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Hierarchical Growing Cell Structures(Revised version of the paper appearing in Proc. IEEE ICNN'96.)Vanco Burzevski and Chilukuri K. Mohan2-120 CST, School of CIS, Syracuse University, Syracuse, NY 13244-4100, U.S.A.315-443-2368/FAX:1122, vanco/mohan@top.cis.syr.eduABSTRACTWe propose a hierarchical self-organizing neural network (\HiGS") with adaptivearchitecture and simple topological organization. This network combines features ofFritzke's Growing Cell Structures and traditional hierarchical clustering algorithms.The height and width of the tree structure depend on the user-speci�ed level of errordesired, and the weights in upper layers of the network do not change in later phases ofthe learning algorithm. Parameters such as node deletion rate are adaptively modi�edby the learning algorithm.1. IntroductionConnectionist learning systems often face the stability-plasticity dilemma [2]. Most unsupervisedneural network learning algorithms are stable with respect to their topology and plastic with respectto weight vector adaptations; such is the case in Kohonen's topology-preserving self-organizing map(SOM) [4]. An exception is Fritzke's Growing Cell Structures (GCS) network [1], which is muchmore plastic in that nodes may be inserted into or removed from the network during the learningprocess. However, extreme plasticity can have unfortunate side-e�ects since useful accumulatedlearning experience can be lost. For instance, the deletion of a node can be followed by massivepurges in the GCS network, partly because the learning algorithm attempts to maintain a networkthat can be viewed as a set of hyper-tetrahedra (triangles, for 2D topology).A little more stability would be useful: this is accomplished using the hierarchical GCS al-gorithm proposed in this paper, in which weights of upper layer nodes are not modi�ed aftersub-trees are spawned. Furthermore, the network automatically adapts the frequency of nodedeletions invoked, depending on the success or failure of previous attempts to delete nodes. Thismechanism eliminates one crucial user-speci�ed parameter of the GCS network, the number ofsample presentations after which node deletions are invoked.Hierarchical clustering algorithms have been known for a long time, e.g., see Jain and Dubes(1988) [3] for a review. Upper layers of the network accomplish high-level clustering using a smallnumber of nodes (often just two or three) at each layer, and children of each node focus attentionentirely on the input samples for which the parent is the nearest among nodes at that layer (orwinner). The traditional clustering algorithm frequently invoked (at each layer) is analogous tosimple competitive learning, so that the �nal results may be far from optimal; better results maybe obtainable using a self-organized neural network algorithm in which more than one node isupdated when a sample is presented. This motivates our hierarchical GCS algorithm.Lampinen and Oja [5] have proposed a two-layer network with a hierarchical structure, gen-eralizing Kohonen's SOM. When an input vector is presented to the network, the best matching



unit (winner) from the �rst layer unit is �rst determined, and its children in the hierarchy are thenexamined to determine the �nal winner (a second layer node). As in the case of other hierarchicalalgorithms, this embeds a useful successive re�nement strategy, but network sizes and topologyare �xed in each SOM layer, restricting the ease with which the network can be adapted to �tthe problem. By comparison, the hierarchical GCS algorithm presented here may have more thantwo layers, as determined by problem complexity, is more plastic in the sense that the networkstructure adapts with input sample presentation, but is also more stable in the sense that thehigher layer nodes are not adapted in later stages of learning.Section 2 describes the GCS algorithm. The hierarchical GCS algorithm is described in Section3. Results are given in Section 4, followed by conclusions.2. Growing Cell StructuresFritzke's GCS network has a topology consisting of many hyper-tetrahedra (triangles in the two-dimensional case), whose vertices (nodes) are associated with weight vectors in the input vectorspace. Each node has a few neighbors, adjacent to it in the topological structure of the network.Periodically, nodes are inserted into and deleted from the GCS network; this occurs at intervalsof a �xed number of sample presentations. There are three main aspects of the GCS learningalgorithm:Adaptation: When an input pattern is presented to the GCS network, a competition is con-ducted, and the weight vectors of each node as well as its immediate topological neighborsare adapted in the direction of the input pattern, albeit with di�erent learning rates. Eachnode also has an associated signal counter �j that estimates the number of input patternsfor which that node j was the winner. Counter values also decay with time.Insertion: A node is inserted halfway between the node with highest signal counter value andits topologically adjacent neighbor which is at the greatest Euclidean distance. Insertion isfollowed by the establishment of connections to existing nodes, so that the triangular (orhyper-tetrahedral) network structure continues to be maintained. Voronoi regions and signalcounters of adjacent nodes are then adjusted as appropriate.Deletion: Nodes in a GCS with least signal counter value are chosen for deletion. Removal ofa node entails removal of the connecting edges, which may leave some nodes \dangling,"i.e., not part of any triangle (or hyper-tetrahedron in the general case). This eventuality isunthinkable, hence the dangling nodes are also deleted, possibly making other nodes dangle.Repeated elimination of dangling nodes may result in massive purges of the network, erasingthe e�ect of what has been learned earlier, necessitating that the network must rebuild itself.It is possible for subsequent insertions to result in a similar structure, implying that thenetwork may repeatedly shrink and expand, cycling through similar states. In practice,randomness in input presentations may help the algorithm escape such cycles.Fritzke [1] has described several examples where the performance of the GCS algorithm issuperior to that of the SOM algorithm with non-adaptive topology. The deletion mechanismallows GCS to approximate each region accurately, whereas the SOM tends to place several nodesin between these regions, as a consequence of the �xed topological structure.



3. Hierarchical Growing Cell StructuresThe Hierarchical GCS (HiGS) network structure resembles a tree, in which each element is a GCSnetwork, as shown in Figure 1. Every non-root GCS network in the tree corresponds to one nodeof the parent network. All the components of the training process, i.e., weight adaptations, nodeinsertions, and node deletions, occur only at the lowest levels (leaves) of the network structure.
(a) (b)Fig. 1: A Hierarchical Growing Cell Structures network: darkly shaded circles indicate nodes athigher layers, and non-arrow lines indicate topological connections in each sub-network. (a) Thehierarchy of nodes; arrows go from parents to children. (b) Location of weight vectors of nodes inthe data space.Input samples are repeatedly presented to the network, and weight vectors of nodes adaptedas described below. The network training proceeds in iterations, where an iteration is de�ned interms of the number of presentations of input samples 1. To ensure that each network in the HiGSnetwork structure is a winner for a su�cient number of input samples, the number of presentationsper iteration is de�ned as a multiple of the number of nodes in the leaf networks. This ensuresthat each leaf network gets a chance to adapt su�ciently, thus avoiding excess deletions.After each iteration, the algorithm either attempts to insert some nodes in the network, orattempts to delete some nodes. Before inserting a node in a sub-network S in the hierarchy,however, the algorithm compares the signal counter values of all the nodes in S; if these valuesare roughly equal then a process called \splitting" occurs instead of node insertion, with lowerlevel sub-networks being spawned below each node in S. The rest of this section details the exactbehavior of HiGS in adapting, inserting, splitting and deleting nodes.Adaptation: When an input sample is presented to the network, a competition is �rst conductedamong the nodes at the highest layer of the network. There are two cases to be considered:1. If the winner is a leaf node, its weight vector is adapted in the direction of the input1For a �xed, �nite training set, input samples are presented in random order. If the training data is in�nite orcomes from sampling a steady stream of inputs, there is no need to randomize samples.



sample:�wwinner = (�w)(input sample); where �w is a learning rate constant.The weight vectors of nodes topologically adjacent to it (in the same layer) are alsoadapted in the same direction, using a smaller learning rate:�wwinner's neighbor = (�n)(input sample); where �n < �w is another learning rate.2. If the winner is associated with a sub-network, the competition is instead conductedamong the nodes of this sub-network. The adaptation algorithm is recursive, withwinners at successively lower levels of the hierarchy being determined, until a leaf nodeis reached. Only leaf nodes can be adapted.The learning rate of the winner node (�w) is a user-speci�ed parameter. The learning rate ofits topological neighbors (�n), called the neighborhood learning rate, is an adaptive parame-ter. The adaptation is on a per-network basis, i.e. di�erent networks in the tree of networksmay have di�erent neighborhood learning rates. To be more precise, the neighborhoodlearning rate depends upon the number of nodes in that particular network. The adaptationrule is chosen so that when the number of nodes in the network is minimal, the neighborhoodlearning rate is equal to one �fth of the winner's learning rate, and as the network size grows,the neighborhood learning rate approaches the winner's learning rate exponentially.The equation used to adapt the neighborhood learning rate is:�n = �w=(1 + 4e�(N�(I+1)))where I is the input dimensionality, and N is the number of nodes in the networkThe rationale behind the choice of an adaptive learning rate is that it is very useful whendealing with an input distribution that consists of multiple disjoint clusters. When thenetwork is small, the nodes are \encouraged" to migrate towards di�erent clusters, butwithout moving their neighbors too much. As the network gets larger, presumably the nodeshave had su�cient time to migrate towards di�erent input clusters. Since new nodes areinserted halfway between already existing nodes, they have a tendency to appear betweenthe input clusters. Hence, the newly inserted nodes will rarely be winners, and will beattracted towards the existing clusters very slowly. Therefore, the probability is low thatthe newly inserted nodes will move to an input cluster and become winners for some samplepresentations. So, if the network is considered for deletion, the newly inserted node will bedeleted, and as a side e�ect, probably cause the deletion of its neighbors as well. So, if thenewly inserted nodes are allowed to move more rapidly towards the input clusters, they havea larger probability to migrate to some input cluster before network deletion occurs.Insertion: Node insertion is attempted after every second iteration. As mentioned earlier,whenever node insertion is attempted, the signal counter values of all nodes are compared.If these values are approximately equal, the HiGS algorithm chooses not to insert a nodeinto the network, but instead performs splitting, generating sub-networks below every nodein the network.Each non-leaf node is associated with an error measure that estimates the quality of thesub-network below it, based on the average Euclidean distance between each sample and the



weight vector of the winner (leaf) node, for cases in which the winner lies in this sub-network.This error is used to determine where insertion occurs: a node is always inserted into thesub-network that caused the largest error.Insertion is attempted �rst at the root level in the hierarchy. The node that caused thelargest error is determined, and the new node is inserted into the sub-network below thisnode (if such a sub-network exists). This process is repeated at each level, successivelydetermining the lower level sub-network (with highest error) into which node insertion is tooccur. Finally, when a leaf sub-network is reached, nodes are inserted in the same manneras in GCS, i.e. the weight vector associated with the new node is set to the mid-point ofweight vectors of the node with the largest signal counter value and its farthest topologicalneighbor.To speed up the convergence of the algorithm, nodes can also be inserted into other sub-networks. The algorithm compares the generated error of each sub-network with the largestgenerated error, and if their ratio exceeds a cut-o� point, a node is inserted with the sameprobability as this ratio (of the errors). This cut-o� point is introduced to prevent excessivenode insertions in networks that have already generated small enough errors, in order toavoid slowing all the operations over the network. The cut-o� point in our experiments ischosen to be 0:8, an empirically determined value that gave satisfactory results.Splitting: This is a process in which new (lower level) sub-networks are generated. Splitting isinvoked as a special case of node insertion in a leaf network.Splitting occurs when attempting to insert a node in a leaf network, if the signal countersof the nodes in the network have roughly equal values. A network S is split by generatingsub-networks of the minimal possible size for each node in the network, and placing eachsub-network in the Voronoi region of its parent node. The nodes of a sub-network S 0 areplaced within the Voronoi region of the parent node X , by ensuring thatdistance(X;X 0) < min[distance(X; neighbors of X 2 S)]=2; for all X 0 in S 0.The similarity criterion (used to determine whether splitting should be conducted) is basedon the ratio of the maximum and minimum values of the signal counters of the nodes in thenetwork S. If this ratio is below a certain threshold, the network is split. Our experimentsused threshold values of(1:2) � (1:5)(number of nodes in sub-network)�(1+ input space dimensionality)for every network in the HiGS network structure. Satisfactory results were obtained withthese empirically determined values.Deletion: Deletion is attempted only at leaf networks. Nodes with low signal counter values (i.e.,nodes that are winners for only a small fraction of input samples) may be deleted after somenumber of iterations. However, it is di�cult to determine a priori how often node deletionshould be attempted: frequent deletion can lead to instability, and repeated insertion withinfrequent deletion can lead to the growth of excessively large networks. Our algorithmadapts and automatically determines the appropriate value for the deletion probability; adi�erent value is associated with each leaf sub-network in the HiGS network structure.



The deletion probability is initially set to its prede�ned maximum value (chosen to be 1=6).It is then modi�ed depending on the results of the previous deletion. The new value of thedeletion probability is a linear function of the number of nodes that have been deleted, suchthat if no nodes have been deleted, the deletion probability will increase by 20%, and if allnodes have been deleted, then it will decrease by 20%. If all the nodes have been deletedfrom a network, then a new network with the minimal number of nodes is generated in theVoronoi region of its parent node.Note that the deletion probability is only the probability with which deletion is attempted;for deletion to succeed, the signal counter values of some nodes in the target leaf networkmust be su�ciently small.Termination: The algorithm allows the user to specify a target quantization error. A systemquantization error is set to a value below, but close to, the user speci�ed target error.Whenever the error generated by the network is below the system error, our algorithmdeletes all spurious nodes. In this case, all leaf networks are subject to deletion, regardlessof the deletion probability.The rationale behind this decision is that spurious nodes in the network do not represent thedistribution of the input samples, and as such, need not be allowed to exist in the network.These deletions may disrupt the whole network and cause the quantization error to increaseabove the system quantization error. Since the system quantization error is chosen to bebelow the user-speci�ed target quantization error, the network can still converge. The targeterror can be adapted, since its value will in
uence the time needed for the network toconverge. If it is too low, the network will require too much time to achieve it. If it istoo high, then the �nal deletion will always raise the error signi�cantly above the desirederror criterion, and the training of the network will be repeated inde�nitely.4. Experimental ResultsThe power of large and non-trivial networks ought to be tested on large and non-trivial problems.Martinetz et al. [6] described an interesting problem to illustrate the Neural Gas algorithm. Inan instance of this problem, illustrated in Figure 2(a), the input space is �lled with a numberof disjoint square-shaped clusters, all of which are su�ciently far enough from one another to beclearly distinguishable. All input samples are drawn from one of these squares; within each square,data is uniformly distributed.We conducted experiments with data (similar to Figure 2(a)) containing various numbers ofclusters, ranging from 5 to 15 clusters, with di�erent sizes. In all cases, HiGS succeeded inconverging to networks with desired quantization error.Our experiments compared the HiGS algorithm with Fritzke's GCS, and the Neural Gas algo-rithm. The deletion rate of the GCS algorithm was set to one deletion every 50 iterations. TheNeural Gas algorithm was run with three di�erent numbers of nodes, chosen according to threedi�erent criteria: a �xed number of nodes (60), �xed number of nodes per cluster (four), and a�xed number of nodes per area of the input space (one node per 0.01% of the input space area).Figure 3 describes the instances of the problem and results obtained using various algorithms.Experiments were considered with ten and �ve clusters in the data, respectively, and with di�erentcluster sizes, with the input space comprising the unit square. All the experiments were conducted4-5 times, and the results presented are averages over various runs.
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(a) (b)Fig. 2: (a) Example data used to compare algorithms, consisting of several widely distributedclusters. (b) \Desired" positions of weight vectors of nodes, if the number of nodes is four timesthe number of clusters.The size of the clusters is given in units of the input space size. All the experiments were run onthe same Sun SPARCstation 1 workstation, so that the running times of di�erent experiments arecomparable. The times are given in seconds. They may vary when executing the same experimenton di�erent machines, but the ratios of execution times of di�erent experiments should remain thesame.As is evident from Figure 3, HiGS always outperformed GCS, albeit with using a larger numberof nodes. The larger number of nodes is expected, because of the nodes in the non-leaf networksin HiGS. The Neural Gas algorithm performs better than HiGS only when the number of nodes ischosen to be a multiple of the area which will be covered by the input samples, and the numberof nodes is small. In all other cases, HiGS is superior.5. ConclusionWe have developed a hierarchical neural network (HiGS) that extends Fritzke's Growing CellStructures network. The algorithm dynamically determines the number of layers in the network,size of each layer, and frequency with which nodes are deleted.We have demonstrated the success of this algorithm on several instances of the many-squareproblem used as benchmark by Martinetz et al. HiGS, with an adaptive deletion rate, fares betterthan GCS.HiGS is computationally e�cient, since each sample presentation in HiGS requires time pro-portional to (average depth of the tree)�(average number of nodes per sub-network), which is lessthan the total network size. Unlike SOM and Neural Gas algorithms, HiGS does not assume theoptimal network size to be known. HiGS does generate more nodes than absolutely necessary, aproblem tackled in some of our experiments by trimming leaf nodes of the hierarchy, whenever thiscan be done without signi�cant degradation of quantization error.Further experimentation is under way, following preliminary successful results. The algorithmmay be modi�ed to allow the higher layer nodes also to be adapted at later stages of the learningalgorithm, albeit with smaller learning rates. A supervised extension of the hierarchical GCS



Fig. 3: Comparison of HiGS, GCS, and Neural Gas algorithmsNo. of Cluster Algorithm No. of No. of No. of Time Frequency ofclusters size Nodes Iterations Presentations convergence10 0.02 HiGS 106 91 76084 112.8 100%10 0.02 GCS 73 91 68408 172.4 100%10 0.02 NG 60 n/a 24000 369.2 100%10 0.02 NG 40 n/a 30000 253.0 100%10 0.05 HiGS 443 138 434673 872.5 100%10 0.05 GCS 206 229 656855 17250.0 25%10 0.05 NG 60 n/a 50000 766.4 0%10 0.05 NG 40 n/a 50000 381.5 0%10 0.05 NG 250 n/a 24000 >20000 100%10 0.01 HiGS 51 130 90016 132.0 100%10 0.01 GCS 14 300 96596 145.1 0%10 0.01 NG 60 n/a 18000 290.5 100%10 0.01 NG 40 n/a 24000 203.5 100%10 0.01 NG 10 n/a 42000 47.5 100%5 0.02 HiGS 52 43 22044 32.8 100%5 0.02 GCS 29 37 16904 30.1 100%5 0.02 NG 60 n/a 12000 184.5 100%5 0.02 NG 20 n/a 27000 72.2 100%5 0.05 HiGS 232 81 134188 246.0 100%5 0.05 GCS 172 185 325412 1927.9 100%5 0.05 NG 60 n/a 50000 784.6 0%5 0.05 NG 20 n/a 50000 135.6 0%5 0.05 NG 125 n/a 30000 1744.2 100%5 0.01 HiGS 24 67 25908 29.8 100%5 0.01 GCS 11 300 55544 52.1 0%5 0.01 NG 60 n/a 5000 76.8 100%5 0.01 NG 20 n/a 17000 43.9 100%5 0.01 NG 5 n/a 35750 16.2 100%



algorithm is also envisaged, in which leaf nodes in the hierarchy are analogous to nodes in radial-basis function networks, and convey their outputs to the output nodes equipped with a linear ornonlinear node function; one of the criteria for generating a sub-network is then the supervisedlearning error to which a leaf node contributes.References[1] B. Fritzke, Growing Cell Structures{A Self-Organizing Network for Unsupervised and Super-vised Learning, Neural Networks, vol. 7, no. 9, pp. 1441-1460, 1994.[2] S. Grossberg, Studies of Mind and Brain, Reidel, Boston (MA), 1982.[3] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall, Englewood Cli�s(NJ), 1988.[4] T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cyber-netics, vol. 43, pp. 59-69, 1982.[5] J. Lampinen and E. Oja, Clustering Properties of Hierarchical Self-Organizing Maps, Journalof Mathematical Imaging and Vision, vol. 2, pp. 261-271, 1992.[6] T. M. Martinetz, S. G. Berkovich and K. J. Schulten, \Neural-Gas" Network for Vector Quan-tization and its Application to Time-Series Prediction, IEEE Transactions on Neural Networks,vol. 4, pp. 558-569, July 1993.


	Syracuse University
	SURFACE
	1996

	Hierarchical Growing Cell Structures
	Vanco Burzevski
	Chilukuri K. Mohan
	Recommended Citation


	tmp.1286816405.pdf.cDgIq

