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NPAC Technical Report SCCS{622, Sept. 1994Data Access Reorganizations in Compiling Out-of-core DataParallel Programs on Distributed Memory Machines�Rajesh Bordawekar Alok Choudhary Rajeev ThakurDept. of Elect. and Comp. Eng. and NPACSyracuse UniversityNortheast Parallel Architectures Center111 College Place, Rm. 3-228Syracuse UniversitySyracuse, NY 13244-4100Tel : (315) 443-4061Fax : (315) 443-1973AbstractThis paper describes techniques for translating out-of-core programs written in a data parallel language likeHPF to message passing node programs with explicit parallel I/O. We describe the basic compilation model andvarious steps involved in the compilation. The compilation process is explained with the help of an out-of-corematrix multiplication program. We �rst discuss how an out-of-core program can be translated by extendingthe method used for translating in-core programs. We demonstrate that straightforward extension of in-corecompiler does not work for out-of-core programs. We then describe how the compiler can optimize the code by(1) estimating the I/O costs associated with di�erent array access patterns, (2) reorganizing array accesses, (3)selecting the method with the least I/O cost, and (4) allocating memory according to access cost for competingout-of-core arrays. These optimizations can reduce the amount of I/O by as much as an order of magnitude.Performance results on the Intel Touchstone Delta are presented and analyzed.
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1 IntroductionThe use of massively parallel machines to solve large scale computational problems in physics,chemistry, biology, engineering, medicine and other sciences has increased considerably in recenttimes. This is primarily due to the tremendous improvements in the computational speeds ofparallel computers in the last few years. Many of these applications, also referred to as GrandChallenge Applications [CR93], have computational requirements which stretch the capabilities ofeven the fastest supercomputer available today.In addition to requiring a great deal of computational power, these applications usually dealwith large quantities of data. At present, a typical Grand Challenge Application could require1Gbyte to 4Tbytes of data per run [dRC94]. Main memories are not large enough to hold thismuch amount of data; so data needs to be stored on disks and fetched during the execution of theprogram. Unfortunately, the performance of the I/O subsystems of massively parallel computershas not kept pace with their processing and communications capabilities [CFPB93]. Hence, theperformance bottleneck is the time taken to perform disk I/O. The need for high performance I/Ois so signi�cant that almost all the present generation parallel computers provide some kind ofhardware and software support for parallel I/O. An overview of the various issues involved in highperformance I/O is given in [dRC94].Data parallel languages like HPF [For93] and pC++ [BBG+93] have recently been developedto provide support for portable high performance programming on parallel machines. In orderthat these languages can be used for large scale scienti�c computations, support for performinglarge scale I/O from programs written in these languages is necessary. Issue of providing languagesupport for high performance I/O has been addressed recently [CMZ92, Sni92]. It is, therefore,essential to provide compiler support for these languages so that the programs can be translatedautomatically and e�ciently.1.1 Contributions of the paperIn this paper we describe data access reorganization strategies for e�cient compilation of out-of-core data parallel programs on distributed memory machines. This paper builds on our previouswork on basic compilation techniques for out-of-core data parallel programs [TBC94a, TBC+94b].In particular, this addresses the following issues, 1) how to estimate the I/O costs associated withdi�erent accesse patterns in out-of-core computations, 2) how to reorganize data storage on disksto reduce I/O costs, 3) how to reorganize computations based on the reorganized data, and 4) whenmultiple out-of-core arrays are involved in the computations, how to allocate memory to individualarrays to minimize I/O accesses. We demonstrate that these techniques can reduce I/O costs byas much as an order of magnitude compared to the costs of I/O when in-core compilation methodsare straight forwardly extended for out-of-core computations. The compilation process is explainedwith the help of an out-of-core matrix multiplication program which uses a distributed GAXPYalgorithm. This program is used only as an example to illustrate the various issues involved incompiling out-of-programs and optimizing the I/O requirements. The techniques described in thispaper are applicable to other data parallel languages. Performance results on the Intel TouchstoneDelta are presented and analyzed. 1



1.2 OrganizationThe rest of the paper is organized as follows. Section 2 describes the basic model used for out-of-core compilation. The compilation methodology is discussed in Section 3. Section 4 describesthe I/O cost estimation and optimizations performed by the compiler, followed by conclusions inSection 5. In this paper, the term in-core compiler refers to a compiler for in-core programs andthe term out-of-core compiler refers to a compiler for out-of-core programs.2 Model for Out-of-Core Compilation2.1 Programming ModelThe most widely used programming model for large-scale scienti�c and engineering applicationson distributed memory machines is the Single Program Multiple Data (SPMD) model. In thismodel, parallelism is achieved by partitioning data among processors which e�ectively representsparallelism in a class of applications called loosely synchronous applications [Fox91]. To achieveload-balance, express locality of access, reduce communication and other optimizations, several dis-tribution and data alignment strategies are often used (eg., block, cyclic, along rows, columns, etc.).Many parallel programming languages or language extensions have been developed which supportsuch distributions. These languages provide directives that enable the expression of mappings fromthe problem domain to the processing domain and allow the user to align and distribute arrays in themost appropriate fashion for the underlying computation. The compiler uses the information pro-vided by these directives to compile global name space programs for distributed memory computers.Examples of parallel languages which support data distribution include Vienna Fortran [ZBC+92],Fortran D [FHK+90] and High Performance Fortran (HPF) [For93, KLS+94]. In this paper, wedescribe the compilation of out-of-core HPF programs, but the discussion is applicable to any otherdata parallel language in general.The DISTRIBUTE directive in HPF speci�es which elements of the array are mapped to eachprocessor. This results in each processor having a local array associated with it. In an in-core pro-gram, the local array resides in a local memory of the processor. Our group at Syracuse Universityhas developed a compiler for in-core HPF programs [BCF+93]. For large data sets, however, localarrays cannot entirely �t in main memory. In such cases, parts of the local array have to be storedon disk. We refer to such a local array as an Out-of-core Local Array (OCLA). Parts of theOCLA need to be swapped between main memory and disk during the course of the computation.2.2 Architectural ModelFigure 1 describes the architectural model used by the compiler. It assumes any general distributedmemory computer in which the processors are connected together in some fashion. The system isprovided with a set of disks. Each processor may either have its own local disk or all processorsmay share the set of disks. The system is provided with dedicated I/O processors which controlthe ow of data between the compute processors and the disks. The I/O subsystem may have aseparate interconnection network or it can share the same network which connects the processorstogether. 2
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Figure 1: Architectural Model2.3 Data Storage ModelThe Data Storage Model shown in Figure 2 speci�es how the out-of-core array is placed on disksand how it is accessed by the processors. The out-of-core local array of each processor is stored ina separate �le called the Local Array File (LAF) of that processor. The LAF can be assumedto be owned by that processor. The node program explicitly reads from and writes into the LAFwhen required. If the I/O architecture of the system is such that each processor has its own disk,such as in the IBM SP-1, the LAF of each processor will be stored on the disk attached to thatprocessor. If there is a common set of disks for all processors, such as on the Intel Paragon, theLAF will be distributed across one or more of these disks. In other words, we assume that eachprocessor has its own logical disk with the LAF stored on that disk. The mapping of the logicaldisk to the physical disks is system dependent.A simple way to view this model is to think of each processor as having another level of memory(logical disk) which is much slower than the main memory. Both the main memory and thisadditional memory cannot be directly accessed by any other processor. Hence, a processor cannotdirectly access some other processor's LAF. If a processor needs data from the LAF of anotherprocessor, the required data will be �rst read by the owner processor and then communicated tothe requesting processor.In order to store data on the disks based on the distribution pattern speci�ed in the program,redistribution of data may be needed in the beginning when data is �rst stored on disk. This isbecause the way data arrives (eg. from archival storage, satellite or over the network) may notconform to the distribution speci�ed in the program. Redistribution requires reading data fromdisks, communicating data between processors and writing the data to the local array �les. Thisinvolves some additional overhead which can be amortized if the array is used several times (eg.for many iterations). 3
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ProcessorsFigure 2: Data Storage Model3 Compilation MethodologyThis section describes the methodology used for compiling out-of-core HPF programs. We use anout-of-core matrix multiplication program example to illustrate the compilation and optimizationprocess. We have chosen this example because it clearly brings out many of the important issuesinvolved in compiling out-of-core programs. This example is used only for explanatory purposesand the methodology described in this paper is applicable to any other program in general.We �rst describe the global name space matrix multiplication program and then explain how itis translated assuming that all the matrices are in-core. This is helpful in understanding how theprogram needs to be compiled when the arrays are out-of-core.3.1 GAXPY Algorithm for Matrix MultiplicationLet A, B and C be n� n matrices such that C = A�B. A, B and C can be represented in termsof their individual columns as A = [a1; � � � ; an], aj 2 RnB = [b1; � � � ; bn], bj 2 RnC = [c1; � � � ; cn], cj 2 RnThen the GAXPY algorithm for computing C = A �B iscj = nXk=1 bkjak ; j = 1 : n (1)4



1 parameter (n=64, nprocs=4)2 real a(n,n), b(n,n), c(n,n), temp(n,n)3 !hpf$ processors Pr(nprocs)4 !hpf$ template d(n)5 !hpf$ distribute d(block) on Pr6 !hpf$ align (*,:) with d :: a, c, temp7 !hpf$ align (:,*) with d :: b8 do j=1, n9 FORALL (k=1:n)10 temp(1:n,k) = b(k,j)�a(1:n,k)11 end FORALL12 c(1:n,j) = SUM(temp,2) ! Sum Intrinsic13 end do14 endFigure 3: GAXPY Matrix Multiplication in HPFWe can see that in order to compute the jth column of C, we need the jth column of B andall columns of A. Figure 3 shows the HPF program for GAXPY matrix multiplication. Arrays Aand C are distributed in column-block fashion whereas array B is distributed in row-block fashionover 4 processors. A temporary array is needed to store the products of element bkj and columnak, which can be computed for all k in parallel. The jth column of the result is computed usingthe intrinsic function SUM.3.2 In-core CompilationOur research group at Syracuse University has developed a compiler to translate in-core HPFprograms to message passing node programs for distributed memory machines [BCF+93]. We willfocus on compilation of FORALL statements in the HPF program.1 A FORALL statement is essentiallya parallel loop with copy-in-copy-out semantics [For93]. According to the HPF speci�cations, thefollowing steps describe a correct sequential implementation of a FORALL statement; 1) copy rhs,2) synchronize, 3) evaluate expression, 4) synchronize, 5) assign to lhs. Note that synchronizationand copying are only part of the speci�cation and can be avoided in most cases with appropriatecompiler analysis [BCF+93].The compiler uses distribution directives (Figure 3, lines 3{7) in the source program to �ndthe distribution pattern of the arrays. Using the data distribution information, the arrays arepartitioned into local arrays. After data distribution, the compiler analyzes the array operations(Figure 3, lines 8{13). The compiler checks that the outer loop (lines 8{13) is a sequential DOloop whereas the inner loop (lines 9{11) is a FORALL construct. The inner FORALL loop (indexed byvariable k) is sequentialized into local DO loops. After the local computation is done, the temporaryresults are added to give the jth column of the resultant C. This operation is performed using aglobal sum reduction routine. Using the knowledge that the index j is in global name space and1Any array assignment statement can be converted into a corresponding FORALL statement, so we will use theminterchangeably [FHK+90, For93]. 5



parameter (n=64, nproc=4, local n=16)C Partition the arrays using the distribution information.real a(n,local n), b(local n,n), c(n,local n)do j=1, nInitialize the temporary array.do i= 1, local ndo k=1, ntemp(k,i) = a(k,i)�b(i,j)end doend doC Perform Global Sum of the temporary arrays along dimension 2.result = global sum(temp, 2)C Find the owner of the jth column and store the column.owner = global to processor(j)local index = global to local(j)if (mynode = owner) thenstore the result as (local index)th column of Cend ifend doend Figure 4: Translated code for in-core matrix multiplicationthat C is distributed in column-block fashion, the compiler computes the owner of the resultantcolumn which stores the result in the appropriate location in the local C array. Figure 4 shows theresultant node plus message passing program.3.2.1 Comparison with a Hand-coded ProgramEquation 1 can be rewritten as a sum of p partial sums as followscj = bnp cXk=1 bkjak + 2bnp cXk=bnp c+1 bkjak + � � �+ nXk=((p�1)�bnp c)+1 bkjak| {z }p Sums ; j = 1 : n; ak 2 Rn (2)Each of these partial sums can be obtained on individual processors. Consider the partialsum Pk bkjak. Each partial sum returns an intermediate vector in Rn. Each vector is a linearcombination of bnp c columns of A and bnp c elements of a column j of B. These intermediate vectorsare then added to give the jth column of matrix C. This process is repeated n times. It can beobserved that to obtain the intermediate vectors, the best way to distribute A is in column-blockform and B in row-block form. For this distribution, the number of rows of B in each processoris equal to the number of columns of A in that processor. Moreover, since in each step j of thesumming process column cj of array C is computed, the natural distribution for C is the same asthat for A, namely column-block. 6



1 do j=1, columns b (n)2 do k=1, rows b (np )3 do i=1, rows a (n)4 temp(i) = b(k,j)�a(i,k) + temp(i) ! Find Partial Sum5 end do6 end do7 temp sum = global sum of temp.8 if (mynode is owner of column j) then9 store temp sum as column c(j 0), where j 0 = global to local(j)10 end if11 end do Figure 5: Hand-coded Distributed GAXPY ProgramFigure 5 shows a hand-coded distributed memory GAXPY matrix multiplication program. Theouter-most loop (j) varies from 1 to columns b (n). In each iteration (j), the column j of array B isused for computation. Two inner loops multiply the kth column of A by the kth element of columnj of B (lines 2-6). The intermediate vector temp is then added by all processors to give the globalsum (temp sum in line 7). Using the global index j, the owner of column c(j) is calculated. Thisprocessor stores temp sum as the jth column of array C in the corresponding local array position.Note that the two inner loops operate in the local index space whereas the outer loop operates inthe global index space. Figure 6 illustrates the computation in the jth iteration of the algorithm.The elements of array B and the corresponding columns of array A are shown using the same shade.A comparison of the programs in Figures 4 and 5 shows that the code generated by the in-corecompiler is similar to the hand-coded version. That is, in-core compilation produces a good codein comparison with a hand-coded program.3.3 Out-of-core CompilationThe out-of-core HPF compiler follows an approach similar to the in-core HPF compiler. In order totranslate out-of-core programs, in addition to following the steps used for in-core compilation, thecompiler also has to schedule explicit I/O accesses to fetch/store appropriate data from/to disks.The compiler has to take into account the data distribution on disks, the number of disks used forstoring data and the prefetching/caching strategies used. As stated earlier, the local array of eachprocessor is stored in a local array �le (LAF). The portion of the local array currently requiredfor computation is fetched from disk into the in-core local array (ICLA). The size of the ICLA isspeci�ed at compile time and usually depends on the amount of memory available. The larger theICLA the better, as it reduces the number of disk accesses. Each processor performs computationon the data in its ICLA.Some of the issues in out-of-core compilation are similar to compiler optimizations carriedout to gain advantage of processor caches or pipelines. This optimization, commonly known asstripmining [Wol89a, ZC91], sections the loop iterations so that data of a �xed size (equal to cachesize or pipeline stages) could be operated on in each iteration. In the case of out-of-core programs,the computation involving the entire local array is performed in stages, where each stage operates7
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The compilation is performed in two phases. In the in-core phase, the compiler obtains thenecessary information about the arrays from the HPF directives (lines 3{7, Figure 3). Usingthis information, the compiler analyzes the array operations (lines 8{13, Figure 3). The compileranalyzes the outer loop (line 8, Figure 3), �nds that the loop is a sequential DO loop and hencedoes not partition it. The inner loop consists of a FORALL construct which is parallelized. Usingthe array distribution information, the compiler computes the local array bounds and partitionsthe computation. The compiler analyzes the array assignment statement in line 10 to determine ifcommunication is required. In this case, no communication is required in the innermost loop, butthe outer loop requires a global sum operation.In the second phase, stripmining of the index spaces is carried out using the memory (ICLA)size. Since the outer loop successively fetches elements of B, an I/O routine for fetching the slabsof array B is inserted. The inner loop is also stripmined and another I/O routine is insertedfor fetching the slabs of array A. After the execution of the inner loop, all processors add theirtemporary results to obtain the corresponding columns of C. Using the distribution informationof array C and the value of the outer loop index (j), the index of the processor that owns thesecolumns is computed. This processor computes the local indices of these columns and stores thecolumns in the local array �le. The resulting node program with the communication and I/O callsis shown in Figure 9.3.4 Experimental ResultsFigure 10 shows the performance for multiplication of 1K�1K real arrays on 4, 16, 32 and 64processors. The slab ratio, which is the ratio of the slab size to the out-of-core local array size isvaried from (1/8) to 1. The slab-size for array A is chosen to be equal to the slab-size for arrayB. Note that the case when the slab-size is equal to the OCLA size (slab ratio = 1) is di�erentfrom the case when the entire data is stored in main memory. When the slab-size equals the sizeof the OCLA, the slab-ratio (k in Figure 9) is 1. Even so, data is still accessed from disk, butonly once for each column of C. We observe that as the slab ratio is decreased, the time takenincreases. This is because a lower slab ratio means a smaller slab size and more number of slabs.This increases the number of I/O requests, though the total amount of data fetched from diskremains the same. The larger number of I/O requests increases the time taken for I/O whichresults in higher overall execution time. In the next section, we present optimizations which reducethe I/O time signi�cantly.4 Data Access ReorganizationFor in-core programs, interprocessor communication is often the bottleneck which can degradethe overall performance considerably. Hence, an important optimization to be performed by anycompiler for in-core programs is to minimize the communication overhead. This is usually doneby aggregating small messages into a single long message so as to reduce communication latency,using collective communication routines etc. For an out-of-core compiler, it is very important tominimize the I/O cost because the time required to fetch data from disk is at least an order ofmagnitude more than the time required to communicate data between processors.We measure I/O cost in terms of two metrics, namely the number of I/O requests per processorand the total amount of data fetched from disk per processor. Since the cost associated withphysically accessing data (e.g. seek time, latency time etc.) is dictated by the hardware and to a10



C (N,N) Arrays distributed over p processors.C Stripmine code based on the slab size M .C Repeat operation k times, k=(no. of cols. in OCLA of A/no. of cols. in slab) = N2=(M P )C Initialize global index.global index=0do l=1, kCall I/O routine to read the ICLA of array B.do m=1, no columns in icla of Bglobal index=global index+1column count = 0do n=1, kCall I/O routine to read the ICLA of array A.do i=1, no columns in icla of A fM/Ngcolumn count = column count + 1do j=1, no elements per column fNgtemp(j,i) = temp(j,i) + A(j,i)�B(column count,m)end doend doend doCall Global Sum routine to obtain the (global index)th column of Cif (mynode is owner of this column) thenStore the column in the corresponding ICLA.if ICLA is full thenCall I/O routine to write the ICLA of array C.end ifend ifend doend doFigure 9: Node+MP+I/O Pseudo-Code for the Matrix Multiplication Program
11
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Figure 10: E�ect of slab size variationcertain extent by the parallel �le system, these two metrics can be used to e�ectively analyze theI/O costs associated with a user program.4.1 I/O Cost EstimationThe previous section presented a simple extension of the in-core compilation method to compile out-of-core programs. Speci�cally, the extension of the in-core compilation technique did not explicitlyconsider the I/O costs associated with array assignment statements involving out-of-core arrays.In this section, we describe a framework for estimating the I/O costs in such statements and usingthis estimate to determine better access patterns which reduce the I/O cost.In order to estimate the I/O cost associated with the compiled code, we analyze the node+MP+I/Oprogram generated by the out-of-core compiler, which was described in the previous section (Fig-ure 9). Using the local loop bounds, slab sizes and index variables for each out-of-core array, wecompute the number of I/O accesses and the total amount of data accessed. We illustrate this bycomputing the dominant I/O costs in the out-of-core program in Figure 9. We call this version ofthe translated program as the column slab version because the out-of-core local array is dividedinto slabs along columns as shown in Figure 11(I). Note that for each column of B, the entire localarray of A is required. Thus the dominant I/O cost is given by I/O accesses associated with thearray A. Further, note that arrays B and C are accessed once during the entire computation, oneslab at a time.The I/O cost for accessing array A in the column slab version can be calculated as follows. LetN = number of rows and columns in the global array A,P = number of processors, 12
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C (N,N) Arrays distributed over p processors.C Stripmine code based on the slab size M .C Repeat Operation k times, k=(no. of rows in OCLA of A/no. of rows in slab)=N2=(M P )do l=1, kCall I/O routine to read the ICLA of array A.global index=0do n=1, kCall I/O routine to read the ICLA of array B.do m=1, no columns in icla of Bglobal index=global index+1do i=1, no columns in icla of A fN/Pgdo j=1, no elements per column f(M P)/Ngtemp(j,i) = temp(j,i) + A(j,i)�B(i,m)end doend doCall Global Sum intrinsic to obtain the (global index)th subcolumn of Cif (mynode is owner of this subcolumn) thenStore the subcolumn in the corresponding ICLA.if ICLA is full thenCall I/O routine to write the ICLA of array C.end ifend ifend doend doend do Figure 12: Row Slab Version of the translated code
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A B CFigure 13: The �gure shows the row slab version of the translated code. The subcolumns of arrayA and the corresponding elements of array B are shown using same shade.Comparing equations 3 and 4 with equations 5 and 6, we observe that the row slab versionrequires an order of magnitude less number of I/O requests and an order of magnitude less amountof data to be fetched from disk than the column slab version. The I/O costs associated with arraysB and C are the same in both versions. So, the row slab version is clearly the method of choice fortranslating the out-of-core GAXPY matrix multiplication program. This data access pattern andthe corresponding computation reorganization is further illustrated using Figure 13. The elementsof array B that are multiplied to the corresponding columns of array A are shown using the sameshade. The same slab of array A is multiplied with the jth column to kth column of B to producethe jth to kth subcolumns of C. Thus, the repeated I/O accesses to array A in the column slabversion are eliminated.In general, this approach for estimating the I/O cost requires analyzing the storage and accesspatterns along each dimension of the distributed out-of-core array. Based on this analysis, the loopsare reorganized and the corresponding I/O costs are computed. The version with the minimumI/O cost is selected. This is summarized in the algorithm given in Figure 14.4.2 Performance ResultsTable 1 compares the performance of the row and column slab versions of the out-of-core matrixmultiplication program. Two arrays of 1K�1K real numbers are multiplied on 4, 16, 32 and 64processors. The slab ratio, which is the ratio of the slab size to the OCLA size, is varied from (1/8)to 1. We have also measured the time for an in-core version of the program which requires onlyan initial read of the arrays from disk. As explained earlier, this is di�erent from the case whenthe slab size is 1 because in the latter case, the array is assumed to be out-of-core even thoughthe entire out-of-core local array is stored in one slab. This slab is fetched from disk whenevernecessary.We observe that the row slab version performs considerably better than the column slab version15



Determine the amount of available memory.For each array used in the array assignment statement doFor each dimension of the out-of-core array doUse index variables to analyze access patterns.Compute the I/O costs for stripmining using slabs along this dimension.end forend forDetermine which array requires the largest amount of I/O.Select the stripmining strategy which results in lowest I/O cost for that array.Figure 14: General Algorithm for I/O Cost Estimation
Table 1: Performance of matrix multiplication for various slab sizes, time in secondsSlab Ratio 4 Procs 16 Procs 32 Procs 64 ProcsCol. slab Row slab Col. slab Row slab Col. slab Row slab Col. slab Row slab1/8 1045.84 239.97 897.59 161.02 857.62 97.08 803.57 90.291/4 979.20 226.08 864.08 118.20 807.99 92.43 783.79 75.561/2 958.17 205.91 802.69 96.79 788.47 80.45 698.29 66.701 923.11 194.15 714.15 84.77 680.40 66.94 620.70 60.11In-core 140.91 40.40 20.14 9.5816



Table 2: Performance of the row slab version for di�erent slab sizes of arrays A and B2K � 2K arrays, 16 processors, time in secondsSlab B Slab A=256 Slab A slab B=256 Total Memorysize Time (s) size Time (s) (Slab A + Slab B)256 826.94 256 826.94 512512 548.13 512 510.02 7681024 507.01 1024 492.87 12802048 493.04 2048 452.29 2304for any number of processors and any slab size. This is because it requires an order of magnitudeless amount of I/O, as proved earlier. In both versions, the time taken increases as the slab ratio (orslab size) is decreased. A smaller slab size results in higher number of I/O requests, which increasesthe I/O cost. The di�erence between the in-core version and any of the out-of-core versions showsthe corresponding time spent in performing I/O.4.2.1 Selecting Slab Sizes for Multiple ArraysThe compiler has to choose the slab sizes to be used for all arrays in the program depending on theamount of available memory. One approach is to distribute the available memory equally amongall the arrays, so that they all have the same slab size. Another approach is to analyze the I/Oaccess patterns of the arrays and assign a larger slab size to the array with more frequent accesses.We have studied the e�ect of di�erent slab sizes on the overall performance. Table 2 shows theperformance of the matrix multiplication program for di�erent slab sizes for arrays A and B. Thearrays are chosen to be of size 2K�2K. In the �rst experiment, the slab size for array A is �xed andthe slab size for array B is varied. The second experiment is performed by keeping the slab size forarray B �xed. While in the �rst experiment, the execution time improves from 826.94 seconds to493.04 seconds, in the second experiment the best performance observed is 452.29 seconds. Hence,instead of equally dividing the available memory between the slabs of A and B, if a larger portion isallocated to the slab of A, better performance is obtained. This is because A is accessed more oftenthan B or C. Hence the compiler should allocate more memory to array A. As explained earlier,using the loop bounds and index variables, the compiler can determine which array requires moreI/O accesses and accordingly allocate the available memory.5 Related WorkAbu-Sufah �rst investigated strategies for improving performance of fortran programs in virtualmemory environment [ASKL81]. Compiler transformations such as tiling, strip-mining, loop in-terchange, loop skewing are proposed by Wolfe [Wol89b]. Transformations like Unroll-and-jamand Scalar replacement are proposed by Carr [Car93]. Callahan studies the problem of registerallocation [CCK90]. The notion reference window is proposed by Gannon et al. [GJG88]. Thereference window is used by the compiler to study reuse in the program and perform correspondingtransformations. Irigoin and Triolet also propose transformations to improve locality [IT88].17



Schriber and Dongarra describe strategies to perform automatic tiling. They propose a linearalgebraic formulation to �nd optimal size and shape of the data tile [SD90]. Ramanujam and Sa-dayappan use locality transformations to minimize interprocessor communication. They use a linearprogramming formulation to obtain optimal shape of the tile [RS90]. Further studies in optimaltiling are done by Boulet et al. [BDRR93]. Wolf and Lam propose an elegant loop transformationtheory to improve locality and parallelism [WL91]. Blockability in numerical algorithms has alsobeen studied extensively [CK92, GJMS88].An excellent description of the compiler transformations is given in [BGS93].Most of this work is targeted for locality optimizations for sequential programs. Our work dealswith locality optimizations for out-of-core programs running on distributed memory machines. Wealso assume that the out-of-core programs access the data from �les which are distributed overmultiple disks.6 ConclusionsWe have described how an out-of-core program written in a data parallel language like HPF can betranslated into a message passing node program with explicit communication and parallel I/O. Sucha compiler is necessary for compiling large scale scienti�c applications written in a data parallellanguage. These applications typically handle large quantities of data which results in the programbeing out-of-core.We have discussed the basic compilation model and various steps involved in the compilation.The compilation process was illustrated using an out-of-core matrix multiplication example. Wedescribed how the basic in-core compilation method can be extended to compile out-of-core pro-grams. However, the code generated this way may not give good performance. We have proposedan optimization by which the compiler can improve the code generated by the above method. Thecompiler estimates the I/O costs associated with di�erent array access patterns and selects themethod with the least I/O cost. This can reduce the amount of I/O by as much as an order ofmagnitude. We also discussed how the performance of the program varies with slab size. Insteadof dividing the available memory equally among all arrays, the best performance is obtained whenthe most frequently accessed array is allocated a larger slab size.Some of the compilation techniques described in this paper are currently being done by hand.We are in the process of implementing them in the compiler. Due to stability problems with thehardware, we have done experiments with relatively small data sets.AcknowledgmentsWe would like to thank Ken Kennedy and Chuck Koelbel for many enlightening discussions. Wewould also like to thank our compiler group at Syracuse University for their help with the basicinfrastructure of the in-core HPF compiler.References[ASKL81] W. Abu-Sufah, David Kuck, and D. Lawrie. On the performance enhancement of paging systems through programanalysis and program transformation. IEEE Transactions on Computers, C-30(5):341{356, May 1981.18
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