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Abstract

A spinless covariant field ϕ on Minkowski spacetime Md+1 obeys the relation U(a,Λ)ϕ(x)U(a,Λ)−1 =

ϕ(Λx + a) where (a,Λ) is an element of the Poincaré group P
↑
+ and U : (a,Λ) → U(a,Λ) is its unitary

representation on quantum vector states. It expresses the fact that Poincaré transformations are being

unitary implemented. It has a classical analogy where field covariance shows that Poincaré transformations

are canonically implemented. Covariance is self-reproducing: products of covariant fields are covariant. We

recall these properties and use them to formulate the notion of covariant quantum fields on noncommutative

spacetimes. In this way all our earlier results on dressing, statistics, etc. for Moyal spacetimes are derived

transparently. For the Voros algebra, covariance and the ∗-operation are in conflict so that there are

no covariant Voros fields compatible with ∗, a result we found earlier. The notion of Drinfel’d twist

underlying much of the preceding discussion is extended to discrete abelian and nonabelian groups such

as the mapping class groups of topological geons. For twists involving nonabelian groups the emergent

spacetimes are nonassociative.

∗bal@phy.syr.edu
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I. INTRODUCTION: POINCARÉ COVARIANCE ON COMMUTATIVE SPACETIMES

The Poincaré group P acts on Minkowski space Md+1 by transforming its coordinates (or coordinate

functions), x = (xµ) to Λx+ a

(a,Λ) ∈ P : (a,Λ)x = Λx+ a . (1)

If the spacetime algebra A0(M
d+1) associated with Md+1 is commutative, and ϕ is a quantum rela-

tivistic scalar field on Md+1, we require that there exists a unitary representation

U : (a,Λ) → U(a,Λ) (2)

on the Hilbert space H of states vectors such that

U(a,Λ)ϕ(x)U(a,Λ)−1 = ϕ
(
(a,Λ)x

)
. (3)

There are similar requirements on relativistic fields of all spins. They express the requirement that

the spacetime transformations (1) can be unitarily implemented in quantum theory. It is analogous to the

requirement in nonrelativistic quantum mechanics that infinitesimal spatial rotations are to be implemented

by the (self-adjoint) angular momentum operators.

A field ϕ fulfilling (3) is said to be a “covariant field” and the condition in (3) is the covariance condition.

We call it “primitive” as we later extend it to products of fields.

We can write (3) in the equivalent form

U(a,Λ)ϕ
(
(a,Λ)−1x

)
U(a,Λ) = ϕ(x) (4)

Now in this form, covariance can be readly understood in terms of the coproduct on the Poincaré group.

Thus

ϕ ∈ L(H)⊗ S(Md+1) (5)

where L(H) are linear operators on H and S(Md+1) are distributions on Md+1. There is an action of P

on both, that on L(H) being the adjoint action AdU(a,Λ) of U(a,Λ),

AdU(a,Λ)ϕ = U(a,Λ)ϕU(a,Λ)−1 (6)

and that on S(Md+1) being

α→ (a,Λ) ⊲ α,
[
(a,Λ)α

]
(x) = α

(
(a,Λ)−1x

)
, α ∈ S(Md+1) . (7)
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We call the latter action as V .

Now the coproduct on P
↑
+ for commutative spacetimes is ∆0, where

∆0

(
(a,Λ)

)
= (a,Λ) ⊗ (a,Λ) . (8)

Then by (4)

(AdU ⊗ V )∆0

(
(a,Λ)

)
ϕ = ϕ . (9)

We will have occasion to use both the versions (3) and (4,9) of covariance.

II. COVARIANCE FOR PRODUCTS: COMMUTATIVE SPACETIMES

We saw in the previous section that for a single field, covariance ties together spacetime transformations

and its implementation on the quantum Hilbert space. Products of fields bring in new features which

although present for commutative spacetimes, assume prominence on quantum spacetimes. We now briefly

examine these features in the former case

A. Tensor Products

Consider

ϕ(x1)ϕ(x2)...ϕ(xN ) . (10)

This can be understood as the element ϕ⊗ ϕ...⊗ ϕ belonging to L(H)⊗
(
S(Md+1)⊗ S(Md+1)⊗ ...⊗

S(Md+1)
)
evaluated at x1, x2, ..., xN

ϕ⊗ ϕ⊗ ...⊗ ϕ ∈ L(H)⊗
(
S(Md+1)

)⊗N
, (ϕ⊗ ϕ⊗ ...⊗ ϕ)(x1, x2, ..., xN ) = ϕ(x1)ϕ(x2)...ϕ(xN ) . (11)

Note that tensoring refers only to S(Md+1), there is no tensoring involving L(H). There is only one

Hilbert space H which for free particles is the Fock space and U(a,Λ) acts by conjugation on the L.H.S.

for all N .

But that is not the case for S(Md+1)⊗N . The Poincaré group acts on it by the coproduct

(1⊗ 1⊗ ...⊗ 1⊗∆0
︸ ︷︷ ︸

N−1

)(1 ⊗ 1⊗ ...⊗ 1⊗∆0
︸ ︷︷ ︸

N−2

)...∆0 (12)
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of (a,Λ). Thus

(12) on (a,Λ) = (a,Λ)⊗ (a,Λ) ⊗ ...⊗ (a,Λ) (13)

and
(

(12) on (a,Λ) ⊲ ϕ⊗N
)

(x1, x2, ..., xN ) = ϕ⊗N
(
(a,Λ)−1x1, (a,Λ)

−1x2, ..., (a,Λ)
−1xN

)
. (14)

Covariance is now the demand

U(a,Λ)
(

ϕ⊗N
(
(a,Λ)−1x1, (a,Λ)

−1x2, ..., (a,Λ)
−1xN

))

U(a,Λ)−1 = ϕ⊗N (x1, x2, ..., xN ) . (15)

It is evidently fulfilled for the coproduct (12) if the primitive covariance (3,4) is fulfilled.

For free fields (or in and out-fields), covariance can be verified in a different manner. Thus for a free

real scalar field ϕ of mass m, we have

ϕ =
∫
dµ(p)

(

c†pep + cpe−p

)

= ϕ(−) + ϕ(+) (16)

ep(x) = e−ip·x, |p0| = (~p2 +m2)
1

2 , dµ(p) = ddp
2|p0|

where cp, c
†
p are the standard annihilation and creation operators, and ϕ(∓) refer to the annihilation and

creation parts of ϕ.

Now ϕ(∓) must separately fulfill the covariance requirement. Let us consider ϕ(−). We have that

ϕ(−)(x1)ϕ
(−)(x2)...ϕ

(−)(xN )|0〉 =

∫
∏

i

dµ(pi)c
†
p1
c†p2 ...c

†
pN

|0〉ep1(x1)ep2(x2)...epN (xN ) (17)

Let us first check translations. Let Pµ be the translation generators on the Hilbert space,

[Pµ, c
†
p] = pµc

†
p, Pµ|0〉 = 0 (18)

and let Pµ = −i∂µ be the translation generator on S(Md+1):

Pµep = −pµep (19)

The coproduct ∆0 gives for the Lie algebra element Pµ,

∆0(Pµ) = 1⊗ Pµ + Pµ ⊗ 1 (20)

[If v is the representation of the Lie algebra of P
↑
+ on functions, and P̂µ is the Lie algebra generator in

the abstract group P
↑
+ so that v(Pµ) = Pµ, the L.H.S. here should strictly read v

(
∆0(P̂µ)

)
. So we have

simplified the notation in (20).]
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It follows that

(1⊗ 1⊗ ...⊗ 1⊗∆0)...∆0(Pµ)ep1 ⊗ ep2 ⊗ ...⊗ epN = −
∑

i

piµep1 ⊗ ep2 ⊗ ...⊗ epN (21)

Covariance for translations is the requirement

Pµc
†
p1
c†p2 ...c

†
pN

|0〉ep1 ⊗ ep2 ⊗ ...⊗ epN + c†p1c
†
p2
...c†pN |0〉

(
−

∑

i

piµ
)
ep1 ⊗ ep2 ⊗ ...⊗ epN = 0 (22)

which is clearly fulfilled.

Next consider Lorentz transformations. A Lorentz transformation Λ acts on ep according to

(Λep)(x) = ep(Λ
−1x) = eΛp(x) (23)

or Λep = eΛp.

For Lorentz transformations Λ, covariance is thus the identity
∫

∏

i

dµ(pi)c
†
Λp1

c†Λp2 ...c
†
ΛpN

|0〉eΛp1 ⊗ eΛp2 ...⊗ eΛpN =

∫
∏

i

dµ(pi)c
†
p1
c†p2 ...c

†
pN

|0〉ep1 ⊗ ep2 ...⊗ epN (24)

which is true because of the Lorentz invariance of the measure:

dµ(Λ−1pi) = dµ(pi) . (25)

III. QUANTUM STATISTICS: THE SCHUR-WEYL DUALITY

The permutation group SN and its irreducible representations govern statistics of N -particle state

vectors on commutative spacetimes for d ≥ 3. We consider only such d.

By axioms of quantum theory, the N -particle observables must commute with the action of SN so that

the action of observation does not affect particle identity. In particular the action of the symmetry group

must commute with the action of SN .

If that is the case, we can consistently work with irreducible representations of SN .

In (17), (a,Λ) acts on ep1 ⊗ ep2 ⊗ ...⊗ epN via the coproduct (12). This action commutes with the action

of SN if SN acts by permuting pi. Thus we can work with irreducible representation of SN .

In particular we can work with bosons and fermions by totally symmetrising or antisymmetrising ⊗epi .

In the former case c†pi can be taken to commute (their anticommutators do not contribute to (17)) and for

the latter they anticommute.

The important point here is that the group algebras CP and CSN are commutants of each other in

their action on N -particle states.
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A. The Double Commutant Theorem and the Schur-Weyl Duality

A result of this sort is familiar to particle physicists in case the symmetry group is U(k). Here U(k)

can be the k-flavour symmetry group. It acts on C
k. Then to reduce the representation of U(k) on C

k⊗N ,

we use the fact that CSN commutes with CU(k). That lets us use Young tableaux methods.

It is in fact the case that CU(k) and CSN exhaust the commutants of each other. This result and the

Young tableaux methods are part of the contents of Schur-Weyl duality [1, 2].

So we are working with aspects of an infinite-dimensional analogue of this duality for a noncompact

symmetry group P
↑
+ when we remark that CP

↑
+ and CSN mutually commute.

B. A Presentation of SN

Let us imagine that SN acts by transforming N objects numbered from 1 to N and let τij denote the

transformation of objects i and j. Then SN has the presentation

SN = 〈τi,i+1 : i ∈ [1, 2, ..., N − 1], τ2i,i+1 = 1, τi,i+1τi+1,i+2τi,i+1 = τi+1,i+2τi,i+1τi+1,i+2〉 (26)

The N objects were introduced here for concreteness. The abstract SN group is given just by (26).

We will have use of this presentation later.

C. Multiplication Map and Self-Reproduction

The multiplication map involves products of fields at the same point and hence the algebra of the

underlying manifold. It is not the same as the tensor product which involves products of fields at different

points.

There is a further property of ϕ, involving now the multiplication map, which is easily understood on

commutative spacetimes. It has much importance for both commutative and noncommutative spacetimes.

It is the property of self-reproduction. Let us first understand this property for C∞(M), the set of smooth

functions on a manifold M. If α : p → αp, p ∈ M, is a diffeomorphism of M, it acts on f ∈ C∞(M) by

pull-back:

(α∗f)(p) = f(αp) . (27)
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But C∞(M) has a further property, routinely used in differential geometry: C∞(M) is closed under

point-wise multiplication:

If f1, f2 ∈ C∞(M), then

f1f2 ∈ C
∞(M) (28)

where
(
f1f2

)
(p) = f1(p)f2(p) . (29)

This property is very important for noncommutative geometry: the completion of this algebra under the

supremum norm gives the commutative algebra of C0(M), a commutative C∗-algebra. By the Gel’fand-

Naimark theorem [3, 4] it encodes the topology of M.

Now by (27) and (28), we see that multiplication of functions preserves transformation under diffeos.

This simple property gets generalised to covariant quantum field thus:

The pointwise product of covariant quantum fields is covariant.

That means in particular that

U(a,Λ)ϕ2
(
(a,Λ)−1x

)
U(a,Λ)−1 = ϕ2(x) . (30)

This result is obviously true modulo renormalization problems. It is at the basis of writing invariant

interactions in quantum field theories on A0(M
d+1).

Note that generally we require covariance of the product of any two covariant fields, distinct or the

same.

D. The ∗-covariance

In quantum field theories on A0(M
d+1), another routine requirement is that covariance and the ∗- or

the adjoint operation be compatible. Thus if ψ is a covariant complex field,

U(a,Λ)ψ
(
(a,Λ)−1x

)
U(a,Λ)−1 = ψ(x) , (31)

we require that ψ† is also a covariant complex field. That is fulfilled if U(a,Λ) is unitary.

Thus ∗-covariance is linked to unitarity of time-evolution and the S-matrix and many more physical

requirements.
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E. Summary: Covariance Requirements

Here is a brief summary of our covariance requirements on quantum fields for commutative spacetimes

(ignoring the possibility of parastatistics of order 2 or more): A quantum field should be ∗- covariant with

commutation or anti-commutation relations (symmetrisation postulates) compatible with ∗-covariance.

IV. COVARIANCE ON THE MOYAL PLANE

The Moyal plane Aθ(M
d+1) is the algebra of smooth functions on Md+1 with the product

mθ(α⊗ β) = m0Fθ(α⊗ β), α, β ∈ Aθ(M
d+1), Fθ = e

i
2
∂µ⊗θµν∂ν (32)

where m0 is the point-wise product:

m0(γ ⊗ δ)(x) = γ(x)δ(x), γ, δ ∈ A0(M
d+1) . (33)

The Poincaré group P acts on smooth functions α on Md+1 by pull-back as before:

P ∋ (a,Λ) : α→ (a,Λ)α,
(
(a,Λ)α

)
(x) = α

(
(a,Λ)−1x

)
(34)

It is by now well-known [5–7] that this action extends to the algebra Aθ(M
d+1) compatibly with the

product mθ only if the coproduct on P is twisted. The twisted coproduct ∆θ on P is

∆θ(g) = F−1θ (g ⊗ g)Fθ , Fθ = e−
i
2
P̂µ⊗θµν P̂ν = Drinfel′d twist (35)

Here P̂µ is as before the translation generator in P with representatives Pµ = −i∂µ and Pµ on functions

and L(H) respectively.

Equation (35) is the starting point for further considerations.

Let ϕθ be the twisted analogue of the field ϕ of section 2. Also let Uθ be the unitary operator imple-

menting P in L(H). Covariance then is the requirement

Uθ(a,Λ)ϕθ

(
(a,Λ)−1x

)
Uθ(a,Λ)

−1 = ϕθ(x) (36)

and its multifield generalisation, while compatibility with ∗ or unitarity requires that ϕ†θ is also covariant.

There is also one further requirement, namely compatibility with symmetrisation postulate.
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The analysis of these requirements becomes transparent on working with the mode expansion of ϕθ

which is assumed to exist:

ϕθ =

∫

dµ(p)
[
a†pep + ape−p

]
= ϕ

(−)
θ + ϕ

(+)
θ , dµ(p) =

ddp

2|p0|
. (37)

The expansion can refer to in- , out- or free fields.

We also assume the existence of vacuum |0〉:

ap|0〉 = 0, ∀p . (38)

A. The Primitive Covariance of a Single Field

We are here referring to (37). It requires that

Uθ(a,Λ)a
†
pUθ(a,Λ)

−1 = a†Λp, Uθ(a,Λ)apUθ(a,Λ)
−1 = aΛp (39)

A particular consequence of (38,39) is that single particle states transform for all θ in the same manner or

assuming that Uθ(a,Λ)|0〉 = |0〉:

Uθ(a,Λ)a
†
p|0〉 = a†Λp|0〉 (40)

New physics can be expected only in multi-particle sectors.

B. Covariance in Multi-Particle Sectors

On the Moyal plane, multi-particle wave functions ep1 ⊗ ep2 ⊗ ... ⊗ epN transform under P with the

twisted coproduct. This affects the properties of ap, a
†
p in a θµν-dependent manner.

Let us focus on the two-particle sector:
∫

∏

i

dµ(pi)a
†
p1
a†p2 |0〉ep1 ⊗ ep2 (41)

Since translations act in the usual way on ep1 ⊗ ep2 ,

∆θ(Pµ)ep1 ⊗ ep2 = (1⊗ Pµ + Pµ ⊗ 1)ep1 ⊗ ep2 = −(
∑

i

piµ)ep1 ⊗ ep2 (42)

translational covariance requires the standard transformation of a†pi :

[P θ
µ , a
†
p] = pµa

†
p , (43)
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P θ
µ is the possibly θ dependent translation generator.

Lorentz transformations are more interesting. We have that

∆θ(Λ) ⊲ ep1 ⊗ ep2 = F
−1
θ (Λ⊗ Λ)Fθep1 ⊗ ep2 = e

i
2
(Λp1)∧(Λp2)e−

i
2
p1∧p2eΛp1 ⊗ eΛp2 . (44)

(We do not consider the anti-unitary time-reversal in what follows.) Covariance thus requires that
∫

∏

i

dµ(pi)Uθ(Λ)a
†
p1
a†p2 |0〉e

i
2
(Λp1)∧(Λp2)e−

i
2
p1∧p2eΛp1 ⊗ eΛp2 =

∫
∏

i

dµ(pi)a
†
p1
a†p2 |0〉eΛp1 ⊗ eΛp2 (45)

C. The Dressing Transformation

We can solve this requirement, as well as (43), by writing a†p in terms of the c†p and Pµ:

a†p = c†pe
i
2
p∧P (46)

and setting

Uθ(a,Λ) = U0(a,Λ) = U(a,Λ) . (47)

The adjoint of (46) is

ap = e−
i
2
p∧P cp = cpe

− i
2
p∧P , (48)

where the equality in the last step uses the anti-symmetry of θµν .

As we can twist cp on left or on right, we can write ϕθ as a twist applied to ϕ0 ≡ ϕ:

ϕθ = ϕ0e
− 1

2

←−
∂ ∧P (49)

The transformation ϕ0 → ϕθ is an example of a dressing transformation. It was first introduced in the

context of integrable models by Grosse [8] and by Faddeev and Zamalodichkov [9, 10].

It is important to note that (49) is well-defined for a fully interacting Heisenberg field ϕ0 if Pµ stands

for the total four momentum of the interacting theory. In that case ϕθ is the twisted Heisenberg field.

We can now check that

U(a,Λ)ϕθ(x1)ϕθ(x2)...ϕθ(xN )U(a,Λ)−1|0〉 = ϕθ

(
(a,Λ)x1

)
ϕθ

(
(a,Λ)x2

)
...ϕθ

(
(a,Λ)xN

)
|0〉 (50)

with a similar equation for the vacuum 〈0| put on the left. Since vacuum is a cyclic vector, we can then be

convinced that (49) fully solves the problem of constructing a covariant quantum field on the Moyal plane

at the multi-field level as well.
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A particular implication of (50) is that

Uθ(a,Λ) = U(a,Λ) = U0(a,Λ) . (51)

Its expression in terms of in-, out- or free fields looks the same as in the commutative case. It has no θµν -

dependence.

D. Symmetrization and Covariance

We will now show that the dressing transformations (46,48-49) are exactly what we need to be compat-

ible with appropriate symmetrisation postulates.

At the level of the particle dynamics (functions on Md+1 and their tensor products), it is known that for

the coproduct ∆θ, symmetrisation and anti-symmetrisation should be based on the twisted flip operator

τθ = F
−1
θ τ0Fθ (52)

τ0α⊗ β := β ⊗ α (53)

where α, β are single particle wave functions.

As defined, τ0 and τθ act on two-particle wave functions and generate S2 since

τ20 = 1 ⇒ τ2θ = 1 . (54)

But soon we will generalise them to N -particles to get SN .

Thus twisted bosons (fermions) have the two-particle plane wave states

ep1 ⊗Sθ
ep2 =

1± τθ
2

ep1 ⊗ ep2 . (55)

Let us focus on Sθ:

ep1 ⊗Sθ
ep2 =

1

2

[
ep1 ⊗ ep2 + F

−2
θ ep2 ⊗ ep1

]
(56)

=
1

2
[ep1 ⊗ ep2 + eip2∧p1ep2 ⊗ ep1 ] (57)

= eip2∧p1ep2 ⊗Sθ
ep1 (58)
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This gives

∫ 2∏

i=1

dµ(pi)a
†
p1
a†p2 |0〉ep1 ⊗Sθ

ep2 (59)

=

∫ 2∏

i=1

dµ(pi)a
†
p1
a†p2 |0〉e

ip2∧p1ep2 ⊗Sθ
ep1 (60)

=

∫ 2∏

i=1

dµ(pi)
(
eip1∧p2a†p2a

†
p1

)
|0〉ep1 ⊗Sθ

ep2 (61)

Thus we require that

a†p1a
†
p2

= eip1∧p2a†p2a
†
p1

(62)

which is fulfilled by (46).

We can extend this demonstration regarding the consistency of the twist to multinomials in a†’s and

a’s. The necessary tools are in [11]. We just note one point. In the N -particle sector, call F
ij
θ the Drinfel’d

twist (32) where in ∂µ ⊗ ∂ν , ∂µ acts on the ith and ∂ν on the jth factor in the tensor product.

Define

τ ijθ = F
−1
θ τ ij0 Fθ = F

−2
θ τ ij0 (63)

where τ ij0 flips the entries of an N -fold tensor product by flipping the ith and jth entries as in (53). Then

(

τ ij0

)2
= 1 (64)

which is obvious and

τ i,i+1
θ τ i+1,i+2

θ τ i,i+1
θ = τ i+1,i+2

θ τ i,i+1
θ τ i+1,i+2

θ (65)

which is not obvious. It follows from (26) that τ i,i+1
θ ’s generate SN in this sector.

One can check that the Poincaré group action with the twisted coproduct commutes with this action

of SN .

E. ∗-Covariance

Covariance requirements on the Moyal plane has led us to the dressed field (49). We now require it to

be compatible with the ∗-operation. That is if ϕ∗0 = ϕ0, we want that ϕ∗θ = ϕθ. Now

ϕ∗θ = e−
1

2
∂∧Pϕ0 (66)
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where ∂µ acts just on ϕ0, Pν acts on ϕ0 and all that may follow. But since Pν acting on ϕ0 is −i∂νϕ0 and

∂ ∧ ∂ = 0, we see that

ϕ∗θ = ϕ∗0e
− 1

2

←−
∂ ∧P . (67)

So the dressing transformations preserves ∗-covariance. The antisymmetry of θ plays a role in this process.

We can also understand these statements from (46). That gives

ap = e−
i
2
p∧P cp = cpe

− i
2
p∧P (68)

since p ∧ p = 0. So we can twist both creation and annihilation operators on the same side because θ is

antisymmetric. It is only because of this that we can get the twisted quantum Heisenberg field (49). The

importance of its existence has been emphasised before.

V. MOYAL VS VOROS

The Voros plane AV
θ (M

d+1) is the algebra of functions on Md+1 with the star product

α ⋆V β = m0(F
V
θ α⊗ β), F

V
θ = e

i
2
∂µ⊗(θµν−iSµν)∂ν (69)

where Sµν = Sνµ defines a constant real symmetric matrix. The matrix θ fixes S, we will see how this

happens for general d later.

But for d = 1, this determination is easy to describe. For d = 1, θµν = θ̂ǫµν , ǫ12 = −ǫ21 = 1,

ǫ11 = ǫ22 = 0 and then Sµν = θ̂δµν . So for d = 1,

F
V
θ = e

i
2
∂µ⊗θµν∂ν+θ̂∂µ·∂µ (70)

where ∂µ · ∂µ is defined using the Euclidean scalar product:

∂µ · ∂µ :=
1∑

i=0

∂ν∂ν (71)

Let us first consider d = 1.

On plane waves ep (ep(x) = e−ip·x), the Voros product is

ep ⋆V eq = e−
1

2
θ̂p·qe−

i
2
p∧qep+q (72)

where p · q is also defined using the Euclidean scalar product:

p · q =
1∑

ν=0

pνqν . (73)
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It is well-known that AMθ and AV
θ are ∗-isomorphic algebras. Thus let

T : AMθ → AV
θ , Tep = e−

1

4
θ̂p2ep (74)

Then a simple calculation shows that

T(ep ⋆M eq) = (Tep) ⋆V (Teq), T(ēp) = (Tep) (75)

where bar denotes complex conjugation and ⋆M denotes the Moyal product. (We denoted it previously as

just ⋆.)

The ∗-isomorphism of AM,V
θ may suggest that quantum field theories are not sensitive to which algebra

we use. But that is not the case. Thus we should require that the twisted (dressed) in- (out-) creation and

annihilation operators on AV
θ are adjoints of each other for ∗-covariance. But this imposition spoils the

possibility of constructing Heisenberg fields.

On the other hand, a naive construction of the dressed Heisenberg field is incompatible with the adjoint

operation: such a dressing applied to a self-adjiont field is not self-adjoint.

These results have been discussed before [12, 13]. Here we recall the proofs.

Let us first assume that the Voros ⋆ also admits twisted creation-annihilatin operators and associated

(in-, out-, or free-) field ϕθ,V as in (37):

ϕθ,V =

∫

dµ(p)
[

a†p,V ep + ape−p

]

:= ϕ
(−)
θ,V + ϕ

(+)
θ,V (76)

Primitive covariance gives as before

U(a,Λ)ap,V U(a,Λ)† = aΛp,V (77)

and

U(a,Λ)a†p,V U(a,Λ)† = a†Λp,V (78)

where we did not attach a θ to U .

In the two-particle sector, the coproduct by general principles is

∆θ,V (g) = F
−1
θ,V (g ⊗ g)Fθ,V (79)

As Fθ,V is translationally invariant, the coproduct for Pµ is not affected by the twist. So we focus on

Lorentz transformations.
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For Lorentz transformations, (45) is modified to
(∫

∏

dµ(pi)U(Λ)a†p1,V a
†
p2,V

|0〉

)

e
i
2
(Λp1)∧(Λp2)−

θ̂
2
(Λp1)·(Λp2)e−

i
2
p1∧p2−

θ̂
2
p1·p2eΛp1 ⊗ eΛp2 (80)

giving the dressing equation

a†p,V = c†pe
i
2
p∧P− θ̂

2
p·P , (81)

scalar products being Euclidean.

The adjoint of (81) is

ap,V = e−
i
2
p∧P− θ̂

2
p·P cp = e

θ̂
2
p·pcpe

− i
2
p∧P− θ̂

2
p·P (82)

which is not what we get by dressing cp on the right.

The result is that ϕθ,V is not the outcome of dressing ϕ0,V by a single twist. Its parts ϕ
(∓)
θ,V get separate

twists.

But then there is no way to dress a fully interacting Heisenberg field Φ0 since Φ0 cannot decomposed

into positive and negative frequency parts.

Or else we can declare that the Voros Heisenberg field is

Φθ,V = Φ0e
1

2

←−
∂ ∧P+i θ̂

2

←−
∂ ·P (83)

But then if Φ†0 = Φ0, Φ
†
θ,V 6= Φθ,V . Unitarity is spoilt.

It seems that the Voros plane is not suitable for quantum field theories.

If d 6= 1, say d = 3, then by a change of coordinates, we can bring it to the form

θ̂1ǫab + θ̂2ǫa′b′ (a, b ∈ [0, 1], a′, b′ ∈ [2, 3]) . (84)

The preceding considerations then apply separately to θ̂1ǫab and θ̂2ǫa′b′ .

VI. DISCRETE GROUPS

Covariance is a notion tied to symmetry group, and in our context especially to spacetime diffeomor-

phism groups.

A particularly interesting class of such symmetry groups are mapping class groups of manifolds. They

are discrete and for spatial hypersurfaces supporting topological geons can be abelian and nonabelian. In

this section we recall our discussion of covariant fields for such geon spatial slices from [14].
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A. Covariant Quantum Fields for Commutative Geons

Let P be a prime three-manifold, and R
3#P the spatial slice where # denotes connected sum. Spacetime

is then (R3#P)#R.

Let D∞/D∞0 be the mapping class group of R3#P where D∞ is the diffeo group which keeps a point p

(“infinity”) of R3#P and a frame at p fixed and D∞0 its identity component. If ϕ0 is a covariant quantum

field, primitive covariance requires that

a) There is a unitary representation

U : g∞ → U(g∞), g∞ ∈ D∞ (85)

such that

U(g∞)ϕ0(p)U(g∞)−1 = ϕ(g∞p) . (86)

In addition, constraints in gravity theories require that

b) ϕ0(g
∞
0 p) = ϕ0(p), g∞0 ∈ D∞0 .

Note that by b), (86) can be interpreted in terms of a unitary representation of D∞/D∞0 .

For the Poincaré group, the twists were all based on the abelian translation group. Likewise, for now

we will base our considerations on twists on the maximal compact abelian subgroup

A = ×k
i=1Zni

(87)

There is no loss of generality in assuming compactness as non-compact factors like Z do not enter the twist

[14].

We now choose suitable basis of functions for R3#P adapted to A.

Pick a Riemannian metric for R3#P. Its volume form defines a Hilbert space H of functions on R
3#P.

Now the unitary irreducible represenation UIRR mi ∈ Z/(niZ) := Zni
of Zni

is defined by

Zni
∋ ξ = e

i 2π
ni → ξmi . (88)

So the UIRR’s of A are defined by

~m = (m1, ...,mk) (89)
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where mi and mi + ni are identified.

Since A acts on R
3#P and hence on H, the latter has an orthonormal basis {f

(±)
~m

} which carries the

UIRR ~m of A and have positive and negative frequencies ±|E~m|:

f
(±)
~m

(g∞0 p) = f
(±)
~m

(p), g∞0 ∈ D∞0 , (90)

f
(±)
~m

(h−1p) = f
(±)
~m

(p)χ~m(h), h ∈ D∞ , (91)

i∂0f
(±)
~m

= ±|E~m|f
(±)
~m

. (92)

(We postulate that such f
(±)
~m

exist.)

Here χ~m is the character in UIRR ~m. Since χ̄~m = χ−~m, we can assume that

f̄
(±)
~m

= f
(∓)
−~m

(93)

If g ∈ D∞, we can write

f
(±)
~m

(g−1p) =
∑

~m′

f
(±)
~m′ (p)D~m′ ~m(g) (94)

where D is a unitary representation of D∞ which restricted to D∞0 becomes the trivial representation.

The untwisted quantum field (in, out or free) has the mode expansion

ϕ0 =
∑

~m

[
c~mf

(+)
~m

+ c†
~m
f
(−)
−~m

]
. (95)

Then since D̄~m′ ~mD~n′ ~m = δ~m′~n′ , commutative covariance translates to the transformation law

U(g)c~mU(g)−1 = c~m′D̄~m′, ~m(g) , (96)

U(g)c†
~m
U(g)−1 = c†

~m′D~m′, ~m(g) . (97)

B. Covariant Geon Fields for Abelian Twists

This material (just as the preceding material) has been reported elsewhere [14]. So we will be brief.

Let P~m be the projector in the group algebra CA to the UIRR ~m. Then the Drinfel’d twist based on A

is

Fθ =
∑

~m′, ~m

e−
i
2
miθijm

′

jP~m ⊗ P~m′ , θij = −θji =
4π

nij
, nij divdes ni and nj . (98)
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The mode expansion of the twisted field ϕθ is

ϕθ =
∑

~m

[a~mf
(+)
~m

+ a†
~m
f
(−)
−~m

] (99)

In [14], we show that the requirements of covariance for multiparticle states, twisted symmetrisation and

self-reproduction are all compatible with the following expression for a~m, a†~m:

a~m =
∑

~m′

c~me−
i
2
miθijm

′

jPm′

j
, (100)

a†
~m
=

∑

~m′

c†
~m
e−

i
2
miθijm

′

jPm′

j
. (101)

C. Non-abelian Twsts

Twists such as Fθ based on abelian groups A lead to associative spacetimes. They can be generalised

to twists based on nonabelian group algebras. They lead to nonassociative spacetimes [14, 15].

A brief examination of covariant quantum fields for such twists is contained in [14]. It requires more

elaboration. In particular not only does spacetime become nonassociative, the coproduct on the symmetry

group also loses coassociativity: the symmetry algebra becomes quasi-Hopf [15]. The implications of

nonassociativity and quasi-Hopf algebras for quantum field theory and phenomenology remain unexplored.

VII. FINAL REMARKS

Many papers have been written regarding quantum fields on the Moyal and similar algebras [16–18] and

on geon spacetimes as well. (See [14] for references.) In much of this work, quantum fields were constructed

using the dressing transformation. This paper systematically clarifies the conceptual basis behind this

transformation: it is just covariance. The latter in essence means that symmetry transformations on

spacetime and associated structures like suitable symmetrisation postulates of particle wave functions are

implementable in the quantum Hilbert space. In classical theory, the analogous requirement would be the

canonical implementability of symmetry transformations.

From this point of view, it is clear that covariance and dressing are sensible ideas to construct quantum

fields on spacetimes based on Drinfel’d twists.
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Noncommutative spacetimes lead to theories which are acausual and violate Poincaré invariance in

scattering processes. They violate CPT as well and can lead to Pauli-forbidden transitions [17, 18]. But

all these seem to be controlled by Planck-scales, and not susceptible to tests by current experiments. It

remains a challenge to locate potential signals of Planck scale spacetime effects at presenty accessible energy

scales.
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