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Observations of bubbles rising near a wall under conditions of large Reynolds and small Weber
numbers have indicated that the velocity component of the bubbles parallel to the wall is
significantly reduced upon collision with a wall. To understand the effect of such bubble-wall
collisions on the flow of bubbly liquids bounded by walls, a model is developed and examined in
detail by numerical simulations and theory. The model is a system of bubbles in which the velocity
of the bubbles parallel to the wall is significantly reduced upon collision with the channel wall while
the bubbles in the bulk are acted upon by gravity and linear drag forces. The inertial forces are
accounted for by modeling the bubbles as rigid particles with mass equal to the virtual mass of the
bubbles. The standard kinetic theory for granular materials modified to account for the viscous and
gravity forces and supplemented with boundary conditions derived assuming an isotropic
Maxwellian velocity distribution is inadequate for describing the behavior of the bubble-phase
continuum near the walls since the velocity distribution of the bubbles near the walls is significantly
bimodal and anisotropic. A kinetic theory that accounts for such a velocity distribution is described.
The bimodal nature is captured by treating the system as consisting of two species with the bubbles
�modeled as particles� whose most recent collision was with a channel wall treated as one species
and those whose last collision was with another bubble as the other species. The theory is shown to
be in very good agreement with the results of numerical simulations and provides closure relations
that may be used in the analysis of bidisperse particulate systems as well as bounded bubbly
flows. © 2008 American Institute of Physics. �DOI: 10.1063/1.3035943�

I. INTRODUCTION

Determination of the equations of motion and average
properties of bubbly liquids has been a subject of numerous
investigations in the past.1–14 In particular, the special case of
flows in which the hydrodynamic interactions among
bubbles can be determined using the potential flow approxi-
mation has been extensively studied.8–10,13,15 The potential
flow approximation is expected to be valid when the Rey-
nolds number based on the bubble radius and characteristic
velocity is large compared with unity but the Weber number,
the ratio of inertial to surface tension forces, is small enough
so that the bubbles are approximately spherical, and the liq-
uid is free of surface-active impurity.16–20 This somewhat
ideal case can be studied experimentally,21,22 numerically us-
ing large scale simulations which account for the hydrody-
namic interactions among bubbles,15 and analytically using
the methods of statistical mechanics23 and kinetic theory of
dense granular materials.24–33 A complete set of equations of
motion derived using these numerical simulations and ana-
lytical techniques for spherical bubbles is given by Spelt and
Sangani.10

These equations of motion must be supplemented with
suitable boundary conditions for the bubble-phase continuum
in contact with a wall. The numerical simulations cited above
were carried out using the usual periodic boundary condi-
tions appropriate for macroscopically homogeneous bubbly

liquids. To obtain conditions that must be used when rigid
walls are present, one must ideally carry out large scale
simulations in wall-confined geometries and extract the mac-
roscopic boundary conditions by comparing the profiles of
time-averaged volume fraction, velocity, etc., computed from
direct numerical simulations with those obtained using aver-
aged equations of motion. Such numerical simulations and
comparison with the averaged equations have been carried
out by Nott and Brady34 for the case of wall-bounded small
Reynolds number particulate flows, by Verberg and Koch35

for high Stokes number and small to moderate Reynolds
number suspension flows, and by Galvin et al.36 for the case
of rapid granular flows of particles. The potential flow ap-
proximation used in numerical simulations of bubbly liquids,
however, is not justified in general when rigid walls are
present �see, e.g., Ref. 37�. We therefore study here a simple
model that incorporates some of the important features of the
bubble-wall interactions as observed by Tsao and Koch38 and
study in detail the effect of such interactions on the proper-
ties of bubbly liquids in the vicinity of a wall including the
boundary conditions for the bubble-phase continuum. Al-
though we were initially motivated by its application to bub-
bly liquids, the problem studied here and the techniques de-
veloped here may also be useful in the study of flows of
bidisperse granular materials as explained later.

The model we consider is a simple system in which we
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ignore the hydrodynamic interactions and treat bubbles as
equivalent to solid particles whose mass equals the virtual
mass of the bubbles. The component of the velocity of a
bubble, henceforth referred to as a particle, parallel to the
wall decreases by a constant fraction, 1−�, upon colliding
with the wall. The particle-wall collision also reduces the
kinetic energy of the particle by a fixed fraction, 1−�. The
particles in the bulk are acted upon by gravity and linear drag
forces, and the particle-particle collisions are perfectly elas-
tic. The neglect of hydrodynamic interactions is a reasonable
approximation when the relative velocity of interacting
bubbles is large compared with their common velocity. For
example, Kang et al.9 found that for sheared bubble suspen-
sions without buoyancy, hard-sphere simulations were in
close agreement with simulations of hydrodynamically inter-
acting bubbles. Likewise, Kumaran and Koch13 found that
buoyant bubbles with different terminal velocities would en-
counter and separate in a manner qualitatively similar to a
hard-sphere bounce �although the bubbles did not make ac-
tual contact� when the difference of velocities was larger
than about 10% of the mean velocity. The wall-bounded bub-
bly flow considered here will have large velocity differences
if, as is generally observed in experiments, � is substantially
smaller than 1.

We study in detail the effect of such particle-wall en-
counters on the velocity fluctuations, volume fraction, and
other properties of the system by molecular-dynamics-like
simulations. The particle velocity distribution near the walls
for such collisions is, in general, significantly bimodal and
anisotropic so that the equations of motion and the boundary
conditions derived based on the assumption of nearly isotro-
pic Maxwellian velocity distribution do not predict well the
behavior of such a system.

We develop a kinetic theory that accounts for both the
bimodal and the anisotropic nature of the velocity distribu-
tion by treating the particulate system as consisting of two
species: particles whose last collision was with other par-
ticles and particles whose last collision was with one of the
container walls. These are referred to as, respectively, the
normal and wall-excited particles. A collision between a
wall-excited particle and any other particle converts the wall-
excited particle into a normal particle.

Although our initial interest in developing the kinetic
theory was to obtain an accurate description appropriate for
our model of bubble-wall collisions and its effect on the
bubble-phase continuum boundary conditions, we found that
our model also provides a stable bidisperse �two-species�
system which may serve as a benchmark for testing consti-
tutive relations for bidisperse granular materials.26,28,33 This
is important since the uniform state of most bidisperse sys-
tems is unstable and therefore not accessible through direct
numerical simulations. The present system allows detailed
term-by-term comparison of the predictions of a kinetic
theory for two-species materials and the results of numerical
simulations. The constitutive relations for bidisperse materi-
als proposed in the literature are shown to lead to significant
errors and a number of new ones are proposed. Although the
masses and the radii of the colliding particles are taken to be
equal in the main body of the text for the sake of simplicity,

the expressions for the more general case of inelastic colli-
sions and unequal mass or radius can be readily derived and
are summarized in Appendix B.

The model is described in more detail in Sec. II together
with representative results of dynamic simulations. A kinetic
theory that takes into account the bimodal anisotropic veloc-
ity fluctuations is described in Sec. III. Section IV gives de-
tailed term-by-term comparison between the theory and the
results of numerical simulations together with constitutive
relations for various average quantities and boundary condi-
tions. Section V describes an approximate theory that incor-
porates closure relations derived in Sec. IV and simplified
boundary conditions and compares its predictions with the
results of particle dynamics simulations. Finally, Sec. VI
summarizes the important findings of the study.

II. NUMERICAL SIMULATIONS AND COMPARISON
WITH A STANDARD KINETIC THEORY

Numerical simulations were carried out for a model par-
ticulate suspension confined between two rigid, vertical
walls at x2= �h /2. Periodicity boundary conditions were
used along the x1 and x3 axes. The bubbles were modeled as
rigid, spherical particles of equal size with their mass equiva-
lent to the virtual mass of the bubbles. The collisions be-
tween the particles were assumed to be perfectly elastic. Fur-
thermore, since our primary interest was in examining the
effect of particle-wall collisions, the hydrodynamic interac-
tions among the particles and the lift force were neglected.
Viscous and gravity forces acting on each particle were taken
to be the same as for an isolated bubble in an infinite me-
dium. Observations of bubble-wall interactions indicate that
the velocity component of the bubbles parallel to the wall
significantly reduces upon collision.38 This was incorporated
in our simulations by requiring that the components of the
velocity of the particle in the x1 and x3 directions be reduced
by a factor of � upon collision with the wall, while the com-
ponent of velocity in the x2 direction reverses with a magni-
tude such that the overall kinetic energy after the collision is
� times the energy before the collision with the wall. Thus,
the particle velocity satisfies the following collision rule:

c1
+ = �c1

−, c3
+ = �c3

−, ci
+ci

+ = �ci
−ci

−, �1�

where ci is the particle velocity. Superscripts − and + refer,
respectively, to the velocities before and after a collision with
a wall.

The particle motion satisfies

m
dci

dt
= mbĝi − �ci, �2�

where ĝi is the gravitational acceleration �which must be
distinguished from the relative velocity gi used in the kinetic
theory described in Sec. III�, m is the mass of the particle,
mbĝi is the force due to gravity, and �ci is the viscous force.
For the case of a spherical bubble at large Reynolds num-
bers, m=−mb /2= �2� /3�a3� f and �=12�� fa �Levich drag
coefficient�, � f and � f being, respectively, the density and
viscosity of the suspending liquid and a the radius of the
bubble. We also introduce the apparent density � of the par-
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ticle phase as given by �=3m / �4�a3�. Thus, for the case of
bubbles, �=� f /2 is the density based on its virtual mass. For
a particle sedimenting through a gas at low Reynolds num-
bers, �=�p, the density of the particle, and �=6�� fa �Stokes
drag coefficient�. Nondimensionalizing the velocity with the
terminal velocity V0= �mb�ĝ /� and the time with a /V0 results
in a nondimensional parameter, the Stokes number, defined
by St=mV0 /a�.

Input parameters to the typical numerical simulations
were average volume fraction ���, the wall-collision param-
eters � and �, the Stokes number St, and the number of
particles, N. Numerical simulations were initiated by placing
N particles with randomly chosen, nonoverlapping positions
in a unit cell of a vertical channel and their velocities were
chosen from an isotropic Maxwellian velocity distribution.
Simulations proceeded in time by finding the next pair of
colliding particles and their collision time. The positions of
the particles were updated based on their current velocities
and the minimum of the prescribed time 	t or the time for
any two particles or a particle and a wall to collide. The
postcollision velocities of the colliding particles were calcu-
lated using the model of elastic binary collision of the hard
spheres and the collision rule given by Eq. �1� for particle-
wall collisions. Simulations were carried out typically for
about 50 000 time steps �	t=0.05a /V0� for the particle
phase to equilibrate. Next, simulations were carried out for
106 additional time steps and various average properties were
computed. The presence of the walls induces variations in
the average properties along the x2 direction. The unit cell
was divided typically into 24 equal oblong cells parallel to
the walls, and various properties of the particle phase were
determined by computing averages for each cell.

The results of averaging for a representative case ����
=0.1, �=0.5, �=1, St=50, and N=191� are shown in Fig. 1.
For this case, the ratio of channel width h to particle radius a
is about 20. We see that the average nondimensional velocity
of the particles over the width of the channel is less than 1,
indicating that the presence of the wall causes a reduction in
the average velocity of the particles. This is to be expected
for �
1 for which the particles lose momentum upon colli-
sion with one of the channel walls. The resulting shear force

imparted by the walls on the particle phase continuum re-
duces the average velocity. The volume fraction of the par-
ticles �recall that the lift force is absent in the present model�
is seen to have a maximum at the center of the channel.
Figure 1 also shows the variation in the particle phase tem-
perature T defined as

T = Tii/3 with Tij = �CiCj� . �3�

Here, Ci=ci−Vi is the fluctuation velocity of the particle and
Vi= �ci� is the average particle velocity at a location. The
angular brackets imply time averaging.

The results of numerical simulations will be first com-
pared with a standard kinetic theory with slip boundary con-
ditions. Theories of this type have been shown to yield pre-
dictions in good agreement with numerical simulations and
experiments for bounded microgravity, granular shear flows
of slightly inelastic particles with volume fractions up to
0.5.39 However, we shall point out significant deficiencies of
the standard kinetic theory for wall-bounded buoyancy
driven bubbly flows. This will motivate the development of a
more detailed kinetic theory in Sec. III.

The conservation equations for the number density, mo-
mentum, and fluctuation energy of the particulate phase
treated as a continuum are given by29

�n

�t
+

�

�xj
�nVj� = 0, �4�

mn� �Vi

�t
+ Vj

�Vi

�xj
	 = −

�Pij

�xj
+ n�mbĝi − �Vi� , �5�

3

2
mn� �T

�t
+ Vj

�T

�xj
	 = −

�qj

�xj
− Pijeij − 3�nT . �6�

Here, n=3� / �4�a3� is the number density of the particles at
a point xj at time t, Vi the velocity, Pij the particle phase
pressure tensor, eij = ��Vi /�xj +�Vj /�xi� /2, the rate of strain
tensor, and qj the fluctuation energy flux.

The main difficulty arises in providing closure relations
for Pij and qj. The simplest closures correspond to assuming
linear relations as given by the kinetic theory of dense gases
and used widely in the granular flow literature:24–33

Pij = mnT�1 + 4�G��ij − �� − �2/3��s�ekk�ij − 2�seij ,

�7�

qj = − k
�T

�xj
, �8�

The shear viscosity �s, bulk viscosity �, and conductivity k
are given by

�s =
16

5�1/2mnaT1/2�G
1 +
�

12
�1 +

5

8�G
	2� , �9�

� =
16

3�1/2mnaT1/2�G , �10�

FIG. 1. The profiles of volume fraction, nondimensional velocity, and par-
ticle phase temperature for ���=0.1, �=0.5, �=1, St=50, and N=191.
Filled symbols and lines represent, respectively, numerical simulations and
simple kinetic theory.
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k =
8

�1/2mnaT1/2�G
1 +
9�

32
�1 +

5

12�G
	2� . �11�

In the above equations, �ij is the Kronecker delta and G is
the value of the radial distribution function for particles in
contact. The well-known Carnahan–Starling approximation40

for hard-sphere dense gas molecular system may be used to
estimate the radial distribution function at contact:

G =
1 − �/2
�1 − ��3 . �12�

The above equations must be supplemented with bound-
ary conditions for the particle phase continuum. The first
condition is that the velocity component normal to the walls
must be zero:

V2 = 0 at x2 = � �h/2 − a� . �13�

Note that the boundary conditions apply at a distance a from
the walls since the centers of the bubbles can at most come
within a distance equal to the radius of the bubbles. The
boundary condition for the tangential component of the mo-
mentum equation is obtained by requiring that the tangential
momentum lost due to particle collisions with a wall must be
equal to the shear stress at x2= � �h /2−a�. The former can
be estimated by assuming that the velocity distribution of the
particles near the wall is Maxwellian while the latter can be
related to the velocity gradient through Eq. �7�. This yields

�s
�V1

�x2
=

�1 − ��mnT1/2V1

�2�
at x2 = � �h/2 − a� . �14�

Similarly, the fluctuation energy lost due to particle-wall col-
lisions can be equated to q2, and hence the temperature gra-
dient, to yield the boundary condition

�k
�T

�x2
=

mn

2
� T

2�
	1/2

��� − 2� + 1��V1�2

+ 4�� − 1�T� at x2 = � �h/2 − a� . �15�

Equations �4�–�6� together with the boundary conditions
�Eqs. �13�–�15�� were solved using a finite element method.
Results of the predictions based on this theory are compared
against those obtained by particle dynamics simulations in
Fig. 1. We see that while this simple theory captures well the
trends for the profiles of particle phase volume fraction, ve-
locity, and temperature, significant quantitative discrepancy
exists between the two. We have also carried out simulations
for the case when the overall volume fractions are 0.05 and
0.15 and for other values of the Stokes number and found
that there is significant quantitative disagreement between
the simulation results and the above theory in all the cases
examined.

To understand the source of discrepancy, we calculated
both the x1 component of the momentum lost due to colli-
sions and the shear stress ��12=−P12� by direct numerical
simulations. For the case shown in Fig. 1, these two quanti-
ties, nondimensionalized by �V0

2 ��mn /��, were both
found to equal 0.0043. Thus, simulation results do confirm
that the momentum lost due to collisions is equal to the shear
stress. In contrast, if we evaluate the momentum lost using

the right-hand side �rhs� of Eq. �14� with the values of T, �,
and V1 obtained from numerical simulations �extrapolated to
x2=h /2−a�, we obtain 0.0029, a value that is about 33%
lower than the simulation result. Likewise, the nondimen-
sional shear stress, evaluated using the left-hand side �lhs� of
Eq. �14� and the simulation results for �V1 /�x2 and �s esti-
mated using the dense gas expression Eq. �9�, gave 0.0013,
about 70% lower than the stress determined directly from
simulations. Thus, we conclude that both the assumption of
an isotropic Maxwellian velocity distribution used for esti-
mating the momentum lost due to collision and the assump-
tion of a Newtonian stress tensor with the viscosity deter-
mined from the dense gas theory are not justified for the
present system.

Individual components of the pressure tensor are shown
in Figs. 2 and 3. According to the standard kinetic theory, the
diagonal elements of the pressure tensor must be equal. As
seen in Fig. 2, this is clearly not the case. The simulation
results indicate much higher values for P22 compared with
P11 and P33. The differences are large especially near the
walls. Nonequal diagonal components of the pressure tensor
imply that the velocity variance is significantly anisotropic.
Figure 3 compares the pressure component P12 obtained
from the particle dynamics simulations with that predicted

FIG. 2. The variation of individual components of pressure tensor with x2.
Filled symbols represent numerical simulations and solid line represents the
predictions of the standard kinetic theory �see Eq. �7��.

FIG. 3. Shear component of the pressure tensor. Filled circles: numerical
simulations; line: standard kinetic theory �see Eq. �7��.
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by the Newtonian rheology. We see significant differences
between the two, once again near the walls.

Figures 4 and 5 show the velocity distributions for the c1

and c2 components at two different positions in the channel.
We see that the velocity distribution is significantly bimodal
near the walls. The smaller peak corresponds to the popula-
tion of the particles that recently collided with the wall. Their
velocity component parallel to the walls is considerably re-
duced as a result of that interaction. The majority of the
particle population has a peak in the velocity that is close to
the terminal velocity of the particles.

The results for the particle velocity distribution give us
insight into why the simple kinetic theory based on the as-
sumption of a nearly isotropic Maxwellian velocity distribu-
tion is inadequate for predicting the averaged equations of
motion or the boundary conditions for the particulate suspen-
sion confined between two vertical rigid walls. The question
we wish to address here is as follows: In a system such as
this one, where the mean particle velocity is not small com-
pared with the fluctuation velocities and where the mean free
path a /� is comparable to the half channel width �both of
them equal to 10�, can better agreement between the simula-
tion results and a kinetic theory be obtained if the collision
integrals are evaluated with greater accuracy? Several as-
sumptions are typically made in evaluating the collision con-

tribution to the particle phase pressure and rheology. Some of
the assumptions may be relaxed if a more accurate velocity
distribution of the particles is employed. The purpose of the
present study is to carry out more accurate evaluation of the
collision terms and then compare the results with those ob-
tained from numerical simulations. In the process, we shall
determine accurate closure relations and boundary condi-
tions.

III. TWO-SPECIES KINETIC THEORY

In Sec. II we found that the velocity distribution for the
monodisperse particulate system confined between two ver-
tical rigid walls is bimodal and anisotropic when the particles
lose momentum upon collision with a wall. We further
showed that a simple kinetic theory is inadequate in describ-
ing the profiles of time-averaged velocity and volume frac-
tion. To overcome some of these limitations, we have devel-
oped a more accurate kinetic theory that will account for
both the bimodal and the anisotropic nature of the velocity
distribution and carried out term-by-term comparison be-
tween the theory and simulations.

The bimodal nature of the velocity distribution is ac-
counted for by treating the particulate system as consisting of
two species: normal and wall excited, henceforth referred to
as species 1 and 2, respectively. The latter are the particles
whose most recent collision was with one of the channel
walls. It is relatively straightforward in particle dynamics
simulations to keep track of the particle collisions, and there-
fore the time-averaged volume fraction of each species can
be easily determined. An example is shown in Fig. 6, which
gives the volume fractions of each species for the case con-
sidered in Sec. II. We see that the volume fraction of the
wall-excited species decreases away from the walls. In the
present section we shall develop a kinetic theory that will
allow us to predict the profiles for both species.

We treat particles of each species as rigid, elastic spheres
having equal mass m and radius a. Note that for the case of
a bubbly liquid, m may be taken as the average virtual mass
of a bubble. The averaged mass, momentum, and energy
equation for each species can be obtained from the general
balance equation41

FIG. 4. The x1-component velocity distribution at two different positions in
the channel.

FIG. 5. The x2-component velocity distribution at two different positions in
the channel.

FIG. 6. Total and individual species volume fractions as functions of the
position in the channel.
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�

�t
np�� p� +

�

�xj
�np�cj

p� p�� = np�Fj
p

m
·
�� p

�cj
p �

+ �
q=1

2

Cp,q��� , �16�

where cj
p is the velocity of the particles of species p, np an

ensemble-averaged number density, Fj
p the sum of viscous

and gravity forces acting on the particles, and Cp,q a collision
operator for determining the contribution to the rate of
change per unit volume in particle property � due to colli-
sions. The angular brackets imply ensemble averaging of a
quantity. Note that the species mass, momentum, and vari-
ance balance equations can be generated from the above ex-
pression by taking � p equal to, respectively, m, mcp, and
cpcp.

To evaluate Cp,q���, we shall assume that only binary
collisions occur. The usual kinetic theories of dense gas mix-
tures or granular materials account for the rate of change in
� p due to all possible collisions between the particles of
species p and those of species q �q=1,2�. In our system, a
collision of the particle of species 2 with another particle
converts the particle of species 2 into 1 after the collision.
Associated with this is a source term for species 1 and a sink
term for species 2 for every collision involving species 2. We
therefore express Cp,q��� as a sum of two terms:

Cp,q��� = C+
p,q��� + C�

p,q��� . �17�

The first term on the rhs of Eq. �17� involves the change in
the property during the collision, while the second gives the
change in the property due to the conversion of particles of
species 2. Thus, we write

C+
p,q��� = �

g·k�0
��̂ p − � p�Pp,q�c1,r,c2,r + �p,qk�

���p,q�2�g · k�dkdc1dc2 �18�

and

C�
p,q��� = �− 1�p−1�

g·k�0
�̂ 2P2,q�c1,r,c2,r + �2,qk�

���2,q�2�g · k�dkdc1dc2. �19�

Here, � p and �̂ p are particle properties before and after a
collision, Pp,q�c1 ,r ,c2 ,r+�p,qk� is the pair probability distri-
bution function for a particle of species p with velocity c1 at
r and species q at r+�p,qk with velocity c2, �p,q=ap+aq is
the center-to-center distance at the instance of a collision, ap

and aq being the radii of particles of species p and q, g is the
relative velocity of the particles just before the collision �g
=c1−c2�, and k is a unit vector directed from the center of
the particle of species p to the center of the particle of spe-
cies q at the instant of their contact. Note that, in general,

while � p is a function of c1, �̂ p is a function of both c1 and
c2. The integrations in Eqs. �18� and �19� must be carried out
for all possible values satisfying g ·k�0, which correspond
to an impending collision. The factor �−1�p−1 in Eq. �19�

accounts for the conversion of species 2 into 1 after the
collision.

C+
p,q��� and C�

p,q��� at the position r can be determined
in a straightforward manner from numerical simulations by
keeping track of collisions that occur in the vicinity of r and
the resultant change in the particle property. For predicting
their values in terms of some averaged quantities, kinetic
theories typically make several simplifying assumptions.
One common assumption is that the velocities of the two
colliding particles are completely independent. The pair dis-
tribution function Pp,q�c1 ,r ,c2 ,r+�p,qk� is expressed in
terms of the product of two single particle velocity distribu-
tion functions fp�c1 ,r� and fq�c2 ,r+�p,qk� as given by

Pp,q�c1,r,c2,r + �p,qk� = Prf
p�c1,r�fq�c2,r + �p,qk� , �20�

where Pr is a relative pair probability. In a macroscopically
homogeneous system with an isotropic spatial pair probabil-
ity distribution, it simply equals the radial distribution func-
tion for particles in contact and depends on the volume frac-
tion of the particles. For inhomogeneous systems, a usual
approximation is to take it equal to the radial distribution
function at contact, corresponding to the average volume
fraction of particles at the point halfway between the two
particles.26 Of course, in the present case, this relative prob-
ability also depends on the position of the pair of particles
relative to the channel walls. However, we shall neglect that
added complexity and simply take Pr=G��� with � being
evaluated at r+�p,qk /2, the point of contact of the two col-
liding particles, G being the radial distribution value for a
hard-sphere configuration as given by Eq. �12�. Next, it is
assumed that the mean field variables vary slowly in space so
that Pr and fq�c2 ,r+�p,qk� may be expanded in Taylor series
near point r. Retaining terms up to O��p,qk�, we obtain the
following approximations for C+

p,q��� and C�
p,q���:

C+
p,q��� = �p,q��� −

�

�xj
� j

p,q��� �21�

and

C�
p,q��� = �− 1�p−1
S2,q��� −

�

�xj
�̂ j

2,q���� . �22�

The two terms on the rhs of Eq. �21� will be referred to
as the collisional source and flux for the rate of change in � p

and the two terms on the rhs of Eq. �22� as the source and
flux due to the conversion of the wall-excited species into
normal species. The source and flux terms in Eq. �21� are
given by29

�p,q��� = ��p,q�2G���r���
g·k�0

��̂ p − � p��g · k�

��1 +
�p,q

2
k · Dp,q	 fp�c1,r�

�fq�c2,r�dkdc1dc2, �23�
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� j
p,q��� = −

��p,q�3

2
G���r���

g·k�0
��̂ p − � p�kj�g · k�

��1 +
�p,q

2
k · Dp,q	 fp�c1,r�

�fq�c2,r�dkdc1dc2, �24�

where Dp,q is given by

Dk
p,q =

�

�xk
�ln

fq�c2,r�
fp�c1,r�	 . �25�

Expressions for the source and flux terms in Eq. �22� are

obtained by replacing ��̂ p−� p� in Eqs. �23� and �24� by �̂ 2

and setting p=2.
The integrals in the above expressions are typically

evaluated by assuming that the single particle velocity distri-
bution function fp�c1 ,r� deviates only slightly from the iso-
tropic Maxwellian distribution �e.g., Grad approximation25�.
Since the velocity distribution in our system is considerably
anisotropic, we assume an anisotropic Maxwellian:

fp�c1,r� = np
�Ap�1/2

�2��3/2exp
−
1

2
�c1 − Vp�TAp�c1 − Vp�� ,

�26�

where np and Vp are, respectively, the number density and
mean velocity of the particles, Ap is the inverse of the veloc-
ity variance tensor, Ap= �Tp�−1 with ��Ap��0, and the super-
script T stands for the transpose of a tensor. The vertical bars
stand for the determinant of a tensor matrix.

The mass balance equations for the two species are ob-
tained by substituting �=m in Eq. �16�. This yields

��mnp�
�t

+
�

�xj
�mnpVj

p� = �
q=1

2

C�
p,q�m� , �27�

where the rhs stands for the source or sink term arising from
the conversion of the wall-excited species. Equation �27� is
exact. Our kinetic theory will obtain an approximation for

the rhs of the above equation in terms of S2,q�m� and �̂ j
2,q�m�

as given by Eq. �22� with �=m.
Similarly, the momentum equations are obtained by sub-

stituting � p=mcp in Eq. �16�. After substituting the approxi-
mation for C+

p,q�mc� from Eq. �21� and rearranging, we ob-
tain the following approximate form of the momentum
equations:

�

�t
�mnpVi

p� +
�

�xj
�mnpVi

pVj
p + Pij

p �

= np�mbĝi − �Vi
p� + �

q=1

2

�p,q�mci�

+ �
q=1

2

C�
p,q�mci� , �28�

where the pressure tensor Pij
p is given by

Pij
p = mnpTij

p + �
q=1

2

� j
p,q�mci� . �29�

The first term on the rhs of the above equation represents the
kinetic contribution to the pressure tensor and the second
represents the collisional contribution. The total collisional
pressure is given by

Pij
col = �

p=1

2

�
q=1

2

� j
p,q�mci� . �30�

Note that the last term in Eq. �28� can be similarly approxi-
mated in terms of source and flux terms as in Eq. �22�. We
have not combined this flux term in the definition of the
overall pressure tensor primarily so that we can compare the
predictions of our theory with those presented in the litera-
ture for nonreacting bidisperse systems.

Finally, an approximate form of the balance equation for
the second moments of the velocity fluctuations is given by

�

�t
�mnpTij

p � +
�

�xk
�mnpVk

pTij
p + Qijk

p �

= − 2np�Tij
p − �Pjk

p �Vi
p

�xk
+ Pik

p �Vj
p

�xk
	

+ �
q=1

2

�ij
p,q + �

q=1

2

�̂ij
p,q, �31�

where the heat flux tensor, given by

Qijk
p = mnp�Ci

pCj
pCk

p� + �
q=1

2

�k
p,q�mCiCj� , �32�

consists of the usual kinetic and collisional contributions.
�Note that the heat flux vector qj introduced in Sec. II is
related to the heat flux tensor defined here by qj =2�p=1

2 Qiij
p .�

The first term on the rhs of Eq. �31� represents the viscous
dissipation, and the second and third terms represent the pro-
duction of fluctuation energy due to Pij

p acting on the velocity
gradient. �ij

p,q is the collisional source of fluctuations ��ij
p,q

=�p,q�mCiCj�� and

�̂ij
p,q = C�

p,q�mcicj� − Vi
pC�

p,q�mcj�

− Vj
pC�

p,q�mci� + Vi
pVj

pC�
p,q�m� . �33�

The balance equations given by Eqs. �27�, �28�, and �31�
must be supplemented with appropriate boundary conditions
and closure relations for the flux of velocity fluctuations.
Before introducing these elements, we first verify the accu-
racy of the kinetic theory by calculating various terms in the
balance equations using the values of �p, Vp, and Tp ob-
tained in numerical simulations and carry out term-by-term
comparison of the predictions of kinetic theory with the re-
sults of numerical simulations. In this manner we can iden-
tify any source of discrepancy between the simulations and
the theory and analyze the reasons for the discrepancy. Also,
this term-by-term comparison will aid in developing and as-
sessing closure relations for various terms appearing in the
balance equations. The results of this detailed comparison
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will be presented in Sec. IV. In the remainder of this section,
we give the details of the technique used for determining
various collision integrals accurately. Expressions will be
given in Sec. IV and Appendix B for the limiting case when
the relative velocity of the two species is large compared
with the root-mean-squared velocity fluctuations.

A. Calculation of collision integrals

Calculation of the collision integrals is facilitated by car-
rying out change in variables from c1 and c2 to g=c1−c2 and
c�= 1

2 �c1+c2�. The Jacobian of the transformation of vari-
ables from c1 and c2 to g and c� is unity. We then express the
product of single particle velocity distribution functions
fp�c1 ,r�fq�c2 ,r� and Dp,q in terms of g and c�. We first carry
out integration over k and then over c�. Both these integra-
tions are performed analytically whereas the integration over
g is performed numerically. Tables of integrals given by
Chapman and Cowling24 and Jenkins and Richman25 are use-
ful for carrying out the analytical integration over k. Details
of the analytical integration over c� and numerical integra-
tion over g are given below where we outline the calculation
of the collisional source of momentum.

Using Eq. �26�, we write the product fp�c1 ,r�fq�c2 ,r� as

fp�c1,r�fq�c2,r� = �p,�0��q,�0� exp�− 1
2B� , �34�

where

�p,�0� = np�Ap�1/2/�2��3/2, �q,�0� = nq�Aq�1/2/�2��3/2,

�35�

and

B = �c1 − Vp�TAp�c1 − Vp� + �c2 − Vq�TAq�c2 − Vq� . �36�

Substituting expressions for c1 and c2 in terms of c� and
g in Eq. �36� and after some rearranging, we obtain

B = �g − 	Vp,q�TBp,q�g − 	Vp,q�

+ �c� − Wp,q�TAp,q�c� − Wp,q� , �37�

where

Ap,q = Ap + Aq, Bp,q = �Tp + Tq�−1, 	Vp,q = Vp − Vq,

�38�

and

Wp,q = �Ap,q�−1�ApVp + AqVq� + 1
2 �Tp − Tq�Bp,qg . �39�

Upon substituting the expression for B given by Eq. �37� into
Eq. �34�, we obtain

fp�c1,r�fq�c2,r� = �p,�0��q,�0�E1�c�,g�E2�g� , �40�

where E1�c� ,g� and E2�g� are given by

E1�c�,g� = exp�− 1
2 �c� − Wp,q�TAp,q�c� − Wp,q�� , �41�

E2�g� = exp�− 1
2 �g − 	Vp,q�TBp,q�g − 	Vp,q�� . �42�

Next, we express Dp,q in terms of c� and g. Substituting
single particle velocity distribution functions given by Eq.
�26� into Eq. �25�, using the expressions for c1 and c2 in
terms of c� and g, and expanding, we obtain

Dk
p,q =

�

�xk
�ln

�q,�0�

�p,�0�	 +
1

2
�ci� + gi/2 − Vi

p��cj� + gj/2 − Vj
p�

�
�

�xk
�Aij

p � −
1

2
�ci� − gi/2 − Vi

q��cj� − gj/2 − Vj
q�

�
�

�xk
�Aij

q � − Aij
p �cj� + gj/2 − Vj

p�
�

�xk
�Vi

p�

+ Aij
q �cj� − gj/2 − Vj

q�
�

�xk
�Vi

q� . �43�

The above expression for Dk
p,q is rearranged as

Dk
p,q = dk

0 + dki
1 ci� + dkij

2 ci�cj�, �44�

with

dk
0 =

�

�xk
�ln

�q,�0�

�p,�0�	 − Aij
p �gj/2 − Vj

p�
�

�xk
�Vi

p�

+
1

2
�gi/2 − Vi

p��gj/2 − Vj
p�

�

�xk
�Aij

p � − Aij
q �gj/2 + Vj

q�

�
�

�xk
�Vi

q� −
1

2
�gi/2 + Vi

q��gj/2 + Vj
q�

�

�xk
�Aij

q � , �45�

dki
1 = �gj/2 − Vj

p�
�

�xk
�Aij

p � − Aij
p �

�xk
�Vj

p�

+ �gj/2 + Vj
q�

�

�xk
�Aij

q � + Aij
q �

�xk
�Vj

q� , �46�

and

dkij
2 =

1

2
� �

�xk
�Aij

p � −
�

�xk
�Aij

q �	 . �47�

To evaluate the collisional source of momentum �p,q�mc�, we

substitute �=mc in Eq. �23�. The term ��̂ p−� p�, which now
represents the change in the momentum of the particle of
species p in a collision, is given by

��̂ p − � p� = m�ĉp − cp� = − m�g · k�k . �48�

Substituting Eqs. �40� and �48� into Eq. �23�, the collisional
source of momentum is expressed as

�p,q�mc� = − ��p,q�2G�p,�0��q,�0�m

�� Imk�g · k�2E2�g�dkdg , �49�

where Im is given by

Im =� �1 +
�p,q

2
k · Dp,q	E1�c�,g�dc�. �50�

To perform the analytical integration over c�, we substi-
tute the expressions for E1�c� ,g� and Dp,q given by Eqs. �41�
and �44� into Eq. �50�. Using the integration formulas given
in Appendix A, we obtain
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Im = �p,q,�1��1 +
�p,q

2
k · �	 , �51�

where

�k = dk
0 + dki

1 Wi
p,q + dkij

2 �Wi
p,qWj

p,q + Tij
m� . �52�

Substituting Im given by Eq. �51� into Eq. �49� and integrat-
ing over k using the formulas given by Jenkins and
Richman,25 we obtain

�p,q�mc� = �p,q� F�g�E2�g�dg , �53�

where

F�g� = � �g�
2

g +
�p,q

15
�2g�� · g� + �g�2��� �54�

and �p,q=−��p,q�2G�p,�0��q,�0��p,q,�1�m. In Eq. �54�, �g� is
the magnitude of g. The remaining integration over g is car-
ried out numerically. For this purpose, we first write

g = 	Vp,q + R · u , �55�

where the matrix R is related to the eigenvectors and eigen-
values of Bp,q:

R = � cos �/��1 sin �/��2 0

− sin �/��1 cos �/��2 0

0 0 1/��3

� . �56�

Here, �= 1
2 tan−1�2B12

p,q / �B22
p,q−B11

p,q�� and �1, �2, and �3 are
the eigenvalues of Bp,q:

�1 = B11
p,q cos2 � + B22

p,q sin2 � − B12
p,q sin 2� ,

�2 = B22
p,q cos2 � + B11

p,q sin2 � + B12
p,q sin 2� , �57�

�3 = B33
p,q.

The Jacobian of the transformation given by Eq. �55� is �
= ��1�2�3�−1/2. Carrying out the transformation from
�u1 ,u2 ,u3� to spherical coordinates �s ,� ,�� in Eq. �53�, we
obtain

�p,q�mc� = �p,q��
0

2� �
0

� �
0

�

F�s,�,��

�exp�−
s2

2
	s2 sin �dsd�d� . �58�

The above integrations over s, �, and � were performed nu-
merically using a 12-point Gaussian quadrature for the inte-
grations over � and � and Simpson’s rule with 81 points
between s=2 and 10 for the integration over s.

IV. RESULTS

A. Verification of the balance equations
and closure relations

We begin with the mass conservation equation for spe-
cies 1. The results are presented in the dimensionless form
by normalizing Vp and �Tp�1/2 with particle terminal velocity
V0, x2 by particle radius a, and t by a /V0. We first verify the
overall mass conservation equation. The lhs and rhs of Eq.
�27� were each determined separately from the results of nu-
merical simulations. The lhs, which represents the derivative
of �1V2

1 with respect to x2, was determined using the central
difference formula for all points except those near the walls,
where a three-point backward or forward difference was
used. The derivatives thus computed were compared with the
sum of the source terms, C�

1,1�m�+C�
1,2�m�, determined from

numerical simulations. The two agreed with each other
nearly perfectly at all points, thus validating the mass con-
servation equation.

We now compare the simulation results with the predic-
tions of the kinetic theory. Recall that the source C�

1,q�m� is
approximated in the kinetic theory in terms of two terms, S2,q

and the x2 derivative of �̂2
2,q �see Eq. �22��. The solid line in

Fig. 7 shows the predicted values of C�
1,1�m�. To determine

these values, we used �p, Vp, and Tp obtained from simula-
tions and evaluated the collision integrals in Eq. �22� as de-
scribed in detail in Sec. III. The filled circles in Fig. 7 rep-
resent the values of C�

1,1�m� determined from numerical
simulations. We see that the two agree at all points including
those closest to the walls, indicating that the kinetic theory
provides an excellent approximation for the source term
when �p, Vp, and Tp are known exactly. The filled squares in
Fig. 7 represent the contribution to C�

1,1�m� from the source
term S2,1 in Eq. �22�. We note that in this case the contribu-
tion from the flux term is maximum near the walls where it
accounts for roughly 10% of the overall source.

The detailed computations for the source and flux terms
using the kinetic theory described in Sec. III are somewhat
involved and it is desirable to compare the results with those
predicted using simpler kinetic theories. In particular, we
shall be interested in the two limiting theories. The first as-

FIG. 7. The results for the source term C�
1,1�m�. Numerical simulations:

filled circles; kinetic theory: solid line. The filled squares represent the con-
tribution of the source term S2,1�m� to C�

1,1�m�.
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sumes a simple velocity distribution in which the velocity
distributions of both species are assumed to be given by
isotropic Maxwellians with their corresponding temperatures
determined from the simulations and the mean relative ve-
locities of the species being negligible, and the other as-
sumes that both species are moving simply with their respec-
tive average velocities, i.e., their temperatures are negligibly
small. These will be referred to, respectively, as SV �small
relative velocity� and LV �large relative velocity� approxima-
tions. To obtain the predictions for these two limiting cases,
we used our computer program for the general case. The LV
approximation was obtained by simply multiplying the tem-
peratures by a small number, typically 10−6, and similarly,
the SV approximation was obtained by multiplying the mean
velocities by a small number and setting Tij

p =Tp�ij. Analyti-
cal expressions for the LV case were also obtained, and they
are given below as needed.

The predictions of these two simple theories for the
source term are compared against those determined from the
detailed kinetic theory in Fig. 8. We see that the simpler
theory based on the assumption that the two species are sim-
ply moving with their average velocities �LV approximation�
gives very accurate estimates of the source term. Thus, the
source term in the present case may be approximated by

S2,q�m� = ��2,q�2Gm�
n2nq�V2 − Vq�

+
�2,q

2
�n2

�nq

�xj
− nq

�n2

�xj
	�Vj

2 − Vj
q�� . �59�

The results for the mass flux terms are similarly shown
in Fig. 9, where, once again, we see that the results of the
detailed kinetic theory can be reasonably well reproduced
with a simpler theory based on LV approximation, which
gives

�̂ j
2,q�m� = −

��2,q�3

2
Gm�n2nq�Vj

2 − Vj
q� . �60�

In evaluating the above flux term, we have neglected the
k ·Dp,q term in Eq. �24� which would have given additional
terms involving derivatives of the number density.

We now consider the momentum equation. The lhs and
rhs of Eq. �28� are shown by, respectively, filled circles and
the dashed line in Fig. 10. Once again, we see very good
agreement, indicating the validity of the averaged momen-
tum equation. Figure 10 also shows the three individual
terms on the rhs of Eq. �28�. We see that the rhs is dominated
by the source term due to conversion, viz., C�

1,q�mc1�, except
very close to the channel center. Interestingly, the term
�1�1−V1

1� is seen to be approximately constant throughout
most of the channel width. This suggests that �1V1

1 is ap-
proximately constant. From the continuity equation, it is easy
to see that actually this term is related to the source term
C�

1,q�m�, the magnitude of which, being O��2�, is small for
the case considered here.

Figure 11 shows a comparison between the results for
the source of momentum due to species conversion
C�

1,1�mc1�+C�
1,2�mc1� obtained using the detailed kinetic

theory with that from a simpler LV approximation. We see

FIG. 8. Predictions of the mass source term S2,1�m� from detailed kinetic
theory �solid line� and two limiting theories. The dashed line represents a
theory which assumes simple isotropic Maxwellian velocity distributions for
both species and the dotted line �almost indistinguishable from the solid
line� represents a theory which assumes that both species are moving simply
with their average velocities �LV approximation�.

FIG. 9. The predictions of the mass flux term �̂2
2,1�m� from the detailed

kinetic theory �solid line� and two the limiting theories �dotted line: LV
approximation; dashed line: SV approximation�.

FIG. 10. Momentum balance for species 1. Filled circles and dashed line
represent, respectively, the lhs and rhs of the momentum equation �see Eq.
�28��. Open circles represent the first term on the rhs of Eq. �28�; open
squares and triangles represent, respectively, the second and third terms on
the rhs of the same equation.
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that the simpler theory gives very accurate estimates. It may
be noted that the other limiting theory, which assumes that
the mean velocities of the two species are zero, will yield
vanishing values for the source. Thus, the source and flux
terms in the momentum equation can be determined using
the following expressions based on the LV approximation:

S2,q�mci� = ��2,q�2Gm��Vi
2
n2nq�V2 − Vq�

+
�2,q

3
�Vj

2 − Vj
q��n2

�nq

�xj
− nq

�n2

�xj
	�

−
1

2
n2nq�Vi

2 − Vi
q��V2 − Vq�

−
�2,q

15
�n2

�nq

�xj
− nq

�n2

�xj
	

��2�Vi
2 − Vi

q��Vj
2 − Vj

q� + �ij�V2 − Vq�2�� ,

�61�

�̂ j
2,q�mci� = −

��2,q�3

2
n2nqGm��2

3
Vi

2�Vj
2 − Vj

q�

−
2

15
�2�Vi

2 − Vi
q��Vj

2 − Vj
q� + �ij�V2 − Vq�2�� .

�62�

Next, we consider the source of momentum in the ab-
sence of mass exchange, i.e., �1,2�mc1� for a nonreacting
mixture. The solid line in Fig. 12 shows the results obtained
using the detailed kinetic theory. The simulation results are
indicated by closed circles. The latter were obtained from the
particle dynamics simulations, which actually yield
C+

1,2�mc1�. They were corrected by adding the flux term �see
Eq. �21�� estimated from the simulation results. We see good
agreement at all points except for a couple of points near the
walls. The reason for the discrepancy between the theory and
simulation results near the walls is unknown. There are at
least two possible sources for the discrepancy. First, our
theory assumes that all orientations of the colliding pairs of

particles are equally probable. This is most likely not the
case near the channel walls. Second, our assumption of an-
isotropic Maxwellian velocity distribution for the two spe-
cies cannot be strictly justified for particles near the walls
where, for example, the distribution predicts a finite, nonzero
probability for wall-excited particles to have motion toward
the wall.

Also shown in Fig. 12 are the predictions based on sev-
eral simpler kinetic theories. The dashed line represents the
predictions based on the expression given by Jenkins and
Mancini,26

�p,q�mci� = npnqG��p,q�2
2�

3
�p,qTJM �

�xi
�ln

np

nq
	

+
8

3
��mTJM�1/2�Vi

q − Vi
p�� , �63�

where

TJM = �n1TJM,1 + n2TJM,2�/�n1 + n2� , �64�

TJM,p =
m

3
��cp −

n1V1 + n2V2

n1 + n2
	 · �cp −

n1V1 + n2V2

n1 + n2
	� .

�65�

Lathouwers and Bellan33 proposed

�p,q�mci� = npnqmG��p,q�2
�

3
�p,q�Tp + Tq�

�

�xi
�ln

np

nq
	

+
4

3
�2��1/2�Tp + Tq�1/2�Vi

q − Vi
p�� . �66�

As seen in Fig. 12, both closure relations yield poor esti-
mates of the momentum source. Figure 12 also shows the
results obtained by the LV theory which yields

FIG. 11. A comparison of the momentum source due to conversion of spe-
cies obtained using the detailed kinetic theory �solid line� with the limiting
theory �dotted line� which assumes that both species are moving simply with
their average velocities �LV approximation�.

FIG. 12. Results for the source of momentum in the absence of mass ex-
change, i.e., �1,2�mc1�. Filled circles: numerical simulations; solid line: de-
tailed kinetic theory; dotted line: LV approximation; dashed line: Jenkins
and Mancini �Ref. 26� theory; dashed-dotted line: Lathouwers and Bellan
�Ref. 33� theory.
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�p,q�mci� = − ��p,q�2Gm��1

2
npnq�Vi

p − Vi
q��Vp − Vq�

+
�p,q

15
�2�Vi

p − Vi
q��Vj

p − Vj
q�

+ �ij�Vp − Vq�2��np
�nq

�xj
− nq

�np

�xj
	� . �67�

We see that the predictions based on this simple theory are in
good agreement with the results of more detailed kinetic
theory.

Next, we present results for the total collisional contri-
bution to the pressure tensor, i.e., P12

col �see Eq. �30��. As seen
in Fig. 13, once again the simulation results are in good
agreement with those determined using the detailed kinetic
theory except very close to the wall. The predictions based
on the expressions given by Jenkins and Mancini28 and by
Lathouwers and Bellan33 are also shown in the figure. We see
that both theories give significantly lower magnitudes of the
collisional contribution P12

col. Since these theories are derived
for the rapidly sheared materials for which the root-mean-
squared velocities are large compared with the mean veloci-
ties, it is not surprising that the agreement between these
theories and simulations is not very good. The open circles in
Fig. 13 indicate the predictions obtained from a simple
theory in which the collisional contributions obtained by as-
suming that the particles of the two species are moving with
their average velocities �LV approximation� are added to the
closure relation suggested by Jenkins and Mancini.28 We see
that this results in some improvement but still falls short of
predicting accurately the total collisional contribution to P12

col.
The discrepancy must therefore be related to the anisotropic
nature of the velocity variance. A simpler way to account for
the anisotropy is to use the Grad approximation which as-
sumes a small perturbation to the isotropic Maxwellian ve-
locity distribution. The resulting expression is given by

P12
col = �

q=1

2

�8/5�mnp�pGT12
p + P12

LV + P12
JM. �68�

The first term on the rhs of the above equation obtained
using the Grad approximation requires knowledge of T12

p .
The second term is obtained from the LV approximation �see
Eq. �B2�� while the third is obtained using the closure rela-
tion proposed by Jenkins and Mancini28 �Eqs. �36�–�39� in
their paper�. The resulting prediction, shown by triangles in
Fig. 13, is in excellent agreement with the results of particle
dynamics simulations.

We now consider the balance equation for the second
moments of the velocity fluctuations. The lhs and rhs of Eq.
�31� for the balance of T11

1 are shown by, respectively, closed
circles and dashed line in Fig. 14. We see that the two are in
perfect agreement except for the point closest to the wall.
The figure also shows contributions from the five terms on
the rhs of the equation. Note that all terms play significant
roles in the balance, especially near the wall.

The source terms �̂ij
p,q and �ij

p,q computed from numerical
simulations were compared with those predicted using the
kinetic theory. The agreement was found to be generally
good although not as good as for the source terms in the
mass and momentum equations. Once again, significant de-
viations were observed between the predictions based on
simple constitutive relations for bidisperse systems by
Jenkins and Mancini26 and the simulation results.

Perhaps the most difficult part is the prediction of Qijk
p

for which we found that both the kinetic and collisional con-
tributions are comparable in magnitude for the case consid-
ered in Sec. II. The collisional part is generally not well
predicted by the theory while the kinetic part requires a clo-
sure relation. We have been unable to obtain a closure rela-
tion that adequately fits the results of particle dynamics
simulations. The simplest closure relation is

FIG. 13. Results for the total collisional contribution to the shear component
P12

col �see Eq. �30��. Filled circles: numerical simulations; solid line: detailed
kinetic theory; dashed line: Jenkins and Mancini �Ref. 28� theory; dashed-
dotted line: Lathouwers and Bellan �Ref. 33� theory; open circles: LV ap-
proximation added to the Jenkins and Mancini theory, triangles: Grad ap-
proximation added to the results given by open circles.

FIG. 14. Filled circles and dashed line represent, respectively, the lhs and
rhs of the balance equation �see Eq. �31�� for T11

1 . Open symbols represent
various terms on the rhs of Eq. �31�. Circles represent the first term, squares
the second and third terms, triangles the fourth term, and diamonds the fifth
term.
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Qijk
p = − �2/5�k�Tp,��� �Tij

p

�xk
+

�Tik
p

�xj
+

�T jk
p

�xi
	

+ �
q=1

2

�k
p,q�mCiCj� , �69�

where k is given by the dense gas conductivity expression,
Eq. �11�, and the last term on the rhs is to be evaluated using
the LV approximation. Note that the above reduces to Qjjk

=2qk used in the simple theory described in Sec. II for the
special case of an isotropic velocity variance. Figure 15
shows a comparison between the results obtained from par-
ticle dynamics simulations and the above closure relation for
two selected components of the heat flux tensor �Q122

1 and
Qjj2

1 �. We note significant discrepancy, especially near the
walls. Adding to the above expression for Qjjk, a term sug-
gested by Jenkins and Mancini26 produces no significant im-
provement. Interestingly, we found that most heat flux com-
ponents for species 1 have values close to zero near the walls
where the temperature gradients are generally significant.
Thus closure relations involving gradients of Tij

p fail near the
walls.

B. Boundary conditions

We now examine the particle dynamics simulation re-
sults for various quantities near the walls. The purpose of
this subsection is to assess how well the kinetic theory pre-
dictions for boundary conditions compare with the simula-
tions. Somewhat simpler boundary conditions are proposed
in the approximate model outlined in Sec. V.

The tangential components of the velocities of the two
species are related by

Vt
2 = �Vt

1 at x2 = � �h/2 − a� . �70�

Since there is no net flux of particles through the walls, the
normal components of the velocity must satisfy

�1Vn
1 = − �2Vn

2 at x2 = � �h/2 − a� . �71�

The particle dynamics simulations for the case considered in
the present study with �=0.5 gave V1

1=0.75V0, V1
2=0.35V0,

�1=0.061, �2=0.016, Vn
1=−0.18V0, and Vn

2=0.70V0 when

extrapolated to x2=h /2−a, in excellent agreement with the
above conditions.

An alternative condition to the normal components sat-
isfying Eq. �71� is requiring that the volumetric flux of spe-
cies 1 toward the wall must equal the volumetric flux of
species 2 away from the wall. The former is given by

�4�/3�a3�
c2�0

c2f1�c�dc

= �1�V2
1

2
�2 − erfc�V2

1/�2T22
1 �� +

T22
1

�2�T22
1

�exp�− �V2
1�2/2T22

1 �� . �72�

Since the assumed anisotropic Maxwellian velocity distribu-
tion of the particles is only an approximation, the volumetric
fluxes are not expected to be in perfect agreement.

Substituting for the simulation results for T22
1 , etc., ex-

trapolated to x2=h /2−a yields 0.011 43V0 for the rhs of the
above equation. This may be compared with �1V2

1

=0.010 96V0, a difference of about 5%. On the other hand,
an integral similar to the one in Eq. �72� may be evaluated
for the wall-excited species. This results in −0.011 22V0 for
the flux of species 2 which is essentially the same as �2V2

2

obtained from the simulations.
The momentum lost �per unit time per unit area of a

wall� by species 1 must equal the shear component plus the
momentum flux by average motion. In other words,

P12
1 + mn1V1

1V2
1 = m�

c2�0
c1c2f1�c�dc �73�

at x2=h /2−a. A similar condition must apply at the other
wall. The integral on the rhs of the above equation can be
evaluated for an assumed anisotropic Maxwellian velocity
distribution to yield the following boundary condition at the
wall:

P12
1 + mn1V1

1V2
1 = mn1��V1

1V2
1 + T12

1 ��1 + erf�V2
1/�2T22

1 ��/2

+ V1
1�T22

1 /2� exp�− �V2
1�2/2T22

1 �� . �74�

The lhs of the above equation determined from the particle
dynamics simulations and extrapolated to x2=h /2−a was
found to equal 0.0085�V0

2. The rhs of the above equation
evaluated by substituting the values of V2

1, T22
1 , etc., extrapo-

lated from the simulation results yields 0.0087�V0
2, about

2.6% higher than the lhs. Thus, using an anisotropic Max-
wellian to evaluate the momentum lost at the wall yields a
reasonably accurate boundary condition. The momentum
condition for species 2 may be written simply as P12

2

+mn2V1
2V2

2=−��P12
1 +mn1V1

1V2
1�. This condition is less well

satisfied by the results of particle simulations �lhs=−0.0039
and rhs=−0.0042, both nondimensionalized by �V0

2�.
Next, the pressure component P22

p is given by

FIG. 15. Two selected components of heat flux tensor �Q122
1 and Qjj2

1 �.
Symbols represent results from numerical simulations and lines represent
predictions by the closure relation given by Eq. �69�.
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P22
1 + mn1V2

1V2
1 = m�

c2�0
�c2�2f1�c�dc at x2 = h/2 − a .

�75�

An expression for the integral on the rhs of the above equa-
tion was obtained in terms of T22

1 , etc., in a similar manner as
in Eq. �74�. This boundary condition was also found to be in
good agreement with the results of numerical simulations.
Similar conditions may be derived, in principle, for the com-
ponents of the heat flux tensor Qijk

p . However, this will not be
pursued since we do not have accurate closure relations for
the heat flux tensor in the bulk.

In summary, we find that the assumed anisotropic Max-
wellian form for each species can be used to prescribe accu-
rate boundary conditions at the channel walls. In Sec. V we
describe an approximate model that may be used in the ab-
sence of accurate closure relations for Qijk

p and that includes
simplified boundary conditions.

V. APPROXIMATE MODEL

We have seen that most of the terms in the continuity
and momentum equations for the individual species can be
modeled reasonably accurately using a combination of the
LV approximation �large velocity difference approximation�
and either the Grad approximation or the constitutive rela-
tions suggested by Jenkins and Mancini.26,28 The LV ap-
proximation is to be used for collisions involving species 1
and 2 for which the net velocity difference is large while the
Grad or the Jenkins and Mancini approximation is to be used
to account for the collisions among species of the same kind.
Thus, it is unnecessary to evaluate the eightfold collision
integrals described in Sec. III. The main unresolved quantity
is Qijk

pq. In this section we shall show that a simplified model
may be used to predict the profiles of volume fraction and
velocity of the individual species with reasonable accuracy.

In view of the fact that we do not have satisfactory clo-
sure relations for Qijk, we shall only solve for T1 and T12

1 .
The latter is required for determining accurately the pressure
component P12 as we saw in Sec. IV. It turns out that the
closure relation for Q122

1 is not crucial so that a reasonably
accurate estimate of T12

1 can be obtained even with the
simple closure relation for Q122

1 proposed in Sec. IV. We shall
also not solve for T2 as �2 decreases rapidly away from the
wall, and near the wall the large velocity difference between
the two species is more important than the temperature of
species 2. We shall simply take T2=T1 in the constitutive
relations that require both temperatures.

We shall also assume that the velocity components par-
allel to the channel walls are simply related by V1

2=�V1
1. Of

course, strictly speaking this is valid only at the channel
walls. Since the LV approximation produces terms that are
most significant near the channel walls, the above assump-
tion will introduce negligible errors in estimating various
collision-related terms. Moreover, our simulation results
show that V1

2=�V1
1 is a reasonably good approximation

throughout the channel width �see Fig. 16�b��.

We therefore need to solve for only seven variables as
functions of x2. These are �p, V2

p, V1
1, T1, and T12

1 �p=1,2�.
The resulting equations are �note that mnp=��p�

��mnp�
�t

+
�

�x2
�mnpV2

p� = �
q=1

2

C�
p,q�m� , �76�

�

�t
�mn1V1

1� +
�

�x2
�mn1V1

1V2
1 + P12

1 �

= n1�mbĝ1 − �V1
1� + �1,2�mc1� + C�

1,2�mc1� , �77�

�

�t
�mnpV2

p� +
�

�x2
�mnpV2

pV2
p + P22

p �

= − np�V2
p + �

q=1

2

�p,q�mc2� + �
q=1

2

C�
p,q�mc2� , �78�

�

�t
�mn1T12

1 � +
�

�x2
�mn1V2

1T12
1 − �4/5�k

�T12
1

�x2

+ �2
1,2�mC1C2�	

= − 2n1�T12
1 − �P22

1 �V1
1

�x2
+ P12

1 �V2
1

�x2
	 + �12

1,2 + �̂12
1,2,

�79�

3
�

�t
�mn1T

1� +
�

�x2
�3mn1V2

1T1 − 2k
�T1

�x2
+ �2

1,2�mCiCi�	
= − 6n1�T1 − 2Pi2

1 �Vi
1

�x2
+ �ii

1,2 + �̂ii
1,2. �80�

In the above equations, P12
1 is evaluated using the approxi-

mation P12
1 =mn1T12

1 �1+ �8 /5�G����1�+�2
1,2�mc1�. Since we

shall not be explicitly solving for T22
p , it is necessary to use

an approximate closure for the other pressure component,
P22

p . We shall use

P22
p = mnpT

p�1 + 4�pG���� −
�p

�
�� + �4/3��s�

�V2
p

�x2

+ �
q=1

2

�2
p,q�mc2� . �81�

The last term on the rhs of the above expression accounts for
the contribution from the collision between the two species,
which is evaluated using the LV approximation. �Note that
according to the LV approximation, �2

p,q is nonzero only for
p�q.� The first two terms on the rhs represent a slight modi-
fication of the usual dense gas theory expression. It can be
shown that the implied collision part in this approximation
agrees with that suggested by Jenkins and Mancini26 for the
special case T1=T2 in the limit of high volume fractions
�dense mixtures�. Finally, � and �s in the above expression
and k in the equations for T1 and T12

1 are evaluated using the
usual dense gas expressions �see Eqs. �9�–�11��. Substituting
the values of T1, �1, V2

1, etc., determined from the particle
dynamics simulations into the rhs of the above equation and
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comparing the resulting P22
1 with that determined in dynamic

simulations show that the above expression provides a good
estimate for values of x2 close to the channel walls where the
LV approximation makes a dominant contribution. Near the
center of the channel, however, P22

1 evaluated using the
above expression is nearly twice that obtained from the
simulations, suggesting that using the dense gas viscosity
expressions results in substantial errors.

Expressions for various collision-related terms obtained
using the LV approximation are summarized in Appendix B,
which provides more general results for collisions involving
particles of different masses or radii.

The boundary conditions are simplified as follows. Since
we are expressing P12

1 in terms of T12
1 , the momentum equa-

tion for V1
1 is reduced to a first-order differential equation.

Therefore, no boundary conditions for this equation need to
be specified at the channel walls. The symmetry condition at
the channel center is sufficient. On the other hand, since we
are using closure relations for P22

p which are only approxi-
mate, we need to modify the boundary conditions for V2

p at
the channel walls �Eq. �75� for P22

1 plus an analogous equa-
tion for P22

2 �. The results of particle dynamics show that V2
1 is

much smaller than V2
2. Near the channel walls, the mean

velocity component perpendicular to the wall is expected to

(b)

(a)

(c)

(d)

(e)

FIG. 16. A comparison between the results obtained from particle dynamics simulations and the approximate model. Symbols: particle dynamics simulations;
solid line: approximate model with T1 taken from particle dynamics simulations; dashed line: the full model.
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scale with the root-mean-squared velocity fluctuations for the
normal species while the magnitude of V2

2 is significantly
larger after the collision energy contained in the velocity
component parallel to the wall is partly converted into the
normal component. The ratio V2

1 /�2T22
1 that appears in the

volumetric flux condition Eq. �72� was found to be approxi-
mately constant in our particle dynamics simulations. For
simulations with overall volume fractions of 0.1, 0.05, and
0.15, this ratio was found to equal, respectively, 0.92, 0.88,
and 0.87. We therefore choose the following approximate
boundary condition for V2

1:

V2
1 = � 0.9�2T22

1 at x2 = � �h/2 − a� . �82�

We shall further approximate this condition by substituting
T22

1 =T1 in the above condition as we do not explicitly solve
for T22

1 .
Next, the normal velocity component of species 2 is de-

termined from energy considerations. Recall that the par-
ticles lose significant momentum in the direction parallel to
the wall as a result of the collision but bounce with signifi-
cantly larger normal velocity component. Requiring that the
kinetic energy of the particles of species 2 leaving a wall
equals � times the energy of particles of species 1 arriving
the wall yields the following condition:

L2 = − �L1 at x2 = h/2 − a , �83�

where L1 is the flux of kinetic energy of the particles of
species 1 at x2=h /2−a and L2 likewise the flux of kinetic
energy for species 2. It can be shown that

L1 = �mn1/2�V2
1��V1

1�2 + �V2
1�2 + T11

1 + 3T22
1 + T33

1 �

��1 + erf�V2
1/�2T22

1 ��/2 + �mn1�/2�T22
1 /2�

���V1
1�2 + �V2

1�2 + T11
1 + 2T22

1 + T33
1 �

�exp�− �V2
1�2/2T22

1 � . �84�

An expression for L2 can be obtained from the above equa-
tion by replacing V1

1, V2
1, T11

1 , etc., of species 1 by, respec-
tively, V1

2, −V2
2, T11

2 , etc. Since the square of the normal ve-
locity of species 2 is much greater than its temperature, the
above condition may be simplified by neglecting T22

2 alto-
gether, setting T11

1 =T33
1 =T22

1 =T1, and neglecting several
small terms. This leads to the following approximate condi-
tion:

�V2
2�2 =

�

2
��V1

1�2 + �V2
1�2 + 5T1��1 + erf�V2

1/�2T22
1 ��

− ��V1
1�2, �85�

where use has been made of V1
2=�V1

1. The above equation is
further simplified by substituting V2

1=0.9�2T22
1 . The result-

ing condition gives estimates of V2
2 in terms of V1

1 and T22
1

that agree, when compared with those obtained from the par-
ticle dynamics simulations, within 5%, 7%, and 12% for
overall volume fractions of, respectively, 0.05, 0.1, and 0.15.
The condition of no net particle flux at the channel walls �see
Eq. �71�� is then used to estimate �2 in terms of �1, V2

1, and
V2

2.

Our particle dynamics simulations also showed that T12
1

is generally small at the walls. Therefore, we shall use the
following simple boundary condition for solving for T12

1 :

T12
1 = 0 at x2 = � �h/2 − a� . �86�

The condition that T12
1 at the channel walls is small can also

be derived by requiring that the flux of this second moment
at the channel wall must be equal to Q112

1 .
Finally, a boundary condition for T1 is obtained by

equating the flux of fluctuation kinetic energy of species 1 to
the conductive flux at the channel walls. After substituting
V2

1=0.9�T1 in the resulting expression for the flux of fluc-
tuation energy, taking T11

1 =T22
1 =T33

1 =T1, neglecting the col-
lisional contribution to Qjj2

1 , and using the limiting expres-
sion for thermal conductivity for dilute particulate systems
�k=��225�� /576�T1/2�, we obtain a relatively simple ap-
proximate boundary condition given by

�T1

�x2
= � 0.77�1T

1 at x2 = � �a − h/2� . �87�

This condition is not well satisfied by the results obtained
from particle dynamics simulations since the flux Qjj2

1 ob-
tained from the simulations deviates substantially from the
assumed closure relation especially near the channel walls.
Note that for dilute systems, the above condition suggests
that the derivative of T1 near the channel walls is nearly zero
whereas the particle dynamics simulations show significant
gradients in T1 near the walls, presumably because the clo-
sure relation for the flux fails near the walls.

We now compare the profiles for various quantities ob-
tained by solving the above set of equations with those ob-
tained by the particle dynamics simulations. The only equa-
tion that appears to be inaccurate is the differential equation
for T1 and the associated boundary condition. In addition, we
expect some inaccuracy in our model for P22

p as given by Eq.
�81� although its impact should be minimal. Therefore we
shall show the comparison for two cases: �i� Equation �80�
for T1 is omitted and T1 required in the evaluating the par-
ticle phase viscosity in the momentum equation for V2

p is
taken from the particle dynamics simulation results. Like-
wise, T22

1 required in the boundary condition for V2
1 at the

channel walls is also taken from the simulations. �ii� The
entire set of equations is solved including the equation for
T1. The boundary condition for V2

1 in this case is approxi-
mated by using T1 instead of T22

1 . The main source of inac-
curacy in case �i� is the assumed Newtonian model for the
pressure components P22

p . The closure relation for Qjj2
1 and

the boundary condition for T1 are the additional sources of
inaccuracy in case �ii�.

The numerical method for solving the averaged equa-
tions for the two species was based on a spectral collocation
method.42 Briefly, the volume fraction and velocity of the
species were expressed in series of Chebyshev polynomials
with the coefficients of the polynomials treated as functions
of time. The governing equations were satisfied at selected
values of x2 �extrema of Chebyshev polynomials�. The time
derivative was discretized based on a simple two-level
scheme. The nonlinear terms were approximated by a semi-
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implicit scheme. Typical calculations were made using by 16
collocation points. We found that an instability occurred near
the center of the channel where �2 becomes small. This in-
stability was suppressed by setting �2 /� equal to 0.03 in Eq.
�81� whenever �2 /� fell below this value.

The results for case �i� are shown in Fig. 16 by solid
lines and for case �ii� by dashed lines, the particle dynamics
simulations being represented by circles. We see excellent
agreement for case �i� suggesting that the use of a Newtonian
model for estimating the viscous stress component to P22

p is
adequate. In particular, the profile for T12

1 , and hence the
shear stress, is predicted with remarkable accuracy. The pro-
files for V1

p are somewhat flatter than the ones obtained from
the particle dynamics simulations and this may be attributed
to the effect of inaccurate closure for P22

p . Case �ii� also
provides estimates that are in reasonable agreement even
though we see that a significant discrepancy between the
overall model and simulation results remains for T1, espe-
cially near the channel walls. This is largely due to the flux
term which is poorly modeled by the assumed closure rela-
tion, especially near the channel walls. We found that these
results are relatively insensitive to the constant �0.77� used in
the mixed boundary condition �87� for T1.

It is interesting to note that both �2 and V2
1 appear to

decrease exponentially with distance from the channel walls.
Analysis of the governing equations near the walls suggests
that

�2 = �2
w exp�− �y�, V2

1 = − V2
2��2/�� , �88�

where �2
w is the volume fraction at the wall, y the distance

from the wall, and

� = − 3G���V2 − V1� + �V2
2 − V2

1� � �/�y�/V2
2, �89�

where all the quantities are evaluated at the wall. These ap-
proximate relations agree very well with the particle dynam-
ics simulations.

VI. CONCLUSIONS

We have examined in detail a model of particle-wall
interactions. A simple kinetic theory was found to be inad-
equate for describing the profiles of particle phase volume
fraction and mean velocity near the walls. The collisions
render the velocity distribution near the walls significantly
bimodal and anisotropic. To explore if the failure of the
simple kinetic theory can be overcome if the collisional con-
tributions to the balance equations are determined using a
more accurate kinetic theory, we devised a method for treat-
ing the bimodal, anisotropic velocity fluctuations. The bimo-
dal nature was captured by treating the particulate system as
consisting of two species, and a method was devised to
evaluate collision integrals when the velocity distribution of
the individual species is anisotropic. We found that the ki-
netic theory incorporating these features does yield predic-
tions for various quantities in mass and momentum balance
equations that are in excellent agreement with the results of
numerical simulations.

One of the important by-products of the study was a
model which may be used as a testbed for validating the

balance equations and closure relations for bidisperse sys-
tems. Previously, Kumaran et al.43 examined a bidisperse
macroscopically homogeneous system by Monte Carlo simu-
lations and through a trial function for the velocity distribu-
tion. They determined collisional exchange of momentum
and energy but not the transport properties required for flux
calculations in flows with macroscopic gradients in particle
volume fractions and velocity. In the model examined here,
the relative velocity of the two species was large compared
with the individual species temperatures. The closure rela-
tions derived here may be added to those suggested by
Jenkins and Mancini26,28 or Lathouwers and Bellan33 which
are applicable in the opposite limit of large species tempera-
tures. The modifications required to account for the inelastic
collisions, or unequal mass or radius, are relatively straight-
forward and given in Appendix B.

Our motivation for examining this model of particle-wall
interactions came from the need to determine the boundary
conditions for the bubble-phase continuum. It appears that
the presence of walls will significantly alter the profiles of
bubble-phase volume fraction and velocity. Accounting for
these effects will require a more complex description of the
bubble-phase equations than the ones given in the literature,
e.g., by Spelt and Sangani.10 This must be kept in mind in
interpreting recent experiments, e.g., by Zenit et al.,21,22 on
flow of bubbly liquids in vertical and inclined channels
where the root-mean-squared velocity fluctuations were
small compared with the mean bubble velocity. Our analysis
was restricted to a highly specialized case that did not ac-
count for the important effect of the lift force which can alter
significantly the bubble volume fraction profile. Accounting
for this force requires solving for the liquid phase velocity in
addition to the bubble-phase equations. In view of the com-
plexity in the resulting description, it may prove easier to
combine an averaged equation description for the liquid
phase with a simulation accounting for the bubble-bubble,
bubble-liquid, and bubble-wall interactions.
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APPENDIX A: FORMULAS FOR EVALUATING
COLLISION INTEGRALS

The following integration results are useful in the calcu-
lation of analytical integration over c�:

� E1�c�,g�dc� = �p,q,�1�, �A1�

� ci�E1�c�,g�dc� = �p,q,�1�Wi
p,q, �A2�

� ci�cj�E1�c�,g�dc� = �p,q,�1��Tij
m + Wi

p,qWj
p,q� , �A3�
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� ci�cj�ck�E1�c�,g�dc� = �p,q,�1���ij
mWk

p,q + T jk
mWi

p,q

+ Tik
mWj

p,q + Wi
p,qWj

p,qWk
p,q� . �A4�

In the above equations �p,q,�1�= �2��3/2�Ap,q�−1/2 and Tm

= �Ap,q�−1.

APPENDIX B: FORMULAS FOR VARIOUS
COLLISION-RELATED SOURCE AND FLUX TERMS
USING THE LV APPROXIMATION

We give here detailed expressions for various collision-
related source and flux terms in the limit when the velocity
difference is large compared with the root-mean-squared

fluctuation velocities of the particles. In view of their poten-
tial application to bidisperse granular flows, the expressions
below are generalized to particles of unequal mass, radius, or
coefficient of restitution. These expressions should be added
to the expressions given by Jenkins and Mancini26,28 to ob-
tain approximate closure relations.

The resulting expressions from the collision of two par-
ticles labeled p and q with their masses mp and mq, radii ap

and aq, inelastic collision characterized by the coefficient of
restitution ep,q are given below with �p,q=ap+aq, mpq=mp

+mq, Mq=mq /mpq, Vi
p,q=Vi

p−Vi
q, and �Vp,q�= �Vp−Vq�.

• Constitutive relations for the terms in the kinetic
theory of nonreacting bidisperse particulate system:

�p,q�mpci� = − ��p,q�2G��mpmq/mpq��1 + ep,q��1

2
npnq�Vi

p − Vi
q��Vp − Vq� +

�p,q

15
�2�Vi

p − Vi
q��Vj

p − Vj
q� + �ij�Vp − Vq�2�

��np
�nq

�xj
− nq

�np

�xj
	� , �B1�

� j
p,q�mpci� = ��p,q�3 �

15
G�mpmq/mpq��1 + ep,q�npnq�2Vi

p,qV j
p,q + �Vp,q�2�ij� , �B2�

�p,q�mpcicj� = ��p,q�2mpG��

2
npnqMq�1 + ep,q���Vp,q��− Vi

pV j
p,q − Vj

pVi
p,q� + Mq�1 + ep,q��Vi

p,qV j
p,q/2 + �Vp,q�2�ij/6��

+
2�

15

�p,q

2
�np

�nq

�xk
− nq

�np

�xk
	Mq�1 + ep,q�
− Vi

p�2V j
p,qVk

p,q + �Vp,q�2� jk� − Vj
p�2Vi

p,qVk
p,q + �Vp,q�2�ik�

+
3

7
Mq�1 + ep,q��2Vi

p,qV j
p,qVk

p,q + �Vp,q�2�Vi
p,q� jk + V j

p,q�ik + Vk
p,q�ij���� , �B3�

�k
p,q�mpcicj� = −

��p,q�3

15
Gmp�npnq�− Vi

p�2V j
p,qVk

p,q + �Vp,q�2� jk� − Vj
p�2Vi

p,qVk
p,q + �Vp,q�2�ik� +

3

7
Mq�1 + ep,q�

��2Vi
p,qV j

p,qVk
p,q + �Vp,q�2�Vi

p,q� jk + V j
p,q�ik + Vk

p,q�ij��� . �B4�

• Constitutive relations for the terms arising from the conversion of species:

S2,q�m2� = ��2,q�2Gm2�
n2nq�V2 − Vq� +
�2,q

2
�n2

�nq

�xj
− nq

�n2

�xj
	�Vj

2 − Vj
q�� , �B5�

�̂ j
2,q�m2� = −

��2,q�3

2
Gm2�n2nq�Vj

2 − Vj
q� , �B6�

S2,q�m2ci� = ��2,q�2Gm2��Vi
2
n2nq�V2 − Vq� +

�2,q

3
�Vj

2 − Vj
q��n2

�nq

�xj
− nq

�n2

�xj
	� −

1

2
n2nqMq�1 + e2,q��Vi

2 − Vi
q��V2 − Vq�

−
�2,q

15
Mq�1 + e2,q��n2

�nq

�xj
− nq

�n2

�xj
	�2�Vi

2 − Vi
q��Vj

2 − Vj
q� + �ij�V2 − Vq�2�� , �B7�

�̂ j
2,q�m2ci� = −

��2,q�3

2
n2nqGm2��2

3
Vi

2�Vj
2 − Vj

q� −
2

15
Mq�1 + e2,q��2�Vi

2 − Vi
q��Vj

2 − Vj
q� + �ij�V2 − Vq�2�� , �B8�
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S2,q�m2cicj� = �2,q�m2cicj� + ��2,q�2Gm2�
n2nqVi
2Vj

2�V2,q� +
�2,q

3
�n2

�nq

�xk
− nq

�n2

�xk
	Vi

2Vj
2Vk

2,q� , �B9�

�̂k
2,q�m2cicj� = �k

2,q�m2cicj� −
��2,q�3

3
Gm2�n2nqVi

2Vj
2Vk

2,q. �B10�
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