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An Efficient Scheme for Authenticating Public Keys in
Sensor Networks

%
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ABSTRACT

With the advance of technology, Public Key Cryptography (PKC)
will sooner or later be widely used in wireless sensor networks.
Recently, it has been shown that the performance of some public-
key algorithms, such as Elliptic Curve Cryptography (ECC), is al-

ready close to being practical on sensor nodes. However, the en-

ergy consumption of PKC is still expensive, especially compared to
symmetric-key algorithms. To maximize the lifetime of batteries,
we should minimize the use of PKC whenever possible in sensor
networks.

This paper investigates how to replace one of the important PKC
operations—the public key authentication—with symmetric key op-
erations that are much more efficient. Public key authentication
is to verify the authenticity of another party’s public key to make
sure that the public key is really owned by the person it is claimed
to belong to. In PKC, this operation involves an expensive signa-
ture verification on a certificate. We propose an efficient alternative

that uses one-way hash function only. Our scheme uses all sen-

sor's public keys to construct a forest of Merkle trees of different
heights. By optimally selecting the height of each tree, we can min-
imize the computation and communication costs. The performance
of our scheme is evaluated in the paper.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols, Wireless Communications

General Terms
Algorithms, Design, Security, Performance
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1. INTRODUCTION

Sensor networks are being deployed for a wide variety of appli-
cations, including military sensing and tracking, environment mon-
itoring, patient monitoring and tracking, smart environments, etc.
When sensor networks are deployed in a hostile environment, se-
curity becomes extremely important as these networks are prone to
different types of malicious attacks. For example, an adversary can
easily listen to the traffic, impersonate one of the network nodes,
or intentionally provide misleading information to other nodes. To
provide security, communication should be encrypted and authen-
ticated. A challenge is how to bootstrap secure communications
between sensor nodes, i.e., how to set up secret keys between com-
municating nodes. This problem is known as K&y agreement
problem.

Symmetric key techniques are attractive for this task due to their
energy efficiency. A number of techniques have been proposed re-
cently [4,6,9,12,19, 27]; their basic idea is that the secret keys are
pre-distributed among sensors before their deployment. Their goal
is to use the least amount of memory to achieve the highest level
of connectivity (i.e., high percentage of the neighboring sensors
should be able to establish secure communications between them)
and the highest level of resilience (i.e., the capture of some sensors
by an adversary should not jeopardize the security of other sensors)
However, due to the limitation on memory, these techniques are not
able to achieve both a perfect connectivity and a perfect resilience
for large-scale sensor networks.

The use of Public-Key Cryptography (PKC) would eliminate the
above problem. Because of its asymmetry property, sensors do not
need to carry the pre-distributed keys. Any two sensors can estab-
lish a secure channel between themselves, and the capture of some
sensors will not affect the security of others. PKC is widely used
in the Internet for bootstrap secure communication. For example,
SSL (Secure Socket Layer) and IPsec standards both use PKC for
their key agreement protocols.

The most common criticism on using PKC in sensor networks
is its computational complexity and communication overhead. Re-
cently, a number of studies have been conducted to find out how
practical it is to use PKC for sensor networks [14, 15, 21]. Their
results show that PKC is indeed feasible to be used in sensor net-
works. For example, Gura et al. [15]. show that Elliptic Curve
Cryptography (ECC) signature verification take§2s with 160-
bit keys on ATmegal28 8MHz processor, a processor used fascro
bow motes platform [7]. These results indicate that, with the ad-



vance of fast growing technology, it will not be long before public to m hash values, how to trim a Merkle tree, such that the overall
key cryptography becomes widely accepted for wireless sensor net-communication overhead is minimized?
works. We developed a trimming scheme based on sensor deployment
Even with PKC getting faster and faster, performance differ- knowledge. Our basic idea is the following: if is more likely to
ence between PKC and symmetric key cryptography is not going be A’s neighbor,B should be in a shorter tree df, so the commu-
to change much unless some breakthrough in PKC occurs. Com-nication overhead to authenticaks public key is lower; if B is
pared to the symmetric key cryptography, the cost of PKC is still less likely to beA’s neighbor,B can be put in a taller tree of, be-
much more expensive. For instance, a 64-bit RC5 encryption on cause the authentication is less likely to occur. We have evaluated
ATmegal28 8MHz takes 5.6 milliseconds, and a 160-bit SHA1 the performance of our schemes. The results show that our scheme
hash function evaluation takes only 7.2 milliseconds [13]. These can save up t86% of the energy for the public key authentication
are more than 200 times faster than PKC algorithms, and the gapoperation.
is unlikely to disappear. Furthermore, public key cryptography
is not only expensive in computation, but also in communication. Organization. The rest of the paper is organized as follows. Sec-
For instance, to send a public key from one node to another usingtion 1.1 discuss related work. Section 2 describes a basic solution
RSA [25], at leasfl024 bits needs to be sent if the private key is  to the public key authentication problem. Section 3 presents an im-
1024 bits long. Therefore, even after PKC is implemented in sensor proved scheme, which uses deployment knowledge to reduce the
nodes, we still need to treat PKC as expensive operations, and wecommunication and computation overhead. Section 4 presents our
need to use it more selectively and efficiently in order to maximize evaluation results. Finally we draw the conclusion and lay out our
the lifetime of sensor networks. future work in Section 5.
A number of studies have been focusing on improving the effi-
ciency of PKC. They primarily focus on optimizing the implemen- 1.1 Related Work
tation of PKC algorithms for the processors of sensor nodes [14,

15, 21]. The optimization is achieved by exploring the hardware There are extensive studies on using symmetric-key cryptogra-

roperties and architecture of SENsor brocessors. In this paper Weohy to achieve various aspects of security in sensor networks. Per-
prop P ' Paper, fig et al. developed a security architecture for sensor networks,

tz’::léeea;;g;hg; :gr?ég?%r;tzsgi?tgﬁgg&zcae“?r?: aer)riglt?:s cr)]fettav;lotrelzsiveWhiCh includes SNEP(Security Network Encryption Protocol), a
prop ; . P security primitive building block,ang TESLA [23]. Liu and Ning
public-key operations in PKC-based protocols

proposed a multi-level key chain method for the initial commitment
distribution inu TESLA [18]. Karlof, Sastry and Wagner developed
TinySec, the first fully implemented link layer security architecture
for sensor networks [16].

To achieve efficient key management, several symmetric key-
based techniques were proposed in the past [4-6,9,12,19,27]; Ca
man, Kruus, and Matt studied the performance of a number of key
management approaches in sensor network on different hardware
platforms [5]. Eschenauer and Gligor [12] proposed a probabilistic
key pre-distribution technique to bootstrap the initial trust between
sensor nodes. Chan et al. further extended this idea and proposed
the g-composite key pre-distribution [6]. This approach allows two
sensor nodes to set up a pairwise key only when they share at least
g common keys. Chan et al. also developed a random pairwise keys
scheme to defeat node capture attacks. Du et al. developed a pair-
wise key management scheme [9], which was also independently
discovered by Liu and Ning [19]. Zhu et al. proposed a protocol
suite named LEAP to help establish individual keys between sen-
sors and a base station, pairwise keys between sensors, cluster keys
within a local area, and a group key shared by all nodes [27].

To fully take advantage of the information available to the sensor
networks, schemes using information from the environment were
proposed. Deployment knowledge from the environment is one fre-
quently used. For example, Du et al. proposed a key management

The objectives of the paper. This paper focuses on the optimiza-
tion of an essential operation in PKC: the public key authentication.
Before a noded uses the public key from another noBe A must
verify that the public key is actualli’s?, i.e., A must authenticate
B’s public key; otherwise, the man-in-the-middle attack is possi-
ble. In general networks, public key authentication is achieved by
certificates. NamelyA verifies a certificate oB’s public key, and

the certificate is signed by a certificate authority (CA), whémand

B both trust. The certificate approach can also be implemented in
sensor networks: let all the sensors carry the CA's public key, so
they can use this key to verify signatures on certificates.

Since authenticating public key is essential for PKC, and it is
likely to be used for many times, it is important to optimize this
operation for the power-constrained sensor networks. We focus on
this public key authentication optimization problem in this paper.
Our goal is to find a scheme to verify the authenticity of public
keys using algorithms that consume much less energy than PKC.

Overview of our approach. We propose to use one-way hash
function to conduct public key authentication in sensor networks.
An important difference between sensor networks and general net-
works is that sensors usually belong to one administrative entity be-

fore their deployment. Therefore, they can exchange the one-waySCheme using deployment knowledge [10]. Liu et al. proposed

hash values of their public keys securely prior to the deployment. location-based pairwise k tablish of lativelv stafi
The Merkle tree technique can be used such that each sensor onIyOC"’l lon-based pairwise key establishment for refatively stalic sen-
or networks [20]. Huang et al. further proposed a grid-group

needs to save one hash value while being able to authenticate all the h hich K depl tinf tion in 181 With th
public keys. However, since the communication overhead required scheme which uses known deployment information in [8]. Wi e

by the authentication operation is proportional to the height of the apriori knowledge obtained before distributing the sensor nodes,

Merkle tree, the overhead can be quite high for large-size sensorthe memory usage of the sensor nod_es IS gree_ltly improved while
networks. the connectivity of the sensor network is maintained.

To reduce the communication overhead, we trim down the single In addition to the studies on symmetric key cryptography, re-

Merkle tree to a number of shorter trees, which do not need to have ce_ntly, there are a number of studies investigating the implemen-
the same height. To minimize the communication overhead, we tation of PKC in sensor networks [14, 15, 21, 26]. These studies

formulate the following problemGiven that a sensor can store up h_ave been focusing on measuring the performance .Of PKC a_lgo-
rithms on power-constrained processor and developing optimized

IPKC based on identity-based encryption [3] is an exception. implementation of PKC algorithms for sensor networks.




2. THE BASIC SCHEME i's public key):

Essentially, the goal of the public key authentication is to make . .
sure that the binding between an identify and a public key is au- ©(L:) = hash(idi,pk:), for i=1,....N
thentic. The certificate approach is designed for users who do not e(V) = hash(®(Vies:)||P(Vrignt)),
have a pre-established trust relationship to be able to authenticate aln . .
each other’s public key. They achieve this using a third party, the v_vhere 1 represents the concatenation of two strings, and the fu_nc-
certificate authority (CA), with whom they both have a trust rela- 1" ]11%5}1 IS a one-way P}ashffL:]nckl/lonksluch ast_llaf; or SHAL. Fig-
tionship. However, if two users already have a trust relationship, it léfch sgrﬂ)ls(grs gr?l e)r(lzglgsetc? si @? Rerwﬁéﬁz i:'ttheo:o%:rogl:ﬁ;ose'
is not necessary to use certificates. For example, if two users have'vI ke t Th Y (3_ )t'h lenath of hash val
met before, they could exchange their public keys while they were erkie tree. The memory usage Is the length ot one hash value.

i;;]ht);]silscg(lzlgrt](;grjiither. Man-in-the-middle attacks will not be possible Authenticating Public Keys. Let pk be Alice’s public key, and.

In sensor networks, nodes indeed have “met” before their de- be Alice’s corresponding leaf nade in the tree. Datienote the

path from L to the root (not including the root), and I&f rep-
ployment because all these nodes usually belong to the same ad: he | h of th h E h A Ali
ministrative entity. This is a major difference between sensor net- resent the length of the path. For eac tree.nmde  ICE
. : - sendsd(v's sibling) to Bob, along with the public keyk. We use
work environments and Internet environments. In many sensor-
L w . " -\ A1, ..., Am torepresent these values, and we call thegevalues
network applications, sensors do “know” and “trust” each other
before the deployment. In other words, before their deployment the proof_s. . . .
; . . ! . To verify the authenticity of Alice’s public keyk (assume Al-
sensors are in a benign environment where they can exchange in-__, identity isid). Bob $ash(id ok) he th h
formation in plaintext and thus establish trust relationships among ice’s identity isid), Bob computesiash(id, pk); he then uses the
; . . - : results and\y, ..., Ay to reconstruct the root of the Merkle tree
themselves. With this benign pre-deployment phase that is unique

to sensor networks, public key authentication after deployment can R’ with &(E"). Bob will rust that the binding betweal andpk
. . P y - ploy is authentic only if6(R') = ®(R). An example is depicted in
be achieved in a much more power-efficient way.

Figure 1. The solid dot circle in the figure represent the proofs for
Alice. Because of properties of one-way hash functions, it is com-
21 A Naive Scheme putaf[ionally infeasible for adversaries to forge proofs for a binding
. ) . o . that is not one of the leaves of the Merkle tree [22].

A naive solution to the public key authentication problem with-
out using certificates is to let each node carry all the other nodes’ communication Costs. Although the Merkle tree can reduce the
public keys. However, since the size of public keys can be large, memory usage to just one hash value, this does not come for free:
sensor might not have enough memory to save all the public keys.j, the najve solution, Alice does not need to send extra information
We can improve the memory-usage situation by letting each node fo; the public key authentication (she has to send the public key
carry a one-way hash value of those public keys. When two nodes 4nyway); however, in the improved solution, Alice needs to send
exchange their public keys, they just need to compute the one-way 4| those proofs, which consists &f hash values, wherH is the
hash value of the received public keys and check whether the ré-height of the tree. Because the Merkle tree is a complete binary
sults match the values stored in their memory. Therefore, public ee with V leaves, its height itog IV (the base of the logarithm is
key authentication is reduced to a one-way hash function evalua- 5o5umed to be 2 throughout this paper). Therefore, the communi-
tion, which consumes two to three order of magnitude less energy cation costs id. - log N, with L being the length of a hash value.

than a public-key operation. Optimization can be made. Since each sensor storeslop o
The above naive solution still has the memory-usage problem. pash values in its memory, two sensors might have stored some
For a sensor network of siz¥, each sensor needs to devoté — common hash values. A sensor does not need to send to another

1)L memory to those hashes, whelids the length of each hash  gansor the hash values that they share; communication costs can be

value (e.g. L = 160 bits for SHA1 [11]). For example, when  roqyced. However, the following theorem indicates that the saving
N = 10000, 195K bytes of memory are needed for SHAL. Sensors g ot substantial:

usually do not have that much of data memory. Merkle trees [22]

can be used to solve the memory-usage problem. THEOREM 2.1. The expected number of common hash values

between two arbitrary sensor nodes is approximately

2.2 A Memory-Efficient Scheme PROOF. We call a subtree of the Merkle tree a lewebubtree
The Merkle tree (also called hash tree) is a complete binary tree if the depth of the root of this subtree in the Merkle treé .is~or
equipped with a functiothash and an assignmet, which maps example, the direct subtree of the root is the levslibtree. For
a set of nodes to a set of fixed-size strings. In a Merkle tree, the the two sensors to share only one hash value (excluding the root
leaves of the tree contain the data, and ¢healue of an internal of the Merkle tree), they must be in the same levalubtree, but
tree node is the hash value of the concatenation ofthalues of not in the same level-subtree; the probability of that is — ; =
its two children. i. Similarly, for the two sensors to share exadtijhash values,
they must be in the same levelsubtree, but not in the same level-
Building Merkle Tree. To build a Merkle tree for our problem, we  (k + 1) subtree; the probability of that ige — S = 5.
constructN leavesL, ..., Ly, with each leaf correspondingto a  Therefore, the expected amount of savings is the following
sensor node. Each leaf contains the bindings between the identity

of its corresponding node and the public key of the node. We then

build a complete binary tree with these leaves. $healue of each I%N i—1 1 1 1
node is defined as the following (we useto denote an internal _ 2 N
tree node, an;.s: andV;.;4n: to denoteV’s two children; we use =2

id; to represent nodés identity, and we usek; to represent node ]



R: ®(R) = hash(®(E)||®(F))

— ®(R) is used as the commitment of all the public keys.

B: ®(B) = hash(®(Ls)||®(L4))
C: ®(C) = hash(®(A)||®(B))

E: ®(E) = hash(®(C)||B(D))

®(L;) = hash(id;, pk;), fori=1...n

Alice’s index

Figure 1: Using Merkle tree To Authenticate Public Keys.

Because of th& - log n communication overhead, comparedto 3. AN IMPROVED SCHEME USING THE
the original certificate approach, the energy saving on the computa- DEPLOYMENT KNOWLEDGE

tion might not be able to make up for the extra energy consumption L . . . .

introduced by the communication overhead. Further improvement The trimming approach in the previous .se.ctlor.] con5|de.rs all the

on the communication overhead must be made, and we will discuss>€"S0" nodes as equa_ls, but does not distinguish how likely two
' nodes can become neighbors. Generally speaking, in sensor net-

this issue in the next section. . S
works, long distance peer-to-peer secure communication between
sensor nodes is rare and unnecessary in many applications. That
2.3 Improving Communication Overhead is, the public key authentication is mostly used by neighboring sen-
sor nodes. Accordingly, if we know how likely two nodes are to
The naive scheme and the above memory-efficient scheme arebecome neighbors, we can achieve a more efficient memory us-
two extreme schemes: the naive scheme has the best performancgge by devoting relatively more memory to potential neighbors, as
on communication but the worst performance on memory usage, opposed to giving all sensors the same amount of memory. For
while the memory-efficient scheme is the opposite: it has the bestinstance, when considering how to maintain the Merkle forest in
memory usage (only needs to store one hash value), but a muchnode 4, if a nodeB is more likely to beA’s neighbor, it is better
worse communication overhead. A compromise can be made be-to put B in a shorter Merkle tree; on the other hand, if there is a
tween these two extreme schemes. For example, we can increasénuch slim chance foB to be A’s neighbors,B can be put in a
the amount of memory usage to reduce the communication over-taller Merkle tree. In this way, the amortized energy consumption
head. can be reduced.
A straightforward compromise is to trim down the Merkle tree To know how likely two sensors can be neighbors, certain degree
constructed in the memory-efficient scheme, and thus turn the sin- of deployment knowledge must be known. In the next sub-sections,
gle Merkle tree into a number of sub-trees; these sub-trees are stillwe will describe a group-based deployment model to model a gen-

Merkle trees. We call the initial Merkle tree tlgiginal Merkle eral type of deployment knowledge. Then based on this deploy-
tree; we call the sub-trees the Merldeb-treesand we call the set  ment model, we trim the original Merkle tree into a set of Merkle
of these Merkle sub-treesherkle forest sub-trees of different heights. We will show how to find the best

Each sensor now carries the roots of all the trees in the Merkle height combination for each type of Merkle sub-trees, such that the
forest. To authenticate a public key, one just uses the public key's communication overhead is minimized.
corresponding Merkle tree. Because the height of each tree is now

maller than the original Merkle tr icati .

?s r:dic:eda.l the original Merkle tree, the communication overhead 3.1 Deployment Knowledge Modeling

For example, if we remove only the root of the Merkle tree in We assume that sensor nodes are static once they are deployed.
the basic scheme, we get two smaller Merkle trees; the communi- We definedeployment poinas the point location where a sensor is
cation costs is reduced by one hash value. In general, if we removeto be deployed. This is not the location where this sensor finally
k levels of the original Merkle tree, the communication costs is re- resides. The sensor node can reside at points around this deploy-
duced byk hash values. However, this gain does not come for free; ment point according to a certain probability distribution. As an
on one hand, the communication is reduced, but on the other hand,example, let us consider the case where sensors are deployed from
the memory usage increases2bhash values. Since sensors are a helicopter. The deployment point is the location of the helicopter.
usually memory constrained, the valuekois quite limited. Given We also defingesident pointas the point location where a sensor
that onlym hash values can be stored in the memory, the averagefinally resides.
communication overhead is abdlibg %). In practice, it is quite common that nodes are deployed in groups,

As we can see, the above straightforward trimming method is not i.e., a group of sensors are deployed at a single deployment point,
optimal, and we should find some optimized way to trim down the and the probability distribution functions of the final resident points
Merkle tree. In the next section, we will describe a furtherimprove- of all the sensors from the same group are the same.
ment on the basic scheme to minimize the overall communication In this work, we assume such a group-based deployment, and
overhead. we model the deployment knowledge in the following (we call this

model thegroup-based deployment moyel
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Figure 2: An Example of Group-based Deployment (each dot
represents a deployment point).
e The sub-trees that correspond4ts diagonal neighbor groups

are trimmed down to Merkle sub-trees of heiglft < ¢).
1. N sensor nodes to be deployed are divided intxqual size

groups so that each grou@;, fori = 1, ..., n, is deployed e The origingl Merkle tree is trimmed down to M.erkle sub-
from the deployment point with index To simplify the no- trees of heightl. Note these sub-trees also qontaln_the above
tion, we also use; to represent the corresponding deploy- th.ree types of sub-treeg. Such redundancy is inevitable when
ment point, and letz;, y; ) represent its coordinates. d is larger thart, the height of sub-trees for each group.

2. Locations of the deployment points are pre-determined prior ~ The above strategy is also depicted in Figure 3. An example
to deployment. The deployment points can form any arbi- of Merkle forest is depicted in Figure 4 (note that we only show
trary pattern. For example, they can be arranged in a squarea subset of all the groups in the example). In Figure 4, each solid
grid pattern (see Figure 2), a hexagonal grid pattern, or other black dot (both large and small ones) represents the root of a Merkle
irregular patterns. sub-tree. Each sensor nodes only needs to remember the hash value

of these roots.

3. During deployment, the resident point of a nddi group
G, follows a probability distribution functiorfi (x,y | k €
G,). Memory Usage. Assume that the number of sensors in the net-

work is N, and the number of sensors in each deployment group
. . is S. Since the height of a Merkle tree for the nodes in the same
3.2 AnlImproved Authentication Scheme group isa, and such a tree can accommodzteodes, the number

For simplicity reason, in our following discussion, we assume of Merkle trees required for this group [s&1. This is also the
that the deployment uses the grid pattern depicted in Figure 2. number of hash values that need to be stored for this group. Simi-
However, our general idea can be extended to other deploymentlarly, we can compute the number of hash values for other neighbor
patterns as well. The grid pattern illustrated here just serves to pro-groups. In total, the amount of hash values each node needs to carry
vide a convenient model for analysis, whose approach can also bein its memory is the following:
applied to other group-based deployed patterns.

We classify each pair of deployment groups as horizontal/vertical S 4S5
neighbors, diagonal neighbors, and non-neighbors, based on their m = fQ—ﬂ + f§1 +T
spatial relationship. To fully take advantage of Merkle trees, we let
the number of sensors in each groupbhe: 2°.

Our idea is that, if two nodes are from horizontal or vertical .
neighbor groups, they are more likely to be neighbors after the de- Finding the Values for a, b, ¢, and d. As we know, the larger the
ployment than those from diagonal neighbor groups or from non- Values ofa, b, ¢, andd are, the more hash values need to be sent
neighbor groups. Therefore, the height of the Merkle trees that along with the public key. Therefore, if we have sufficient memory,

these two nodes belong to should be different (preferably smaller) W€ ¢&n choose = b = ¢ = d = ( to minimize the communication
than nodes from other types of neighbor groups. overhead, i.e., we turn to the naive scheme described in Section 2.

Here is how our improved scheme works: First, we build the However, we do have a constraint on the memory usage; therefore

same single Merkle tree as the one in the basic scheme. Then, foV& have an optimization problem: given the memory usage limit
each noded, we use the following strategy to trim down the orig-  "maz» What are the optimal values far b, c, _and%, such that the
inal Merkle tree into a set of Merkle sub-trees. Note, the strategy 2V€rage communication overhead is minimized?

is node dependent; therefore, different nodes will end up having Before we can solve this question, we need to know how to
different Merkle forests. compute the average communication overhead. We will derive the

equations to do that, and then present how to solve the optimization
e The sub-tree that correspondsA¢s own group is trimmed problem.

down to Merkle sub-trees of height(a < t). 3.3 Communication Overhead

45 N

;W + (2—(11 (N

e The sub-trees that correspond A horizontal or vertical Given any two neighbor nodes, we usg, w1, we, andws to
neighbor groups are trimmed down to Merkle sub-trees of represent the probability that these nodes are from the same group,
heightb (b < t). from horizontal/vertical groups, from diagonal groups, and from
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Figure 4: An example of Merkle Forrest.
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(a) i is outside of the circle (z > R) (b) i is inside of the circle (z < R)

Figure 5: Probability of nodes residing within a circle.

non-neighbor groups, respectively. Therefore, the expecte@ valu
for the communication cost can be computed as the following:

C=wo-a+wi -b+ws- -c+ws-d.

In the following sections, we will show how to calculate the val-
ues forwo, . . ., ws.

3.3.1 Computing the probability of being neighbors

We usez to represent the distance from pothto the deploy-
ment point of grougz,. We definel as the set of all deployment
groups. We draw two circles. The first circle has a radiusnd is
centered at, the deployment point of grou@;. We call this circle
the ¢-circle. The second circle has a radifis and is centered at
0 = (z,y). We call this circle thé-circle. When two circles inter-
sect, we call thé-circle’s arc within thed-circle theL,,.., and we
useLqrc(¢, z, R) to represent the length of the arc. We now con-
sider an infinitesimal ring areBq.. (¢, z, R) - d¢. The bold areas in
Figure 5.a and 5.b show the infinitesimal ring areas.

Let f(£ | n; € G;) represent the probability distribution func-
tion of the deployment for grou@;. Therefore, the probability that
a noden; from group: € ¥ with deployment pointz;, y;) resides
within this small ring area is

F(£ | ni € Gy) - Lare(l, 2, R) - dt,

Using geometry knowledge, it is not difficult to derive the fol-

lowing equation forLq,c(¢, z, R):

2 2 p2
Larc(l, 2z, R) = 20 cos ! (u) .

20z

We defineg(z | n; € G;) as the probability that the sensor node
n; from group: resides within thé-circle, wherez is the distance
betweerd and the deployment point of group;.

To calculatey(z | n; € G;), we integrate the probabilities over
all the ring areas (for different) within the #-circle. Therefore,
whenz > R (as shown in Figure 5.a),

g(z | ni € Gy)

z+R
=/ ] ni € Gi)- Lare(t, z, R) dL.

Jz—R
Whenz < R (as shown in Figure 5.b),
g(z | ni € Gy)

R—z
- / 0 2mf(0) de
0

2+R
+/ (] ni € Gi)- Lare(f, 2, R) de.

R—z

3.3.2 Computey,...,ws

Assumen; is a node from group andn; is a node from group
Jj. Letd;o (resp.d;o) represent the distance betwegand the de-
ployment point of group (resp. 7). The following formula calcu-
lates the probability that; resides within the rectangle aréa dy
around poin® andn; is a neighbor of;:

f(djoln; € groupy) - g(dio|n: € groupi) -dz-dy.  (2)

We definel, be the set of pairéu, v), whereu andv represents
indices of deployment groups, and



Situations become more difficult for the existing sensors to au-
Yo, whenuy = v; thenticate new sensors’ public keys. This is because the existing
sensors’ Merkle forests do not contain the new sensors. There are

Y1, whe_nu anc_iu are horizontal or several solutions to deal with this problem. One solution is to pre-
(u,v) € vertical neighbor groups; store several Merkle trees into each sensor’'s memory, which con-
’ W, whenu andv are diagonal tain the public keys that will be used in the future incremental de-

ployment. However, this scheme limits the number of public keys
that can be used in the future deployment. Another solution is to
use the combination of the traditional certificate approach with our
The valuewy, is the average of the value in Eq. (2) throughout Merkle tree approach: we construct new Merkle trees for the new
the entire deployment region, froffi, 0) to (X, Y"), and for all the nodes, and let CA sign the root of the Merkle trees. Existing nodes
combinations of andj that are in0,. need to get the new roots from any of the new nodes. They can use
certificate verification to verify the authenticity of the root. Once
X oy the root is verified, all the public keys contained in this Merkle tree
wy = / / Z Pr(n; € groupj)Pr(n; € groupi) can be efficiently verified using our scheme. Because PKC is used
=0 Jy=0 (; jyew, only once for each Merkle tree, the amortized cost is still low.

neighbor groups;
Vs, whenu andv are not neighbors.

-f(djeln; € groupy) g(dig|ni € groupi) da dy.
4. PERFORMANCE EVALUATION

Since we assume that a sensor node is selected to be in each™™_ ) ) ] o ) ]
given group with an equal probability, we have This section provides a detailed quantitative analysis evaluating

the performance of our scheme. The metrics for the evaluation are
1 X v the communication overhead, memory usage, computation costs,
wy = — f(djen; € groupy) and energy consumptions. _
2
" Ja=0Jy=0; Sy, In our experiments, the deployment area is a square plag@of
meters by800 meters. We use the square grid pattern for our de-

g(dio|ni € groupi) dz dy, ®) ployment: namely, the plane is divided infox 8 grids of size
wheren is the number of deployment groups. 100m x 100m; centers of these grids are chosen as deployment
. . . points. Figure 2 shows our deployment strategy. Similar experi-
3.4 Findthe Opt|mal Tree He'thS ments can be conducted for other deployment patterns. W& use

Recall thata, b, ¢, andd represent the height of the Merkle to represent a sensor’s transmission range. W&set40 in all of
tree for the nodes in the same group, horizontal/vertical neighbor our experiments.
groups, diagonal neighbor groups, and non-neighbor groups, re  In our experiments, we model the sensor deployment distribution
spectively. Given the memory constraints, we want to find out the as a Gaussian distribution (also called Normal distribution). We
optimal values of these parameters, such that the communicationassume that the deployment distribution for any nbiegroupG;
cost is minimized. The optimization problem can be formulated as follows a two-dimensional Gaussian distribution, which is centered
the following: at the deployment poirftc;, y; ). Namely, the mean of the Gaussian
distributiony equals(x;, y; ), and the pdf for nodé in groupG; is
ProBLEM 1. (Find optimala, b, ¢, andd) Let S be the num- the following [17]:
ber of sensors in each deployment group. Given that the maximum

amount of memory (in the unit of the length of a one-way hash fi(z,y|keG) = L —le—e)?+—v)%)/20°
value) used for storing the roots of the Merkle treesgiis .., i.e., 272
S 48 48 n Therefore,
[Gal + I I+ 501+ T5g] = M, 1 Y
fUlkeG) = —e 777,
find the values fou, b, ¢, andd, such that the communication over- 2mo?
headC of the following is minimized: where/ is the distance betwedm, y) and(z;, ;).
C=wo-atwi-btwa-ctus-d 4.1 Communication overhead vs. memory

The above optimization problem can be solved using brute-force  The goal of this experiment is to study how memory usages af-
techniques because we only have four variables (only three are free)ect communication overhead, and how much of communication
and their values must be positive integers. The search space iscosts can be saved using deployment knowledge.

O((log N)*). For each experiment, we fix = 50 for the deployment distri-
bution. We change the memory usagefrom 1 to 200 (in terms
3.5 Incremental Deployment of number of hash values), and then we compute the average com-

Itis possible that new sensors can be added to an existing sensomunication overhead (also in terms of number of hash values). We
network. This is calledncremental deploymenExisting sensors conducted experiments for both the deployment knowledge-based
need to be able to authenticate the new sensors’ public keys, andscheme and the basic scheme. Recall that in the basic scheme,
vice versa, new sensors should be able to authenticate the existingve also trim down the original Merkle tree ta sub-trees, but the
sensors’ public key. For the new sensors to authenticate existingtrimming does not consider the deployment knowledge. The exper-
sensors, new sensors need to carry a Merkle forest formed by theiment results are depicted in Figure 6. The figure clearly shows that
existing sensors as well as the new sensors. If new sensors’ deploythe communication overhead decreases with the increase of mem-
ment points are known apriori, we can use similar method to find ory usages. More specifically, it shows that for network size 4096,
the optimal configuration of the Merkle forest, such that the overall the average communication overhead for the deployment knowledge-
communication overhead is minimized. based scheme is less than two hash values. If we use 160-bit SHA1



o~ N = 4096, basic scheme
—e— N = 4096, using deployment knowledge a5k
12 * N =8192, basic scheme 4
be —— N = 8192, using deployment knowledge
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Figure 6: Communication overhead v.s. memory usages. Figure 7: Communication overhead v.s. network size.

as our one-way hash function, the average overhead is less than 320
bits. The figure also shows that compared to the basic scheme, the
deployment knowledge helps to save approximately 3.5 hash values
in communication overhead.

When RSA public key algorithm is used, signatures on certifi-
cates can be at least 1024-bit if an 1024-bit private key is used.
Therefore, compared to RSA, our public key authentication scheme
not only saves computation energy (the goal of our scheme), but
also saves communication costs. If we use ECC algorithm, the
length of signatures can be reduced to 320-bit if a 166-pitvate
key is used. In this case, our scheme has a greater communication
overhead than ECC when the network size becomes large. How-

Average communication overhead
w
T

ever, the saving of our scheme on computation is so substantial that b - mzrm”g[y = gg
even with the extra communication overhead, our scheme still saves ¢ o Memori; 100
significant energy consumption. We will further analyze the energy %" 20 o % w10 10 10 160
consumption in Section 4.4. Standard deviation o of the deployment distribution

4.2 Communication overheadvs. network size Figure 8: Communication overhead v.s. distribution ¢).

The communication overhead of our scheme is proportional to
the height of the tree, while the height of the tree is decided by
the number of sensor nodes in the tree. Therefore, the size of aUncertainty. Since we assume Gaussian Distribution in our eval-
network will affect the performance of our scheme. On the other uation, the uncertainty of the deployment knowledge is decided by
hand, the communication overhead for each single public key au- the o value of the distribution. The smaller tlevalue, the less
thentication is constant for traditional PKC algorithms. As a result, uncertainty we have about the deployment. In one extreme, when
the larger the network, the less the energy savings of our schemeo = 0, there is no uncertainty, and we know exactly where each
compared to traditional PKC algorithms. In this experiment, we sensor can land. On the other hand, wheis large, sensors be-
show how the size of a network affect the communication overhead come widely spread, and neighborhood information becomes less
in our scheme. We only focus on our deployment knowledge-based useful.

scheme. In this experiment, we change tlevalues of the distribution
We conducted experiments for network sizes ranging fromt from 10 to 160, while we set the network size #9)96. Figure 8 de-
nodes tol6384 nodes, while setting the memory usages 75, picts the results under different memory usage scenarios. It shows
and100. Figure 7 depicts the results, which clearly show the trend that the communication overhead increases with the increase of
of communication overhead with the increase of network size. Its reason is straightforward: whenbecomes large, the distribu-
tion becomes more even, thus the deployment knowledge becomes
4.3 Impact of Deployment Knowledge less useful. Whem increases to certain value, the performance of

In this experiment, we evaluate how deployment knowledge af- the deployment knowledge-based scheme can approach the perfor-
fect the communication overhead. We study two issues of the de- Mmance of the basic scheme.
ployment knowledge model: (1) the uncertainty of the deployment

knowledge, and (2) the accuracy of the deployment knowledge Modeling Accuracy. In practice, the deployment distribution in
model. our model might not be the same as the final distribution. Our

schemes achieves the minimal communication overhead based on

2NIST guidelines [2] points out that the security of a 160-bit ECC the pre-deployment model; so the actual communication overhead
key is computationally equivalent to a 1024-bit RSA key. will be different if the actual deployment distribution is different.
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Figure 9: The effect of errors in modeling. Figure 10: Comparison on energy consumption.

In this scheme, we study the impact of such inaccuracy. Table 1: Pe_rformancg of authentica_lting public keys_using
We assume that the post-deployment distribution is still Gaus- Various algorithms (k is the communication overhead in our

sian, but thes value of the distribution deviates from our model. Scheme)

In our experiment, we assume that the deployment model uses

Omoder = 50, while the actual deployment distribution h&g.cua: = Our Scheme | RSA | ECC
50 + e, wheree is the error. (using SHA1)

We can derive the optimal Merkle forest for the deployment model, Key or hash size (bit 160 1024 | 160
and then compute thactual communication overheaghen this Communication 160 - k 1024 | 320
Merkle forest is used in a distribution with,c..q;. We also com- overhead (bit)
pute the optimal communication overheaddQk:...;. We then plot Computation 72k 430 | 1620
the difference between the actual communication overhead and the time (ms)

optimal communication overhead. Figure 9 depicts the results for
8192 sensor nodes.
The results show that our scheme is not much sensitive to the with an 8MHz CPU, the energy spent on running CPU for 1 mil-

small degree of modeling errors. For example, whendthalue lisecond is equivalent to sending 2.67 bits of message.

deviates by20, from 50 to 70, the difference of communication Assume that the computation time for the traditional PKC-based

overhead between an accurate model and an inaccurate model ipublic key authentication i millisecond, and the communication

less than 0.25 (in the unit of hash-value length). However, when overhead isC bits. Letk be the number of hash values that need

the modeling error is large, the difference becomes significantly to be sent to the verifier in our public key authentication scheme.

large. The verifier needs to conduktSHAL hash evaluations. Therefore,
the energy consumption ratio can be computed using the following
formula:

4.4 Comparison on Energy Consumption 160 - k472 k. 2.67

In this experiment, we evaluate how much energy our scheme ratio = CrT 267 (4)
can save compared to the RSA algorithm and ECC algorithm. We
get the performance data of RSA and ECC algorithms from [15]

and the performance data of SHA1 from [13]. Both [15] and [13] We have computed the ratio of our scheme to the RSA algo-

conducted studies on ATmega_128, a processor used for CroSSbo"\Fithm and ECC algorithm. For ECC, we assume that Elliptic Curve
motes platiorm [7]. However, since ATmegal28 processor can run Digital Signature Algorithm (ECDSA) [1] is used. Our result is
on both 8MHz and 16MHz modes, the evaluation in [13] chose yonicteq in Figure 10. The amount of energy saving is substantial,
_16MHZ while the evaluation in [15] chose 8MHz. Eor the compar- especially for ECDSA algorithm. For example, our deployment
ison purpose, we choqse .the 8MHz mlode.. We estimate the runn'ngknowledge-based scheme consumes anfit of the energy used
time of SHA1 by multiplying the running time from [13] by two, e cpSA algorithm for a network of0, 000 nodes while our
with the assumption that it takes twice as much time to run an in- basic scheme consum2s%. ’

?tructlon onfthe 8ME|Z mode as tha(tjon the 16MH; mode. The pbei'r_ The saving over RSA algorithm is relatively less; this is because
ormance of our scheme, RSA, and ECC on authenticating public 4, signature verification of RSA is about four times as fast as that

keys are summarized in Table l'. db . ith of ECDSA due to the small public key used in RSA. However, it
To compare energy consumption caused by computations with ;¢ hejieved that ECC is more practical for sensor networks because

that cause_d by commu_nlcatlons, we use an estimation mad_e by Potpsa signature generation is quite slow: about 20 times slower than
tie and Kaiser, who pointed out that the energy consumed in trans'signature verification

mitting a 1K-bit packet over 100m is approximately the same as
performing 3 million instructions on a typical scenario [24]. Thus,




5.

CONCLUSION AND FUTURE WORK

With the advance of hardware technology, Public Key Cryptog-
raphy (PKC) will soon be available for sensor networks. However,
compared to the secret key cryptography and one-way hash func-[13]
tions, PKC will still be much more expensive. To maximize the

lifetime of batteries, the use of PKC in sensor networks must be

limited and optimized.

This paper has shown that due to a unique property of sensor
networks, public keys do not need to be authenticated in the samel

way as it is done in the Internet environment (i.e., using certifi-
cates); instead, public keys can be authenticated using one-way;5;

hash functions, which are much more efficient than signature ver-
ification on certificates. We have conducted extensive evaluation
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