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ABSTRACT
With the advance of technology, Public Key Cryptography (PKC)
will sooner or later be widely used in wireless sensor networks.
Recently, it has been shown that the performance of some public-
key algorithms, such as Elliptic Curve Cryptography (ECC), is al-
ready close to being practical on sensor nodes. However, the en-
ergy consumption of PKC is still expensive, especially compared to
symmetric-key algorithms. To maximize the lifetime of batteries,
we should minimize the use of PKC whenever possible in sensor
networks.

This paper investigates how to replace one of the important PKC
operations–the public key authentication–with symmetric key op-
erations that are much more efficient. Public key authentication
is to verify the authenticity of another party’s public key to make
sure that the public key is really owned by the person it is claimed
to belong to. In PKC, this operation involves an expensive signa-
ture verification on a certificate. We propose an efficient alternative
that uses one-way hash function only. Our scheme uses all sen-
sor’s public keys to construct a forest of Merkle trees of different
heights. By optimally selecting the height of each tree, we can min-
imize the computation and communication costs. The performance
of our scheme is evaluated in the paper.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols, Wireless Communications

General Terms
Algorithms, Design, Security, Performance
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1. INTRODUCTION
Sensor networks are being deployed for a wide variety of appli-

cations, including military sensing and tracking, environment mon-
itoring, patient monitoring and tracking, smart environments, etc.
When sensor networks are deployed in a hostile environment, se-
curity becomes extremely important as these networks are prone to
different types of malicious attacks. For example, an adversary can
easily listen to the traffic, impersonate one of the network nodes,
or intentionally provide misleading information to other nodes. To
provide security, communication should be encrypted and authen-
ticated. A challenge is how to bootstrap secure communications
between sensor nodes, i.e., how to set up secret keys between com-
municating nodes. This problem is known as thekey agreement
problem.

Symmetric key techniques are attractive for this task due to their
energy efficiency. A number of techniques have been proposed re-
cently [4,6,9,12,19,27]; their basic idea is that the secret keys are
pre-distributed among sensors before their deployment. Their goal
is to use the least amount of memory to achieve the highest level
of connectivity (i.e., high percentage of the neighboring sensors
should be able to establish secure communications between them)
and the highest level of resilience (i.e., the capture of some sensors
by an adversary should not jeopardize the security of other sensors).
However, due to the limitation on memory, these techniques are not
able to achieve both a perfect connectivity and a perfect resilience
for large-scale sensor networks.

The use of Public-Key Cryptography (PKC) would eliminate the
above problem. Because of its asymmetry property, sensors do not
need to carry the pre-distributed keys. Any two sensors can estab-
lish a secure channel between themselves, and the capture of some
sensors will not affect the security of others. PKC is widely used
in the Internet for bootstrap secure communication. For example,
SSL (Secure Socket Layer) and IPsec standards both use PKC for
their key agreement protocols.

The most common criticism on using PKC in sensor networks
is its computational complexity and communication overhead. Re-
cently, a number of studies have been conducted to find out how
practical it is to use PKC for sensor networks [14, 15, 21]. Their
results show that PKC is indeed feasible to be used in sensor net-
works. For example, Gura et al. [15]. show that Elliptic Curve
Cryptography (ECC) signature verification takes1.62s with 160-
bit keys on ATmega128 8MHz processor, a processor used for Cross-
bow motes platform [7]. These results indicate that, with the ad-
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vance of fast growing technology, it will not be long before public
key cryptography becomes widely accepted for wireless sensor net-
works.

Even with PKC getting faster and faster, performance differ-
ence between PKC and symmetric key cryptography is not going
to change much unless some breakthrough in PKC occurs. Com-
pared to the symmetric key cryptography, the cost of PKC is still
much more expensive. For instance, a 64-bit RC5 encryption on
ATmega128 8MHz takes 5.6 milliseconds, and a 160-bit SHA1
hash function evaluation takes only 7.2 milliseconds [13]. These
are more than 200 times faster than PKC algorithms, and the gap
is unlikely to disappear. Furthermore, public key cryptography
is not only expensive in computation, but also in communication.
For instance, to send a public key from one node to another using
RSA [25], at least1024 bits needs to be sent if the private key is
1024 bits long. Therefore, even after PKC is implemented in sensor
nodes, we still need to treat PKC as expensive operations, and we
need to use it more selectively and efficiently in order to maximize
the lifetime of sensor networks.

A number of studies have been focusing on improving the effi-
ciency of PKC. They primarily focus on optimizing the implemen-
tation of PKC algorithms for the processors of sensor nodes [14,
15, 21]. The optimization is achieved by exploring the hardware
properties and architecture of sensor processors. In this paper, we
take another approach toward optimization:we explore network
properties of sensor networks to reduce the amount of expensive
public-key operations in PKC-based protocols.

The objectives of the paper. This paper focuses on the optimiza-
tion of an essential operation in PKC: the public key authentication.
Before a nodeA uses the public key from another nodeB, A must
verify that the public key is actuallyB’s1, i.e.,A must authenticate
B’s public key; otherwise, the man-in-the-middle attack is possi-
ble. In general networks, public key authentication is achieved by
certificates. Namely,A verifies a certificate ofB’s public key, and
the certificate is signed by a certificate authority (CA), whomA and
B both trust. The certificate approach can also be implemented in
sensor networks: let all the sensors carry the CA’s public key, so
they can use this key to verify signatures on certificates.

Since authenticating public key is essential for PKC, and it is
likely to be used for many times, it is important to optimize this
operation for the power-constrained sensor networks. We focus on
this public key authentication optimization problem in this paper.
Our goal is to find a scheme to verify the authenticity of public
keys using algorithms that consume much less energy than PKC.

Overview of our approach. We propose to use one-way hash
function to conduct public key authentication in sensor networks.
An important difference between sensor networks and general net-
works is that sensors usually belong to one administrative entity be-
fore their deployment. Therefore, they can exchange the one-way
hash values of their public keys securely prior to the deployment.
The Merkle tree technique can be used such that each sensor only
needs to save one hash value while being able to authenticate all the
public keys. However, since the communication overhead required
by the authentication operation is proportional to the height of the
Merkle tree, the overhead can be quite high for large-size sensor
networks.

To reduce the communication overhead, we trim down the single
Merkle tree to a number of shorter trees, which do not need to have
the same height. To minimize the communication overhead, we
formulate the following problem:Given that a sensor can store up

1PKC based on identity-based encryption [3] is an exception.

to m hash values, how to trim a Merkle tree, such that the overall
communication overhead is minimized?

We developed a trimming scheme based on sensor deployment
knowledge. Our basic idea is the following: ifB is more likely to
beA’s neighbor,B should be in a shorter tree ofA, so the commu-
nication overhead to authenticateB’s public key is lower; ifB is
less likely to beA’s neighbor,B can be put in a taller tree ofA, be-
cause the authentication is less likely to occur. We have evaluated
the performance of our schemes. The results show that our scheme
can save up to86% of the energy for the public key authentication
operation.

Organization. The rest of the paper is organized as follows. Sec-
tion 1.1 discuss related work. Section 2 describes a basic solution
to the public key authentication problem. Section 3 presents an im-
proved scheme, which uses deployment knowledge to reduce the
communication and computation overhead. Section 4 presents our
evaluation results. Finally we draw the conclusion and lay out our
future work in Section 5.

1.1 Related Work
There are extensive studies on using symmetric-key cryptogra-

phy to achieve various aspects of security in sensor networks. Per-
rig et al. developed a security architecture for sensor networks,
which includes SNEP(Security Network Encryption Protocol), a
security primitive building block,andµTESLA [23]. Liu and Ning
proposed a multi-level key chain method for the initial commitment
distribution inµTESLA [18]. Karlof, Sastry and Wagner developed
TinySec, the first fully implemented link layer security architecture
for sensor networks [16].

To achieve efficient key management, several symmetric key-
based techniques were proposed in the past [4–6,9,12,19,27]; Car-
man, Kruus, and Matt studied the performance of a number of key
management approaches in sensor network on different hardware
platforms [5]. Eschenauer and Gligor [12] proposed a probabilistic
key pre-distribution technique to bootstrap the initial trust between
sensor nodes. Chan et al. further extended this idea and proposed
theq-composite key pre-distribution [6]. This approach allows two
sensor nodes to set up a pairwise key only when they share at least
q common keys. Chan et al. also developed a random pairwise keys
scheme to defeat node capture attacks. Du et al. developed a pair-
wise key management scheme [9], which was also independently
discovered by Liu and Ning [19]. Zhu et al. proposed a protocol
suite named LEAP to help establish individual keys between sen-
sors and a base station, pairwise keys between sensors, cluster keys
within a local area, and a group key shared by all nodes [27].

To fully take advantage of the information available to the sensor
networks, schemes using information from the environment were
proposed. Deployment knowledge from the environment is one fre-
quently used. For example, Du et al. proposed a key management
scheme using deployment knowledge [10]. Liu et al. proposed
location-based pairwise key establishment for relatively static sen-
sor networks [20]. Huang et al. further proposed a grid-group
scheme which uses known deployment information in [8]. With the
apriori knowledge obtained before distributing the sensor nodes,
the memory usage of the sensor nodes is greatly improved while
the connectivity of the sensor network is maintained.

In addition to the studies on symmetric key cryptography, re-
cently, there are a number of studies investigating the implemen-
tation of PKC in sensor networks [14, 15, 21, 26]. These studies
have been focusing on measuring the performance of PKC algo-
rithms on power-constrained processor and developing optimized
implementation of PKC algorithms for sensor networks.
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2. THE BASIC SCHEME
Essentially, the goal of the public key authentication is to make

sure that the binding between an identify and a public key is au-
thentic. The certificate approach is designed for users who do not
have a pre-established trust relationship to be able to authenticate
each other’s public key. They achieve this using a third party, the
certificate authority (CA), with whom they both have a trust rela-
tionship. However, if two users already have a trust relationship, it
is not necessary to use certificates. For example, if two users have
met before, they could exchange their public keys while they were
physically together. Man-in-the-middle attacks will not be possible
in this scenario.

In sensor networks, nodes indeed have “met” before their de-
ployment because all these nodes usually belong to the same ad-
ministrative entity. This is a major difference between sensor net-
work environments and Internet environments. In many sensor-
network applications, sensors do “know” and “trust” each other
before the deployment. In other words, before their deployment,
sensors are in a benign environment where they can exchange in-
formation in plaintext and thus establish trust relationships among
themselves. With this benign pre-deployment phase that is unique
to sensor networks, public key authentication after deployment can
be achieved in a much more power-efficient way.

2.1 A Naive Scheme
A naive solution to the public key authentication problem with-

out using certificates is to let each node carry all the other nodes’
public keys. However, since the size of public keys can be large,
sensor might not have enough memory to save all the public keys.
We can improve the memory-usage situation by letting each node
carry a one-way hash value of those public keys. When two nodes
exchange their public keys, they just need to compute the one-way
hash value of the received public keys and check whether the re-
sults match the values stored in their memory. Therefore, public
key authentication is reduced to a one-way hash function evalua-
tion, which consumes two to three order of magnitude less energy
than a public-key operation.

The above naive solution still has the memory-usage problem.
For a sensor network of sizeN , each sensor needs to devote(N −
1)L memory to those hashes, whereL is the length of each hash
value (e.g. L = 160 bits for SHA1 [11]). For example, when
N = 10000, 195K bytes of memory are needed for SHA1. Sensors
usually do not have that much of data memory. Merkle trees [22]
can be used to solve the memory-usage problem.

2.2 A Memory-Efficient Scheme
The Merkle tree (also called hash tree) is a complete binary tree

equipped with a functionhash and an assignmentΦ, which maps
a set of nodes to a set of fixed-size strings. In a Merkle tree, the
leaves of the tree contain the data, and theΦ value of an internal
tree node is the hash value of the concatenation of theΦ values of
its two children.

Building Merkle Tree. To build a Merkle tree for our problem, we
constructN leavesL1, . . . , LN , with each leaf corresponding to a
sensor node. Each leaf contains the bindings between the identity
of its corresponding node and the public key of the node. We then
build a complete binary tree with these leaves. TheΦ value of each
node is defined as the following (we useV to denote an internal
tree node, andVleft andVright to denoteV ’s two children; we use
idi to represent nodei’s identity, and we usepki to represent node

i’s public key):

Φ(Li) = hash(idi, pki), for i = 1, . . . , N

Φ(V ) = hash(Φ(Vleft)||Φ(Vright)),

where “||” represents the concatenation of two strings, and the func-
tion hash is a one-way hash function such as MD5 or SHA1. Fig-
ure 1 depicts an example of the Merkle tree built for our purpose.
Each sensor only needs to storeΦ(R), whereR is the root of the
Merkle tree. The memory usage is the length of one hash value.

Authenticating Public Keys. Let pk be Alice’s public key, andL
be Alice’s corresponding leaf node in the tree. Letλ denote the
path fromL to the root (not including the root), and letH rep-
resent the length of the path. For each tree nodev ∈ λ, Alice
sendsΦ(v’s sibling) to Bob, along with the public keypk. We use
λ1, . . . , λH to represent theseΦ values, and we call theseΦ values
the proofs.

To verify the authenticity of Alice’s public keypk (assume Al-
ice’s identity isid), Bob computeshash(id, pk); he then uses the
results andλ1, . . . , λH to reconstruct the root of the Merkle tree
R′ with Φ(R′). Bob will trust that the binding betweenid andpk

is authentic only ifΦ(R′) = Φ(R). An example is depicted in
Figure 1. The solid dot circle in the figure represent the proofs for
Alice. Because of properties of one-way hash functions, it is com-
putationally infeasible for adversaries to forge proofs for a binding
that is not one of the leaves of the Merkle tree [22].

Communication Costs. Although the Merkle tree can reduce the
memory usage to just one hash value, this does not come for free:
in the naive solution, Alice does not need to send extra information
for the public key authentication (she has to send the public key
anyway); however, in the improved solution, Alice needs to send
all those proofs, which consists ofH hash values, whereH is the
height of the tree. Because the Merkle tree is a complete binary
tree withN leaves, its height islog N (the base of the logarithm is
assumed to be 2 throughout this paper). Therefore, the communi-
cation costs isL · log N , with L being the length of a hash value.

Optimization can be made. Since each sensor stores up tolog n

hash values in its memory, two sensors might have stored some
common hash values. A sensor does not need to send to another
sensor the hash values that they share; communication costs can be
reduced. However, the following theorem indicates that the saving
is not substantial:

THEOREM 2.1. The expected number of common hash values
between two arbitrary sensor nodes is approximately1.

PROOF. We call a subtree of the Merkle tree a level-k subtree
if the depth of the root of this subtree in the Merkle tree isk. For
example, the direct subtree of the root is the level-1 subtree. For
the two sensors to share only one hash value (excluding the root
of the Merkle tree), they must be in the same level-1 subtree, but
not in the same level-2 subtree; the probability of that is1

2
− 1

4
=

1
4
. Similarly, for the two sensors to share exactlyk hash values,

they must be in the same level-k subtree, but not in the same level-
(k + 1) subtree; the probability of that is1

2k
− 1

2k+1 = 1
2k+1 .

Therefore, the expected amount of savings is the following

log N
∑

i=2

i − 1

2i
= 1 −

1

N
≈ 1.
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Alice’s index

B: Φ(B) = hash(Φ(L3)||Φ(L4))

C: Φ(C) = hash(Φ(A)||Φ(B))

F

A

DC

E: Φ(E) = hash(Φ(C)||Φ(D))

B

LnL3L2L1 L4

R: Φ(R) = hash(Φ(E)||Φ(F ))

· · · · · ·

Φ(Li) = hash(idi, pki), for i = 1 . . . n

Φ(R) is used as the commitment of all the public keys.

Figure 1: Using Merkle tree To Authenticate Public Keys.

Because of theL · log n communication overhead, compared to
the original certificate approach, the energy saving on the computa-
tion might not be able to make up for the extra energy consumption
introduced by the communication overhead. Further improvement
on the communication overhead must be made, and we will discuss
this issue in the next section.

2.3 Improving Communication Overhead
The naive scheme and the above memory-efficient scheme are

two extreme schemes: the naive scheme has the best performance
on communication but the worst performance on memory usage,
while the memory-efficient scheme is the opposite: it has the best
memory usage (only needs to store one hash value), but a much
worse communication overhead. A compromise can be made be-
tween these two extreme schemes. For example, we can increase
the amount of memory usage to reduce the communication over-
head.

A straightforward compromise is to trim down the Merkle tree
constructed in the memory-efficient scheme, and thus turn the sin-
gle Merkle tree into a number of sub-trees; these sub-trees are still
Merkle trees. We call the initial Merkle tree theoriginal Merkle
tree; we call the sub-trees the Merklesub-trees, and we call the set
of these Merkle sub-trees aMerkle forest.

Each sensor now carries the roots of all the trees in the Merkle
forest. To authenticate a public key, one just uses the public key’s
corresponding Merkle tree. Because the height of each tree is now
smaller than the original Merkle tree, the communication overhead
is reduced.

For example, if we remove only the root of the Merkle tree in
the basic scheme, we get two smaller Merkle trees; the communi-
cation costs is reduced by one hash value. In general, if we remove
k levels of the original Merkle tree, the communication costs is re-
duced byk hash values. However, this gain does not come for free;
on one hand, the communication is reduced, but on the other hand,
the memory usage increases to2k hash values. Since sensors are
usually memory constrained, the value ofk is quite limited. Given
that onlym hash values can be stored in the memory, the average
communication overhead is about(log N

m
).

As we can see, the above straightforward trimming method is not
optimal, and we should find some optimized way to trim down the
Merkle tree. In the next section, we will describe a further improve-
ment on the basic scheme to minimize the overall communication
overhead.

3. AN IMPROVED SCHEME USING THE
DEPLOYMENT KNOWLEDGE

The trimming approach in the previous section considers all the
sensor nodes as equals, but does not distinguish how likely two
nodes can become neighbors. Generally speaking, in sensor net-
works, long distance peer-to-peer secure communication between
sensor nodes is rare and unnecessary in many applications. That
is, the public key authentication is mostly used by neighboring sen-
sor nodes. Accordingly, if we know how likely two nodes are to
become neighbors, we can achieve a more efficient memory us-
age by devoting relatively more memory to potential neighbors, as
opposed to giving all sensors the same amount of memory. For
instance, when considering how to maintain the Merkle forest in
nodeA, if a nodeB is more likely to beA’s neighbor, it is better
to put B in a shorter Merkle tree; on the other hand, if there is a
much slim chance forB to beA’s neighbors,B can be put in a
taller Merkle tree. In this way, the amortized energy consumption
can be reduced.

To know how likely two sensors can be neighbors, certain degree
of deployment knowledge must be known. In the next sub-sections,
we will describe a group-based deployment model to model a gen-
eral type of deployment knowledge. Then based on this deploy-
ment model, we trim the original Merkle tree into a set of Merkle
sub-trees of different heights. We will show how to find the best
height combination for each type of Merkle sub-trees, such that the
communication overhead is minimized.

3.1 Deployment Knowledge Modeling
We assume that sensor nodes are static once they are deployed.

We definedeployment pointas the point location where a sensor is
to be deployed. This is not the location where this sensor finally
resides. The sensor node can reside at points around this deploy-
ment point according to a certain probability distribution. As an
example, let us consider the case where sensors are deployed from
a helicopter. The deployment point is the location of the helicopter.
We also defineresident pointas the point location where a sensor
finally resides.

In practice, it is quite common that nodes are deployed in groups,
i.e., a group of sensors are deployed at a single deployment point,
and the probability distribution functions of the final resident points
of all the sensors from the same group are the same.

In this work, we assume such a group-based deployment, and
we model the deployment knowledge in the following (we call this
model thegroup-based deployment model):

4
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Figure 2: An Example of Group-based Deployment (each dot
represents a deployment point).

1. N sensor nodes to be deployed are divided inton equal size
groups so that each group,Gi, for i = 1, . . . , n, is deployed
from the deployment point with indexi. To simplify the no-
tion, we also useGi to represent the corresponding deploy-
ment point, and let(xi, yi) represent its coordinates.

2. Locations of the deployment points are pre-determined prior
to deployment. The deployment points can form any arbi-
trary pattern. For example, they can be arranged in a square
grid pattern (see Figure 2), a hexagonal grid pattern, or other
irregular patterns.

3. During deployment, the resident point of a nodek in group
Gi follows a probability distribution functionf i

k(x, y | k ∈
Gi).

3.2 An Improved Authentication Scheme
For simplicity reason, in our following discussion, we assume

that the deployment uses the grid pattern depicted in Figure 2.
However, our general idea can be extended to other deployment
patterns as well. The grid pattern illustrated here just serves to pro-
vide a convenient model for analysis, whose approach can also be
applied to other group-based deployed patterns.

We classify each pair of deployment groups as horizontal/vertical
neighbors, diagonal neighbors, and non-neighbors, based on their
spatial relationship. To fully take advantage of Merkle trees, we let
the number of sensors in each group beS = 2t.

Our idea is that, if two nodes are from horizontal or vertical
neighbor groups, they are more likely to be neighbors after the de-
ployment than those from diagonal neighbor groups or from non-
neighbor groups. Therefore, the height of the Merkle trees that
these two nodes belong to should be different (preferably smaller)
than nodes from other types of neighbor groups.

Here is how our improved scheme works: First, we build the
same single Merkle tree as the one in the basic scheme. Then, for
each nodeA, we use the following strategy to trim down the orig-
inal Merkle tree into a set of Merkle sub-trees. Note, the strategy
is node dependent; therefore, different nodes will end up having
different Merkle forests.

• The sub-tree that corresponds toA’s own group is trimmed
down to Merkle sub-trees of heighta (a ≤ t).

• The sub-trees that correspond toA’s horizontal or vertical
neighbor groups are trimmed down to Merkle sub-trees of
heightb (b ≤ t).

a
b

bc c

b

cbc

d (for all
other groups) 

Figure 3: Height of Merkle Tree for nodes from different neigh-
bor groups.

• The sub-trees that correspond toA’s diagonal neighbor groups
are trimmed down to Merkle sub-trees of heightc (c ≤ t).

• The original Merkle tree is trimmed down to Merkle sub-
trees of heightd. Note these sub-trees also contain the above
three types of sub-trees. Such redundancy is inevitable when
d is larger thant, the height of sub-trees for each group.

The above strategy is also depicted in Figure 3. An example
of Merkle forest is depicted in Figure 4 (note that we only show
a subset of all the groups in the example). In Figure 4, each solid
black dot (both large and small ones) represents the root of a Merkle
sub-tree. Each sensor nodes only needs to remember the hash value
of these roots.

Memory Usage. Assume that the number of sensors in the net-
work is N , and the number of sensors in each deployment group
is S. Since the height of a Merkle tree for the nodes in the same
group isa, and such a tree can accommodate2a nodes, the number
of Merkle trees required for this group is⌈ S

2a ⌉. This is also the
number of hash values that need to be stored for this group. Simi-
larly, we can compute the number of hash values for other neighbor
groups. In total, the amount of hash values each node needs to carry
in its memory is the following:

m = ⌈
S

2a
⌉ + ⌈

4S

2b
⌉ + ⌈

4S

2c
⌉ + ⌈

N

2d
⌉ (1)

Finding the Values for a, b, c, and d. As we know, the larger the
values ofa, b, c, andd are, the more hash values need to be sent
along with the public key. Therefore, if we have sufficient memory,
we can choosea = b = c = d = 0 to minimize the communication
overhead, i.e., we turn to the naive scheme described in Section 2.
However, we do have a constraint on the memory usage; therefore
we have an optimization problem: given the memory usage limit
mmax, what are the optimal values fora, b, c, andd, such that the
average communication overhead is minimized?

Before we can solve this question, we need to know how to
compute the average communication overhead. We will derive the
equations to do that, and then present how to solve the optimization
problem.

3.3 Communication Overhead
Given any two neighbor nodes, we usew0, w1, w2, andw3 to

represent the probability that these nodes are from the same group,
from horizontal/vertical groups, from diagonal groups, and from
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Figure 4: An example of Merkle Forrest.
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Figure 5: Probability of nodes residing within a circle.

non-neighbor groups, respectively. Therefore, the expected value
for the communication cost can be computed as the following:

C = w0 · a + w1 · b + w2 · c + w3 · d.

In the following sections, we will show how to calculate the val-
ues forw0, . . . , w3.

3.3.1 Computing the probability of being neighbors

We usez to represent the distance from pointθ to the deploy-
ment point of groupGi. We defineΨ as the set of all deployment
groups. We draw two circles. The first circle has a radiusℓ, and is
centered ati, the deployment point of groupGi. We call this circle
the i-circle. The second circle has a radiusR, and is centered at
θ = (x, y). We call this circle theθ-circle. When two circles inter-
sect, we call thei-circle’s arc within theθ-circle theLarc, and we
useLarc(ℓ, z, R) to represent the length of the arc. We now con-
sider an infinitesimal ring areaLarc(ℓ, z, R) ·dℓ. The bold areas in
Figure 5.a and 5.b show the infinitesimal ring areas.

Let f(ℓ | ni ∈ Gi) represent the probability distribution func-
tion of the deployment for groupGi. Therefore, the probability that
a nodeni from groupi ∈ Ψ with deployment point(xi, yi) resides
within this small ring area is

f(ℓ | ni ∈ Gi) · Larc(ℓ, z, R) · dℓ,

Using geometry knowledge, it is not difficult to derive the fol-

lowing equation forLarc(ℓ, z, R):

Larc(ℓ, z, R) = 2ℓ cos−1

(

ℓ2 + z2 − R2

2ℓz

)

.

We defineg(z | ni ∈ Gi) as the probability that the sensor node
ni from groupi resides within theθ-circle, wherez is the distance
betweenθ and the deployment point of groupGi.

To calculateg(z | ni ∈ Gi), we integrate the probabilities over
all the ring areas (for differentℓ) within the θ-circle. Therefore,
whenz > R (as shown in Figure 5.a),

g(z | ni ∈ Gi)

=

∫ z+R

z−R

f(ℓ | ni ∈ Gi) · Larc(ℓ, z, R) dℓ.

Whenz < R (as shown in Figure 5.b),

g(z | ni ∈ Gi)

=

∫ R−z

0

ℓ · 2πf(ℓ) dℓ

+

∫ z+R

R−z

f(ℓ | ni ∈ Gi) · Larc(ℓ, z, R) dℓ.

3.3.2 Computew0, . . . , w3

Assumeni is a node from groupi andnj is a node from group
j. Let diθ (resp.djθ) represent the distance betweenθ and the de-
ployment point of groupi (resp.j). The following formula calcu-
lates the probability thatnj resides within the rectangle areadx dy

around pointθ andni is a neighbor ofnj :

f(djθ|nj ∈ groupj) · g(diθ|ni ∈ groupi) · dx · dy. (2)

We defineΨk be the set of pairs(u, v), whereu andv represents
indices of deployment groups, and
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Ψ0, whenu = v;

Ψ1, whenu andv are horizontal or

vertical neighbor groups;

Ψ2, whenu andv are diagonal

neighbor groups;

Ψ3, whenu andv are not neighbors.

The valuewk is the average of the value in Eq. (2) throughout
the entire deployment region, from(0, 0) to (X, Y ), and for all the
combinations ofi andj that are inΨk.

wk =

∫ X

x=0

∫ Y

y=0

∑

(i,j)∈Ψk

Pr(nj ∈ groupj) Pr(ni ∈ groupi)

·f(djθ|nj ∈ groupj) g(diθ|ni ∈ groupi) dx dy.

Since we assume that a sensor node is selected to be in each
given group with an equal probability, we have

wk =
1

n2

∫ X

x=0

∫ Y

y=0

∑

(i,j)∈Ψk

f(djθ|nj ∈ groupj)

·g(diθ|ni ∈ groupi) dx dy, (3)

wheren is the number of deployment groups.

3.4 Find the Optimal Tree Heights
Recall thata, b, c, and d represent the height of the Merkle

tree for the nodes in the same group, horizontal/vertical neighbor
groups, diagonal neighbor groups, and non-neighbor groups, re-
spectively. Given the memory constraints, we want to find out the
optimal values of these parameters, such that the communication
cost is minimized. The optimization problem can be formulated as
the following:

PROBLEM 1. (Find optimala, b, c, andd) Let S be the num-
ber of sensors in each deployment group. Given that the maximum
amount of memory (in the unit of the length of a one-way hash
value) used for storing the roots of the Merkle trees ismmax, i.e.,

⌈
S

2a
⌉ + ⌈

4S

2b
⌉ + ⌈

4S

2c
⌉ + ⌈

n

2d
⌉ = mmax,

find the values fora, b, c, andd, such that the communication over-
headC of the following is minimized:

C = w0 · a + w1 · b + w2 · c + w3 · d.

The above optimization problem can be solved using brute-force
techniques because we only have four variables (only three are free)
and their values must be positive integers. The search space is
O((log N)3).

3.5 Incremental Deployment
It is possible that new sensors can be added to an existing sensor

network. This is calledincremental deployment. Existing sensors
need to be able to authenticate the new sensors’ public keys, and
vice versa, new sensors should be able to authenticate the existing
sensors’ public key. For the new sensors to authenticate existing
sensors, new sensors need to carry a Merkle forest formed by the
existing sensors as well as the new sensors. If new sensors’ deploy-
ment points are known apriori, we can use similar method to find
the optimal configuration of the Merkle forest, such that the overall
communication overhead is minimized.

Situations become more difficult for the existing sensors to au-
thenticate new sensors’ public keys. This is because the existing
sensors’ Merkle forests do not contain the new sensors. There are
several solutions to deal with this problem. One solution is to pre-
store several Merkle trees into each sensor’s memory, which con-
tain the public keys that will be used in the future incremental de-
ployment. However, this scheme limits the number of public keys
that can be used in the future deployment. Another solution is to
use the combination of the traditional certificate approach with our
Merkle tree approach: we construct new Merkle trees for the new
nodes, and let CA sign the root of the Merkle trees. Existing nodes
need to get the new roots from any of the new nodes. They can use
certificate verification to verify the authenticity of the root. Once
the root is verified, all the public keys contained in this Merkle tree
can be efficiently verified using our scheme. Because PKC is used
only once for each Merkle tree, the amortized cost is still low.

4. PERFORMANCE EVALUATION
This section provides a detailed quantitative analysis evaluating

the performance of our scheme. The metrics for the evaluation are
the communication overhead, memory usage, computation costs,
and energy consumptions.

In our experiments, the deployment area is a square plane of800
meters by800 meters. We use the square grid pattern for our de-
ployment: namely, the plane is divided into8 × 8 grids of size
100m × 100m; centers of these grids are chosen as deployment
points. Figure 2 shows our deployment strategy. Similar experi-
ments can be conducted for other deployment patterns. We useR

to represent a sensor’s transmission range. We setR = 40 in all of
our experiments.

In our experiments, we model the sensor deployment distribution
as a Gaussian distribution (also called Normal distribution). We
assume that the deployment distribution for any nodek in groupGi

follows a two-dimensional Gaussian distribution, which is centered
at the deployment point(xi, yi). Namely, the mean of the Gaussian
distributionµ equals(xi, yi), and the pdf for nodek in groupGi is
the following [17]:

f
i
k(x, y | k ∈ Gi) =

1

2πσ2
e
−[(x−xi)

2+(y−yi)
2]/2σ2

.

Therefore,

f(ℓ | k ∈ Gi) =
1

2πσ2
e
−ℓ2/2σ2

,

whereℓ is the distance between(x, y) and(xi, yi).

4.1 Communication overhead vs. memory
The goal of this experiment is to study how memory usages af-

fect communication overhead, and how much of communication
costs can be saved using deployment knowledge.

For each experiment, we fixσ = 50 for the deployment distri-
bution. We change the memory usagem from 1 to 200 (in terms
of number of hash values), and then we compute the average com-
munication overhead (also in terms of number of hash values). We
conducted experiments for both the deployment knowledge-based
scheme and the basic scheme. Recall that in the basic scheme,
we also trim down the original Merkle tree tom sub-trees, but the
trimming does not consider the deployment knowledge. The exper-
iment results are depicted in Figure 6. The figure clearly shows that
the communication overhead decreases with the increase of mem-
ory usages. More specifically, it shows that for network size 4096,
the average communication overhead for the deployment knowledge-
based scheme is less than two hash values. If we use 160-bit SHA1
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Figure 6: Communication overhead v.s. memory usages.

as our one-way hash function, the average overhead is less than 320
bits. The figure also shows that compared to the basic scheme, the
deployment knowledge helps to save approximately 3.5 hash values
in communication overhead.

When RSA public key algorithm is used, signatures on certifi-
cates can be at least 1024-bit if an 1024-bit private key is used.
Therefore, compared to RSA, our public key authentication scheme
not only saves computation energy (the goal of our scheme), but
also saves communication costs. If we use ECC algorithm, the
length of signatures can be reduced to 320-bit if a 160-bit2 private
key is used. In this case, our scheme has a greater communication
overhead than ECC when the network size becomes large. How-
ever, the saving of our scheme on computation is so substantial that
even with the extra communication overhead, our scheme still saves
significant energy consumption. We will further analyze the energy
consumption in Section 4.4.

4.2 Communication overhead vs. network size
The communication overhead of our scheme is proportional to

the height of the tree, while the height of the tree is decided by
the number of sensor nodes in the tree. Therefore, the size of a
network will affect the performance of our scheme. On the other
hand, the communication overhead for each single public key au-
thentication is constant for traditional PKC algorithms. As a result,
the larger the network, the less the energy savings of our scheme
compared to traditional PKC algorithms. In this experiment, we
show how the size of a network affect the communication overhead
in our scheme. We only focus on our deployment knowledge-based
scheme.

We conducted experiments for network sizes ranging from1024
nodes to16384 nodes, while setting the memory usage to50, 75,
and100. Figure 7 depicts the results, which clearly show the trend
of communication overhead with the increase of network size.

4.3 Impact of Deployment Knowledge
In this experiment, we evaluate how deployment knowledge af-

fect the communication overhead. We study two issues of the de-
ployment knowledge model: (1) the uncertainty of the deployment
knowledge, and (2) the accuracy of the deployment knowledge
model.

2NIST guidelines [2] points out that the security of a 160-bit ECC
key is computationally equivalent to a 1024-bit RSA key.
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Figure 7: Communication overhead v.s. network size.
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Figure 8: Communication overhead v.s. distribution (σ).

Uncertainty. Since we assume Gaussian Distribution in our eval-
uation, the uncertainty of the deployment knowledge is decided by
the σ value of the distribution. The smaller theσ value, the less
uncertainty we have about the deployment. In one extreme, when
σ = 0, there is no uncertainty, and we know exactly where each
sensor can land. On the other hand, whenσ is large, sensors be-
come widely spread, and neighborhood information becomes less
useful.

In this experiment, we change theσ values of the distribution
from 10 to 160, while we set the network size to4096. Figure 8 de-
picts the results under different memory usage scenarios. It shows
that the communication overhead increases with the increase ofσ.
Its reason is straightforward: whenσ becomes large, the distribu-
tion becomes more even, thus the deployment knowledge becomes
less useful. Whenσ increases to certain value, the performance of
the deployment knowledge-based scheme can approach the perfor-
mance of the basic scheme.

Modeling Accuracy. In practice, the deployment distribution in
our model might not be the same as the final distribution. Our
schemes achieves the minimal communication overhead based on
the pre-deployment model; so the actual communication overhead
will be different if the actual deployment distribution is different.
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Figure 9: The effect of errors in modeling.

In this scheme, we study the impact of such inaccuracy.
We assume that the post-deployment distribution is still Gaus-

sian, but theσ value of the distribution deviates from our model.
In our experiment, we assume that the deployment model uses
σmodel = 50, while the actual deployment distribution hasσactual =
50 + e, wheree is the error.

We can derive the optimal Merkle forest for the deployment model,
and then compute theactual communication overheadwhen this
Merkle forest is used in a distribution withσactual. We also com-
pute the optimal communication overhead forσactual. We then plot
the difference between the actual communication overhead and the
optimal communication overhead. Figure 9 depicts the results for
8192 sensor nodes.

The results show that our scheme is not much sensitive to the
small degree of modeling errors. For example, when theσ value
deviates by20, from 50 to 70, the difference of communication
overhead between an accurate model and an inaccurate model is
less than 0.25 (in the unit of hash-value length). However, when
the modeling error is large, the difference becomes significantly
large.

4.4 Comparison on Energy Consumption
In this experiment, we evaluate how much energy our scheme

can save compared to the RSA algorithm and ECC algorithm. We
get the performance data of RSA and ECC algorithms from [15]
and the performance data of SHA1 from [13]. Both [15] and [13]
conducted studies on ATmega128, a processor used for Crossbow
motes platform [7]. However, since ATmega128 processor can run
on both 8MHz and 16MHz modes, the evaluation in [13] chose
16MHz while the evaluation in [15] chose 8MHz. For the compar-
ison purpose, we choose the 8MHz mode. We estimate the running
time of SHA1 by multiplying the running time from [13] by two,
with the assumption that it takes twice as much time to run an in-
struction on the 8MHz mode as that on the 16MHz mode. The per-
formance of our scheme, RSA, and ECC on authenticating public
keys are summarized in Table 1.

To compare energy consumption caused by computations with
that caused by communications, we use an estimation made by Pot-
tie and Kaiser, who pointed out that the energy consumed in trans-
mitting a 1K-bit packet over 100m is approximately the same as
performing 3 million instructions on a typical scenario [24]. Thus,
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Figure 10: Comparison on energy consumption.

Table 1: Performance of authenticating public keys using
various algorithms (k is the communication overhead in our
scheme)

Our Scheme RSA ECC
(using SHA1)

Key or hash size (bit) 160 1024 160
Communication 160 · k 1024 320
overhead (bit)
Computation 7.2 · k 430 1620

time (ms)

with an 8MHz CPU, the energy spent on running CPU for 1 mil-
lisecond is equivalent to sending 2.67 bits of message.

Assume that the computation time for the traditional PKC-based
public key authentication isT millisecond, and the communication
overhead isC bits. Letk be the number of hash values that need
to be sent to the verifier in our public key authentication scheme.
The verifier needs to conductk SHA1 hash evaluations. Therefore,
the energy consumption ratio can be computed using the following
formula:

ratio =
160 · k + 7.2 · k · 2.67

C + T · 2.67
(4)

We have computed the ratio of our scheme to the RSA algo-
rithm and ECC algorithm. For ECC, we assume that Elliptic Curve
Digital Signature Algorithm (ECDSA) [1] is used. Our result is
depicted in Figure 10. The amount of energy saving is substantial,
especially for ECDSA algorithm. For example, our deployment
knowledge-based scheme consumes only14% of the energy used
by ECDSA algorithm for a network of10, 000 nodes while our
basic scheme consumes28%.

The saving over RSA algorithm is relatively less; this is because
the signature verification of RSA is about four times as fast as that
of ECDSA due to the small public key used in RSA. However, it
is believed that ECC is more practical for sensor networks because
RSA signature generation is quite slow: about 20 times slower than
signature verification.
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5. CONCLUSION AND FUTURE WORK
With the advance of hardware technology, Public Key Cryptog-

raphy (PKC) will soon be available for sensor networks. However,
compared to the secret key cryptography and one-way hash func-
tions, PKC will still be much more expensive. To maximize the
lifetime of batteries, the use of PKC in sensor networks must be
limited and optimized.

This paper has shown that due to a unique property of sensor
networks, public keys do not need to be authenticated in the same
way as it is done in the Internet environment (i.e., using certifi-
cates); instead, public keys can be authenticated using one-way
hash functions, which are much more efficient than signature ver-
ification on certificates. We have conducted extensive evaluation
on our scheme. Our results show significant savings on power con-
sumption. In our future work, we will focus on a variety of security
protocols based on public key cryptography; we will investigate
whether we can optimize PKC usages using the properties of sen-
sor networks.
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