
Syracuse University
SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1997

Java for parallel computing and as a general
language for scientific and engineering simulation
and modeling
Geoffrey C. Fox
Syracuse University, Northeast Parallel Architectures Center

Wojtek Furmanski
Syracuse University, Northeast Parallel Architectures Center

Follow this and additional works at: https://surface.syr.edu/npac

Part of the Computer Sciences Commons

This Working Paper is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted
for inclusion in Northeast Parallel Architecture Center by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

Recommended Citation
Fox, Geoffrey C. and Furmanski, Wojtek, "Java for parallel computing and as a general language for scientific and engineering
simulation and modeling" (1997). Northeast Parallel Architecture Center. 17.
https://surface.syr.edu/npac/17

https://surface.syr.edu?utm_source=surface.syr.edu%2Fnpac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Fnpac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/17?utm_source=surface.syr.edu%2Fnpac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Java for Parallel Computing and as a General Language for

Scienti�c and Engineering Simulation and Modelling

Geo�rey C. Fox and Wojtek Furmanski

Syracuse University

Northeast Parallel Architectures Center

111 College Place

Syracuse, New York 13244

gcf@npac.syr.edu, furm@npac.syr.edu

Abstract

We discuss the role of Java and Web technologies for general simulation. We classify the

classes of concurrency typical in problems and analyze separately the role of Java in user

interfaces, coarse grain software integration, and detailed computational kernels. We con-

clude that Java could become a major language for computational science, as it potentially

o�ers good performance, excellent user interfaces, and the advantages of object-oriented

structure.

1 Introduction

The World Wide Web provides important infrastructure for scienti�c and engineering compu-

tation. The distributed computing hardware of the Web has remarkable potential compute

performance|1,000 times that of the largest supercomputer. This ratio largely re
ects the

ratio of monetary investment in the two �elds. Of course, the Web does not support the low

latency and high bandwidth required by most parallel simulations. However, we believe that an

attractive scienti�c computing environment can be built on top of Web software by adding to

the basic Web loosely coupled distributed computing model, the necessary added functionality

for computational science. We analyze, in Section 2, the various forms of concurrency seen in

applications, and then in the last three sections, discuss three major areas where Java can be

e�ectively used. We conclude that Java could well become a dominant language in science and

engineering.

2 Concurrency in Applications

In understanding the role of the web in large-scale simulations, it is useful to classify the various

forms of concurrency in problems into four types [Fox:96b].

1. Data Parallelism

This is illustrated by natural parallelism over the particles in a molecular dynamics com-

putation; over the grid points in a partial di�erential equation; over the random points in

1

a Monte Carlo algorithm. In the Web computation of the factors of RSA130 [Cowie:97a],

[RSA:97a], [RSA:97b], we can consider the parallelism over possible trials in the Sieve al-

gorithm as the \data" for data parallelism in this application. Data parallelism tends to

be \massive" because computations are typically time consuming due to a large amount

of data. Thus, data parallelism is parallelism over what is \large" in the problem. It is

not di�cult to �nd data parallel problems today with parallelism measured in the millions

(e.g., a 100� 100 � 100 grid).

2. Functional Parallelism

Here we are thinking of typical thread parallelism, such as the overlap of computation

(say, decompressing an image) and communication (fetching HTML from a server). More

generally, problems typically support overlap of I/O (disk, visualization) with computa-

tion. We also, of course, can have multiple compute tasks executing concurrently. This

form of parallelism is present in most problems; the units are modest grain size (larger

than a few instructions scheduled by a compiler, smaller than an application), and typi-

cally not massively parallel. Further, such functional parallelism is typically implemented

using a shared memory and, indeed, its existence in most problems makes few way parallel

shared memory multiprocessors very attractive.

3. Object Parallelism

We could mean many things by this, but we have in mind the type of problems solved by

discrete event simulators. These are illustrated by military simulations where the objects

are \vehicles," \weapons," or \humans in the loop." The well-known SIMNET or DSI

(Distributed Simulation Internet) have already illustrated the relevance of distributed

(Internet) technology for this problem class [DMSO:97a]. Object descriptions are similar

to data parallelism except that the fundamental units of parallelism, namely objects are

quite large, corresponding to a macroscopic description of an application. Thus, a military

battle is described in terms of the units of force (tanks, soldiers) with phenomenological

interactions rather than the (unrealistic in this case) fundamental description in terms

of atomic particles or �nite element nodes. For a typical \data parallel" problem, the

fundamental units of parallelism (grid points) are typically smaller.

4. Metaproblems

This is another functional concurrency, but now with large-grain size components. In

image processing, one often sets up an analysis system where the pixels are processed

by a set of separate �lters|each with a di�erent convolution or image understanding

algorithms. Software systems, such as AVS and Khoros are well-known tools to support

such linked modules. So a metaproblem is a set of linked problems (databases, computer

programs) where each unit is essentially a complete problem itself. Data
ow (a graph

specifying how problems accept data from previous steps and produce data for further

processing) is a successful paradigm for metaproblems. In manufacturing, one often sees

metaproblems as building a complex system, such as an aircraft, requiring linking air
ow,

controls, manufacturing process, acoustic, pricing and structural analysis simulations. It

has been estimated that designing a complete aircraft could require some 10,000 separate

programs|some complicated ones such as airlow simulation were mentioned above, but

2

{
{

on supercomputers etc.) with

and technologies (PC, Web
low-end but widely used ap

Bottom-up Approach

(Command

Control
Manufacturing

etc.)
Involving

integration

and

capabilities

Metaproblems
high-end technologies (MPI, HPF,..)

and low-end
of high-

high-end applications (3D CFD

Figure 1:

as well there are simpler but critical expert systems to locate inspection ports, and other

life-cycle optimization issues [Fox:96e], [Fox:97b]. Metaproblems have concurrency that

it typically quite modest. They di�er from the examples, in category 2 above, in that

the units have larger grain size and are more self contained. This translates into di�erent

appropriate computer architectures. Modest grain size functional parallelism (2) needs

low latency and high bandwidth communication|typically implemented with a shared

memory. Metaproblems are naturally implemented in a distributed (Web) environment|

latency is often unimportant while needed network bandwidths are more variable.

3 Overview of Web and Parallel Computing Software Issues

We can view computing (as many other enterprises) in terms of a pyramid with widely deployed

cheap systems at the bottom of the pyramid, and the few high-performance systems as the top

(Figure 1). There is much more computing power in the distributed collection of consumer-

oriented products|PCs, videogames, Personal Digital Assistants, Digital Set Top boxes, etc.

This dominant dollar investment in the consumer products implies that one can expect the

bottom of the pyramid to have much better software than the top. Software investment must

be roughly proportional to market size, and so we see PCs, workstations, and MPPs (Massively

Parallel Processors) o�ering increasing unit software price and decreasing software quality and

functionality. The Web, perhaps, o�ers now the best available software (as it is potentially the

largest market). When the PC market dominated quality consumer software, it was hard for

the parallel processing community to take advantage of it. PCs o�er, of course, a sequential

computer model, but now the Web software targets a very rich distributed computing model.

It seems to us clear that we can, and indeed must, build MPP software with a backbone

architecture of Web software. As mentioned in the Introduction, we can then view parallel

processing as a special case of a distributed model with stringent synchronization constraints.

We view this as leading to a set of Compute Webs, which we describe in the following sections.

This approach has the added advantage that we can build Compute Webs by either running

Web clients or servers with synchronization/compute enhanced Web software, or use the latter

software to provide a very attractive user environment on specialized MPPs whose low latency

3

Data Analysis
User-visualization

Data
Base

Rendering

Control

Detailed
Simulation

Specialized MPP

Distributed
Resources
Managing
Components of
Metaproblem
- 4 Typical
Components Shown

Figure 2:

and high-bandwidth communication enable critical parallel computations.

In the following, we discuss the role of Web hardware and, especially, software for three

distinct parts of computation (Figure 2).

1. User (client) view|problem speci�cation, visualization, computational steering, data

analysis

2. Metaproblem implemented on a distributed computer

3. Individual computationally complex components of the metaproblem implemented on

high-performance computers, which could in fact be a distributed system itself.

We cover these three parts|graphical user interface, data
ow for metaproblems/software

integration, and hardcore computation, in the next three sections.

4 WebWindows and the User View

We abstract future high-performance computing environments into four layers, shown in Fig-

ure 3 and detailed below [Fox:97a], [Petasoft:97a].

4

Hierarchy of Software Levels

GRID EQU DIFFERENCING BOUNDARY VALUES

Numerical Objects in (C++/Fortran/C/Java)

Expose the Coarse Grain Parallelism

Expose All Levels of Memory Hierarchy

a) Pure Scripta) Pure Script
(Interpreted)(Interpreted)

c) High Level c) High Level
LanguageLanguage

but Optimized but Optimized
CompilationCompilation

d) Machine d) Machine
OptimizedOptimized
RunTimeRunTime

b) Semi-b) Semi-
InterpretedInterpreted

a la Appletsa la Applets

Memory Levels
 in High
Performance CPU

Nodes of Parallel/
Distributed System

Figure 3: Four Levels of a Scienti�c Computing Environment

a) Fully visual or scripted (interpreted) environment exhibiting domain speci�c functionality

This is the typical graphical interface allowing manipulation at either metacomputer, or

individual component level.

b) Partially scripted level o�ering

Portable
exible programming at some performance cost - illustrated by Java in applet

mode

c) Traditional compiled level

O�ering a high-level language with few machine dependent features, and getting high

performance|traditionally within about a factor of two of the peak performance possible

on the particular algorithm|illustrated by coupled Fortran, C, C++, and Java.

d) Traditional machine speci�c level

Rarely used by application programmers or even those building (high level) tools. Clearly,

allows user to obtain peak performance at the cost of a very inconvenient programming

environment.

Levels c) and d) include the computationally intense parts of the problem, which can be

implemented on appropriate servers. However levels a) and b) which we discuss in this section,

are likely to be executed in the client machine/environment. We describe the current trends in

software strategy [Fox:95d], [Fox:97b] as a shift from software built in terms of PC Windows,

5

WS WSPC PC PC

Win95 Mac UNIX UNIX Win95

Browser ServerBrowser Browser Server

The WebWindows Operating System for the World

Server

Browser

PC Win95

WebWindows for a Standalone PC

Figure 4: WebWindows for One PC or the World

Macintosh, UNIX environments to a WebWindows basis, i.e., software built on the interfaces

de�ned by Web servers and Web clients. As shown in Figure 4, this is, of course, a valid

approach whether one is writing for a single stand-alone machine (running a Web server and

client) or the entire worldwide network. In this sense, the use of Web technology for user

interfaces is trivial|the user interface is not constrained greatly by the di�culties of high-

performance computation, as it runs on the \conventional" client side and so can naturally use

best client side technologies. Some examples of Web based user interfaces are:

� NCSA's biology workbench [NCSA:97a], which is a CGI interface to a collection of useful

computational biology resources.

� An environment [WDC:97a] built by Gregor von Laszewski to support a metaproblem|

the linked components of a large scale NASA weather simulation. This uses a Java

graphical editor to allow the user to choose which program component to run on which

of a distributed set of computers.

� NIST's user interface [NIST:97a] for their IBM SP2 parallel computer.

� The Virtual Programming Laboratory (VPL) [Dincer:97b], [HPF:96a] built by Kivanc Din-

cer and used in the Syracuse course, CPS615, this semester to support parallel program

development.

� A typical Java visualization applet [Dincer:96b], [Dincer:97a] to support VPL to exhibit

performance of MPI or HPF program.

6

We can use Java as an interface to a Web-implemented
simulation linking to either Server or Client

Java/F77
Compute

Client

Java/F77
Compute

Client

Java/F77
Compute

Client

Java/F77
Compute

Client

Web
Server

Web
Server

Web
Server

Web
Server

Java
Visualization

Applet
Contains ‘‘wrappers’’ allowing access, display
and manipulation of scientific results (in
Fortran arrays, say) of monitoring data

Network of Web Servers and Clients

Figure 5:

We expect this type of interface development to continue and become the norm. However, we

see a particularly important role for Java (and VRML) in terms of level b) of Figure 3. Namely,

Java seems an attractive language for building client side data analysis systems. These typically

involve both computation and visualization|in which linkage, Java has unique capabilities.

Thus, we expect a set of high quality Java applets (or compiled plug-ins) to be developed

which support this analysis. Those applets will be used at level a) of Figure 3 by the general

user with the expert modifying the code of the applets (level b)) for customized capability.

A good example of Java for scienti�c visualization is the work of Cornell [Houle:97a], and

Syracuse [Warner:97a] on applets for teaching fracture mechanics, membrane physics, and other

scienti�c areas. We depict, in Figure 5 the resultant, environment which essentially becomes a

Java wrapper for code written in traditional languages and running on sequential, parallel or

distributed computers. This use of Java is likely to grow rapidly as it requires modest changes

to existing software and adds great value without changing the familiar programming paradigm.

However, we see it as a natural Web \seed" that can grow into the more pervasive use of Java.

5 WebFlow and Coarse Grain Software Integration

As we have discussed, it is very natural to use web hardware and software to implement control of

metaproblems [WBH:97a]. Although we only described earlier the data
ow model for this, one

can, of course, use these ideas for any application with linked components that have relatively

large chunks of computation that dwarf the latency and bandwidth implied by using the Web

7

as a compute engine. In fact, we can include our recently completed RSA130 factoring project

[Cowie:97a], [RSA:97a], in this class. This distributed the sieving operations over a diverse

range of clients (from an IBM SP2 at NPAC to a 386 laptop in England) under the control

of set of servers. This was implemented as a set of Web server CGI Perl scripts FAFNER

[RSA:97a], [RSA:97b]. These created daemons to control the computation on each client which

returned results to the server that accumulated results for �nal processing to locate factors.

Note that a particularly interesting later computation (155 decimal digit or 512 binary digit

factorization) would require about some teraop-month of computation (10,000 Pentium Pro

PCs running
at out for a month) and will be quite practical as a Web computing project.

512 binary digit numbers are used as the basis of the security of many banking systems that

perhaps fail to realize that modern computing can crack such codes.

We can extract two types of computing tasks from our factorization experience [Fox:95a].

The �rst is the resource management problem|identifying computer resources on the Web;

assigning them suitable work; releasing them to users when needed, etc. A sophisticated Web

system ARMS [ARMS:96a] for this is being developed by Lifka at the Cornell Theory Center.

Well-known distributed computing systems in this area include LSF, DQS, Codine and Condor

(see review in [Cluster:96a]), and this seems a very natural areas for the use of Web systems

including linked databases to store job and machine parameters.

The second task is the actual synchronization of computation within a given problem|

resource management, on the other hand assigns problems to groups of machines and does

not get involved with detailed parallel computing algorithm and synchronization issues. Here,

we see two general concepts. One is support of the messaging between individual nodes that

creates a virtual (parallel) machine out of the World Wide Web.

This low level support is called by us, WebVM, in Figure 1 of [Bhatia:97a], and should

implement the functionality of parallel systems, such as MPI in terms of Web technology mes-

sage systems|either HTTP or direct Java server|server (client) connections. Here, the most

elegant model is perhaps based on a mesh of Web Servers [Bhatia:97a], [HPDC:96a] although to-

day's most powerful implementations would use like FAFNER, a mesh of Web clients controlled

by a few servers [Alexandrov:97a], [JW:97a], [Superweb:96a]. In the spirit of WebWindows, we

can expect servers or server equivalent capability to become available on all Web connected

machines. Note that one can argue that the natural Web model is server-server, and not server-

client and indeed this supports the traditional NII dream of democracy with everybody capable

of either publishing or consuming information.

On top of WebVM, one can build higher level systems, such as the distributed shared memory

model (called WebHPL in Figure 1 of [Bhatia:97a]) or more easily an explicit message passing

system, such as the data
ow model. WebFlow supports a graphical user interface ([Fox:95a],

[Fox:95d], [WBH:97a]) specifying metaproblem component linkage and one can naturally design

domain speci�c problem solving environments in this framework.

In the notation of Figure 3, one would support scripted \little languages" (designed for each

application) at the top level a) (in classi�cation of Section 4), which would allow for more

exible and dynamic metaproblem component linkage.

An interesting feature of the coarse-grain Web computing models is that it naturally joins

collaboration with computing, as both as naturally implemented by linked Java servers and

clients [Beca:97a], [Cowie:97a]. This could lead to powerful new approaches to multidisciplinary

design, computational steering, and other applications linking computers and people in the loop.

8

Now is, of course, a confusing time for as shown in Table 1 of [Bhatia:97a], there are as

many compute-web implementation strategies as there are major players in emerging Web

technology|especially as we evolve from powerful, but rather ad hoc server side CGI scripts

to integrated dynamic Java client and server systems. Thus, now is not the time for \�nal

solutions" but rather for experimentation and
exibility to examine and in
uence the key

building blocks of future Web computers.

Finally, note that the Web encourages new models for computation with problems publishing

their needs and Web compute engines advertising their capabilities and dynamic matching of

problems with compute resources [Acharya:97a].

6 Java as the Language for Computational Science and

Engineering

The Syracuse workshop [Javaforcse:97a] covered, generally, the topics of the last two sections

where we saw Java as clearly attractive for both user interfaces, wrappers, and the metaproblem

control. However, there was particular interest in Java's possible role as the basic programming

language for science and engineering|taking the role now played by Fortran 77, Fortran 90,

and C++. We now discuss this controversial area.

Java's most important advantage over other languages is that it will be learnt and used by a

broad group of users. Java is already being adopted in many entry level college programming

courses and will surely be attractive for teaching in middle or high schools. Java is a very social

language as one naturally gets Web pages from one's introductory Java exercises that can be

shared with one's peers. We have found this as a helpful feature for introductory courses.

Of course, the Web is the only real exposure to computers for many children, and the only

languages they are typically exposed to are Java, JavaScript, and Perl. We �nd it di�cult to

believe that entering college students, fresh from their Java classes, will �nd it easy to accept

Fortran, which will appear quite primitive in contrast. C++ as a more complicated systems

building language may well be a natural progression, but although quite heavily used, C++

has limitations as a language for simulation. In particular, it is hard for C++ to achieve

good performance on even sequential and parallel code, and we expect Java not to have these

problems.

In fact, let us now discuss performance, which is a key issue for Java. As already shown

in Figure 3, we have already suggested a multilevel scienti�c programming environment that

would use purely scripted, applet mode and purely compiled environments with di�erent trade-

o�s in usability and performance. As discussed at our workshop, there seems little reason why

native Java compilers, as opposed to current portable JavaVM interpreters or Just in Time

compilers (JIT), cannot obtain comparable performance to C or Fortran compilers. As stressed

by Budimlic at the workshop [Budimlic:96a], [Budimlic:97a], a major di�culty is the rich ex-

ception framework allowed by Java that could restrict compiler optimizations. Users would

need to avoid complex exception handlers in performance critical portions of a code.

An important feature of Java is the lack of pointers and their absence, of course, allows much

more optimization for both sequential and parallel codes. Optimistically, we can say that Java

shares the object oriented features of C++ and the performance features of Fortran.

9

One interesting area is the expected performance of Java interpreters (using just in time

techniques) and compilers on the Java bytecodes (Virtual Machine). Here, we �nd today

perhaps a factor of 2{4 lower performance from a PC JIT compiler compared to C compiled code

[Applets:96a], [Linpack:96a]. Consensus at the workshop expected this performance degradation

to be no worse than a factor of two for the portable applet mode. As described above, with some

restrictions on programming style, we expect Java language or VM compilers [Cierniak:97a] to

be competitive with the best Fortran and C compilers. Note that we can also expect a set of

high performance \native class" libraries to be produced that can be downloaded and accessed

by applets to improve performance in the usual areas one builds scienti�c libraries.

One interesting omission is in the framework of Figure 3, a purely interpreted version of

Java|level a). This would also be very helpful for teaching. JavaScript is interpreted, but

we would view it as a \little language" for document handling|and not a general Java-like

interpreted environment.

Finally, we will discuss parallelism in Java. Here, we return to the four categories of concur-

rency.

1. Data Parallelism

This is supported in Fortran by either high level data parallel HPF or at a lower level

Fortran plus message passing (MPI). Java does not have any built in parallelism of this

type, but at least the lack of pointers means that natural parallelism is less likely to get

obscured. There seems no reason why Java cannot be extended to high level data parallel

form (HPJava) in a similar way to Fortran (HPF) or C++ (HPC++) [Carpenter:97a],

[DBC:97a]. Parallelism can be supported on both shared [Bik:97a] and distributed mem-

ory architectures for the SPMD programming model [Hummel:97a]. At the lower message

passing level, the situation is clearly satisfactory for Java as the language naturally sup-

ports inter-program communication, and the standard capabilities of high-performance

message passing are being implemented for Java [Foster:97a], [Globus:96a].

2. Modest Grain Size Functional Parallelism

This is built into the language with threads for Java and has to be added explicitly with

libraries for Fortran and C++.

3. Object Parallelism

This is quite natural for C++ or Java where the latter can use the applet mechanism to

portably represent objects. We have built a collaboration system TANGOsim where a Java

server controls a set of Java applets and other applications spawned from them [Beca:97a],

[Beca:97b], [Beca:97c] [Tango:96a]. We generalized the session manager present in collab-

orative systems to be a full event driven simulator. This illustrates the power of Java for

this problem class and shows that it can unify traditional time stepped simulations (typ-

ical for data parallelism) with event driven forces modeling, and other such simulations

[Cowie:97a].

4. Metaproblems

We have already discussed in Section 5, the power of Java in this case for overall coarse

grain software integration.

10

In summary, we see that Java has no obvious major disadvantages and some clear advantages

compared to C++ and especially Fortran as a basic language for large scale simulation and

modeling. Obviously, we should not and cannot port all our codes to Java. Rather, we can

start using Java for wrappers and user interfaces. As compilers get better, we expect users will

�nd it more and more attractive to use Java for new applications. Thus, we can expect to see

a growing adoption by computational scientists of Web technology in all aspects of their work.

References

[Acharya:97a] Acharya, A., Ranganathan, M., and Saltz, J. \Resource aware metacomputing,"

Concurrency: Practice and Experience, March 1997. To be published in the Java Special

Issue. Guest Editor: Geo�rey Fox.

[Alexandrov:97a] Alexandrov, A. D., Ibel, M., Schauser, K. E., and Scheiman, C. J. \SuperWeb:

Research issues in Java-based global computing," Concurrency: Practice and Experience,

March 1997. To be published in the Java Special Issue. Guest Editor: Geo�rey Fox.

[Applets:96a] \Performance of some educational applets."

http://www.npac.syr.edu/users/gcf/edperf.html.

[ARMS:96a] \Discussion of ARMS resource management."

http://www.tc.cornell.edu/er96/�04fall96/�01arms.html.

[Beca:97a] Beca, L., Cheng, G., Fox, G. C., Jurga, T., Olszewski, K., Podgorny, M., Sokolowski,

P., and Walczak, K. \Java enabling collaborative education healthcare and computing,"

Concurrency: Practice and Experience, March 1997. To be published in the Java Special

Issue. Guest Editor: Geo�rey Fox.

[Beca:97b] Beca, L., Cheng, G., Fox, G. C., Jurga, T., Olszewski, K., Podgorny, M., Sokolowski,

P., and Walczak, K. \Web technologies for collaborative visualization and simulation," in

Proceedings of the Eighth SIAM Conference on Parallel Processing for Scienti�c Comput-

ing. SIAM, January 1997. To be published.

[Beca:97c] Beca, L., Cheng, G., Fox, G. C., Jurga, T., Olszewski, K., Podgorny, M., Sokolowski,

P., Stachowiak, T., and Walczak, K. \TANGO|a collaborative environment for the World

Wide Web." Technical report, Syracuse University, NPAC, 1997.

[Bhatia:97a] Bhatia, D., Burzevski, V., Camuseva, M., Fox, G., Furmanski, W., and Prem-

chandran, G. \WebFlow|a visual programming paradigm for Web/Java based coarse

grain distributed computing," Concurrency: Practice and Experience, March 1997. To be

published in the Java Special Issue. Guest Editor: Geo�rey Fox.

[Bik:97a] Bik, A. J. C., and Gannon, D. B. \Automatically exploiting implicit parallelism in

Java," Concurrency: Practice and Experience, March 1997. To be published in the Java

Special Issue. Guest Editor: Geo�rey Fox.

[Budimlic:96a] Budimlic, Z., and Kennedy, K. \Optimizing Java Presentation," Syracuse Uni-

versity Java Workshop, December 1996. http://www.npac.syr.edu/users/gcf/PPTjavarice.

11

[Budimlic:97a] Budimlic, Z., and Kennedy, K. \Optimizing java: Theory and practice," Con-

currency: Practice and Experience, March 1997. To be published in the Java Special Issue.

Guest Editor: Geo�rey Fox.

[Carpenter:97a] Carpenter, B., Chang, Y., Fox, G., Leskiw, D., and Li, X. \Experiments with

HPJava," Concurrency: Practice and Experience, March 1997. To be published in the Java

Special Issue. Guest Editor: Geo�rey Fox.

[Cierniak:97a] Cierniak, M., and Li, W. \Optimizing java bytecodes," Concurrency: Practice

and Experience, March 1997. To be published in the Java Special Issue. Guest Editor:

Geo�rey Fox.

[Cluster:96a] \Review of clustere management software."

http://nhse.cs.rice.edu/NHSEreview/96-1.html.

[Cowie:97a] Chen, M., and Cowie, J. \Java's role in distributed collaboration," Concurrency:

Practice and Experience, March 1997. To be published in the Java Special Issue. Guest

Editor: Geo�rey Fox.

[DBC:97a] \Data parallel Java prototype." http://www.npac.syr.edu/users/dbc/HPJava.

[Dincer:96b] \Web-based visualization." http://www.npac.syr.edu/users/dincer/pablo/.

[Dincer:97a] Dincer, K., and Fox, G. C. \Using Java and JavaScript in the virtual programming

laboratory: A web-based parallel programming environment," Concurrency: Practice and

Experience, March 1997. To be published in the Java Special Issue. Guest Editor: Geo�rey

Fox.

[Dincer:97b] Dincer, K., and Fox, G. C. \Design issues in building Web-based programming

environments," Syracuse University, NPAC, Technical Report, 1997.

[DMSO:97a] \Defense Modeling and Simulation O�ce." http://www.dmso.mil/.

[Foster:97a] Foster, I., Thiruvathukal, G. K., and Tuecke, S. \Technologies for ubiquitous

supercomputing: A Java interface to the Nexus communication system," Concurrency:

Practice and Experience, March 1997. To be published in the Java Special Issue. Guest

Editor: Geo�rey Fox.

[Fox:95a] Fox, G. C., Furmanski, W., Chen, M., Rebbi, C., and Cowie, J. H. \WebWork:

integrated programming environment tools for national and grand challenges." Technical

Report SCCS-715, Syracuse University, NPAC, Syracuse, NY, June 1995. Joint Boston-

CSC-NPAC Project Plan to Develop WebWork (unpublished).

[Fox:95d] Fox, G. C., and Furmanski, W. \The use of the national information infrastructure

and high performance computers in industry," in Proceedings of the Second International

Conference on Massively Parallel Processing using Optical Interconnections, pages 298{

312, Los Alamitos, CA, October 1995. IEEE Computer Society Press. Syracuse University

Technical Report SCCS-732.

12

[Fox:96b] Fox, G. C. \An application perspective on high-performance computing and commu-

nications." Technical Report SCCS-757, Syracuse University, NPAC, Syracuse, NY, April

1996. To be published, RCI, Ltd.

[Fox:96c] Fox, G. C., and Furmanski, W. \SNAP, Crackle, WebWindows!," RCI, Ltd., Man-

agement white Paper, (29), 1996. Syracuse University Technical Report SCCS-758.

[Fox:96e] Fox, G. C. \A tale of two applications on the NII," in IEEE Dual-Use Technologies and

Applications Conference, pages 73{78, June 1996. Mapping and Planning the Information

Highway, Syracuse, NY. Syracuse University Technical Report SCCS-756.

[Fox:97a] Fox, G. C., and Furmanski, W. \Computing on the web|new approaches to parallel

processing|petaop and exaop performance," IEEE Internet Computing, January 1997. To

be published.

[Fox:97b] Fox, G. C. \High-performance distributed computing," Encyclopedia of Computer

Science and Technology, 36(21):203{222, 1997. Syracuse University Technical Report

SCCS-750.

[Globus:96a] \GLOBUS metacomputing infrastructure." http://www.mcs.anl.gov/globus.

[Houle:97a] \Java applet for crack propagation." http://www.msc.cornell.edu/ehouse/cracks.

[HPDC:96a] \Talk on WebFlow and WebVM."

http://www.npac.syr.edu/projects/webspace/doc/hpdc5/hpdc5/html.

[HPF:96a] \HPF andMPI virtual programming language used in Computational Science class."

http://www.npac.syr.edu/projects/cps615fall96/.

[Hummel:97a] Hummel, S. F., Ngo, T., and Srinivasan, H. \SPMD programming in Java,"

Concurrency: Practice and Experience, March 1997. To be published in the Java Special

Issue. Guest Editor: Geo�rey Fox.

[Javaforcse:97a] \Resource on Java for computational science and engineering."

http://www.npac.syr.edu/projects/javaforcse.

[JW:97a] \Create your own supercomputer with Java."

http://www.javaworld.com/javaworld/jw-01-1997/jw-01-dampp.html.

[Linpack:96a] \Java LINPACK performance." http://ww.netlib.org/benchmark/linpackjava.

[NCSA:97a] \NCSA computational biology workbench." http://bioweb.ncsa.uiuc.edu.

[NIST:97a] \NIST's SP2 interface." http://www.itl.nist.gov/div895/sasg/websubmit/.

[Petasoft:97a] \Suggested software environments in the year 2007."

http://www.npac.syr.edu/users/gcf/petastu�/petasoftwp.

[RSA:97a] \Factoring RSA 130 on the Web." http://www.npac.syr.edu/factoring.

[RSA:97b] \Tutorial on RSA 130 factoring."

http://www.npac.syr.edu/users/gcf/crpcrsamay96.

13

[Superweb:96a] \Super-Web: Towards a global web-based parallel computing infrastructure."

http://www.cs.ucsb.edu/eschauser/papers/96-superweb.ps.

[Tango:96a] \TANGO Java collaboratory." http://www.npac.syr.edu/projects/tango.

[Warner:97a] Warner, S., Catterall, S., and Lipson, E. \Java simulations for physics education,"

Concurrency: Practice and Experience, March 1997. To be published in the Java Special

Issue. Guest Editor: Geo�rey Fox.

[WBH:97a] \NPAC projects in web-based HPCC."

http://www.npac.syr.edu/projects/webbasedhpcc.

[WDC:97a] \Web-based distributed computing environment for data assimilation."

http://www.npac.syr.edu/projects/nasa/home.html.

14

	Syracuse University
	SURFACE
	1997

	Java for parallel computing and as a general language for scientific and engineering simulation and modeling
	Geoffrey C. Fox
	Wojtek Furmanski
	Recommended Citation

	1_fox.dvi

