple RHS references, we first definegen(i;RR; p; q) as the set of elements to be sent by processorq to

processorp at nodei due to referenceRR. In that case we can computeGEN(i; p; q) = [RR gen(i;RR; p; q):
For the sake of explanation, we assume one RHS reference per node, and use onlyGEN(i,p,q) in the

following. The extension to the multiple RHS reference per node is straightforward. LetComm(i,p,q)
be the set of elements that may be communicated at the beginning of intervali to satisfy communication

requirements from the beginning ofi to the last node in the interval that containsi. Then, for an arrayX,

19

we haveGEN(i; p; q) = n~d j 9~{; Y st. ~il �~{ � ~iu and~d 2 Own(X; q) and~d = RR(~{) andRL(~{) 2 Own(Y; p) and not
�9~|;RL0 st. ~il � ~| � ~iu and~d = RL0(~|) and~|�level(i)~{�o ;Comm(i; p; q) = 0@ \s2succ(i)Comm(s; p; q)1A [GEN(i; p; q):

In addition, we use the following equation to reduce an interval into a single node:GEN(i; p; q) = Comm(First(i); p; q):
In the definition ofGEN, RR denotes the RHS reference, andRL denotes the LHS reference of the same

statement.RL0, on the other hand, refers to any LHS reference within the same interval. Notice that

while RL0 is a reference to the same array asRR, RL can be a reference to any array (e.g., arrayY in the

formulation above).level(i) gives the nesting level of the interval (loop), with the value 1 corresponding

to the outermost loop in the nest. If the dependence is loop independent the textual positions of the references

in the nest may also need to be taken into account when computing theGEN set. In that case the formulation

of theGEN set should contain terms showing the precedence relations between references. For the sake of

simplicity, we assume that all the dependences that we are dealing with are loop carried.

After the interval is reduced, theGEN set for it is recorded, and an operatorF is applied to the last part

of thisGEN set to propagate it to the outer interval:F(~|�k~{) = ~|�(k�1)~{:
As an example consider Figure 6 on page 17 once more, this timeconcentrating on the computation ofGEN
sets due to arrayY. Notice that arrayY is written only in statement (line)7. The analysis starts with the last

statement of the innermost interval (j loop):GEN(11; p; q) = f~d j 9{; | st. il � { � iu andjl � | � ju and~d 2 Own(Y; q) and~d = Y ({� 4; |) and

20

Z({; |) 2 Own(Z; p) and not(9{0; |0; st. ~d = Y ({0; |0) andil � {0 � iu andjl � |0 � ju
and({0 = { and|0 < |))g:

To keep the presentation simpler, we do not show the remaining GEN sets in this interval. The analysis

proceeds as follows.Comm(11; p; q) = GEN(11; p; q)GEN(10; p; q) = ;Comm(10; p; q) = Comm(11; p; q)[GEN(10; p; q)= Comm(11; p; q)Comm(9; p; q) = Comm(10; p; q)[GEN(9; p; q)GEN(7; p; q) = ;Comm(7; p; q) = Comm(10; p; q)[GEN(7; p; q)Comm(7; p; q) = Comm(10; p; q)Comm(6; p; q) = Comm(7; p; q)[GEN(6; p; q)GEN(5; p; q) = ;Comm(5; p; q) = Comm(6; p; q)\ Comm(9; p; q)Comm(4; p; q) = Comm(5; p; q)[GEN(4; p; q)= [Comm(6; p; q)\ Comm(9; p; q)] [GEN(4; p; q)= [[GEN(11; p; q)[GEN(6; p; q)] \ [GEN(11; p; q)[GEN(9; p; q)]] [GEN(4; p; q)[GEN(11; p; q)[GEN(6; p; q)[GEN(4; p; q)] \ [GEN(11; p; q)[GEN(9; p; q)[GEN(4; p; q)][GEN(11; p; q)[GEN(4; p; q)] [[GEN(6; p; q)\ GEN(9; p; q)]
Sincefirst(3) = 4, the innermost interval can now be reduced as follows.GEN(3; p; q) = Comm(4; p; q)= (f~d j 9{; | st. il � { � iu andjl � | � ju and~d 2 Own(Y; q) and~d = Y ({� 4; |) andZ({; |) 2 Own(Z; p) and not(9{0; |0; st. ~d = Y ({0; |0) andil � {0 � iu andjl � |0 � ju

21

and({0 = { and|0 < |))g[f~d j 9{; | st. il � { � iu andjl � | � ju and~d 2 Own(Y; q) and~d = Y ({� 2; |+ 2) andX({; |) 2 Own(X; p) and not(9{0; |0; st. ~d = Y ({0; |0) andil � {0 � iu andjl � |0 � ju
and({0 = { and|0 < |))g)[(f~d j 9{; | st. il � { � iu andjl � | � ju and~d 2 Own(Y; q) and~d = Y ({� 2; |� 2) andX({� 1; |+ 2) 2 Own(X; p) and not(9{0; |0; st. ~d = Y ({0; |0) andil � {0 � iu andjl � |0 � ju
and({0 = { and|0 < |))g\f~d j 9{; | st. il � { � iu andjl � | � ju and~d 2 Own(Y; q) and~d = Y ({+ 3; |� 3) andX({+ 1; |� 3) 2 Own(X; p) and not(9{0; |0; st. ~d = Y ({0; |0) andil � {0 � iu andjl � |0 � ju
and({0 = { and|0 < |))g)

After GEN(3,p,q) is recorded, the compiler appliesF operator toGEN(3,p,q). The effect of this operator

for this example is ({0 = { and|0 < |) ; ({0 � { or ({0 = { and|0 < |)):
That is, at this point the compiler takes into account flow dependences carried by thei loop as well. Then

we continue with the last statement of the outer interval (i loop):Comm(3; p; q) = GEN(3; p; q)Comm(2; p; q) = Comm(3; p; q)[GEN(2; p; q):
Sincefirst(1) = 2, the outer interval can now be reduced:GEN(1; p; q) = Comm(2; p; q):
Sincei is the index of the outermost interval, there is no need to apply theF operator after this reduction.

We should emphasize that computing theGEN sets gives us all the communication that can be vectorized or

22

coalesced above a loop nest; i.e., our analysis easily handles message vectorization and message coalescing

[30]. Finally, POST GEN(i,p,q) is the set of elements required by processorp from processorq at nodei
with no subsequent write to them. For an arrayX:POST GEN(i; p; q) = n~d j 9~{; Y st. ~il �~{ � ~iu and~d 2 Own(X; q) and~d = RR(~{) andRL(~{) 2 Own(Y; p) and not(9~|;RL0 st. ~il � ~| � ~iu and~d = RL0(~|) and~{�level(i)~|)o :
The computation ofPOST GEN(i,p,q) proceeds in the forward direction. Its computation is similar to

those of theKILL(i,q) andGEN(i,p,q) sets, so we do not discuss it in detail.

3.3 Data-flow Equations

In our framework, any communication incurred is placed at the beginning of the nodes. Here, we concentrate

on the computation of a communication set calledRECV. The actualsendand recv sets used by the code

generator are produced in a later pass of the compiler from theRECV sets discussed here using two projection

functions as explained in Section 5. Our data-flow analysis framework consists of a backward and a forward

pass. In the backward pass, the compiler determines sets of data elements that can safely be communicated

at specific points. The forward pass eliminates redundant communication and determines the final set of

elements (if any) that should be communicated at the beginning of each nodei. The data-flow equations

that we present here are aggressive in the sense that a communication incurred by a non-local reference is

hoisted to the highest point possible in the CFG. Later in Section 4 we discuss how to refine this approach to

control communication hoisting. The input for the equations consists of theGEN(i,p,q), KILL(i,q) andPOST GEN(i,p,q) sets for eachi as computed during the local analysis.

The data-flow equations for the backward analysis are given by Equations (1) and (2) in Figure 7. The

symbol\ in this figure denotes\d. SAFE IN(i,p,q) andSAFE OUT(i,p,q) are the sets of communication

descriptors; these denote the elements thatcan safely be communicated at the beginning and end of nodei, respectively. Equation (1) says that an element should be communicated at a point if and only if it will

be used in all of the following paths in the CFG. This is the fundamental rule that our data-flow analysis

23

Backward Analysis: SAFE OUT(i; p; q) = \s2succ(i) SAFE IN(s; p; q) (1)SAFE IN(i; p; q) = (SAFE OUT(i; p; q)�d KILL(i; q)) +d GEN(i; p; q) (2)

Forward Analysis:RECV IN(i; p; q) = \j2pred(i) RECV OUT(j; p; q) (3)RECV(i; p; q) = � GEN(i; p; q)�d RECV IN(i; p; q) if 9 k 2 succ(i) andk =2 dom(i)SAFE IN(i; p; q)�d RECV IN(i; p; q) otherwise
(4)RECV OUT(i; p; q) = � RECV IN(i; p; q)�d KILL(i; q) if 9 k 2 succ(i) andk =2 dom(i)((RECV(i; p; q) +d RECV IN(i; p; q))�d KILL(i; q)) +d POST GEN(i; p; q) otherwise
(5)

Figure 7: Data-flow equations for optimizing communication. The optimization process involves a backward
analysis followed by a forward analysis. At the end, for eachi, theRECV(i,p,q) set is computed.

as well as some of the previous approaches like [35] adheres to. Equation (2), on the other hand, gives

the set of elements that can safely be communicated at the beginning of nodei, and makes use of theGEN andKILL sets. Intuitively, an element can be communicated at the beginning of nodei if and only

if it is either required (generated) by nodei or it reaches the end of nodei (in the backward analysis)

and is not overwritten (killed) in it. It should be noted thatif the elements contained inSAFE IN sets

are directly communicated without any further analysis, there would be significant amounts of redundant

communication. The task of the forward analysis phase is to eliminate redundant communication.

The data-flow equations for the forward analysis are given byEquations (3), (4) and (5) in Figure 7;

these equations observe the following two rules:

(1) a node should not fetch data needed by a successor unless it dominates that successor; and

(2) a successor should ignore what a predecessor has received so far unless that predecessor dominates it.RECV IN(i,p,q) andRECV OUT(i,p,q) denote the set of communication descriptors containing theele-

ments thathave beencommunicated so far (at the beginning and end of the nodei, respectively) fromq to p.

On the other hand,RECV(i,p,q) denotes the set of communication descriptors containing the elements that

shouldbe communicated fromq to p at the beginning of nodei and is finally used by the communication

24

generation portion of the compiler to generate the actualsendandrecvcommands as explained in Section 5.

Equation (3) simply says that the communication set arriving in a join node can be found by intersecting

the sets for all the joining paths. Equation (4) is used to compute theRECV set which corresponds to the

elements that can be communicated at the beginning of the node except the ones that have already been com-

municated (RECV IN). The elements that have been communicated at the end of nodei (that is,RECV OUT
set) are simply the union of the elements communicated up to the beginning ofi; the elements communi-

cated at the beginning ofi provided that the condition in equation (5) is not satisfied (except the ones that

have been overwritten (killed) ini) and the elements communicated withini and not written subsequently

(POST GEN), again provided that the condition in the equation is not satisfied. It should be emphasized that

all these sets are communication descriptor sets, and the order of operations as indicated by the parenthesis

is important.

3.4 Global Data-flow Analysis

Our approach starts by computing theGEN, KILL andPOST GEN sets for each node. Then the contraction

phase of the analysis reduces the intervals from innermost to outermost and annotates them withGEN, KILL
andPOST GEN sets. When a reduced CFG with no cycles is reached, the expansion phase starts andRECV
sets for each interval is computed, this time from outermostto innermost. There is one important point to

note: before starting to process the next inner graph, theRECV IN set of the first node in this graph is set to

theRECV set of the interval that contains it. More formally, in the expansion phase, we setRECV IN(i; p; q)kthpass = RECV(i; p; q)(k�1)thpass: (6)

This assignment then triggers the next pass in the expansionphase. Before the expansion phase startsRECV IN(i; p; q)1stpass is set to;. Figure 8 shows the overall algorithmCOMM-OPT followed by compiler

to generate thesendandrecv sets. Notice that due to Equations (1) and (2) in Figure 7 a datum can only

be communicated when it issafeto do so (i.e., the semantics of the program is preserved). Inthe forward

analysis, theRECV sets contain only the elements needed to be communicated; therefore no stale data is used

25

INPUT: A connected CFG.
OUTPUT: A processed CFG with optimized communication calls.

Step (a) Pre-processing phase:

(a.1) The CFG is traversed and in each loop a pointer for each LHS it encloses is stored;

(a.2) The CFG is traversed to add empty else branches to “if” constructs and to eliminate the critical edges;

(a.3) The “dominance” relation for each node in the CFG is computed.

Step (b) Initialization phase: For each node in the initial CFG,KILL, GEN andPOST GEN sets are computed in terms of symbolic
set names;

Step (c) Contraction phase: Until a CFG with no cycles is reached, recursively each CFG ishandled by reducing its intervals
and annotating each interval by itsKILL, GEN andPOST GEN sets;

Step (d) Expansion phase: For each intermediate CFG, the following is repeated:

(d.1) Using data-flow Equations (1) and (2) in Figure 7, theSAFE IN sets are computed in backward direction;

(d.2) Using data-flow Equations (3), (4) and (5) in Figure 7, theRECV sets are computed in forward direction;

(d.3) The CFG is expanded; the equation (6) is used to trigger the data-flow activity in the new CFG;

Step (e) Substitution phase: The symbolic set names in the resultantRECV sets are replaced with actual sets consisting of
equalities and inequalities;

Step (f) Set generation phase: The Omega library is called to generatesendandrecvsets used by the code generator from theRECV sets.

Figure 8: Communication optimization algorithmCOMM-OPT based on data-flow analysis. This algorithm
computes thesendandrecvsets.

and the correctness is ensured.

3.5 Example

We use the synthetic benchmark program shown in Figure 9(a) on page 29 to illustrate our framework. We

concentrate on the communication placement at the higher level CFG that is acyclic. Figure 9(b) shows

the message vectorized program with communication calls before the loop bounds reduction and guard in-

sertion. The notationsendfB,qg means that some elements of arrayB should be sent toq; recvfB,qg is

defined similarly. We omitted from the figure the number of elements communicated to make the code look

clear. In this example communication arises only due to references to arrayB. A loop-based communica-

tion analysis places eightsendand eightrecvcalls (in fact these are themselves loop nests) for eight RHS

references marked as bold in Figure 9(b). The communicationpoints for these references are just above the

corresponding loop nests. For example, communication required due to referenceB(i-1,j-1) in line 33 in

26

Table 1: Data-flow sets for the example shown in Figure 9. TheGEN, KILL, andPOST GEN sets are obtained
after local analysis; and theSAFE IN andRECV sets are obtained after global analysis.

Line GEN KILL POSTGEN SAFE IN RECV

2 S4 ; ; ((((S51 +c S45)�c S38) +c S33) +c S11) +c S4 S4 +c S11 +c S33
9 S11 ; ; (((S51 +c S45)�c S38) +c S33) +c S11 ;
23 S25 ; ; (((S51 +c S45)�c S38) +c S33) +c S25 (S25 +c S33) �c (S4 +c S11 +c S33)
30 S33 ; ; ((S51 +c S45)�c S38) +c S33 ;
36 ; S38 ; (S51 +c S45)�c S38 ;
43 S45 ; ; S51 +c S45 S51 +c S45
49 S51 ; ; S51 ;

Figure 9(b) would be performed in line29. Notice that in this example arrayB is written only once (in line38).

Without loss of generality, assume that after local analysis, theGEN andKILL sets are obtained as shown

in the second and third column of Table 1 respectively. The corresponding line numbers are shown in the

first column. Notice that for this examplePOST GEN(i,p,q) is ; for everyi (column4). The fifth column

in Table 1 shows theSAFE IN sets for arrayB after backward analysis corresponding to the lines given in

the first column of the same table. Notice that the communication setS25 cannot be hoisted above the line22 due to the conditional branch. The sixth column, on the otherhand, shows the finalRECV sets for the

same array after the forward analysis and simplifications. Notice that write to arrayB in line 38 kills all the

communication before it.

For this example, the data-flow analysis framework achievesthe following:� The communication sets due to referencesB(i-1,j) andB(i-1,j+1) in line 45 of Figure 9(b) are

combined; that is our approach handles message coalescing easily.� Communication due to referenceB(i-1,j-1) in line 51 is combined with the communication in line45; and this combined communication can be performed above line43.� Similarly, the communication sets due to references in lines 33, 11 and4 can be combined and per-

formed above line2 in Figure 9(b).� The communication in line22 is reduced in volume (from4; 032 elements per processor to3; 024
elements per processor).

27

� The communications in lines7, 8, 29 and48 are entirely eliminated.� Overall, for a single processor, sixteen communication calls (eightsendand eightrecv) are replaced

by six communication calls.

The resulting optimized program is shown in Figure 9(c). It should be emphasized that the final communica-

tion sets are precise, i.e., there is no overestimation. Moreover, these communication sets can be enumerated

using the Omega library [31]. Notice that since all communication sets are enumerated in terms of abstract

processorsp andq; in general, if desired, message aggregation can also be performed easily.

3.6 Extension for Inter-procedural Analysis

It is relatively straightforward to extend our analysis to work inter-procedurally. In a simple inter-procedural

setting, our approach can be used as follows. We first build a call graph [4] where each node corresponds

to a procedure and there is a directed edge between two nodesP1 andP2 if and only if P1 calls P2. We

assume that there is no recursive procedure call. We then traverse the call graph in two steps corresponding

to backward and forward analyses. In the backward analysis,we traverse the graph in such a way that a

node is visited only after all of the nodes it calls have been visited. When a nodePk is visited, the compiler

runs our algorithm for the backward analysis. After the algorithm terminates, we summarize this node’s

communication by using three sets:GEN, KILL, andPOST GEN. Notice that these three sets completely define

the communication behavior ofPk. Subsequently,Pk is transformed to a new single node, and annotated by

these sets (of course, all formal parameters are replaced with actual parameters). When the whole program

is reduced to a single node, the forward analysis starts. This time we traverse the call graph in such a way

that a node is visited only after all the nodes that call it have been visited. During the visit of a node, we

compute theRECV sets for each node of it.

It should be noted that there are several inter-procedural communication optimization algorithms (e.g.,

[25],[26],[15]) with different degrees of sophistication, and the detailed analysis of communication opti-

mization across procedure boundaries is beyond the scope ofthis paper. However, we believe that for most

of the algorithms found in the literature, the summarized communication information represented byGEN,

28

!HPF$ processors PROC(0:3)!HPF$ distribute (cyclic(4),*)onto PROC :: A, B, C, Dimplicit noneinteger i, j, condreal A(128,128), B(128,128),C(128,128), D(128,128)DO i = 2, 127DO j = 64, 127C(i,j)=C(i,j)+B(i-1,j-1)+1END DOEND DODO i = 2, 127DO j = 2, 31A(i,j)=(B(i-1,j-1)+B(i-1,j-1)+B(i,j))/3.0END DOEND DOIF(cond .GT. 0.0) THENDO i = 2, 127DO j = 2, 127C(i,j)=A(i,j)+C(i,j)+D(i,j)+1END DOEND DOELSEDO i = 2, 127DO j = 2, 127A(i,j)=B(i-1,j-1)+1END DOEND DOENDIFDO i = 2, 31DO j = 2, 127D(i,j)=(B(i,j)*B(i,j))+B(i-1,j-1)+1END DOEND DODO i = 1, 127DO j = 1, 127B(i,j)=B(i,j)-C(i,j)+A(i,j)END DOEND DODO i = 2, 127DO j = 2, 127A(i,j)=(B(i-1,j)+B(i-1,j+1))/2.0END DOEND DODO i = 2, 127DO j = 2, 127C(i,j)=(B(i,j)+B(i-1,j-1))/2.0END DOEND DOEND
(a) Original program.

!HPF$ processors PROC(0:3)!HPF$ distribute (cyclic(4),*)onto PROC :: A, B, C, Dimplicit noneinteger i, j, condreal A(128,128), B(128,128),C(128,128), D(128,128)1 sendfB,p+1g , recvfB,p-1g2 DO i = 2, 1273 DO j = 64, 1274 C(i,j)=C(i,j)+B(i-1,j-1)+15 END DO6 END DO7 sendfB,p+1g , recvfB,p-1g8 sendfB,p+1g , recvfB,p-1g9 DO i = 2, 12710 DO j = 2, 3111 A(i,j)=(B(i-1,j-1)+B(i-1,j-1)12 +B(i,j))/3.013 END DO14 END DO15 IF(cond .GT. 0.0) THEN16 DO i = 2, 12717 DO j = 2, 12718 C(i,j)=A(i,j)+C(i,j)+D(i,j)+119 END DO20 END DO21 ELSE22 sendfB,p+1g , recvfB,p-1g23 DO i = 2, 12724 DO j = 2, 12725 A(i,j)=B(i-1,j-1)+126 END DO27 END DO28 ENDIF29 sendfB,p+1g , recvfB,p-1g30 DO i = 2, 3131 DO j = 2, 12732 D(i,j)=(B(i,j)*B(i,j))33 +B(i-1,j-1)+134 END DO35 END DO36 DO i = 1, 12737 DO j = 1, 12738 B(i,j)=B(i,j)-C(i,j)+A(i,j)39 END DO40 END DO41 sendfB,p+1g , recvfB,p-1g42 sendfB,p+1g , recvfB,p-1g43 DO i = 2, 12744 DO j = 2, 12745 A(i,j)=(B(i-1,j)+B(i-1,j+1))/2.046 END DO47 END DO48 sendfB,p+1g , recvfB,p-1g49 DO i = 2, 12750 DO j = 2, 12751 C(i,j)=(B(i,j)+B(i-1,j-1))/2.052 END DO53 END DO54 END
(b) Message vectorized program.

!HPF$ processors PROC(0:3)!HPF$ distribute (cyclic(4),*)onto PROC :: A, B, C, Dimplicit noneinteger i, j, condreal A(128,128), B(128,128),C(128,128), D(128,128)sendfB,p+1g , recvfB,p-1gDO i = 2, 127DO j = 64, 127C(i,j)=C(i,j)+B(i-1,j-1)+1END DOEND DODO i = 2, 127DO j = 2, 31A(i,j)=(B(i-1,j-1)+B(i-1,j-1)+B(i,j))/3.0END DOEND DOIF(cond .GT. 0.0) THENDO i = 2, 127DO j = 2, 127C(i,j)=A(i,j)+C(i,j)+D(i,j)+1END DOEND DOELSEsendfB,p+1g , recvfB,p-1gDO i = 2, 127DO j = 2, 127A(i,j)=B(i-1,j-1)+1END DOEND DOENDIFDO i = 2, 31DO j = 2, 127D(i,j)=(B(i,j)*B(i,j))+B(i-1,j-1)+1END DOEND DODO i = 1, 127DO j = 1, 127B(i,j)=B(i,j)-C(i,j)+A(i,j)END DOEND DOsendfB,p+1g , recvfB,p-1gDO i = 2, 127DO j = 2, 127A(i,j)=(B(i-1,j)+B(i-1,j+1))/2.0END DOEND DODO i = 2, 127DO j = 2, 127C(i,j)=(B(i,j)+B(i-1,j-1))/2.0END DOEND DOEND
(c) Global communication optimization.

Figure 9: A synthetic benchmark program (a) with message vectorized (b) and globally optimized (c) ver-
sions. The message vectorized program is obtained using thepopular vectorization approach based on
dependence-analysis. After determining the outermost loop at which the vectorization can be applied, the
item wise messages are combined and are lifted out of the enclosing loops. The globally optimized version
is generated using the approach discussed in this paper.

29

Table 2: PossibleP(i) predicates to control communication hoisting. Any logicalcombination of those
predicates can also be used. Note that changingP(i) changes behavior of the optimization algorithm com-
pletely. With appropriateP(i) predicates most of the previous optimization algorithms can be simulated.P(i) COMMENTKILL(i,q) 6= ; avoids message splittingGEN(i,p,q) = ; avoids hoisting too far - clusteringBuffer Length(i) � limit avoids protocol delays and hot spotsNumber of Buffers(i) � limit avoids buffer pressureKILL, andPOST GEN would be sufficient to optimize communication inter-procedurally.

4 Hoisting Communication vs. Minimizing the Number of Messages

The approach explained so far is focused on hoisting communication as far as possible, and in general,

results in reduction in communication volume as well as number of messages. However, as also pointed out

by others, hoisting the communication too eagerly can, under some circumstances, lead to excessive buffer

requirement [35] and an increase in the number of communication calls inserted [13]. In particular, failing

to take resource constraints into account may affect the correctness of the communication placement. For

example, if the buffer requirements exceed the maximum available buffer, the program may stall [37]. One

way to prevent these problems is to avoid hoisting communication aggressively and to reduce breaking of

messages into smaller ones. Since the optimal placement of communication is NP-hard [17], we present a

simple heuristic that stops accumulating communication sets as soon as it encounters a node that satisfies

a predicateP(i). The content of this predicate depends on a specific implementation. A few alternatives

are presented in Table 2. For example, in [35], the third alternative has been used. An implementation can

also employ a combination of these alternatives. As an example, consider the predicate obtained by the

conjunction of the first and second alternatives; i.e.,P(i) = fKILL(i,q) 6= ; and GEN(i,p,q)= ;g.
The data-flow equations given in Figure 11 on page 31 are very similar to those shown in Figure 7 on

page 24. The only difference is in the computation of theSAFE IN(i,p,q) set in which the predicate is

taken into account. The reason for this is to prevent a communication set from breaking into smaller sets

30

SG SK SG SK

...... = B(g(i)) B(f(i)) = B(g(i)) B(f(i)) = B(f(i)) =

S S S S

S + S - + S -

(a) (b) (c) (d)

Figure 10: Handling communication during backward analysis in a node using different approaches: (a),
(b), and (c) by the approach given in Figure 7; (a), (b), and (d) by the approach given in Figure 11.

Backward Analysis:SAFE OUT(i; p; q) = \s2succ(i) SAFE IN(s; p; q) (7)SAFE IN(i; p; q) = � GEN(i; p; q) if P(i)(SAFE OUT(i; p; q)�d KILL(i; q)) +d GEN(i; p; q) otherwise
(8)

Forward Analysis:RECV IN(i; p; q) = \j2pred(i) RECV OUT(j; p; q) (9)RECV(i; p; q) = � GEN(i; p; q)�d RECV IN(i; p; q) if 9 k 2 succ(i) andk =2 dom(i)SAFE IN(i; p; q)�d RECV IN(i; p; q) otherwise
(10)RECV OUT(i; p; q) = � RECV IN(i; p; q)�d KILL(i; q) if 9 k 2 succ(i) andk =2 dom(i)((RECV(i; p; q) +d RECV IN(i; p; q))�d KILL(i; q)) +d POST GEN(i; p; q) otherwise
(11)

Figure 11: Data-flow equations for optimizing communication. These equations are very similar to those
presented in Figure 7. The only difference is the use of theP(i) predicate to control communication
hoisting.

each requiring a message of its own. This also eliminates some of the complexity of the resultant code. A

possible impact of the new approach is shown in Figure 10. In this figureSG andSK denote theGEN andKILL sets respectively for the node shown. The two approaches described in this paper behave similarly for

the cases shown in Figures 10(a) and (b). But when a node performs only writes and no reads, the approach

in Figure 7 still hoists the communication as shown in Figure10(c) whereas the approach in Figure 11 stops

hoisting as shown in Figure 10(d). That is, the new approach does not issue a communication call unless

there are additional elements required by the node. This, inturn, reduces the number of communication

calls.

To compare our new approach with the previous one (Figure 7),consider the example program frag-

ment given in Figure 12 on page 33, a modified version of the last part of the program shown in Figure 9.

31

Table 3: Data-flow sets for the example shown in Figure 12. Top: Aggressive communication hoisting
results in excessive number of communication messages. Bottom: Communication hoisting is controlled to
minimize the number of messages.Line GEN KILL POST GEN SAFE IN RECV Loop Based1 ; S3 ; ((S18 +c S13) �c S8)�c S3 ((S18 +c S13)�c S8) �c S3 ;6 ; S8 ; (S18 +c S13)�c S8 ((S18 +c S13)�c S8)�c (((S18 +c S13)�c S8)�c S3) ;11 S13 ; ; S18 +c S13 (S18 +c S13)�c ((S18 +c S13)�c S8) S1316 S18 ; ; S18 ; S18Line SAFE IN RECV1 ; ;6 ; ;11 S18 +c S13 S18 +c S1316 S18 ;
Columns two, three and four of the top part of Table 3 shows theGEN, KILL andPOST GEN sets respectively

corresponding to the line numbers given in the first column. The fifth and sixth columns of the top part of

Table 3 show theSAFE IN andRECV sets respectively of the previous approach. Although we obtain some

reduction in communication volume, the number of messages is three which is larger than that of the loop

based approach (column7) that uses message vectorization alone. The bottom part of Table 3, on the other

hand, presentsSAFE IN andRECV sets obtained by our new approach. In that case the number of messages

is 1 and we have reduction in communication volume as well.

The main advantages of the new approach are less computationtime during the compilation, less com-

plex send/recv loops and reduced number of communication messages. However, in real programs when

a communicated array is written by the owner processor, it isusually written entirely; therefore, two ap-

proaches discussed behave similarly in practice.

5 Communication Generation

Our communication code generator uses the Omega library from University of Maryland [42, 31]. After theRECV(i,p,q) sets are obtained in terms of symbolic expressions, they arerewritten in terms of equalities

and inequalities. Then the Omega library is called to generate thesendandrecv loops.

Let us now consider the example given in Figure 9 (and Table 1)once more to show how the communi-

cation sets are generated. We first concentrate on the computation ofS4 +c S11 +c S33. The compiler keeps

32

!HPF$ processors PROC(0:3)!HPF$ distribute (cyclic(4),*) onto PROC :: A, B, C, Dreal A(128,128), B(128,128), C(128,128), D(128,128)1 DO i = 32, 632 DO j = 1, 633 B(i,j)=D(i,j)+24 END DO5 END DO6 DO i = 1, 317 DO j = 1, 638 B(i,j)=B(i,j)-C(i,j)+A(i,j)9 END DO10 END DO11 DO i = 2, 12712 DO j = 2, 12713 A(i,j)=(B(i-1,j)+B(i-1,j+1))/2.014 END DO15 END DO16 DO i = 2, 12717 DO j = 2, 12718 C(i,j)=(B(i,j)+B(i-1,j-1))/2.019 END DO20 END DO
Figure 12: An example program fragment to show solution to the problem due to aggressive hoisting.
Aggressive communication hoisting does not work for this example.

this set as a symbolic expression until the code generation phase where it inserts equalities and inequalities

corresponding toS4, S11, andS33, and then calls the Omega library to enumerate the elements.Figure 13

shows the communication sets forS4, S11, S33 andS0 = S4 +c S11 +c S33 as represented in Omega.

A set element in this figure is represented as a quadruple[q,p,d1,d2] meaning that the array element

indexed by[d1; d2] should be transferred fromq to p. Later in code generation, the projection functionprojR := f[q; P; d1; d2] ! [q; d1; d2]g is applied to this set to generate therecvset, and similarly the pro-

jection functionprojS := f[P; p; d1; d2] ! [p; d1; d2]g is applied to generate thesendset, for a particular

processorP. Notice that derivingsendandrecvsets from a common set ensures correctness. In Figure 13,l1
andc1 denote the coordinates of an element to be communicated in the source (sending) processor whereasl2 andc2 denote its coordinates in the target (receiving) processor. l3 andc3, on the other hand, refer to

coordinates of the LHS reference in the same statement. Notice that the bounds onl2 are adjusted in the

appropriate directions to accommodate the received (non-local) elements; and the entire procedure works

on the local address space similar to the one shown in Figure 5(c) on page 13.

After the projection functions are applied, the code generator part of the Omega library is called to

33

S4 := f[q; p; d1; d2] : 9(i; c1; l1; c2; l2; c3; l3 : 2 � i � 31 ^ 16c1 + 4q+ l1 = d1 ^ 0 � q � 3 ^ 0 � l1 � 3 ^ i� 1 = d1^16c3 + 4p+ l3 = i ^ 0 � l3 � 3 ^ 16c2 + 4p+ l2 = d1 ^ �1 � l2 � 3 ^ 0 � p � 3 ^ 2 � d2 + 1 � 127 ^ p 6= q)g;S11 := f[q; p; d1; d2] : 9(i; c1; l1; c2; l2; c3; l3 : 2 � i � 127 ^ 16c1 + 4q+ l1 = d1 ^ 0 � q � 3 ^ 0 � l1 � 3 ^ i� 1 = d1^16c3 + 4p+ l3 = i ^ 0 � l3 � 3 ^ 16c2 + 4p+ l2 = d1 ^ �1 � l2 � 3 ^ 0 � p � 3 ^ 2 � d2 + 1 � 31 ^ p 6= q)g;S33 := f[q; p; d1; d2] : 9(i; c1; l1; c2; l2; c3; l3 : 2 � i � 127 ^ 16c1 + 4q+ l1 = d1 ^ 0 � q � 3 ^ 0 � l1 � 3 ^ i� 1 = d1^16c3 + 4p+ l3 = i ^ 0 � l3 � 3 ^ 16c2 + 4p+ l2 = d1 ^ �1 � l2 � 3 ^ 0 � p � 3 ^ 64 � d2 + 1 � 127 ^ p 6= q)g;S0 := f[q; q+ 1; d1; d2] : 9(� : d1 = 3 + 4q + 16� ^ 0 � q � 2 ^ 1 � d2 � 126 ^ 4q+ 3 � d1 � 4q+ 19)g[f[q; p; d1; d2] : 4p+ 15 � d1 � 4q+ 3 ^ 1 � d2 � 126 ^ q � 3 ^ 0 � pg[f[q; p; d1; d2] : 9(� : 1 � d1 � 4q+ 99 ^ 1 � d2 � 30 ^ q � 3 ^ 13 + d1 � 4q+ 16� ^ 4p+ 16� � 1 + d1 ^ 0 � p)g[f[q; q+ 1; d1; d2] : 9(� : d1 = 3 + 4q+ 16� ^ 0 � q � 2 ^ 1 � d2 � 30 ^ 4q + 3 � d1 � 4q+ 115)g[f[q; p; d1; d2] : 9(� : 1 � d1 � 4q+ 99 ^ 63 � d2 � 126 ^ q � 3 ^ 13 + d1 � 4q + 16� ^ 4p+ 16� � 1 + d1 ^ 0 � p)g[f[q; q+ 1; d1; d2] : 9(� : d1 = 3 + 4q+ 16� ^ 0 � q � 2 ^ 63 � d2 � 126 ^ 4q+ 3 � d1 � 4q+ 115g
Figure 13: Omega Relations corresponding to for the exampleshown in Figure 9. The actualsendandrecv
sets are derived from these Omega representations using projection functions.

generate the loops to enumerate[q; d1; d2] and[p; d1; d2] triples. Finally, the loops are converted to Fortran

and the internal data structures of the compiler are updated. As an example, the code enumerating the triples

for (S25 +c S33) �c (S4 +c S11 +c S33) is shown in Figure 14(a) on page 35 as C code for thesendset

and in Figure 14(b) for therecv set. In these codes,process(.) is an implementation-specific function

that handles the resulting elements. These codes enumeratethe elements and only the elements that should

be communicated betweenq andp. The remaining sets are computed and enumerated similarly.Notice

that redundant equalities and inequalities can be eliminated before the code generation phase by using the

‘simplify’ utility provided by the Omega library.

As a final note, although our use of Omega library increases the compilation time as compared to the

previous approaches based on RSDs, this increase was not an issue for the programs we experimented with

and was more than compensated by the run-time gains due to optimized communication as explained in the

next section.

6 Experiments

In this section we report experimental results for eight programs that exhibit regular communication behav-

ior. The salient characteristics of these programs are given in Table 4 on page 36.addx andeflux are two

34

if (P == 3) {for (j = 31; j <= 111; j += 16) {for (k = 31; k <= 62; k++) {process_element(0,j,k);}}}if (P >= 0 && P <= 2) {for (j = 4*P+35; j <= 4*P+115; j += 16) {for (k = 31; k <= 62; k++) {process_element(P+1,j,k);}}}
(a) sendset.

if (P >= 1 && P <= 3) {for (j = 4*P+31; j <= 4*P+111; j += 16) {for (k = 31; k <= 62; k++) {process_element(P-1,j,k);}}}if (P == 0) {for (j = 31; j <= 111; j += 16) {for (k = 31; k <= 62; k++) {process_element(3,j,k);}}}
(b) recvset.

Figure 14: Codes for enumerating(S25 +c S33) �c (S4 +c S11 +c S33) for the example shown in Figure 9
for a specific processorP. process element() is an implementation specific function that handles the set
of elements to be communicated.

subprograms from the Perfect Club Benchmarks. Thehydro m code is a modified version ofhydro. To

obtain this version two modifications have been made to the program aimed at highlighting the difference

between our two global optimization techniques. First, thesecond loop nest is distributed over its statements.

Second, the loop bounds in the first loop nest are reduced to1/4th of the original values. TheREFS column

shows the number of references in the program in question whereas theC REFS column gives the number of

references that require communication. TheITER column shows how many times the outermost timing loop

has been iterated for each program. Except for some hard-coded (small) values of array dimensions, the

size of each dimension of an array used in the experiments is set to the value shown in theSIZE column. Intred2 for 8 and16 processors we used60 and120, respectively, as theSIZE parameter. TheDISTR column

shows how the highest dimensional arrays in the program are distributed. A ‘D’ in a dimension means that

the dimension is distributed across processors while a ‘*’ denotes a non-distributed dimension as in HPF

[39].

The distributed dimensions shown in the table are thebestdistributions for these programs as far as

the communication is concerned. For example, selecting a(*,D) distribution fortomcatv would prevent

message-vectorization. For each distributed dimension weexperimented withfour different distributions:

block (BLK), cyclic (CYC), cyclic(4) (CYC(4)), and cyclic(7) (CYC(7)). The last two distributions are taken

into account to demonstrate the effectiveness of our approach with block-cyclic distributions where most

35

Table 4: Programs in our experiment set and their characteristics. TheREFS column shows the number of
references in the program whereas theC REFS column gives the number of references that require commu-
nication. TheITER column shows how many times the outermost timing loop has been iterated for each
program. Each dimension of an array used in the experiments is set to the value shown in theSIZE column.
TheDISTR column shows how the highest dimensional arrays in the program are distributed. A ‘D’ in a
dimension means that the dimension is distributed across processors while a ‘*’ denotes a non-distributed
dimension.PROGRAM SOURCE ARRAYS REFS C REFS DISTR SIZE ITER BRIEF DESCRIPTIONhydro Livermore nine 2D 52 10 (*,D) 400 20 2D hydrodynamicshydro m Livermore nine 2D 52 10 (*,D) 400 20 modified hydroadi Livermore three 3D, three 1D 33 6 (*,D,*) 400 10 iterative methodtomcatv Spec92 seven 2D, two 1D 75 20 (D,*) 400 10 2D mesh generationswim Spec92 fourteen 2D 196 43 (D,*) 513 20 water equation solveraddx Perfect Club five 3D, one 2D 72 32 (D,*,*) 194 1 mesh related comp.eflux Perfect Club four 3D, one 2D 76 13 (D,*,*) 5000 10 mesh related comp.tred2 Eispack two 2D, two 1D 42 22 (D,*) 60=120 1 matrix reduction
of the previous techniques fail. Two cyclic factors, namely4 and 7, are selected arbitrarily, one being

power of two whereas the other one is prime. Gupta and Banerjee [21] note that fortred2 the block-cyclic

distribution is the best choice. We also found that inaddx block-cyclic distribution performs best (depending

on the number of processors used).

We have found that excepthydro m for all of these programs our two global optimization approaches

given in Figures 7 and 11 result in the same optimized code. For each program excepthydro m we experi-

ment with two different versions of the code. Thebase version does not perform any global communication

optimization but does perform message-vectorization. In fact, a direct application of the owner-computes

rule without any optimization results in run-time resolution. In run-time resolution the ownership and com-

munication for each reference are computed at run-time. Since each processor must execute the entire

iteration space to compute ownership, this method results in large amounts of overhead. Communication for

resolution programs is also very inefficient as it involves transmission of a large number of small messages

[40]. Instead we considered the message-vectorized version with loop bounds reduction as thebase version.

Since most of the compilers for message-passing architectures apply some kind of message-vectorization,

we felt that it would be unfair to compare our method against run-time resolution without loop bounds re-

duction. Notice however, even in a single loop nest our global optimization approach subsumes most local

36

optimizations including message-vectorization, message-coalescing, and message-aggregation. For all the

programs excepthydro m we refer to the globally optimized version asopt. In thehydro m code,opt
refers to the approach given in Figure 7 whereasopt* denotes the approach given in Figure 11. For all

the programs and the versions, we also applied an optimization that we callcommunication pattern reuse.

For example, assuming a(*,D) distribution for all arrays, in a statement such asX(i,j) = Y(i,j � 1) +Z(i,j � 1), arraysY andZ have the same communication structure; therefore, we can generate communica-

tion loops only once and reuse it with a different name for each array. This optimization has not been fully

implemented yet.

We now briefly discuss the implementation status of our framework. We have finished the implementa-

tion of local communication analysis, Omega–Parafrase data structure interfacing, and communication loop

generation parts. Currently, the global communication analysis part and communication pattern reuse op-

timizations are being implemented. Experimenting with different message combining techniques (differentP(i) predicates) and extension to an inter-procedural settingare in our future plans. Below, we present the

first results from our implementation.

We measure the effectiveness of our approach in terms of three different but correlated parameters: num-

ber of communication messages acrossall processors, data volume to be communicated acrossall processors

and execution time. The number of messages and the communication volume are counted dynamically dur-

ing the execution. The execution times are obtained on a16 node IBM SP-2 at the Center for Parallel and

Distributed Computing at Northwestern University. Each node of this machine has128 MB memory,2 GB

disk, and an IBM Power2 processor.

Tables 5 through 12 give the number of communications, the communication volume and the execution

times (in seconds) for our programs for thebase andopt versions. Table 13 on page 43 summarizes the

improvement in number of messages for our programs. Forhydro m there are two rows corresponding to

our two methods (opt andopt* from top). Overall there is a32% reduction in the number of messages.

Improvement with16 processors is slightly higher than that with8 processors. This is because with the16
processors in general there are more communication messages to optimize. It is also interesting to note that

37

our optimization technique achieves33% improvement with block-cyclic distribution (CYC(4) andCYC(7))

where most of the previous techniques fail. As expected, forhydro m our second approach which controls

communication hoisting performs better than aggressive hoisting.

Table 14 shows the percentage improvement in communicationvolume across all processors. We note

that in both8 and16 processor cases we have on average37% improvement over thebase version. Consid-

ering block-cyclic distributions alone, we have a40% improvement. As mentioned earlier these counts are

collected dynamically at run-time using the performance analysis tools available on the SP-2. Also it should

be emphasized that most of the improvements onadi andtomcatv result from a single nest, meaning that

an aggressive loop level optimizer that applies a combination of vectorization, coalescing, and aggregation

could also obtain similar improvements.

Finally, Table 15 gives the improvement in execution times.We note that the performance improvement

for some programs such ashydro, adi, tomcatv, andswim is very good whereas foreflux andtred2 the

improvement is only modest. This is due to the fact that the communication for this second group of codes

is either small compared to the total execution time or difficult to optimize. Therefore, there is not much

opportunity for improvement. Overall we have26% improvement. Our approach improves performance

in all cases, and more importantly we see a27% improvement in block-cyclic distributions showing that

through a global analysis it is possible to optimize communication globally even in the existence of block-

cyclic distributions.

Having established the benefits of our global optimization approach, we now quantify the additional

costs incurred by our approach at compile-time and run-time. The results of our cost analysis are summa-

rized in Tables 16 and 17. All the compilation times shown in the rest of the paper have been obtained

on a Model 712/60 HP workstation with a132 MHz PA RISC processor,64 KB first-level cache,1 MB

second-level cache and a256 MB memory.

Table 16 shows the compilation times in milliseconds for ourprograms under different distributions.

For each distribution the compilation time is divided into three components:GLO is the time it takes for

our global data-flow analysis to run;OME is the time the Omega library takes to generate communication

38

Table 5: Results forhydro on IBM SP-2.

(a): # of communications for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 1,410 1,440 1,440 1,440 3,005 3,880 3,880 3,880opt 1,120 1,280 1,280 1,280 2,424 2.560 2,560 2,560
(b): Communication volume in MBytes for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 2.1 108.9 27.1 14.8 5.1 111.0 28.8 17.1opt 1.9 97.0 24.2 12.0 4.3 99.1 26.0 13.9

(c): Execution times in secs for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 4.12 4.75 5.09 4.83 2.81 3.33 3.83 3.06opt 3.07 3.74 3.87 3.37 2.11 2.75 2.94 2.80
Table 6: Results forhydro m on IBM SP-2.

(a): # of communications for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 1,540 1,604 1,604 1,604 3,318 3,810 3,810 3,810opt 1,110 1,227 1,227 1,227 2,400 2.611 2,611 2,611opt* 1,110 1,180 1,180 1,180 2,330 2.555 2,555 2,555
(b): Communication volume in MBytes for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 2.0 75.4 19.1 11.0 4.9 85.2 19.8 11.7opt 1.8 17.0 4.2 3.1 4.1 17.8 4.3 3.9opt* 1.8 5.9 3.2 2.8 3.9 6.6 4.4 4.1

(c): Execution times in secs for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 3.65 4.96 3.97 3.99 2.40 2.82 3.10 2.88opt 2.67 3.05 3.14 2.98 1.90 1.99 1.97 1.98opt* 2.30 2.82 2.95 2.81 1.73 1.80 1.87 1.78
39

Table 7: Results foradi on IBM SP-2.

(a): # of communications for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 710 968 968 968 1,640 1,922 1,922 1,922opt 288 480 480 480 644 960 960 960
(b): Communication volume in KBytes for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 20.1 187.2 46.8 27.0 84.0 187.2 46.8 27.0opt 11.4 94.0 23.3 13.0 53.9 94.0 23.3 13.0

(c): Execution times in secs for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 0.58 0.79 0.64 1.11 1.08 1.13 1.10 1.98opt 0.43 0.52 0.47 0.58 0.81 0.87 0.88 0.84
Table 8: Results fortomcatv on IBM SP-2.

(a): # of communications for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 140 6,396 1.612 932 300 6,498 1,694 998opt 56 124 124 124 120 252 252 252
(b): Communication volume in MBytes for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 0.35 19.2 4.9 2.8 0.75 19.2 4.9 2.8opt 0.06 6.1 1.5 0.86 0.11 6.1 1.5 0.86

(c): Execution times in secs for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 1.39 3.19 2.39 2.41 1.30 2.25 2.26 2.29opt 1.06 1.31 1.44 1.34 0.88 1.06 1.09 1.07
40

Table 9: Results forswim on IBM SP-2.

(a): # of communications for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 3,967 120,142 31,598 17,593 8,215 125,142 34,598 21,593opt 3,678 84,182 22,358 13,753 7,615 88,182 26,358 19,753
(b): Communication volume in MBytes for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 7.4 240.2 62.2 37.9 15.8 248.0 68.0 42.4opt 7.1 163.8 44.4 26.0 14.2 168.0 48.5 30.1

(c): Execution times in secs for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 11.31 36.55 21.14 19.64 7.03 19.22 12.20 12.24opt 10.48 25.47 18.47 16.13 6.71 11.12 10.78 10.31
Table 10: Results foraddx on IBM SP-2.

(a): # of communications for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 91,470 92,014 91,462 93,646 98,078 98,622 98,614 101,342opt 57,266 57,538 57,190 58,626 61,426 61,698 61,690 63,466
(b): Communication volume in MBytes for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 0.37 0.38 0.37 0.37 0.40 0.40 0.40 0.41opt 0.23 0.23 0.23 0.24 0.26 0.26 0.26 0.27

(c): Execution times in secs for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 5.18 6.65 5.10 5.44 5.99 6.48 6.89 5.70opt 3.33 4.94 4.12 3.16 3.08 4.79 4.07 3.36
41

Table 11: Results foreflux on IBM SP-2.

(a): # of communications for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 203 470 470 470 435 950 950 950opt 84 408 408 408 180 816 816 816
(b): Communication volume in MBytes for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 0.07 30.3 7.4 4.3 0.15 30.3 7.4 4.3opt 0.04 30.1 7.0 4.0 0.09 30.1 7.0 4.0

(c): Execution times in secs for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 5.90 13.10 13.10 12.96 4.22 7.46 8.78 7.41opt 5.76 12.90 12.97 12.01 3.99 7.28 6.98 6.72
Table 12: Results fortred2 on IBM SP-2.

(a): # of communications for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 1,706 1,759 1,740 1,721 2,028 2,300 2,286 2,280opt 1,650 1,719 1,718 1,711 1,988 2,015 2,004 1,996
(b): Communication volume in MBytes for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 11.5 12.1 11.9 11.9 14.2 15.5 15.1 15.2opt 11.1 11.8 11.4 11.3 13.7 15.0 14.7 14.7

(c): Execution times in secs for different versions.# of PROCS = 8 # of PROCS = 16version (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))base 0.83 0.90 0.80 0.76 0.91 1.16 0.90 0.89opt 0.78 0.78 0.73 0.69 0.90 1.05 0.82 0.79
42

Table 13: Percentage (%) improvements in # of messages.# of PROCS = 8 # of PROCS = 16program (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))hydro 21 11 11 11 19 34 34 34hydro m 28 24 24 24 28 31 31 31hydro m 28 26 26 26 30 33 33 33adi 59 50 50 50 61 50 50 50tomcatv 60 98 92 87 60 96 85 75swim 7 30 29 22 7 29 24 9addx 37 37 37 37 37 37 37 37eflux 47 13 13 13 59 14 14 14tred2 3 2 1 1 2 12 12 12average 33 33 32 30 33 37 35 33
Table 14: Percentage (%) improvements in communication volume.# of PROCS = 8 # of PROCS = 16program (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))hydro 10 11 11 19 16 11 10 19hydro m 10 77 78 72 16 79 78 67hydro m 10 92 83 75 20 92 77 65adi 43 50 50 52 36 50 50 52tomcatv 83 68 69 69 85 68 69 69swim 4 32 29 31 10 32 29 29addx 38 39 38 35 35 35 35 34eflux 43 1 5 7 40 1 5 7tred2 3 2 4 5 4 3 3 3average 27 42 41 40 29 41 39 38

loops; andREM is the remaining time in compilation including parsing and code generation. The extra time

required to write intermediate code into disk files is excluded from these figures.

The first three columns of Table 17 show the percentages forGLO, OME andREM in compilation time

considering all the distributions used in the programs. TheGLP column gives us the sum of the columnsGLO
andOME and represents the percentage of the compilation time that our global optimization approach takes

(global analysis + generating communication loops). We cansee that on the average64% of the compilation

time is spent on our global approach. However it is also important to observe how much compilation time

the base version using the Omega library would take. If we do not use any global optimization but still

use an Omega-based loop-level optimization, the percentages of compilation time the Omega library takes

to generate communication loops are shown under columnLOP. We see that even if we do not use the

43

Table 15: Percentage (%) improvements in execution time.# of PROCS = 8 # of PROCS = 16program (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7)) (*,BLK) (*,CYC) (*,CYC(4)) (*,CYC(7))hydro 25 21 24 30 25 17 23 8hydro m 27 39 21 25 21 29 36 30hydro m 37 43 26 30 28 36 40 36adi 26 34 27 48 25 23 20 58tomcatv 24 59 40 44 32 53 52 53swim 7 30 13 18 5 42 12 16addx 36 26 19 41 49 32 41 41eflux 2 2 1 7 5 2 21 9tred2 6 13 9 9 1 9 9 11average 21 30 20 28 21 27 29 29
global framework, just using the Omega library takes50% of the compilation time on the average. TheDIF
column shows the difference (GLP�LOP) between the global optimization approach and the loop nestbased

optimization approach, both using the Omega library. We seethat the additional burden of our framework

over the existing framework is only14%.

We can conclude that a hypothetical global optimization approach using RSDs to represent communi-

cation sets may be able to eliminate at most64% of the compilation time. This is a theoretical bound as we

do not know of any RSD based framework withzero costthat can handleblock-cyclicdistributionsglobally.

Given the gains in execution time, we believe that the extra overhead that our approach incurs at compile-

time is tolerable. In general, over several runs, the extra compilation time will be amortized. Moreover, we

can expect the Omega-like tools to be much faster in the future.

TheRUN column shows the percentages of execution times spent on executing the communication loops

(without communication statements). On the average, only7% of the execution time is spent on communi-

cation loops; therefore, the overhead incurred by our Omega-based approach at run-time is reasonable.

We also compared the compilation time taken by our Omega-based global approach with that of an

approach based on processor-tagged descriptors (PTDs) [44], an enhanced form of RSDs built on top of

Parafrase-2. PTDs provide an efficient way of describing distributed sets of iterations and regions of data,

and are based on a single set representation parameterized by the processor location for each dimension

of a virtual mesh. Table 18 shows the overall compilation times of the Omega-based approach (OME), the

44

Table 16: Compilation times in milliseconds for different distributions. For a given distribution, the compi-
lation time is divided into three components:GLO is the time it takes for our global data-flow analysis to run;OME is the time the Omega library takes to generate communication loops; andREM is the remaining time in
compilation including parsing and code generation.BLK CYC CYC(4) CYC(7)program GLO OME REM GLO OME REM GLO OME REM GLO OME REMhydro 157 1; 883 1; 414 211 1; 945 1; 466 213 2; 267 1; 176 213 2; 280 1; 466hydro m 166 1; 900 1; 290 188 1; 906 1; 400 199 2; 444 1; 176 180 2; 200 1; 366adi 161 955 1; 100 161 970 1; 134 174 984 1; 100 176 976 1; 132tomcatv 167 2; 308 1; 100 200 2; 616 1; 232 217 3; 008 1; 200 217 2; 867 1; 186swim 300 2; 967 1; 800 284 3; 817 1; 834 266 3; 767 1; 834 384 3; 783 1; 834addx 200 1; 283 1; 155 254 1; 367 1; 184 198 1; 417 1; 184 242 1; 555 1; 180eflux 183 2; 017 1; 104 184 2; 082 1; 106 187 2; 300 1; 134 187 2; 117 1; 130tred2 180 2; 417 1; 334 183 2; 584 1; 334 184 2; 466 1; 366 187 2; 484 1; 360average 189 1; 966 1; 245 208 2; 161 1; 274 205 2; 332 1; 271 223 2; 283 1; 269
PTD-based approach (PTD), and the percentage increase (INC) when going fromPTD to OME for pure block

(BLK) and pure cyclic (CYC) distributions, as the PTDs cannot compile for general block-cyclic distributions.

The results show that using Omega instead of an RSD-like approach increases the compilation time7% to27%, averaging on19% for both block and cyclic distributions.

7 Related Work

Several papers have address the problem of generating localaddress and communication sets for HPF pro-

grams where arrays are distributed using the general block-cyclic distributions [7, 14, 24, 33, 34, 46, 47]. Of

these, Ancourt et al. [7] use a linear algebra framework; this renders their approach general. The rest of the

approaches are very efficient for a restricted class of mappings. Considering the lack of generality of these

approaches, their use in the communication optimizations of the kind discussed in this paper appears to be

limited.

Most of the previous efforts considered communication optimization at loop level. Although each ap-

proach has its own unique features, the general idea has beenthe use of an appropriate combination of

message vectorization, message coalescing and message aggregation [10, 11, 30, 51, 8, 52].

More recently some researchers have proposed techniques based on data-flow analysis in order to op-

45

Table 17: Cost analysis of our approach overall distribution types. On the average, half the compilation time
is spent in generating the communication loops. All the values are in percentages of the total compilation
time (except theRUN column). The run-time overhead of executing these loops is not very high.BREAKDOWN (%)program GLO OME REM GLP LOP DIF RUNhydro 5 57 38 62 48 14 6hydro m 5 59 36 64 48 16 6adi 7 43 50 50 36 14 4tomcatv 5 66 29 71 47 24 5swim 5 63 32 68 58 10 9addx 8 50 42 58 54 4 8eflux 5 63 32 68 54 14 7tred2 3 62 35 65 55 10 9average 6 58 36 64 50 14 7

Table 18: Total compilation times (in milliseconds) of the Omega-based approach and the PTD-based ap-
proach. TheOME column and thePTD column gives the compilation times obtained using the Omega-based
and the PTD-based approaches, respectively. TheINC column shows the percentage increase when going
from PTD to OME. program BLK CYCOME PTD INC OME PTD INChydro 3; 454 2; 715 27 3; 622 2; 927 24hydro m 3; 356 2; 644 25 3; 494 2; 801 25adi 2; 216 2; 044 8 2; 265 2; 086 9tomcatv 3; 575 3; 148 14 4; 048 3; 290 23swim 5; 067 4; 426 15 5; 935 5; 015 18addx 2; 638 2; 241 18 2; 805 2; 615 7eflux 3; 304 2; 650 25 3; 372 2; 814 20tred2 3; 931 3; 355 17 4; 101 3; 390 21average 3; 443 2; 903 19 3; 705 3; 117 19

46

timize communication across multiple loop nests. Agrawal and Saltz [1] present a framework for partial

redundancy elimination for communication optimization indata-parallel programs with irregular data ac-

cess patterns. Amarasinghe and Lam [6] present several algorithms to optimize communication on machines

with distributed address spaces. Their approach uses thelast write treerepresentation to eliminate redundant

messages within a single loop nest. Although, their technique is also based on data-flow information, they

do not allow loop nests within conditionals.

Granston and Veidenbaum [19] propose an algorithm that applies combined flow and dependence anal-

ysis to programs with parallel constructs. Their algorithmdetects partial redundancies across loop nests and

in the presence of conditionals. However their approach is not directly applicable to programs with general

data distributions.

Gong et al. [18] describe optimizations that reduce communication overhead and execution time. Their

optimizations include elimination of redundant communication and combining messages. However their

approach cannot handle general types of distributions, andthey offer no optimizations to eliminate the

excessive number of communication calls due to split operations.

Gupta et al. [22] present a framework to optimize communication based on data-flow analysis and avail-

able section descriptors. Their approach is aggressive in exploiting the locally available data but fails to

support general block-cyclic distributions, and the representation that they use makes it difficult to embed

alignment and distribution information. Moreover, the communication set information they compute may

not be precise.

Hanxleden and Kennedy [27, 28] present a code placement framework for optimizing communication

caused by irregular array references. Although the framework provides global data-flow analysis, it treats

arrays as indivisible entities; thus, it is limited in exploiting the information available in compile-time.

In contrast, Kennedy and Nedeljkovic [32] offer a global data-flow analysis technique using bit vectors.

Although this approach is efficient, it is not as precise as the approach presented in this paper. They do not

give any clue how their method can be extended to handle general type block-cyclic distributions.

Kennedy and Sethi [35, 36, 37] show the necessity of incorporating resource constraints into a global

47

communication optimization framework. They take into account limited buffer size constraint and illustrate

how strip-mining improves the efficacy of the communicationplacement. Their approach works with mul-

tiple nests but not for general block-cyclic distributions. Since they do not give any experimental results, a

direct quantitive comparison of this work with ours is not possible. Their work defines a data-flow variable

calledSAFE which can be used in a similar manner as our predicateP(i). Kennedy and Sethi [35, 36, 37]

do not use a linear algebra framework; later work from the dHPF project at Rice [2, 3] includes the use of

the Omega library for message optimizations.

The IBM pHPF compiler [13, 23] achieves both redundancy elimination and message combining glob-

ally. But message combining is feasible only if the messageshave identical patterns, or one pattern is a

subset of another. The general block-cyclic distributions, however, can lead to complicated data access pat-

terns and communication sets which, we believe, more precisely can be represented within a linear algebra

framework.

Yuan et al. [49, 50] present a communication optimization approach based on array data-flow analysis.

The cost of the analysis is managed by partitioning the optimization problem into subproblems, and solving

the subproblems one at a time. Since that approach is also based on RSDs, it has difficulty in handling

block-cyclic distributions.

Adve et al. [2, 3] describe an integer set based approach for analysis and code generation for data

parallel programs that uses the Omega library [31]. They consider performing message vectorization and

message coalescing for general access patterns. Their method can also work with computation decomposi-

tion schemes that are not based on the owner-computes rule. These papers do not show how their techniques

handle global communication optimization for multiple loop nests in the case of block-cyclic distributions.

Interval analysis used in this paper was first introduced by Allen and Cocke [5]. They used it to solve

several data-flow problems; the analysis was then extended by Gross and Steenkiste [20] to array sections.

The approach proposed by Gupta et al. [22] mentioned above refines the technique by Gross and Steenkiste

using loop-carried dependences.

In this paper we used ideas from the linear algebra framework[7] and data-flow analysis [5, 4] devel-

48

oped for performing optimizations on the CFG representation of the programs. We have shown that these

two techniques blend together in a nice manner, which makes dealing with the global communication opti-

mization problem feasible even in the presence of general block-cyclic distributions. We should emphasize

that the data-flow equations given by Figures 7 and 11 are onlytwo representative solutions to show how the

global communication problem can be put into the linear algebra framework. We believe most of the pre-

vious approaches can also be put into this framework by re-defining the communication and ownership sets

in terms of equalities and inequalities. This would not onlygive those approaches the capability to handle

arbitrary alignments and distributions, but also provideshigh accuracy in manipulating the communication

sets.

8 Summary

Management of accesses to non-local data to minimize communication costs is critical for scaling perfor-

mance on distributed-memory message-passing machines. Inthis paper, we presented a global communi-

cation optimization scheme based on two complementary techniques: data-flow analysis and linear algebra

framework. The combination of these techniques allows us tooptimize communication globally and use

polyhedron scanning techniques to enumerate global communication sets effectively for HPF-like align-

ments and distributions including block-cyclic distributions. Our framework takes into account control flow

and achieves message vectorization, message coalescing, message aggregation and redundant communica-

tion elimination all in a unified framework. The cost of the analysis is managed by keeping the communica-

tion sets symbolically until the end of the data-flow analysis where the Omega library is called to generate

actual sets in terms of equalities and inequalities. The experimental results demonstrate the effectiveness

of our approach in reducing the number of messages and the volume of the data to be communicated. Fu-

ture work will address the development of performance models to provide the compiler with the ability to

estimate the profitability of message aggregation and coalescing globally.

49

Acknowledgments

The authors would like to thank Evan Rosser for his help in installing the Omega library and Omega calcu-

lator, a high level interface to the Omega library. The material presented in this paper is based on research

supported in part by Prof. A. Choudhary’s NSF Young Investigator Award CCR-9357840, the NSF grant

CCR-9509143, DOE AV-6193 and the Air Force Materials Command under contract F30602-97-C-0026.

The work of P. Banerjee is supported in part by the NSF under grant CCR-9526325 and in part by the

DARPA under contract DABT-63-97-C-0035. The work of J. Ramanujam is supported in part by the NSF

Young Investigator Award CCR-9457768 and the NSF grant CCR-9210422.

References

[1] G. AGRAWAL and J. SALTZ. Inter-procedural data flow basedoptimizations for distributed memory

compilation.Software Practice and Experience,27(5): 519–545, 1997.

[2] V. ADVE, J. MELLOR-CRUMMEY, and A. SETHI. An integer set framework for HPF analysis and

code generation. Technical Report TR97-275, Computer Science Dept., Rice University, 1997.

[3] V. ADVE and J. MELLOR-CRUMMEY. Advanced code generationfor High Performance Fortran. In

Languages, Compilation techniques, and Run-time Systems for Scalable Parallel Systems,S. Pande

and D. Agrawal (Eds.), Chapter 18, Lecture Notes in ComputerScience Series, Springer-Verlag, 1998

(to appear).

[4] A. V. AHO, R. SETHI, and J. ULLMAN.Compilers: Principles, techniques, and tools.Addison-

Wesley, Reading, MA, second edition, 1986.

[5] F. E. ALLEN and J. COCKE. A program data flow analysis procedure.Communications of the ACM,

19(3):137–147, March 1976.

50

[6] S. AMARASINGHE and M. LAM. Communication optimization and code generation for distributed

memory machines. InProc. SIGPLAN’93 Conference on Programming Language Design and Imple-

mentation,pages 126–138, Albuquerque, NM, June 1993.

[7] A. ANCOURT, F. COELHO, F. IRIGOIN, and R. KERYELL. A linear algebra framework for static

HPF code distribution.Scientific Programming,6(1):3–28, Spring 1997.

[8] V. BALASUNDARAM, G. FOX, K. KENNEDY, and U. KREMER. An interactive environment for

data partitioning and distribution. In5th Distributed Memory Computing Conference, Charleston, SC,

April 1990.

[9] U. BANERJEE.Loop parallelization.Kluwer Academic Publishers, 1994.

[10] P. BANERJEE, J. A. CHANDY, M. GUPTA, E. W. HODGES IV, J. G.HOLM, A. LAIN, D. J.

PALERMO, S. RAMASWAMY, and E. SU. The PARADIGM compiler for distributed-memory mul-

ticomputers.IEEE Computer,28(10):37–47, October 1995.

[11] Z. BOZKUS, A. CHOUDHARY, G. FOX, T. HAUPT, and S. RANKA. Acompilation approach

for Fortran 90D/HPF compilers.Languages and Compilers for Parallel Computing,U. Banerjee et

al. (Eds.), Lecture Notes in Computer Science, Volume 768, pages 200–215, 1994.

[12] D. CALLAHAN and K. KENNEDY. Analysis of inter-procedural side effects in a parallel program-

ming environment.Journal of Parallel and Distributed Computing,5(5):517–550, October 1988.

[13] S. CHAKRABARTI, M. GUPTA, and J.-D. CHOI. Global communication analysis and optimization.

In Proc. ACM SIGPLAN’96 Conference on Programming Language Design and Implementation,pages

68–78, Philadelphia, PA, May 1996.

[14] S. CHATTERJEE, J. GILBERT, F. LONG, R. SCHREIBER, and S.TENG. Generating local addresses

and communication sets for data-parallel programs.Journal of Parallel and Distributed Computing,

26(1):72–84, April 1995.

51

[15] B. CREUSILLET and F. IRIGOIN. Inter-procedural array region analyses. InProc. 8th International

Workshop on Languages and Compilers for Parallel Computers, pages 46–60, Columbus, Ohio, Au-

gust 1995.

[16] I. FOSTER. Designing and building parallel programs. Addison-Wesley Publishing Company, Read-

ing, MA 01867.

[17] M. GAREY and D. JOHNSON.Computers and intractability: A guide to the theory of NP-

completeness. W. H. Freeman and Company, 1979.

[18] C. GONG, R. GUPTA, and R. MELHEM. Compilation techniques for optimizing communication on

distributed-memory systems. InProc. International Conference on Parallel Processing,Volume II,

pages 39–46, St. Charles, IL, August 1993.

[19] E. GRANSTON and A. VEIDENBAUM. Detecting redundant accesses to array data. InProc. Super-

computing’91,pages 854–865, Albuquerque, NM, November 1991.

[20] T. GROSS and P. STEENKISTE. Structured data-flow analysis for arrays and its use in an optimizing

compiler. InSoftware-Practice and Experience, vol 20, no 2, pages 133–155, February 1990.

[21] M. GUPTA and P. BANERJEE. Demonstration of automatic data partitioning techniques for paralleliz-

ing compilers on multicomputers.IEEE Transactions on Parallel and Distributed Systems, 3(2):179–

193, March 1992.

[22] M. GUPTA, E. SCHONBERG, and H. SRINIVASAN. A unified data-flow framework for optimizing

communication.Languages and Compilers for Parallel Computing,K. Pingali et al. (Eds.), Lecture

Notes in Computer Science, Volume 892, pages 266–282, 1995.

[23] M. GUPTA, S. MIDKIFF, E. SCHONBERG, V. SESHADRI, D. SHIELDS, K. WANG, W. CHING,

and T. NGO. An HPF compiler for the IBM SP-2. InProc. Supercomputing 95,San Diego, CA,

December 1995.

52

[24] S. K. S. GUPTA, S. D. KAUSHIK, C.-H. HUANG, and P. SADAYAPPAN. Compiling array expres-

sions for efficient execution on distributed-memory machines. Journal of Distributed and Parallel

Computing,32(2):155–172, February 1996.

[25] M. W. HALL, S. HIRANANDANI, K. KENNEDY, and C.-W. TSENG.Inter-procedural compilation

of Fortran D for MIMD distributed-memory machines. InProc. Supercomputing’92, Minneapolis,

MN, November 1992

[26] M. W. HALL, B. MURPHY, S. AMARASINGHE, S. LIAO, and M. LAM. Inter-procedural analysis

for parallelization. InProc. 8th International Workshop on Languages and Compilers for Parallel

Computers, pages 61–80, Columbus, Ohio, August 1995.

[27] R. v. HANXLEDEN and K. KENNEDY. A code placement framework and its application to commu-

nication generation. Technical Report CRPC-TR93337-S, CRPC, Rice University, October 1993.

[28] R. v. HANXLEDEN and K. KENNEDY. Give-n-take – a balancedcode placement framework. In

Proc. ACM SIGPLAN’94 Conference on Programming Language Design and Implementation,Or-

lando, FL, June 1994.

[29] J. L. HENNESSY and D. A. PATTERSON.Computer Architecture: A Quantitative Approach.Morgan

Kaufmann Publishers, San Mateo, CA, 1990.

[30] S. HIRANANDANI, K. KENNEDY, and C. TSENG. Compiling Fortran D for MIMD distributed-

memory machines.Communications of the ACM,35(8):66–80, August 1992.

[31] W. KELLY, V. MASLOV, W. PUGH, E. ROSSER, T. SHPEISMAN, and DAVID WONNACOTT. The

Omega Library interface guide. Technical Report CS-TR-3445, CS Dept., University of Maryland,

College Park, March 1995.

[32] K. KENNEDY and N. NEDELJKOVIC. Combining dependence and data-flow analyses to optimize

communication. InProc. 9th International Parallel Processing Symposium,pages 340–346, Santa Bar-

bara, CA, April 1995.

53

[33] K. KENNEDY, N. NEDELJKOVIC, and A. SETHI. A linear-timealgorithm for computing the mem-

ory access sequence in data parallel programs. InProc. the Fifth ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming,Santa Barbara, CA, pages 102–111, July 1995.

[34] K. KENNEDY, N. NEDELJKOVIC, and A. SETHI. Communication generation for cyclic(k) distri-

butions. InLanguages, Compilers, and Run-Time Systems for Scalable Computers,B. Szymanski and

B. Sinharoy (Eds.), Chapter 14, Kluwer Academic Publishers, 1996.

[35] K. KENNEDY and A. SETHI. A constrained-based communication placement framework, Technical

Report CRPC-TR95515-S, CRPC, Rice University, 1995.

[36] K. KENNEDY and A. SETHI. A communication placement framework with unified dependence and

data-flow analysis.Proc. 3rd International Conference on High Performance Computing,Trivandrum,

India, December 1996.

[37] K. KENNEDY and A. SETHI. Resource-based communicationplacement analysis.Languages and

Compilers for Parallel Computing,D. Sehr et al. (Eds.), Lecture Notes in Computer Science, Volume

1239, pages 369–388, Springer-Verlag, 1997.

[38] J. KNOOP, O. RUTHING, and B. STEFFEN. Optimal code motion: Theory and practice.ACM Trans-

actions on Programming Languages and Systems,16(4):1117–1155, July 1994.

[39] C. KOELBEL, D. LOVEMEN, R. SCHREIBER, G. STEELE, and M. ZOSEL. High Performance

Fortran Handbook. The MIT Press, 1994.

[40] D. J. PALERMO, E. SU, J. A. CHANDY, and P. BANERJEE. Communication optimizations used in

the PARADIGM compiler for distributed-memory multicomputers. InProc. International Conference

on Parallel Processing, St. Charles, IL, August 1994.

[41] C. POLYCHRONOPOULOS, M. B. GIRKAR, M. R. HAGHIGHAT, C. L. LEE, B. P. LEUNG, and

D. A. SCHOUTEN. Parafrase-2: an environment for parallelizing, partitioning, synchronizing, and

54

scheduling programs on multiprocessors. InProc. the International Conference on Parallel Processing,

St. Charles IL, August 1989, pages II 39–48.

[42] W. PUGH. A practical algorithm for exact array dependence analysis.Communications of the ACM,

35(8):102–114, August 1992.

[43] E. SU, A. LAIN, S. RAMASWAMY, D. J. PALERMO, E. W. HODGES IV, and P. BANERJEE. Ad-

vanced compilation techniques in the PARADIGM compiler fordistributed-memory multicomputers.

In Proc. 9th ACM International Conference on Supercomputing,pages 424–433, Barcelona, Spain,

July 1995.

[44] E. SU, D. J. PALERMO, and P. BANERJEE. Processor tagged descriptors: a data structure for compil-

ing for distributed-memory multicomputers. InProc. Conf. on Parallel Architectures and Compilation

Techniques, Montreal, Canada, August 1994.

[45] R. E. TARJAN. Testing flow graph reducibility.Journal of Computer and System Sciences, 9:355–365,

1974.

[46] A. THIRUMALAI and J. RAMANUJAM. Efficient computation of address sequences in data-parallel

programs using closed forms for basis vectors.Journal of Parallel and Distributed Computing,

38(2):188–203, November 1996.

[47] A. VENKATACHAR, J. RAMANUJAM, and A. THIRUMALAI. Communication generation for

block-cyclic distributions.Parallel Processing Letters,7(2):195–202, June 1997.

[48] M. WOLFE.High Performance Compilers for Parallel Computing, Addison-Wesley Publishing Com-

pany, CA, 1996.

[49] X. YUAN, R. GUPTA, and R. MELHEM. An array data flow analysis based communication optimizer.

In Proc. 10th Annual Workshop on Languages and Compilers for Parallel Computing,Minneapolis,

Minnesota, August 1997.

55

[50] X. YUAN, R. GUPTA, and R. MELHEM. Demand-driven data flowanalysis for communication opti-

mization.Parallel Processing Letters,7(4):359–370, December 1997.

[51] M. GERNDT. Updating distributed variables in local computations. InConcurrency – Practice and

Experience, 2(3), pages 171–193, September 1990.

[52] H. ZIMA and B. CHAPMAN.Supercompilers for parallel and vector computers,ACM Press, 1991.

56

	A Global Communication Optimization Technique Based on Data-Flow Analysis and Linear Algebra
	Recommended Citation

	tmp.1284992644.pdf.5yfyr

