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QUASIPLURISUBHARMONIC GREEN FUNCTIONS

DAN COMAN AND VINCENT GUEDJ

Abstract. Given a compact Kähler manifold X, a quasiplurisubharmonic func-
tion is called a Green function with pole at p ∈ X if its Monge-Ampère measure is
supported at p. We study in this paper the existence and properties of such func-
tions, in connection to their singularity at p. A full characterization is obtained
in concrete cases, such as (multi)projective spaces.

Introduction

Let X be a compact Kähler manifold of complex dimension n. We pursue the
study started in [Y], [Ko1], [Ko2], [GZ2], [EGZ], [BGZ] of the range of the complex
Monge-Ampère operator. Given a Kähler class α ∈ H1,1(X,R) and a positive Radon
measure µ, the problem is to solve the equation T n = µ, where T is a positive closed
(1,1)-current in α. When µ does not charge pluripolar sets, a complete answer was
given in [GZ2]. The main purpose of this article is to start and study the case when
µ charges pluripolar sets by looking at measures µ which are sums of Dirac masses.
The equation now reads

T n =

k∑

j=1

cjδpj
.(1)

We seek solution(s) T ∈ α whose potentials are locally bounded away from the poles
p1, . . . , pk. An obvious necessary condition in order to solve (1) is that the volume
of α,

Vα := Vol (α) = αn,

is equal to the total mass of µ, µ(X) =
∑
cj = Vol (α).

Fix θ a Kähler form representing α and let PSH(X, θ) denote the set of θ-
plurisubharmonic (θ-psh) functions: these are functions ϕ ∈ L1(X,R) which are
upper semicontinuous and such that T = θ + ddcϕ is a positive current. Here
d = ∂ + ∂ and dc = 1

2πi(∂ − ∂). Solving (1) is therefore equivalent to finding a
“quasiplurisubharmonic Green function”:

2000 Mathematics Subject Classification. Primary: 32U35. Secondary: 32W20, 32Q15.
Key words and phrases. (quasi)plurisubharmonic functions; positive closed currents; Lelong

numbers; Kähler manifolds.
D. Coman was supported by the NSF grant DMS 0500563. Support by the Institut Mittag-Leffler

(Djursholm, Sweden) is gratefully acknowledged.

1

http://arxiv.org/abs/0907.4449v1


2 DAN COMAN AND VINCENT GUEDJ

Definition. A function ϕ ∈ PSH(X, θ) is called a θ-psh Green function with
(isolated) poles at p1, . . . , pk ∈ X if it is locally bounded in X \ {p1, . . . , pk} and

(θ + ddcϕ)n = Vα

k∑

j=1

mjδpj
, where mj > 0,

k∑

j=1

mj = 1.

In [CGZ], the domain DMA(X, θ) of the Monge-Ampère operator was defined
as the largest set of θ-psh functions on which the operator is continuous along
decreasing sequences of bounded θ-psh functions. Hence one can consider a more
general notion of θ-psh Green function, by only requiring in the above definition
that ϕ ∈ DMA(X, θ), instead of ϕ being locally bounded away from the poles. We
will not pursue this here.

Similar objects were considered by several authors in a local context ([Lm], [Kl],
[D1], [Le], [CP], [Co1], [CN]), and have found important applications (see e.g. [BP],
[He], [DH]). In our global context their existence depends on the geometry of X
and on the local positivity properties of α at the poles.

We therefore study in section 1 several indicators of the local positivity properties
of α, following Demailly [D2]. Recall that the Lelong number ν(ϕ, x) of a θ-psh
function ϕ at x is the largest constant ν for which ϕ(p) ≤ ν log dist(p, x) + O(1)
holds for p near x. If ϕ(p) = ν log dist(p, x) +O(1) for p near x and ν > 0, we say
that ϕ has an isotropic pole at x with Lelong number ν.

We let ν(α, x) (resp. ε(α, x)) denote the maximal (resp. maximal isotropic)
logarithmic singularity that a positive closed current T ∈ α can have at the point x.
The indicator ε(α, x), introduced by Demailly [D2], is called the Seshadri constant
of α at x and was intensively studied in algebraic geometry. We note in section 1
that for all x ∈ X,

ν(α, x) ≥ Vol (α)1/n ≥ ε(α, x).

Thus a necessary condition for the existence of a α-Green function with one
isotropic pole at x is that Vol (α)1/n = ε(α, x). This is far from being true in
general: we observe for instance in Proposition 3.1 that this is never the case when
X is a multiprojective space. Even if this condition is satisfied, it is not clear whether
it is sufficient, nor is it clear that the supremum in the definition of ε is attained.
We observe in section 4.3.2 that the following properties are equivalent:

• existence of a Green function with 9 isotropic poles in general position in
P2;

• existence of a Green function with one isotropic pole in generic position on
a degree 1 Del Pezzo surface;

• existence of a positive metric with bounded potentials for c1(Y ), where Y →
P2 denotes the blow up of P2 at 9 points in general position,

the last one being a famous open problem [DPS]. We therefore introduce in section
1 weaker notions of Green functions. We show in Theorems 1.4, 1.5 and Proposition
1.6 how to construct these by a balayage procedure. It is a delicate and interest-
ing problem to determine whether θ-psh Green functions always exist. As already
observed, we have to consider arbitrary singularities. The balayage procedure de-
pends on the choice of local data (u1, . . . , uk) encoding the singularities at the poles
(p1, . . . , pk). In particular, the problem of constructing θ-psh Green functions is
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reduced to finding local data for which the functions g constructed in Theorems 1.4
and 1.5 have isolated singularities at pj.

In section 2 we give a complete description of all these notions on the complex
projective space Pn. In particular, we characterize in Theorem 2.4 Green functions
arising naturally from rational maps f : Pn

99K Pn−1 with finite indeterminacy set.
We end section 2 by constructing interesting dynamical Green functions.

In section 3 we compute similar quantities for multiprojective spaces, focusing on
P1×P1. We show in Proposition 3.4 that Green functions with one pole correspond
to a certain class of Green functions with three poles on P2. A large class of examples
of these can be constructed using Theorem 2.4 (see Example 3.5). However, there
is no Green function with one isotropic pole on P1 × P1 (Corollary 3.2).

In section 4 we turn our attention to the case of smooth Del Pezzo surfaces,
focusing on those of degree 1, i.e. blow ups X of P2 at 8 points in general position.
Let α be the first Chern class of X. We prove in Proposition 4.1 that ν(α, x) = 1
if x ∈ X \ S, and ν(α, x) = 2 if x ∈ S. Here S is the set of singular points on the
singular cubics passing through the 8 blown up points, and 1 ≤ |S| ≤ 12. The results
of Proposition 4.1 allow us to compute, using currents, the exact value of Tian’s “α-
invariant”, and to deduce that X has a Kähler-Einstein metric (section 4.2). We
conclude the paper with the discussion in section 4.3 of ω-psh Green functions with
one pole x ∈ X, where ω ∈ α is a Kähler form. Such functions are easy to construct
when x ∈ S. For generic points x 6∈ S the existence of Green functions with an
isotropic pole at x of maximal Lelong number 1 = ε(α, x) is equivalent to a famous
open problem in algebraic geometry (see section 4.3.2).

Acknowledgement. We would like to thank the referee for his comments which
helped improve the exposition of this paper.

1. Local positivity of (1,1) classes and Green functions

Let P(X) be the set of all positive closed currents of bidegree (1,1) on X. For
α ∈ H1,1(X,R) we let

P(α) = {T ∈ P(X) : T ∈ α}
be the set of positive closed currents whose cohomology class is α. By definition,
a class α is pseudoeffective if P(α) 6= ∅. Let H1,1

psef(X,R) denote the closed convex

cone of all pseudoeffective (1,1) classes.

There are two other interesting cones in H1,1
psef(X,R) which correspond to stronger

notions of positivity. We let H1,1
Kaehler(X,R) denote the cone of Kähler classes and

H1,1
nef(X,R) denote its closure. Then H1,1

Kaehler(X,R) is the interior of H1,1
nef (X,R).

Following Demailly [D2], we would like to measure the local positivity of a class
α. There are two main indicators, in connection to the various types of positivity.
In the sequel we denote by ν(T, x) the Lelong number of T ∈ P(X) at a point x.

Definition 1.1. Let π : X̃ → X denote the blow up of X at a point x, and let
E = π−1(x) denote the exceptional divisor.

1) For α ∈ H1,1
psef(X,R) we set

ν(α, x) := sup{ν ≥ 0 : π⋆α− νE ∈ H1,1
psef(X̃,R)}.
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2) For α ∈ H1,1
nef(X,R) we set

ε(α, x) := sup{ε ≥ 0 : π⋆α− εE ∈ H1,1
nef(X̃,R)}.

The indicator ν(α, x) is the maximal Lelong number that a current T ∈ P(α) can
have at x. In this case the supremum is attained, because P(α) is a compact set (in
the weak topology of currents).

The indicator ε(α, x) is called the Seshadri constant of α at x. It has been
intensively studied since it was introduced by Demailly. We refer the reader to [La,
Chapter 5] for a detailed account of this notion.

By definition we have 0 ≤ ε(α, x) ≤ ν(α, x). It follows from the characterization

of the Kähler cone obtained in [DP] that if α ∈ H1,1
nef(X,R) and x ∈ X then

ε(α, x) = min
V

(
(αdim V · V )

multx V

) 1

dim V

,

where the minimum is taken over all irreducible subvarieties V ⊆ X with dimV ≥ 1
and x ∈ V (see e.g. Proposition 5.1.9 and Remark 1.5.32 in [La]). With V = X,
this yields the estimate (recall that Vα = Vol (α)):

ε(α, x) ≤ V 1/n
α , ∀x ∈ X.(2)

On the other hand, it follows easily from Theorem 1.4 below that if α ∈ H1,1
Kaehler(X,R)

ν(α, x) ≥ V 1/n
α , ∀x ∈ X.

Both bounds are sharp in the case of Pn.

Remark 1.2. If α ∈ H2(X,Z) is an integral class, then ν(α, x) ≥ V
1/n
α ≥ 1 for all

x ∈ X. Note also that if α is very ample then ε(α, x) ≥ 1.

An alternate description of the Seshadri constant ε(α, x) can be given in terms
the maximal Lelong number of currents in P(α) whose potentials have an isolated

singularity at x [D2]. Let α ∈ H1,1
Kaehler(X,R) and θ be a Kähler form representing

α. It follows as in [D2, Theorem 6.4] that for every x ∈ X,

ε(α, x) = sup{γ : ∃ϕ ∈ PSH(X, θ), ‖ϕ− γ log dist(·, x)‖L∞(X) < +∞}(3)

= sup{γ : ∃ϕ ∈ PSH(X, θ), ν(ϕ, x) = γ, ϕ ∈ L∞
loc(U \ {x})},

where U is a neighborhood of x depending on ϕ. Recall that PSH(X, θ) is the
set of θ-psh functions. The set of normalized θ-psh functions, for example by the
condition maxX ϕ = 0, is isomorphic to P(α) via ϕ → θ + ddcϕ ∈ P(α). The fact
that the two supremums are equal is straightforward. Moreover, in this case we
have ε(α, x) > 0 for all x ∈ X.

We now list a few elementary properties of these numerical indicators.

Proposition 1.3. 1) The functions α → ν(α, x), ε(α, x) are homogeneous and su-
peradditive (i.e. ν(α+ β, x) ≥ ν(α, x) + ν(β, x)).

2) The function x→ ν(α, x) is upper semicontinuous.
3) If α is Kähler the function x→ ε(α, x) is lower semicontinuous.
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Proof. The upper semicontinuity property of x → ν(α, x) follows since P(α) is
compact and from the well known fact that lim sup ν(Tj , xj) ≤ ν(T, x) as positive
closed (1,1)-currents Tj → T and xj → x.

To prove 3), let θ ∈ α be a Kähler form, x ∈ X, 0 < ǫ < 1, and 0 < ν < ε(α, x).
We construct for all y near x a θ-psh function ϕy with ϕy = (1 − ǫ)ν log dist(·, y) +
O(1). Using (3), this shows that lim infy→x ε(α, y) ≥ ε(α, x).

By (3) there exists ϕ ∈ PSH(X, θ) such that ϕ = ν log dist(·, x) + O(1). Let
B2 ⊂ Cn be the ball of radius 2 centered at 0. We can find a coordinate chart
f : B2 −→ U ⊂ X, f(0) = x, and a function ρ ∈ C∞(U) so that ddcρ = θ and

ν log ‖z‖ − C ≤ v(z) := (ρ+ ϕ) ◦ f(z) ≤ ν log ‖z‖ + C, z ∈ B2,

for some constant C > 0. Fix r > 0 small enough so that

(1 − ǫ)
(
ν log

r

2
− 2C

)
≥ ν log r + 2C.

Next, let Tw be an automorphism of the unit ball B1 ⊂ Cn with Tw(w) = 0. There
exists δ(r) < r such that ‖Tw(z)‖ ≥ r/2, if ‖z‖ = r and ‖w‖ < δ(r). For such w we
define the function vw on B2 by

vw(z) =





v(z) + C, 1 ≤ ‖z‖ < 2,
max{v(z) + C, (1 − ǫ)(v ◦ Tw(z) − C)}, r < ‖z‖ < 1,
(1 − ǫ)(v ◦ Tw(z) − C), ‖z‖ ≤ r.

Note that if ‖z‖ = 1 then v(z) + C ≥ 0 ≥ (1 − ǫ)(v ◦ Tw(z) − C), while if ‖z‖ = r,

(1 − ǫ)(v ◦ Tw(z) − C) ≥ (1 − ǫ)
(
ν log

r

2
− 2C

)
≥ ν log r + 2C ≥ v(z) + C.

Hence vw is psh on B2 and v(z) = (1 − ǫ)ν log ‖z − w‖ +O(1) for z near w.
For y = f(w), where ‖w‖ < δ(r), we finally let

ϕy =

{
ϕ+ C, on X \ f(B1),
vw ◦ f−1 − ρ, on f(B1).

Then ϕy is θ-psh and ϕy = (1 − ǫ)ν log dist(·, y) +O(1) near y. �

In general, the functions ν(α, ·), ε(α, ·) are not continuous (see e.g. Proposition
4.1 and section 4.3). Note that in the special case when X is projective and α is an
integral class, it follows from [La, Example 5.1.11] that ε(α, ·) is constant outside a
countable union of proper subvarieties of X.

If θ ∈ α is a Kähler form, we have by (2) and (3) that a necessary condition for
the existence of a θ-psh Green function with an isotropic pole at p is

ε(α, p) = V 1/n
α .

Since this fails to hold in general (see Proposition 3.1), one has to consider other
singularities. Following ideas of Demailly [D5], we will show that local fundamental
solutions of the Monge-Ampère operator have θ-psh subextensions to X.

We will consider the slightly more general situation when the class α is represented
by a smooth closed (1,1) form θ ≥ 0 and Vα > 0. Recall that the unbounded locus
M(ϕ) of ϕ ∈ PSH(X, θ) is defined as the set of all points p ∈ X such that ϕ is
unbounded in every neighborhood of p. We denote by PSH−(X, θ) the set of θ-psh
functions ϕ ≤ 0 on X. For p ∈ X, let Gp(Vα) be the set of germs of functions u at
p with the following properties: there exists an open set U ⊂ X containing p such
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that u is psh on U and locally bounded on U \{p}, u(p) = −∞, and (ddcu)n = Vαδp
as measures on U .

Theorem 1.4. Let p ∈ X and u ∈ Gp(Vα). There exists a unique function g =
gu,p ∈ PSH−(X, θ) such that

(i) g ≤ u+ C holds near p, for some constant C.
(ii) If ϕ ∈ PSH−(X, θ) and lim infq→p ϕ(q)/u(q) ≥ 1 then ϕ ≤ g on X.

In addition, g has the following properties:
(a) (θ + ddcg)n = 0 on the open set X \ (M(g) ∪ {g = 0}).
(b) If p is an isolated point of M(g) then M(g) = {p} and g is a θ-psh Green

function on X with pole at p.
(c) The open set Du,p = {g < 0} is connected.

It should be noted that the existence of a global θ-psh function ϕ subextending
u (i.e. such that ϕ ≤ u near p) is a nontrivial matter. We use Yau’s solution in the
spirit of [D5], [DP]. Producing the “best subextension” g proceeds using a classical
balayage procedure (see [R] for recent similar local extremal problems).

Proof. The uniqueness of a function with properties (i), (ii) is clear. Fix U ⊂ X an
open coordinate ball around p, so that u is psh on U , locally bounded on U \ {p}
and (ddcu)n = Vαδp as measures on U . We divide the proof in three steps.

Step 1. Using a mass concentration technique of Demailly [D5], we construct a
function ϕ ∈ PSH(X, θ) so that ϕ ≤ u near p. Let ω0 be a Kähler form on X.

Let W ⊂⊂W ′ ⊂⊂ U be open and connected, with p ∈W , and let χ be a smooth
function on X with compact support in W ′, such that 0 ≤ χ ≤ 1 and χ = 1 on W .
We may assume that u ≥ 0 on ∂W . Let ρ, ρ0 be negative smooth functions on W ′

with ddcρ = θ, ddcρ0 = ω0.
Let uj ց u be a sequence of smooth psh functions on W ′ and let ωj = θ+ j−1ω0.

We define measures

µj = Cjχ (ddc uj)
n,

where the constants Cj > 0 are chosen so that µj(X) =
∫
X ωn

j . Note that µj has

support in W ′, and (ddc uj)
n → Vαδp in the weak sense of measures on W ′. Hence

lim
j→∞

∫
χ (ddc uj)

n = Vαχ(p) = Vα, so lim
j→∞

Cj = 1.

Yau’s theorem (see [Y], also [Ko1]) implies that there exist continuous functions
ϕj ∈ PSH(X,ωj) such that

(ωj + ddcϕj)
n = µj, max

X
ϕj = 0.

By [GZ1, Proposition 1.7] we may assume after passing to a subsequence that {ϕj}
converges in L1(X) to a function ϕ ∈ PSH(X, θ). Moreover, by [Ho, Theorem 4.1.8]
we have ϕ = (lim supj→∞ ϕj)

⋆ on X.
Choose a sequence aj ≥ 1 so that an

jCj > 1 and aj → 1. We have

aj(ϕj + ρ+ j−1ρ0) ≤ 0 ≤ uj on ∂W.

On the other hand

an
j (ddc(ϕj + ρ+ j−1ρ0))

n = an
jCjχ (ddc uj)

n ≥ (ddc uj)
n
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holds on W , as χ = 1 on W . The minimum principle of Bedford and Taylor [BT1,
Theorem A] implies that aj(ϕj + ρ+ j−1ρ0) ≤ uj on W . Letting j → ∞ we obtain
that ϕ+ ρ ≤ u holds on W . This concludes Step 1.

Step 2. We construct the function g using an upper envelope method. Consider
the family

F =

{
ϕ ∈ PSH−(X, θ) : lim inf

q→p

ϕ(q)

u(q)
≥ 1

}
.

In the terminology of Rashkovskii, this is the family of negative θ-psh functions
whose relative type with respect to u is at least 1 (see [R]).

By Step 1, F 6= ∅. If g = sup{ϕ : ϕ ∈ F}, then the upper semicontinuous
regularization g⋆ ∈ PSH−(X, θ). We will show that g⋆ ≤ u + C holds near p for
some constant C. This implies that g = g⋆ ∈ F , so g verifies properties (i), (ii).

We can find M > 0 such that the connected component D of {u < −M} which
contains p is relatively compact in U . Let ρ < 0 be a smooth function on U so
that ddcρ = θ. Fix ϕ ∈ F . There exists a sequence of relatively compact domains
Dj ⊂ D, j > 0, with the following properties:

Dj+1 ⊂ Dj ,
⋂

j>0

Dj = {p}, ϕ(q) ≤ (1 − j−1)u(q) for q ∈ Dj .

We have ρ+ϕ ≤ 0 ≤ (1− j−1)(u+M) on ∂D, and clearly ρ+ϕ ≤ (1− j−1)(u+M)
on ∂Dj . Since the psh function u is maximal on U \ {p}, it follows that the last
inequality holds on D \ Dj . As j → ∞ we see that ρ + ϕ ≤ u + M on D. Since
ϕ ∈ F was arbitrary, this implies that g⋆ ≤ u+ C on D, where C = M − minD ρ.

Step 3. We prove the remaining properties of g.
(a) Note that M(g) is closed and since g ≤ 0 is upper semicontinuous the set

{g = 0} is closed. Let q ∈ X \ (M(g)∪{g = 0}) and let ρ be a smooth function in a
neighborhood of q such that ddcρ = θ and ρ(q) = 0. We can find ε > 0 and a small
neighborhood G of q such that G ⊂ X \ (M(g) ∪ {g = 0}) and g < −ε, |ρ| < ε/2
on G. Let W be a relatively compact open subset of G and v be psh on W so that
v⋆ ≤ ρ+ g on ∂W . The function

ϕ = g on X \W, ϕ = max{ρ+ g, v} − ρ on W,

is θ-psh and ϕ ≤ 0 on X. Since ϕ = g in a neighborhood of p, we conclude that
ϕ ∈ F , hence v ≤ ρ+ g on W . This shows that the psh function ρ+ g is maximal
on G. By [BT2], (θ + ddcg)n = 0 in G, and hence on X \ (M(g) ∪ {g = 0}).

(b) If p ∈ M(g) is isolated, there exists a closed ball K centered at p so that
K ∩M(g) = {p}. Hence g is bounded below on ∂K. It follows that if C > 0 is
large enough the function ϕ defined by ϕ = g on K, ϕ = max{g,−C} on X \K, is
θ-psh and ϕ ∈ F . Thus ϕ ≤ g, so M(g) = {p}. By (i) and [D4], (θ+ ddcg)n({p}) ≥
(ddcu)n({p}) = Vα. Mass considerations imply that g is a θ-psh Green function.

(c) Suppose that there exists a connected component W of Du,p not containing
p. The function ϕ defined by ϕ = g on X \W and ϕ = 0 on W , verifies ϕ ∈ F , so
ϕ ≤ g. This contradicts our assumption that g < 0 on W , so Du,p is connected. �

The following theorem produces Green functions with several poles. Its proof is
a straightforward adaptation of the proof of Theorem 1.4.
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Theorem 1.5. For 1 ≤ j ≤ k, let pj ∈ X, uj ∈ Gpj
(Vα), and mj > 0 with∑k

j=1mj = 1. There exists a unique function g ∈ PSH−(X, θ) such that

(i) g ≤ m
1/n
j uj + C holds near each pj, for some constant C.

(ii) If ϕ ∈ PSH−(X, θ) and for each j, lim infq→pj
ϕ(q)/uj(q) ≥ m

1/n
j , then

ϕ ≤ g on X.
Moreover, we have (θ+ddcg)n = 0 on X \ (M(g)∪{g = 0}). If all pj are isolated

points of M(g) then g is a θ-psh Green function with poles at p1, . . . , pk.

It is an intricate problem to decide whether there always exist local models u at
p ∈ X such that gu,p is a Green function. As an alternate approach, we introduce a
partial Green function associated to an isotropic singularity.

Proposition 1.6. Let θ ∈ α be a Kähler form, let p ∈ X and 0 < γ < ε(α, p).
There exists a unique function ψγ,p ∈ PSH−(X, θ) so that ν(ψγ,p, p) = γ and with
the property that if ϕ ∈ PSH−(X, θ) and ν(ϕ, p) ≥ γ then ϕ ≤ ψγ,p. Moreover,

‖ψγ,p − γ log dist(·, p)‖L∞(X) < +∞, (θ + ddcψγ,p)
n = γnδp + µγ,p,

where µγ,p is a positive measure supported on the compact {ψγ,p = 0}.
Proof. The uniqueness of ψγ,p is clear. Let us fix a biholomorphic map f : B → U
from the unit ball B ⊂ Cn onto a neighborhood U of p, with f(0) = p. Let ρ < 0
be a smooth function on U with ddcρ = θ.

By (3) there exists ψ ∈ PSH−(X, θ) so that ψ = γ log dist(·, p) +O(1). Let

ψγ,p(q) = sup{ϕ(q) : ϕ ∈ PSH−(X, θ), ν(ϕ, p) ≥ γ}.
For such ϕ, we have (ρ+ϕ)(f(z)) ≤ γ log ‖z‖ on B. This implies ψ⋆

γ,p ∈ PSH−(X, θ)
and ν(ψ⋆

γ,p, p) ≥ γ. Thus ψγ,p = ψ⋆
γ,p. Since ψ ≤ ψγ,p, it follows that ν(ψγ,p, p) = γ

and the function ψγ,p − γ log dist(·, p) is bounded on X.
Arguing as in the proof of Theorem 1.4 (a) we show that (θ + ddcψγ,p)

n = 0 in
{ψγ,p < 0} \ {p}. By [D4], (θ + ddcψγ,p)

n({p}) = γn, and the proof is complete. �

We refer to [R] for similar extremal problems on domains in Cn. In the following
sections, we are going to compute the functions ν, ε and gu,p, ψν,p in a number of
interesting cases.

2. Green functions on Pn

Let [z0 : . . . : zn] be homogeneous coordinates on Pn and πn : Cn+1 \ {0} → Pn

be the standard projection. Let αn = {ωn}, where ωn is the Fubini-Study form, so
π⋆

nωn = ddc log ‖z‖ and Vol (αn) = 1.

2.1. Maximal Lelong number.

Proposition 2.1. We have ν(αn, x) = ε(αn, x) = 1 for all x ∈ Pn. If T ∈ P(αn)
and ν(T, x) = 1 then T = ℘⋆

xS, where ℘x : Pn
99K Pn−1 is the projection with

center x onto a hyperplane Pn−1 6∋ x and S ∈ P(αn−1). Moreover, the following are
equivalent:

(i) the potentials of T have isotropic pole at x with Lelong number 1.
(ii) T has locally bounded potentials on Pn \ {x}.
(iii) S has bounded potentials.
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Proof. Let π : X → Pn denote the blow up of Pn at x, and let E be the exceptional
divisor. The map Φ = ℘x ◦ π : X → Pn−1 is a holomorphic fibration, whose fibers
are the projective lines through x. Moreover, π⋆αn − E = Φ⋆αn−1.

If ν(T, x) = 1 then T̃ = π⋆T − [E] is a positive closed (1,1)-current on X in the

cohomology class Φ⋆αn−1. It follows that T̃ = Φ⋆S for some S ∈ P(αn−1), hence
T = ℘⋆

xS. The potentials of T have isotropic pole at x with Lelong number 1 if and

only if T̃ has bounded potentials, hence if and only if S has bounded potentials.
It is well known that currents in P(αn) have Lelong number at most 1 at each

point x. The above construction shows that ν(αn, x) = ε(αn, x) = 1. �

We now explore further the geometry of sublevel sets of high Lelong numbers, in
the spirit of [Co2]. For c > 0 and T ∈ P(αn) a theorem of Siu [Si] states that

Ec(T ) := {x ∈ Pn : ν(T, x) ≥ c}
is an algebraic subset of dimension at most n− 1. We also consider the set

E+
c (T ) := {x ∈ Pn : ν(T, x) > c}.

Proposition 2.2. The set E+
n/(n+1)(T ) is contained in a hyperplane of Pn.

Proof. Let T = ωn + ddcϕ and set Ec(ϕ) = Ec(T ) and E+
c (ϕ) = E+

c (T ). The proof
is by induction on n. If n = 1, T is a probability measure, ν(T, p) = T ({p}), so
E+

1/2(T ) contains at most one point.

Let cn = n/(n+ 1). If n ≥ 2 we assume for a contradiction that E+
cn

(ϕ) contains
the points q, p1, . . . , pn in general position. Let H be the hyperplane determined by
p1, . . . , pn, so q 6∈ H. By a theorem of Siu [Si], T = c[H] + R, where 0 ≤ c ≤ 1 and
R ∈ P((1 − c)αn) has generic Lelong number 0 along H. Thus

cn < ν(ϕ, q) = ν(R, q) ≤ 1 − c, ν(R, pj) = ν(ϕ, pj) − c > cn − c, 1 ≤ j ≤ n.

Consider the current S = R/(1 − c) = ωn + ddcψ ∈ P(αn). Since c < 1 − cn,

ν(ψ, pj) >
cn − c

1 − c
>

2cn − 1

cn
= cn−1, 1 ≤ j ≤ n.

By [D3, Proposition 3.7], there exist ǫk ց 0 and currents Sk = (1+ǫk)ωn+ddcψk ≥ 0,
where ψk have analytic singularities, such that Sk → S and 0 ≤ ν(ψ, p)−ν(ψk, p) ≤
ǫk for all p ∈ Pn. Since S does not charge H, it follows that ψk 6≡ −∞ on H ≡ Pn−1.
Hence ψk |

H
∈ PSH(Pn−1, ωn−1) and

ν(ψk |
H
, pj) ≥ ν(ψk, pj) > cn−1, 1 ≤ j ≤ n,

for k sufficiently large. This yields a contradiction, since by our induction hypothesis
the set E+

(n−1)/n(ψk |
H

) is contained in a hyperplane of Pn−1. �

The value n/(n + 1) in the previous theorem is sharp. Indeed, let S be a set of
n + 1 points pj ∈ Pn in general position, and let [Hj] be the current of integration
along the hyperplane Hj determined by S \{pj}. If T = ([H1]+ . . .+[Hn+1])/(n+1)
then the set En/(n+1)(T ) = S is not contained in any hyperplane.

We are now in position to make the result of Proposition 2.1 more precise, by
giving a characterization of the currents T for which E1(T ) 6= ∅.
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Proposition 2.3. If T ∈ P(αn) and E1(T ) 6= ∅ then E1(T ) is a k-dimensional
linear subspace of Pn for some integer 0 ≤ k ≤ n − 1. Let ℘ denote the projection
with center E1(T ) onto a linear subspace L ≡ Pn−k−1 such that L ∩ E1(T ) = ∅.
Then T = ℘⋆S for a unique current S ∈ P(αn−k−1), and E1(S) = ∅.
Proof. Let T = ωn + ddcϕ and k ≥ 0 be the largest integer for which there exist
k + 1 points p0, . . . , pk ∈ E1(T ) in general position (i.e. not contained in a (k − 1)-
dimensional subspace). Proposition 2.2 implies k ≤ n−1. Using an automorphism of
Pn, we may assume p0 = [1 : 0 : . . . : 0], p1 = [0 : 1 : . . . : 0], and so on. Consider the
projection f0 of Pn with center p0 onto the hyperplane Pn−1 ≡ {z0 = 0}. Proposition
2.1 shows that ϕ = u+ h0 ◦ f0, where h0 ∈ PSH(Pn−1, ωn−1) and

u([z0 : . . . : zn]) =
1

2
log

|z1|2 + . . .+ |zn|2
|z0|2 + . . .+ |zn|2

.

It follows that f0(pj) ∈ E1(h0), j = 1, . . . , k, and Proposition 2.1 can be applied to
h0 and the point f0(p1). Continuing like this we get

ϕ([z0 : . . . : zn]) =
1

2
log

|zk+1|2 + . . .+ |zn|2
|z0|2 + . . .+ |zn|2

+ h([zk+1 : . . . : zn]),

with h ∈ PSH(Pn−k−1, ωn−k−1). The definition of k implies E1(h) = ∅, so E1(ϕ) =
{zk+1 = . . . = zn = 0}. �

2.2. Green functions.

2.2.1. Green functions with one pole. It follows from Proposition 2.1 that if T =
℘⋆

xS, where S ∈ P(αn−1) has bounded potentials and ℘x : Pn
99K Pn−1 is the

projection from x, then T = ωn+ddcg with g = gS,x ∈ PSH(Pn, ωn)∩L∞
loc(P

n\{x}),
g has an isotropic pole at x with Lelong number 1 and

(ωn + ddcg)n = δx.

Conversely, any ωn-psh Green function g with pole at x and maximal Lelong number
ν(g, x) = 1 is of this form, and in particular it must have an isotropic pole at x.
Observe that the set of such functions is large.

2.2.2. Multipole Green functions. We push further the result of Proposition 2.1 and
study multipole Green functions which arise naturally from rational maps.

Let f : Pn
99K Pn−1, f = [P1 : . . . : Pn], be a rational map with finite indetermi-

nacy set If , where Pj are homogeneous polynomials of degree d on Cn+1. Then f
determines an ωn-psh Green function,

gf (πn(z)) = d−1 log ‖F (z)‖ − log ‖z‖, z ∈ Cn+1 \ {0},(4)

where F : Cn+1 → Cn, F (z) = (P1(z), . . . , Pn(z)). The function gf is continuous,
If = {gf = −∞}, and gf has an isolated pole at each point of If . Moreover, gf

verifies the Monge-Ampère equation

(ωn + ddcgf )n =
∑

p∈If

mpδp, where mp > 0, mp ∈ Q,
∑

p∈If

mp = 1.

Our next result shows that this function has an extremal property (see [Co1] for a
similar characterization of classes of pluricomplex Green functions on Cn):
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Theorem 2.4. If ϕ ∈ PSH(Pn, ωn) and ϕ ≤ gf , then there exists a unique function
h ∈ PSH(Pn−1, ωn−1) such that ϕ = gf +d−1h◦f . Conversely, any such function ϕ
is ωn-psh. We have that ϕ is locally bounded on Pn \ If if and only if h is bounded.
In this case, ϕ satisfies

(ωn + ddcϕ)n =
∑

p∈If

mpδp.

Proof. Since the indeterminacy set If is finite, we can find a hyperplane H which

does not intersect If . Let L be a linear polynomial defining H, and let P0 = Ld.

The map f̂ = [P0 : P1 : . . . : Pn] : Pn → Pn is holomorphic and f = ℘ ◦ f̂ , where

℘ : Pn
99K Pn−1, ℘([z0 : z1 : . . . : zn]) = [z1 : . . . : zn],

is the projection with center [1 : 0 : . . . : 0].

For every p ∈ Pn−1 the fiber Xp := f−1(p) = f̂−1(℘−1(p)) is one-dimensional and
is connected by [FH, Proposition 1], since ℘−1(p) is a line in Pn. This implies in
particular the uniqueness of h.

Fix now an arbitrary p ∈ Pn−1, and let us assume p = [a1 : . . . : an−1 : 1]. Then
Xp is defined by the equations Pj = ajPn. Let q = [b0 : . . . : bn] be a point in Xp\If .
We assume that b0 = 1. Then q has a neighborhood where Pn(1, z1, . . . , zn) 6= 0. So,
for some constant c, we have log ‖F‖ = log |Pn|+ c in this neighborhood. It follows
that ϕ− gf is psh in some open set which contains Xp \ If . Since ϕ− gf ≤ 0 and If
is a finite set, ϕ− gf extends to a subharmonic function on Xp. But Xp is compact
and connected, so ϕ − gf is constant on Xp. We conclude that ϕ = gf + (h ◦ f)/d,
for some function h on Pn−1. Since ϕ ≤ gf and gf is continuous, it follows easily
that h is upper semicontinuous.

We now show that h ∈ PSH(Pn−1, ωn−1). By using an automorphisms of Pn we
may assume that the hyperplane H = {z0 = 0} does not intersect If . We claim

that the map F ′ : Cn → Cn, F ′(z′) = F (1, z′), is proper. Indeed, if P d
j (z′) is

the homogeneous part of degree d of Pj(1, z
′), then P d

j (z′), j = 1, . . . , n, have no

common zeros except at 0. The homogeneity of P d
j yields

n∑

j=1

|P d
j (z′)|2 ≥M‖z′‖2d,

for some constant M > 0, which implies that F ′ is proper. The function

u(z′) = ϕ([1 : z′]) + log
√

1 + ‖z′‖2 =
1

d
log ‖F ′(z′)‖ +

1

d
h ◦ πn−1(F

′(z′))

is psh on Cn. Since F ′ is proper, the function

v(w) = dmax{u(z′) : F ′(z′) = w} = log ‖w‖ + h ◦ πn−1(w)

is psh on Cn. This proves that h ∈ PSH(Pn−1, ωn−1).
For the converse, note that

ωn + ddc(gf + (h ◦ f)/d) = d−1f⋆(ωn−1 + ddch) ≥ 0,

so gf + (h ◦ f)/d is ωn-psh.
Finally, it is clear that ϕ ∈ L∞

loc(P
n \ If ) if and only if h is bounded. Then we

infer by [D4] that mp = (ωn + ddcgf )n({p}) = (ωn + ddcϕ)n({p}). The conclusion
follows since

∑
p∈If

mp = 1. �
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Note that Proposition 2.1 follows from Theorem 2.4 applied to rational maps of
degree d = 1. We will see in section 3.2 that Green functions determined by certain
rational maps f : P2

99K P1 with three points of indeterminacy provide rich classes
of examples of Green functions with one pole on P1 × P1 (see Example 3.5).

Example 2.5. An important particular case of Theorem 2.4 is the one of rational
functions f : P2

99K P1, f = [P1 : P2], where Pj are homogeneous polynomials of
degree d whose common zero set If consists of d2 distinct points of P2. Then gf is a
ω2-psh Green function with d2 isotropic poles and Lelong number 1/d at each pole.
If d = 2 we observe that any set of four points in general position is the complete
intersection of two conics, hence it can be realized as the indeterminacy set If for a
rational map f of degree d = 2 as described above. It follows that the ω2-psh Green
functions with four isotropic poles are described by Theorem 2.4. However, if d ≥ 3
a set of d2 points of P2 in general position is not the complete intersection of two
curves of degree d (in fact when d ≥ 4, there is no curve of degree d passing through
d2 points in general position). So the Green functions gf with d2 isotropic poles,
d ≥ 3, only exist for very special sets of poles.

2.2.3. Partial Green functions. We compute here in the case of (Pn, ωn) the func-
tions ψν,p constructed in Proposition 1.6. Assume without loss of generality that
p = 0 ∈ Cn. For ν < 1 define Rν , Cν by

Rν = [ν/(1 − ν)]1/2, ν logRν + Cν = log
√

1 +R2
ν .

For z ∈ Cn let

V (z) =

{
ν log ‖z‖ +Cν , ‖z‖ ≤ Rν ,

log
√

1 + ‖z‖2 , ‖z‖ ≥ Rν .

Proposition 2.6. For ν < 1 and z ∈ Cn we have ψν,p(z) = V (z) − log
√

1 + ‖z‖2.

Proof. Note that ψν,p(z) = W (z) − log
√

1 + ‖z‖2, where

W (z) = sup
{
v(z) : v ∈ PSH(Cn), v ≤ log

√
1 + ‖ · ‖2, ν(v, 0) ≥ ν

}
.

Since max‖z‖=r v(z) is a convex increasing function of log r, and since x = logRν is

the solution of the equation d
dx log

√
1 + e2x = ν, it follows that W = V . �

Letting ν ր 1 it follows that ψ1,p(z) = log(‖z‖/
√

1 + ‖z‖2), z ∈ Cn, is the Green
function constructed in Theorem 1.4 for u(z) = log ‖z‖.
2.2.4. Dynamical Green functions. We now consider the problem of constructing
Green functions on P2 with one pole at p and Lelong number at p less than 1. Let
ω = ω2, let [t : x : y] denote the homogeneous coordinates on P2, and identify
z = (x, y) ∈ C2 to [1 : x : y]. Simple examples can be obtained by considering a
smooth curve with a flex at p, i.e. the tangent line at p does not intersect the curve
at any other points. More generally, for integers 1 ≤ k < n, the function

g([t : x : y]) =
1

2n
log(|yktn−k − xn|2 + |yn|2) − 1

2
log(|t|2 + |x|2 + |y|2)

is ω-psh and smooth away from p = 0 ∈ C2, ν(g, p) = k/n and (ω + ddcg)2 = δp.

We describe next more elaborate constructions using complex dynamics. Let
h : C2 → C2 be a polynomial mapping of algebraic degree λ > 1. Then h extends
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to a rational self-map of P2, denoted again by h, with finite indeterminacy set
I ⊂ {t = 0}. We call h weakly regular if h maps {t = 0} \ I to a point Z 6∈ I (see
[GS]). Such h is algebraically stable (deg hn = λn). It was shown in [S] that the
currents λ−n(hn)⋆ω converge weakly to an invariant positive closed current T = Th

on P2, T = ω + ddcg. We call T the dynamical Green current and g a dynamical
Green function of h. By [GS, Theorem 2.2], g is continuous on P2 \ I, T ∧ T is
supported on I, so g is a ω-psh Green function with poles in I.

If |I| = 1 then T ∧ T = δI . Our goal is to compute the Lelong number ν(T, I).

Proposition 2.7. Let h be a weakly regular polynomial endomorphism of C2 of
degree λ > 1, with |I| = 1, and such that

dist(h(p), I) ≥ C dist(p, I)δ , p ∈ P2 \ {I},(5)

for constants 0 < C < 1, 1 < δ < λ. Then ν(λ−n(hn)⋆ω, I) ր ν(T, I) as nր ∞.

Proof. If λ−1h⋆ω = ω + ddcψ, where ψ ≤ 0 is ω-psh, then by [G, Theorem 2.1]

Tn := λ−n(hn)⋆ω = ω + ddcgn , gn =

n−1∑

j=0

λ−jψ ◦ hj ց g =

∞∑

j=0

λ−jψ ◦ hj ,

and T = ω + ddcg. Hence {ν(Tn, I)} is increasing and ν(Tn, I) ≤ ν(T, I).
It follows from (5) that there is C ′ > 0 so that for every n and p ∈ P2 \ {I}

dist(hn(p), I) ≥ (C ′ dist(p, I))δ
n

.

Note that the function ψ is smooth except at I, and ψ ≥ γ log dist(·, I) −M holds
on P2 for some constants γ,M > 0. Writing g = gn + ρn, we deduce that

ρn(p) ≥
∞∑

j=n

λ−j
(
γ log dist(hj(p), I) −M

)
≥ γ′(δ/λ)n log dist(p, I) − ǫn,

with some γ′ > 0 and ǫn → 0. Thus ν(Tn, I) ≤ ν(T, I) ≤ ν(Tn, I) + γ′(δ/λ)n. �

Note that (5) holds for Hénon maps h(x, y) = (P (x) + ay, x), degP = λ, with
δ = 1, since I = [0 : 0 : 1] is an attracting fixed point for h−1. However, the map
h(x, y) = (xλ − yλ−1, yλ−1) shows that (5) does not hold for δ < λ.

Proposition 2.8. Let h(x, y) = (xλ + yµ, x), where λ > µ ≥ 1 are integers, so
I = [0 : 0 : 1]. The Green current T of h verifies T ∧ T = δI , ν(T, I) = (λ− µ)/λ.

Proof. We show first that (5) holds with δ = λ − 1. Note that h is weakly regular
and in local coordinates (t, x) near I we have

h(t, x) =

(
t

x
,
xλ + tλ−µ

xtλ−1

)
.

It is enough to prove (5) for p = (t, x) with 0 < |x|, |t| < 1. If |t| ≥ |x|, or if
|xλ + tλ−µ| ≥ |xtλ−1|, then ‖h(t, x)‖ ≥ 1 and the estimate follows. Otherwise, we
have |t| < |x| < 1 and |xλ + tλ−µ| < |xtλ−1|, so |x|λ < 2|t|λ−µ. Therefore

‖h(t, x)‖ ≥ |t|
|x| ≥ C|x|µ/(λ−µ) ≥ C|x|λ−1 ≥ C ′ dist(p, I)λ−1.
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Next we compute νn := ν(λ−n(hn)⋆ω, I). Let hn([t : x : y] = [tλ
n

: pn(t, x, y) :
qn(t, x, y)], where pn, qn are homogeneous polynomials of degree λn, and

vn(t, x) = log(|t|2λn

+ |pn(t, x, 1)|2 + |qn(t, x, 1)|2)1/2 .

It follows by induction that ν(vn, 0) = λn − max{degy pn,degy qn} = λn − µλn−1,
where degy pn denotes the degree in y of pn. Hence νn = (λ− µ)/λ = ν(T, I). �

If h is Hénon map of degree λ a similar argument shows ν(Th, I) = 1 − λ−1.

3. Green functions on P1 × P1

It is possible to describe the functions ν, ε, g, ψ on a multiprojective space Pn1 ×
· · · × Pnk . For simplicity, we only consider the case X = P1 × P1 = P1

z × P1
w. Let

πz : X → P1
z, πw : X → P1

w, denote the canonical projections and set

αa,b := aαz + bαw, ωa,b := aωz + bωw, a, b ≥ 0,

where αz = π⋆
zα1, αw = π⋆

wα1, ωz = π⋆
zω1, ωw = π⋆

wω1, and ω1 ∈ α1 is the Fubini-
Study form on P1. Note that αa,b is a Kähler class if and only if a, b > 0.

For concrete computations, it will be convenient to use coordinates on X. Let

π : (C2 \ {0}) × (C2 \ {0}) → X , π(z0, z1, w0, w1) = ([z0 : z1], [w0 : w1]),

and identify (z1, w1) ∈ C2 to π(1, z1, 1, w1) ∈ X. The currents T ∈ P(αa,b) can be
described using the class Pa,b of bihomogeneous psh functions ũ on C4 (see [G]):

ũ(λz0, λz1, µw0, µw1) = a log |λ| + b log |µ| + ũ(z0, z1, w0, w1), λ, µ ∈ C.

Then π⋆T = ddcũ, for some ũ ∈ Pa,b which is unique up to additive constants.
For a point p = (x, y) ∈ X we denote by

Vx = π−1
z (x) = {z = x} , Hy = π−1

w (y) = {w = y},
the vertical, and respectively horizontal, line through p.

3.1. Maximal Lelong numbers.

Proposition 3.1. For all p = (x, y) ∈ X, we have

ν(αa,b, p) = a+ b, ε(αa,b, p) = min{a, b}.
If T ∈ P(αa,b) and ν(T, p) = a+ b then T = a[Vx] + b[Hy]. Moreover, if T does not
charge Vx and Hy then ν(T, p) ≤ min{a, b}.
Proof. Let T ∈ P(αa,b). We can assume that p = (0, 0) and let m = min{a, b}. The
current Ra,b ∈ P(αa,b) defined by π⋆Ra,b = ddcũa,b, where ũa,b ∈ Pa,b,

ũa,b(z0, z1, w0, w1) := m log
√

|z1w0|2 + |w1z0|2 + (a−m) log |z0| + (b−m) log |w0|,
shows that ε(αa,b, p) ≥ m. Moreover, the measure T ∧R1,1 is well defined and

ν(T, p) = T ∧R1,1({p}) ≤
∫

X
T ∧R1,1 =

∫

X
ωa,b ∧ ω1,1 = a+ b.

Assume now that T does not charge the subvarieties Vx and Hy. By [D3], there
exist ǫj ց 0 and currents Tj ∈ P(αa,b + ǫjα1,1) with analytic singularities, so that
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0 ≤ ν(T, q)−ν(Tj , q) ≤ ǫj for every q ∈ X. Since T does not charge Vx, the measure
Tj ∧ [Vx] is well defined. If vj is a psh potential of Tj near p then

ν(Tj , p) ≤ ν(vj|Vx
, p) = Tj ∧ [Vx]({p}) ≤

∫

X
Tj ∧ [Vx] = b+ ǫj.

We replace Vx by Hy in this argument and let j → +∞ to get ν(T, p) ≤ m. By (3)
it follows that ε(αa,b, p) ≤ m.

Assume finally that ν(T, p) = a+ b. By [Si], we can write

T = a′[Vx] + b′[Hy] + T ′, T ′ ∈ P(αa−a′,b−b′),

where T ′ does not charge Vx and Hy. By what we have already shown,

a+ b = ν(T, p) ≤ a′ + b′ + min{a− a′, b− b′}.
This implies that a′ = a, b′ = b, and T ′ = 0. �

Observe that the functions ν, ε are constant here, as well as in the case of Pn, be-
cause α is invariant under a compact group of automorphisms that acts transitively
on X.

Note that Vol (αa,b)
1/2 =

√
2ab > min{a, b}, hence the upper bound given in (2)

is not sharp in this case. Another obvious consequence of the previous proposition
is the following:

Corollary 3.2. There is no Green function with one isotropic pole on P1 × P1.

We can however compute the partial Green functions with isotropic singularity
ψν,p constructed in Proposition 1.6. Assume that p = (0, 0) ∈ C2 ⊂ X, and let
a = b = 1, ν = ε(α1,1, p) = 1. A psh potential of ω1,1 on C2 is given by

ρ(z1, w1) = log
√

1 + |z1|2 + log
√

1 + |w1|2.
Proposition 3.3. We have ψ1,p(z1, w1) = log(|z1|+ |w1|)− ρ(z1, w1) if |z1w1| ≤ 1,
and ψ1,p(z1, w1) = 0 if |z1w1| ≥ 1.

Proof. We have to obtain upper estimates for psh functions v on C2 which verify
v ≤ ρ and ν(v, 0) ≥ 1. We do this first along a complex line z1 = sζ, w1 = tζ. Using
the same convexity argument as in the proof of Proposition 2.6, we obtain

v(sζ, tζ) ≤
{

log |ζ| +C, |ζ| ≤ R,
ρ(sζ, tζ), |ζ| ≥ R.

Here R = |st|−1/2, x = logR is the solution of the equation

d

dx

(
log

√
1 + |s|2e2x + log

√
1 + |t|2e2x

)
= 1,

and C = log(|s| + |t|) verifies logR+ C = ρ(sR, tR). If s = 1, t = w1/z1, we get

v(z1, w1) ≤ V (z1, w1) =

{
log(|z1| + |w1|), |z1w1| ≤ 1,
ρ(z1, w1), |z1w1| ≥ 1.

Since log(|z1|+ |w1|) ≤ ρ(z1, w1) on C2, with equality when |z1w1| = 1, the function
V is psh. It follows that ψ1,p = V − ρ. �
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Note that the (unbounded) hyperconvex domain

D1,p = {ψ1,p < 0} = {(z1, w1) ∈ C2 : |z1w1| < 1}
does not have a pluricomplex Green function: if v < 0 is psh on D1,p and v(0, 0) =
−∞ then v = −∞ along the lines {z1 = 0}, {w1 = 0}.

3.2. Green functions with one pole. It is clear from Proposition 3.1 and Corol-
lary 3.2 that the characterization of Green functions in PSH(X,ωa,b) with one pole
at p ∈ X is more involved. Using a birational map, we will show that they corre-
spond to a certain class of Green functions with three poles on P2. A rich class of
examples of the latter can be constructed using (4) (see also Theorem 2.4). This
will show that the Green functions of X with pole at p have many different types of
singularities, even if one asks that the Lelong number at p is maximal.

We may assume that p = (0, 0) ∈ C2 ⊂ X and a = 1 ≤ b. Let ω = ωFS on P2

and consider the rational map Φ : P2
99K X defined by

Φ([t0 : t1 : t2]) = ([t0 : t1], [t0 : t2]).

It is a birational map, with rational inverse

Φ−1([z0 : z1], [w0 : w1]) = [z0w0 : z1w0 : w1z0].

Note that Φ is the identity on C2 ≡ {[1 : t1 : t2] ∈ P2} ≡ {([1 : z1], [1 : w1]) ∈ X}, Φ
blows up the points A = [0 : 1 : 0], B = [0 : 0 : 1], to the lines {z0 = 0}, respectively
{w0 = 0}, and Φ contracts the line {t0 = 0} to the point q = (∞,∞).

We denote by Sb the set of the currents S ∈ P(α1,b) with locally bounded poten-
tials on X \ {p} and such that S ∧ S = 2bδp. A potential of S is then a ω1,b-psh
Green function on X with pole at p.

Let Rb be the set of currents R ∈ P((1 + b)ω) on P2 whose potentials are lo-
cally bounded on P2 \ {p,A,B}, have isotropic poles at A,B with Lelong numbers
ν(R,A) = b, ν(R,B) = 1, and such that R∧R = 0 on P2 \{p,A,B}. It follows that
a potential v of R is a (1 + b)ω-psh Green function on P2 with poles at p,A,B:

R ∧R = ((1 + b)ω + ddcv)2 = b2δA + δB + 2b δp.

Proposition 3.4. The mapping Φ⋆ : Sb → Rb is well defined and bijective. Its
inverse is the mapping

G : R ∈ Rb 7→ (Φ−1)⋆R− b[z0 = 0] − [w0 = 0] ∈ Sb.

Proof. Let S ∈ Sb and ũ ∈ P1,b be a potential of S. Then

ṽ(t0, t1, t2) := ũ(t0, t1, t0, t2), ṽ(λt0, λt1, λt2) = ṽ(t0, t1, t2) + (1 + b) log |λ|,
is a logarithmically homogeneous potential for R = Φ⋆S, so R ∈ P((1 + b)ω). In
particular, it follows that R has locally bounded potentials on P2 \ {p,A,B}. Near
the point A, assuming wlog that |t0| ≤ |t2| we have

ṽ(t0, 1, t2) = ũ(t0, 1, t0/t2, 1) + b log |t2| = b log
√

|t0|2 + |t2|2 +O(1).

So R has potentials with an isotropic pole at A and ν(R,A) = b. One proves in the
same way that R has potentials with an isotropic pole at B and ν(R,B) = 1. We
have R ∧ R = S ∧ S = 0 on C2 \ {0}. Since R has locally bounded potentials near
each point of {t = 0} \ {A,B} we have R ∧R({t = 0} \ {A,B}) = 0, so R ∈ Rb.
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Conversely, let R ∈ Rb with logarithmically homogeneous potential ṽ. Then

ũ(z0, z1, w0, w1) := ṽ(z0w0, z1w0, w1z0) − b log |z0| − log |w0| ∈ P1,b

is a bihomogeneous potential of G(R). We show that G(R) has locally bounded
potentials in a neighborhood of any point at infinity ζ 6= q. Suppose wlog ζ ∈ {z0 =
0}. Then for |z0| small enough we have that [z0 : 1 : z0w1] is near A, so

ũ(z0, 1, 1, w1) = ṽ(z0, 1, w1z0) − b log |z0| = b log
√

1 + |w1|2 +O(1) = O(1).

Next we study the potentials of G(R) in a neighborhood of q. We have

ũ(z0, 1, w0, 1) = ṽ(z0w0, w0, z0) − b log |z0| − log |w0|,
where |z0|, |w0| are small. If |w0/z0| is small, then [w0 : w0/z0 : 1] is near B so

ũ(z0, 1, w0, 1) = ṽ(w0, w0/z0, 1) + log |z0| − log |w0| = log
√

|z0|2 + 1 +O(1).

Similarly, ũ(z0, 1, w0, 1) = O(1) if |z0/w0| is small. If ǫ ≤ |w0/z0| ≤M then

ũ(z0, 1, w0, 1) = ṽ(w0, w0/z0, 1) + log(|z0|/|w0|) = O(1).

It follows that G(R) has locally bounded potentials in X \ {p}, hence G(R) ∈ Sb.
Since Φ is the identity on C2 and the currents in Rb, resp. Sb, do not charge the

line(s) at infinity, we conclude by the support theorem that Φ⋆ is bijective and G is
its inverse. �

Example 3.5. Let 1 ≤ b = m/n ∈ Q and f = [P1 : P2] : P2
99K P1, where

P1(t0, t1, t2) = tnk
1 tmk

2 , P2(t0, t1, t2) = tnk
1 tmk

0 + tmk
2 tnk

0 + t1t2Q(t0, t1, t2),

k ≥ 1 is an integer, and Q is a homogenous polynomial of degree (m + n)k − 2
with degt1 Q ≤ nk − 1 and degt2 Q ≤ mk − 1. Note that the indeterminacy set
If = {p,A,B} and the current

Rf := (1 + b)(ω + ddcgf ) ∈ Rb,

where gf is the Green function associated to f defined in (4). Then Sf = G(Rf )
has bihomogeneous potential ũf ∈ P1,b given by

ũf (1, z1, 1, w1) =
1

2nk
log

(
|znk

1 wmk
1 |2 + |znk

1 + wmk
1 + z1w1Q(1, z1, w1)|2

)
,

where Q(1, z1, w1) =
∑nk−1

i1=0

∑mk−1
i2=0 ci1i2z

i1
1 w

i2
1 . Depending on the vanishing order

of Q(1, ·) at the origin, one sees that the Lelong number ν(Sf , p) can take any value

of the form j
nk , 2 ≤ j ≤ nk. It follows that for any rational number r ∈ (0, 1] there

exist ω1,b-psh Green functions on X with one pole at p and Lelong number equal to
r there, but with different types of singularities at p.

We finally give an alternate way to construct ω1,1-psh Green functions on X with
pole at q = (∞,∞), using currents on P2 arising from psh functions in the Lelong
class L⋆(C2). This is the class of psh functions v on C2 so that

lim sup
‖s‖→∞

v(s)/ log ‖s‖ = 1.

If R is the trivial extension of ddcv to P2 then R ∈ P(ω).
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Proposition 3.6. Let R ∈ P(ω) be a current with locally bounded potentials in
P2 \ {t0 = 0} and near the points A,B. Then the current S = (Φ−1)⋆R ∈ P(α1,1),
ν(S, q) = 1, and S has locally bounded potentials on X \ {q}. Moreover, we have

S ∧ S = 2δq ⇐⇒ R ∧R = 0 on P2 \ {t0 = 0}.
Proof. By considering (bi)homogeneous potentials as in the proof of Proposition 3.4,
it follows that S ∈ P(α1,1) and S has locally bounded potentials on X \ {q}. So
S ∧ S({z0 = 0} ∪ {w0 = 0} \ {q}) = 0, and S ∧ S = 0 on C2 implies S ∧ S = 2δq.

Let ν := ν(S, q). Since Φ contracts the line {t0 = 0} to q, we have that Φ⋆S =
ν[t0 = 0] + T , where T ∈ P((2 − ν)ω) does not charge the line {t0 = 0}. Note that
R = T on C2. By the support theorem we conclude that R = T , so ν = 1. �

Proposition 3.6 shows how Green functions can be constructed on X by using
currents R on P2 possessing the right properties at any two points A, B and outside
the line joining them. Indeed, we pull back R by an automorphism of P2 which
maps the points [0 : 1 : 0], [0 : 0 : 1] to A,B, and then apply Proposition 3.6.

Example 3.7. The Green currents T+, T− of a Hénon map h on C2 yield by the
preceding considerations Green functions on X with pole at q. More generally, let h
be a weakly regular polynomial endomorphism of C2 with indeterminacy set I (see
section 2.2.4). Then its Green current T has continuous local potentials on P2 \ I
and T ∧ T =

∑
s∈I msδs. So T yields a Green function on X with pole at q.

4. Del Pezzo Surfaces

We evaluate here the functions ν, ε, g when X is a (smooth) Del Pezzo surface,
i.e. dimCX = 2 and c1(X) > 0. It is well known (see e.g. [De]) that such X is
biholomorphic to either P1 × P1, P2, or P2 blown up at r points in general position,
1 ≤ r ≤ 8. Here general position means the following:

− no three points are collinear;
− no six points lie on a conic;
− when r = 8, the points do not lie on a cubic that is singular at one of them.

The cases X = P2, X = P1 × P1, have already been considered in Sections 2 and
3. We focus here on the case when X is the blow up of P2 at 8 points in general
position, which we consider to be the most interesting one. The other cases could
be handled similarly. Note that the Seshadri constants ε are computed in [Br].

4.1. Maximal Lelong numbers. Let π : X → P2 be the blow up of P2 at 8 points
p1, . . . , p8 in general position, and let Ej = π−1(pj) denote the exceptional divisors.
We let

α := c1(X) = K−1
X = π⋆O(3) −

8∑

j=1

Ej

denote the (ample) anticanonical class of X. It is well known [De] that 2α is very
ample. It follows from Remark 1.2 that

ν(α, x) ≥ 1, ε(α, x) ≥ 1/2, ∀x ∈ X.(6)

We can actually be much more precise. Let V be the pencil of cubics in P2 passing
through p1, . . . , p8. It contains at most 12 singular cubics [De]. We let S ⊂ X denote
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the set of the corresponding singular points, |S| ≤ 12. These points do not belong
to the exceptional divisors, by the general position assumption.

Proposition 4.1. We have

ν(α, x) =

{
1, if x ∈ X \ S,
2, if x ∈ S.

Moreover, if x ∈ S and T ∈ P(α) does not charge the strict transform of the singular
cubic in V passing through x then ν(T, x) ≤ 1/2.

Proof. For x ∈ X there exists a unique cubic Cx ∈ V whose strict transform C′
x

contains x. (If x ∈ Ej this is the cubic whose strict transform intersects Ej at x.)
Note that C′

x is irreducible.
Let T ∈ P(α). We assume at first that T does not charge C′

x and let ω be a fixed
Kähler form on X. By [D3] there exist ǫj ց 0 and currents Tj ∈ P(α + ǫjω) with
analytic singularities, such that Tj → T and 0 ≤ ν(T, z)−ν(Tj , z) ≤ ǫj for all z ∈ X.
Since T does not charge C′

x, the measure Tj ∧ [C′
x] is well defined. As Vol (α) = 1 it

follows that

1 +O(ǫj) =

∫

X
Tj ∧ [C′

x] ≥ Tj ∧ [C′
x]({x}) ≥ ν(Tj , x)m(C′

x, x),

where m(C′
x, x) denotes the multiplicity of C′

x at x. The last inequality can be seen
by using a local normalization at x for each irreducible component of C′

x and since
local psh potentials of Tj are subharmonic along C′

x.
Letting j → +∞, we have shown that ν(T, x) ≤ 1/m(C′

x, x) ≤ 1, if T ∈ P(α)
does not charge C′

x. In particular, if x ∈ S then ν(T, x) ≤ 1/2 since m(C′
x, x) = 2.

In the general case, we can write by [Si]

T = a[C′
x] + (1 − a)R, 0 ≤ a ≤ 1,

where R ∈ P(α) does not charge C′
x. Then

ν(T, x) = am(C′
x, x) + (1 − a)ν(R,x) ≤ a(m(C′

x, x) − 1) + 1 ≤ m(C′
x, x),

which concludes the proof. �

4.2. Uniform integrability exponent. We fix ω ∈ α = c1(X) a Kähler form and
we denote by PSH0(X,ω) the set of ω-psh functions ϕ normalized by maxX ϕ = 0.
This is a compact subset of L1(X). Set

σ(X) = sup{c ≥ 0 : e−2cϕ ∈ L1(X), ∀ϕ ∈ PSH0(X,ω)}.
This number clearly depends only on α = c1(X), rather than on the particular choice
of ω. By the compactness of PSH0(X,ω) and the semicontinuity of the “complex
singularity exponent” [DK], σ(X) coincides with the exponent introduced by Tian
in [T] (the so-called “α-invariant of Tian”).

We assume here again that X is the blow up of P2 at 8 points in general position.
Since ν(α, x) ≤ 2 for all x ∈ X, it follows from Skoda’s integrability theorem [Sk]
that σ(X) ≥ 1/2. One can however obtain sharp estimates, thanks to the full
characterization given in Proposition 4.1:

Proposition 4.2. If there is a singular cubic in V with a cusp then σ(X) = 5/6.
Otherwise, σ(X) = 1.
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Recall that there is no cuspidal cubic in V when the points p1, . . . , p8 are in very
general position [De].

Proof of Proposition 4.2. Let s = |S| ≤ 12 and C′
j , 1 ≤ j ≤ s, denote the strict

transforms of the singular cubics in V. We write [C′
j] = ω + ddcϕj , where ϕj ∈

PSH0(X,ω).
Fix now ϕ ∈ PSH0(X,ω) and let T = ω + ddcϕ ∈ P(α). By [Si],

T = a0T0 +
s∑

j=1

aj[C′
j ], where aj ≥ 0,

s∑

j=0

aj = 1,

and T0 = ω+ddcϕ0 ∈ P(α) does not charge any curve C′
j . Hölder’s inequality shows

that e−2cϕ ∈ L1(X) if e−2cϕj ∈ L1(X) for all j = 0, . . . , s.
For j ≥ 1, a direct computation in local coordinates shows that e−2cϕj ∈ L1(X)

for every c < 1 if C′
j is non-singular or has a simple node, while e−2cϕj ∈ L1(X) for

every c < 5/6 if C′
j has a cusp. In the latter case, e−2cϕj 6∈ L1(X) if c = 5/6.

Since T0 does not charge any curve C′
j, it follows from Proposition 4.1 that

ν(T0, x) ≤ 1 for all x ∈ X. By [Sk] we see that e−2cϕ0 ∈ L1(X) for every c < 1.
This completes the proof of the proposition. 2

Note that σ(X) is also called the (global) “log-canonical threshold” of X. It has
been the subject of intensive studies in the last decade. The above result has been
recently obtained by Cheltsov [Ch] by more algebraic methods.

The importance of this notion is seen in its connection with the existence of
Kähler-Einstein metrics: it was shown by Tian [T] that a Fano surface admits a
Kähler-Einstein metric if σ(X) > 2/3. The exponent σ(X) was previously estimated
by Tian and Yau in [TY].

4.3. Green functions. In this section X denotes again the blow up of P2 at 8
points in general position.

4.3.1. Special points. For x ∈ S, let Cx be the cubic in V which is singular at x, and
let C′

x be its strict transform.
Counting dimension we see that there exists an irreducible sextic Z ⊂ P2 passing

through x and with multiplicity 2 at each point pj . By Bezout we see that Z and
Cx intersect only at x and at the points pj and the intersection numbers (Z · Cx)pj

=
(Z · Cx)x = 2. This implies that the strict transform Z ′ ⊂ X of Z intersects C′

x only
at x with (Z ′ · C′

x)x = 2.
We write (1/2)[Z ′] = ω + ddcu, [C′

x] = ω + ddcv, and set

gx := (1/2) log(e2u + e2v) ∈ PSH(X,ω) ∩ C∞(X \ {x}).
Proposition 4.3. If x ∈ S we have (ω + ddcgx)2 = δx, and the function gx is a
ω-psh Green function with Lelong number ν(gx, x) = 1/2.

Proof. Since Z ′ is smooth at x we have ν(gx, x) = 1/2. Moreover, (Z ′ · C′
x)x = 2

implies that (ω + ddcgx)2({x}) = 1. We conclude by mass considerations. �

Observe that the singularity of gx at x is not isotropic, since an isotropic pole
with Lelong number 1/2 would produce a Dirac mass at x with coefficient 1/4.
However, the existence of a Green function which is locally bounded away from x
has interesting consequences:
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Corollary 4.4. If x ∈ S then ε(α, x) = 1/2. Moreover, the supremum is attained
in the formula (3) of ε(α, x), i.e.

∃ϕ ∈ PSH(X,ω) ∩ L∞
loc(X \ {x}), ‖ϕ− (1/2) log dist(·, x)‖L∞(X) < +∞.

Proof. It follows from (6) and Proposition 4.1 that ε(α, x) = 1/2. Let gx be the
function constructed in Proposition 4.3. Fix χ ∈ C∞(X) a test function with χ ≡ 1
on U , where U is a small open neighborhood of x. We define

ϕ := max{gx, (1/2)χ log dist(·, x) − C},
where C is large so that ϕ = gx on X \ U . Since χ log dist(·, x) is psh on U we
see that ϕ ∈ PSH(X,ω). Now ν(gx, x) = 1/2, therefore ϕ − (1/2) log dist(·, x) is
bounded on X. �

4.3.2. Generic points. Assume now that x ∈ X \S. The bound (6) is not sharp: by
[Br] we have ε(α, x) = 1.

It is easy to see that the supremum in formula (3) is attained if x is the ninth base
point of the pencil of cubics V. In this case we write [C′

1] = ω+ddcu, [C′
2] = ω+ddcv,

where C′
j are the strict transforms of two cubics generating V, and we set

gx := (1/2) log(e2u + e2v) ∈ PSH(X,ω) ∩ C∞(X \ {x}).
We have that (ω + ddcgx)2 = δx and gx is a ω-psh Green function with an isotropic
pole at x with ν(gx, x) = 1.

However, it is unclear whether this holds at arbitrary points x ∈ X \S. If this was
the case, it would imply that K−1

Y admits a positive metric with bounded potentials,
where Y → P2 is the blow up of P2 at 9 points in general position, which is a famous
open problem (see [DPS]). Observe that the existence of such a metric is equivalent
to constructing a ωFS-psh Green function with isotropic poles of Lelong number 1/3
at 9 points in general position in P2.

More generally, finding a ωFS-psh Green function with isotropic poles of Lelong
number 1/

√
s at s points in general position in P2 is equivalent to the celebrated

(strong version of) Nagata’s conjecture (see [La, Remark 5.1.14]).
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