
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science - 
Technical Reports College of Engineering and Computer Science 

5-1970 

Studies in Computational Linguistics No. 1, The Recognition of Studies in Computational Linguistics No. 1, The Recognition of 

Alphabets Alphabets 

Edward F. Storm 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/eecs_techreports 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Storm, Edward F., "Studies in Computational Linguistics No. 1, The Recognition of Alphabets" (1970). 
Electrical Engineering and Computer Science - Technical Reports. 13. 
https://surface.syr.edu/eecs_techreports/13 

This Report is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by 
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/13?utm_source=surface.syr.edu%2Feecs_techreports%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Studies in Computa ional Linguistics

NO e 1

The Recognitlon of Alphabets



Studies in Computational Linguistics

No. 1

The Recognition of Alphabets

Edward F. Storm
Systems and Information Science

Syracuse University
250 Machinery Hall

Syracuse, New York 13210

May, 1970



ABSTRACT

Formal parsing rules for programming languages often
have machinery for recognizing identifiers, numerical
constants, and other substrings whose internal structure
is only marginally relevant to the language structure as
a wholee In this note alphabets are introduced in which
identifiers, constants, etc c are regarded as single
symbols 0 An alphabet is thus constructed out of a finite
set of characters, is identified as a regular language and
a simple recognition algorithm is described, giving the
language designer considerable latitude in his choice of
alphabet~



I, Introduction

A formal language is ordinarily determined by giving an

alphabet and a set of well-formation rules which determine

whether or not an object constructed out of instances of

members of the alphabet belongs to the formal language 0

Individual elements in an alphabet are called characters, and

the essential properties of an alphabet are these:

10 Each character must admit an arbitrary number of

instances, or copies, as needed 0

2 c An instance of a character is always recognizable as

sucho

3a Instances of different characters are distinguishable 0

Alphabets are often finite, but it is a simple matter to pro

vide an infinite alphabet from a given finite one by including

a set of well-formation rules for the construction of symbols

in the infinite alphabet out of characters in the finite

alphabeto We distinguish symbols from characters, so that

symbols are elements of an infinite alphabet, and are con

structed out of characters i which are elements of a finite

alphabeto In this note we introduce a systematic process for

defining symbols in terms of characters 0

If the formal language under discussion is a programming

language then there are good reasons to regard that its well

formed constructions are built up from an infinite alphabeto

1



For example, there is not much to be gained from a syntactic

parse of the internal structure of an identifiere The same

can be said about integers, float,ing point numbers, quoted

literal strings and many others~ It is convenient, then to

givel an infinite alphabet as the basis from which to build

the well-formed constructions in a programming languagen And

if this infinite alphabet is to contain classes of things

like identifiers, integers, reals, literal strings, connectives,

brackets, etco, it will also be convenient to partition the

alphabet e~plicitly into these classes o

In this note a systematic convention is described which

gives the programming language designer considerable latitude

in the specification of an alphabet of symbols, and which

allows him to determine a partition of this alphabet into a

finite number of classesn Syntactic considerations which are

in fact purely alphabetic are thus eliminated from the pro

cessing of well-formed language constructions, resulting in a

meaningful simplification of syntactic processes o

For those who may wish to savor the concept without

digesting technical details we observe that a type-3 language

may be described as the union of some of the equivalence

classes of a congruence rdlation of finite index(2). Ok~

think of the set of accepting states of a finite-state

recognizer as determining a partition of the set of accepted

stringso The substitution property guarantees, for example f

that if 8 1 and e2 are both identifiers, then the result of

2



concatenating the same letters to the right or left of each

preserves identifierhoodo If el and e2 are both unsigned

integers, then concatenating these to the left of any exponent

part will always yield an unsigned numbero

In short it is convenient to identify partitioned alphabets

with regular languages 0

II o Some Exam~les of Al~habetic Definition

For simplicity suppose we make the following BNF

definitions:

<letter>::=AIBlc

<digit>:~=oll

The Algol-60 report(l) contains the following definition of

the syntax class of identifiersg

<identifier) ::=<letter>l<identifier><letter>l<identifier><digit>o

A finite-state recognizer for identifiers may be defined as

follows:

3



where M, the transition function, is as follows

Curr:·ent Stat.e Symbol Next State

8 0 A 8 1

So B 8 1

So C 8 1

8 1 A 8 1

8 1 B 8 1

8
1 C 8

1

8 1 0 8
1

S 1 8
11

The representation of the above transition table may be

simplified as follows;

Current, State Symbol Next St,ate

So <let,ter> 8 1

8 1 letter" 8
1

8 1
,'t;<digi t.>' 8 1

The requirement just1fying this notational slmplif1cation is

that the def1n1ens for the metal~nguistic variable appearing

in t,he Symbol column must. consist entirely of characters ~

4



For a more complex example, consider the Algol-60

definition of number:

<unsigned integer>::=<digit>l<unsigned integer><digit>

<integer>::=<unsigned integer>I+<unsigned integer> I
-<unsigned integer>

<decimal fraction>::=.<unsigned integer>

<exponent part>::=@<integer>

<decimal number>:~=<unsigned integer>l<decimal fraction>]

<unsigned integer><decimal fraction>

<unsigped number>:~=<decimal number> I<exponent part> I
<decimal nurnber><exponent part>

<number>::=<unsigned number>I+<unsigned number> I
-<unsigned number>

Table I shows the transition function for a finite-state

acceptor for the number class of stringso QI' T2 and 53

are accepting states 0 QI is the accepting state for an

integer (signed or unsigned) 0 T2 is the accepting state

for a decimal number (signed or unsigned)! and 53 is the

accepting state for a number containing an exponent parto

Clearly the transition function could be organized along

alternative lines to realize a variety of different parti-

t~ons of the class of numbers o

5



Current State Symbol Next State

So <digit> Q1

Q1 <digit> Q1

Q1
Q T1

So T1

T1
<digit> T2

T2
<digit> T2

So @ Sl

Sl + S2

Sl S2

Sl <digit> S3

S2 <digit> S3

S3 <digit> S3

T2
@ Sl

So + R1

So R1

R1
<d'git> Q1

R1
@ Sl

R1 T1

Table 1

Transition Function for Number Class

6



III. Algorithms for Recegnizing Alphabets

In this section we describe an algorithm which incor

porates a finite-state acceptor in a recognition process.

The process accepts one character at a time from a source,

and contains a buffer register which is used to assemble a

symbol for output. The transition function is specified

by a series of entries of the form:

(Swcr) -+ (S', W)

where S is the current state and cr the current input char

acter, S' is the designated next state, and W is a string

to be concatenated to the buffer. The string W may be empty,

and it will ordinarily consist of a- alone, although it may

be a complex character string containing one or more

occurrences of 0- 0 The interpretation is that when the

machine finds itself in state S, scanning the character (J,

it concatenates the string W to the buffer and goes into

state S'o If the pair (S, <r) does not appear in the

transition function then the contents of the buffer is

transferred to the output, the state S is put out as an

accepting state, and the pair (SO' ~) is constituted,

where So is the designated initial stateo

The set of accepting states constitutes an implementation

of the partition of the alphabet 0 Thus f a syntax analyzer

which is being supplied by the finite state acceptor will

7



know whe'ther" the symbol just provided is an identifier," an

integer, a literal string or some other uniquely classified

symbolc

It is the designer~s responsibility to guarantee that

the transition function and set of accepting states have the

desired effecto

8



References

(1) Naur,. P~ (edo), "Revised Report on the Algorithmic
Language Algol 60,n Carom" ACM, Vol 6, 1963; ppo 1-170

(2) Rabin, MoDe and Scot,t, D(), HFinite Automata and
Their Decision Problems," IBM Journal of Reso and
Devol Vole 3, 1959; PPo 114-125n

9


	Studies in Computational Linguistics No. 1, The Recognition of Alphabets
	Recommended Citation

	SU-CIS-70-01_001c
	SU-CIS-70-01_002c
	SU-CIS-70-01_003c
	SU-CIS-70-01_004c
	SU-CIS-70-01_005c
	SU-CIS-70-01_p003c_rescan
	SU-CIS-70-01_007c
	SU-CIS-70-01_p005c_rescan
	SU-CIS-70-01_p006c_rescan
	SU-CIS-70-01_p007c_rescan
	SU-CIS-70-01_011c
	SU-CIS-70-01_012c

