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SCCS-260published in The Fourth Symposium on the Frontiers of Massively Parallel ComputationOctober 19-21, 1992, McLean, VirginiaIEEE Computer Society, NASA Goddard Space Flight CenterA Large Scale Comparison of Option Pricing Modelswith Historical Market Data�Kim Mills, Michael Vinson, and Gang ChengNortheast Parallel Architectures Center at Syracuse UniversitySyracuse, NY 13244-4100kim@npac.syr.eduAbstractA set of stock option pricing models are im-plemented on the Connection Machine-2 and theDECmpp-12000 to compare model prices and histor-ical market data. Improved models, which incorporatestochastic volatility with American call generally havesmaller pricing errors than simpler models which arebased on constant volatility and European call. In a re-�nement of the comparison between model and marketprices, a �gure of merit based on the bid/ask spreadin the market, and the use of optimization techniquesfor model parameter estimation, are evaluated. Opti-mization appears to hold great promise for improvingthe accuracy of existing pricing models, especially forstocks which are di�cult to price with conventionalmodels.1 IntroductionFollowing the opening of the �rst organized optionsexchange in April, 1973 by the Chicago Board of Op-tions Exchange, rapid growth in option trading has�We gratefully acknowledge support for this study from theO�ce of the Vice President for Research and Computing atSyracuse University, and Corporate Partnership funding fromDigital Equipment Corporation.

been accompanied by the development of option pric-ing theory and modeling. While there are many typesof options, all option contracts are based on puts, calls,and an underlying asset (a stock or an index of stocks).The owner of a call option contract has a right but notthe obligation to purchase shares of the asset for anagreed upon exercise or striking price, for a �xed pe-riod of time [2]. European option contracts can be ex-ercised only at maturity, while American contracts canbe exercised at any time during the life of the contract.Option traders include both speculators and �nancialmanagers. Speculators are attracted to the optionsmarket because of the potential for high pro�ts. Con-siderably less capital is required to participate in theoptions market than the stock market. Financial man-agers participate in the options market to hedge riskin their portfolios.The variance of asset price over time (de�ned asvolatility) is a key parameter in any calculation ofoption prices. Since the introduction of a constantvolatility, European pricing model (Black-Scholes) [1],�nance researchers have sought improved methods toprice options with stochastic volatility and Americancontracts.A schematic view of the path of stock price overtime is illustrated in Figure 1. Elements of the model
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Figure 1: Schematic view of stock over life of optioncontractinclude initial stock price, the call price, the exerciseprice, the time of dividend, as well as model param-eters which cannot be directly observed but must beestimated from market information. These parame-ters include volatility of underlying asset, variance ofthe volatility, and correlation between asset price andvolatility. In general, the time just prior to dividendpayout is the only time that a call option is exercisedbefore maturity.This project is part of a program at the NortheastParallel Architectures Center (NPAC) to develop ap-plications of parallel computing in industry, and is theresult of a collaboration with the School of Manage-ment at Syracuse University. Our purpose here is toreport the results of a comparison of a set of optionpricing models and historical market data. Performingthis comparison requires high performance computing.In a related study we examine data distribution, loadbalancing, and communication issues and their e�ecton performance of option pricing models on the Con-nection Machine-2 and the DECmpp-12000 [7].In this comparison, we observed smaller errors inpricing models incorporating stochastic volatility andAmerican call than for models based on constantvolatility and European call. In a re�nement of ourcomparison between model and market prices, we usedoptimization techniques to estimate model parameters

and devised a �gure of merit based on the bid/askspread in the market to summarize model perfor-mance. Optimization appears to hold great promise inimproving the performance of existing pricing models.Current, ongoing work includes developing a simpletrading strategy to assess model performance in termsof market pro�tability.2 Option pricing modelsThe Black-Scholes option pricing model was �rstpublished in 1973 [1] with the opening of the ChicagoBoard of Options Exchange, and remains commonlyused. This model assumes constant volatility andEuropean pricing (exercise only at maturity), and isthe least sophisticated model considered in this study.Black and Scholes [1] derived a nonstochastic equationfor call price that can be solved analytically. Many ofthe models that follow the Black-Scholes model incor-porate methods for treating volatility as a stochasticprocess.Monte Carlo models are the conventional standardof comparison for option pricing models. The MonteCarlo method allows us to directly incorporate volatil-ity and stock price change as stochastic processes, andparallelizes very easily. While generally accepted toprovide the most accurate pricing estimates, MonteCarlo models remain too computationally intensive tobe used other than for research purposes.Binomial approximation models allow us to incor-porate stochastic volatility and American call, and arecomputationally far more e�cient than Monte Carlosimulation. In a previous, related study, Finucane [4]compared a set of Monte Carlo simulation and bino-mial pricing models. Using a set of �xed input pa-rameters (stock price, volatility, variance of volatil-ity, correlation, stock price/exercise price ratio), bi-nomial models were demonstrated to provide accurateapproximations (within two standard errors) of thestochastic volatility price for the European and Amer-ican Monte Carlo cases.In this study, we evaluate the accuracy of binomial



approximation models for pricing call options. We se-lected four pricing models, implemented these mod-els in Fortran90 on the Connection Machine-2 andthe DECmpp-12000, and performed a comparison be-tween model and historical market prices. The fourmodels in our market comparisons are:Model 1. Black-Scholes model (constant volatility, Eu-ropean call)Model 2. Binomial approximation with constantvolatility, and American callModel 3. Binomial approximation with stochasticvolatility, and European callModel 4. Binomial approximation with stochasticvolatility, and American callFollowing [3, 5, 4], we briey summarize the equa-tions describing the continuous time movement ofstock price and volatility (variance of stock price) overthe life of an option contract. Discretizing these pro-cesses within the binomial lattice is based on an as-sumption that stock price and volatility follow a con-tinuous drift. The binomial model is used to derive adistribution of stock prices at time of maturity.Volatility, �, and stock price, S, follow stochasticprocesses represented asd�2�2 = ��dt+ �dfW (1)dSS = �sdt+ �d eZ (2)where fW and eZ are standard Weiner processes withcorrelation �, �� is the drift of the variance processand �s is the drift of stock price (both constants) and �is the volatility of the variance (not directly observed,but estimated from data). Weiner processes generatecontinuous paths that are in constant motion no mat-ter how small the time step.Binomial approximation models represent the con-tinuous time processes described above as a latticeof discrete up/down movements in stock price andvolatility. For example, the magnitude of the increase(u) or decrease (d) in variance for a given time periodis as

u = e(����2=2)�t+�p�t (3)d = e(����2=2)�t+�p�t (4)with the probability of an increase or decrease beingequally likely. With the introduction of correlation,�, the variance of stock price after i periods with jupward movements and i� j downward movements isthen de�ned as�2 = ��20;0�u(�)id(�)i�j (5)In the limit, as �t approaches zero, the binomial pro-cess approaches the continuous time process.The magnitude of increases (U ) and decreases (D)within the stock price are then de�ned asUi;j = e(rf��2i;j=2)�t+�i;j�t (6)Di;j = e(rf��2i;j=2)�t��i;j�t (7)American options incorporate early exercise, whichmeans that the option can be exercised at any timeduring the life of the contract. Pricing American op-tion contracts with the binomial model requires track-ing price movements within the lattice from the timeof early exercise (dividend payout) to contract matu-rity. We use American pricing, but do not describedetails of the model implementation in this paper.3 Implementation of the binomial ap-proximation modelBinomial models provide a numerical procedure forapproximating the stochastic processes of stock pricechange over time. A binomial lattice is illustrated inFigure 2 showing asset price or volatility of price in thevertical axis and time in the horizontal axis. Impor-tant elements of the model include initial price (S0)and volatility (�0) or (V0), time of dividend payout(tdiv), the 2tdiv nodes at time of the dividend wheretdiv ranges over values 1 to T � 1, and the 2T nodesat terminal time T . A single option price C0, is es-timated from a weighted average of the 2T prices attime T and discounting to the present time T0.
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0 0Figure 2: Structure of the binomial latticeWe designate the time steps in our model from 1 totdiv as stage 1 of the model, and timesteps from tdiv tomaturity T as stage 2 of the model. This breakdownof the American pricing model allows us to track pricemovements after dividend payout and determine per-centages of early exercise.Figure 3 illustrates the 2tdiv nodes in the binomiallattice at time of dividend. The value of tdiv rangesfrom 1 to T � 1 and de�nes the shape of the two-dimensional Fortran array (1 : 2tdiv ; 1 : 2T�tdiv). Thevalue tdiv comes frommarket information (each optionrecord has its own value tdiv) and is not accessible tothe model until run-time, requiring dynamically allo-cated arrays.At the close of stage 1 in our model, there are 2tdivnodes in the lattice. After dividend payout, and theonset of stage 2 of the model, up/down movements ofprice (and volatility) for each node are represented bya subtree of the lattice and expressed in the seconddimension of the array of size 2T�tdiv . As illustratedin Figure 3, when tdiv = 2, there are 2tdiv or 4 rowsin the two-dimensional array. After dividend payout,stage 2 of the model, further up/down moves of priceand volatility are expressed in the 2T�2 columns ofthe two-dimensional array.We run the binomial model for T= 17 time steps orperiods. At each time step T, there are 2T points in
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4 Comparison of market and modelpricesWe obtained market data from the Chicago Boardof Options Exchange for the period 1988-1990, andin our initial tests, used one-month records of optiontrades from January, 1988 for a set of 13 stocks. Op-tions are a high-volume instrument, each one monthdata set consists of individual trades ranging in sizefrom three to ten thousand trades.We de�ne the market price as the average of theprevailing bid and asking prices for each trade record.From our set of pricing models, we calculate four mod-els prices for each trade and compare model with mar-ket prices. Before running the pricing models, we must�rst estimate various model parameters. Volatility �,the most important parameter in all of the models,is not directly observable. The same is true of �, thevariance of �, and its correlation with the stock price�. The techniques used to estimate these parametershas a direct impact on the data comparison.We begin with a simple method for model param-eter estimation. At the beginning of each half hourinterval, we select an option with an exercise priceclosest to the stock price, and the shortest expirationtime. We compute four estimates of market volatility,termed the implied volatility, by numerically invertingthe four models for the selected option record. Theseimplied values of volatility are then used as input tothe models to price the remaining options in that halfhour interval. To estimate � and �, which are as-sumed in this simple method not to vary over time,we average the half hour implied volatilities for eachday, and compute the variance and correlation of thesedaily averages over the month long market record. Wecompare market and model prices by reporting RMSerrors.In our preliminary comparison, we examined theperformance of four pricing models, using this simplemethod of parameter estimation, over the one monthperiod of January, 1988. The following list identi�esthe individual stocks used in this comparison: Bristol

Figure 4: Results of preliminary market comparisonMyers Squibb (bmy), Chrysler Corp. (c), EastmanKodak (ek), Ford Motor Corp. (f), General Electric(ge), Hewlett Packard (hwp), International BusinessMachines (ibm), American Telephone & Telegraph (t),Texas Instruments (txn), Walmart (wmt), and Xerox(xrx). Figure 4 represents model performance as aRMS error between model and market price. For allstocks, the least sophisticated model, model 1 Black-Scholes with constant volatility and European call,has the largest errors. Our most sophisticated model,model 4 binomial model with stochastic volatility andAmerican call, tends to have the smallest pricing er-rors. Pricing errors also tend to vary by stock. Forexample, AT&T (t) seems to be harder to price thanFord Motors (f) for this period. Although not shownhere, we observed that the more sophisticated bino-mial model (stochastic volatility with American call)tends to perform better than the other models for op-tions with the longest times to maturity (for example,greater than 60 days).5 Re�ning the comparison of modelsand market dataIn our initial evaluation of model accuracy, we useda simple method of model parameter estimation and



expressed model errors as RMS errors. To re�ne thiscomparison of model and market prices, we developeda �gure of merit to summarize model accuracy, andused optimization techniques to estimate model pa-rameters.The �gure of merit is based on the bid/ask spread inthe market. As the term implies, the bid/ask spread isthe di�erence between prevailing bids by buyers, andasking prices by sellers for a given option. Our �gureof merit de�nes the percentage of time that a modelprice falls within one bid/ask spread of the marketprice (de�ned as the average of the bid and ask price).The �gure of merit provides a simple method for sum-marizing model accuracy in market terms.In addition to the simple method of parameter es-timation based on historical values, we investigateda more sophisticated approach using nonlinear opti-mization. In this scheme, half-hour volatilities are es-timated as described above, and the parameters � and� are chosen so that they minimize the �2 error be-tween the market prices and the model prices for eachday. To do this, we de�ne the �2 as�2(�; �; t) = NtXi=1(Pi �Mi(�; �))2 (8)where Nt is the number of records for day t, Pi isthe market price of the ith record, and Mi(�; �) is themodel price for the ith record using parameters � and�. �2 is a nonlinear function of � and � and turnsout to be a rather smooth function of the parameters.This allows us to use the downhill simplex method[6], a simple method of nonlinear optimization whichworks well for this application. Using optimizationtechniques, we �nd the parameters � and � that givethe best possible �t to the data.Estimating these parameters requires a great dealof computational e�ort. For a typical run, the down-hill simplex method requires approximately 20 stepsto converge to parameters with an accuracy of 10�3.Each step requires the calculation of model prices andimplied volatilities for all of the options in the givenday. Typical data sets include 100 trades per day, 14

Figure 5: Figure of merit summarizing model perfor-manceof which are numerically inverted to compute the im-plied volatilities. The numerical inversion requires, onaverage, about 10 price calculations. Thus to estimatethe parameters for one day requires 20*(86 + 14*10)= 4520 option price calculations.We used model parameter estimates based on op-timization as input to model 4, the binomial modelwith stochastic volatility and American call. Figure 5summarizes results for a subset of the 13 stocks in ourprevious comparison. Model numbers 1 through 4 cor-respond to the same four models used above. Models5 and 6 are based on model 4, but use optimized pa-rameter estimates for � and �. In general, optimizationsubstantially improves the �gure of merit summarizingmodel performance. Improvement in model accuracywith optimized parameters is greatest for IBM andEastman Kodak stock in this period (January, 1988).IBM appears to be more di�cult to price than otherstocks in our sample, so we might expect optimizationto make a di�erence. Eastman Kodak stock, however,is reasonably modeled without optimization withoutoptimization, and further improved with optimization.



6 Discussion and conclusionWe used parallel models to perform a large scalecomparison of option pricing models and historicalmarket data. It is important to note that a small per-centage improvement in model accuracy has impor-tant implications for this application. While our com-parison was limited to one month of market data, ourresults suggest that improved pricing models, incor-porating stochastic volatility and American call, aremore accurate than simple models based on constantvolatility and European call. Incorporating optimiza-tion techniques into option pricing appears to holdgreat promise.This comparison required approximately 150 hoursof 8K Connection Machine-2 or DECmpp-12000 timeto perform. Based on speedup ratios observed in a re-lated study [7], we estimate a similar comparison us-ing sequential models running on a high speed work-station, such as a SUN4 or DECstation 5000 wouldrequire approximately 7,000 hours.Current work related to this project includes fur-ther improvement of optimization techniques [8], andapplication of the models to longer time periods. Inaddition, we are developing a simple trading strategyto assess model accuracy in terms of market pro�tabil-ity. In this strategy, we use the models to identifyunder priced options in the market, buy and hold op-tions for various holding periods, and track long termpro�tability of the various models.In conclusion, this study demonstrates an applica-tion parallel computing in the �nance industry. Par-allel models are required for performing large scalecomparisons between model and market prices. Par-allel models are useful tools for developing new pric-ing models and applications of pricing models, such aspricing entire portfolios and devising hedging strate-gies under changing market conditions.References[1] F. Black, and M. Scholes. \The Pricing of Op-

tions and Corporate Liabilities," Journal of Po-litical Economy, 81, 1973, 637-59. 1973.[2] T. Copeland, and J. Weston. \Financial Theoryand Corporate Policy,"Chapter 8. Pricing Contin-gent Claims: Option Pricing Theory and Evidence.pp. 240-298. Addison-Wesley. New York. 1986.[3] J. Cox, S. Ross, and M. Rubinstein. \Option Pric-ing: A Simpli�ed Approach," Journal of FinancialEconomics, Vol. 7, pp. 229-63, 1979.[4] T. Finucane, \Binomial Approximations of Amer-ican Call Option Prices with Stochastic Volatili-ties," to be published in Journal of Finance. 1992.[5] J. Hull, and A. White. \The Pricing of Options onAssets with Stochastic Volatilities," The Journalof Finance. Vol 42:2, pp. 281-300. 1987.[6] S.L.S Jacoby, J.S. Kowalik, and J.T. Pizzo, Iter-ative Methods for Nonlinear Optimization Prob-lems. Englewood Cli�s, N.J.: Prentice Hall, 1972.[7] K. Mills, G. Cheng, M. Vinson, S. Ranka, G. Fox.\Software Issues and Performance of a ParallelModel for Stock Option Pricing." to be publishedin The Fifth Australian Supercomputing Confer-ence. Syracuse Center for Computational Science-273b, 9 pps. 1992.[8] M. Vinson, K. Mills, and G. Cheng. \OptimizationTechniques for Option Pricing", Syracuse Centerfor Computational Science-draft, 1992.
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