
Syracuse University Syracuse University

SURFACE SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and
Projects

College of Engineering and Computer Science

1994

A Data Parallel Algorithm for Solving the Region Growing Problem A Data Parallel Algorithm for Solving the Region Growing Problem

on the Connection Machine on the Connection Machine

Nawal Copty
Syracuse University, School of Computer and Information Science

Sanjay Ranka
Syracuse University, School of Computer and Information Science

Geoffrey C. Fox
Syracuse University, School of Computer and Information Science

Ravi V. Shankar
Syracuse University, School of Computer and Information Science

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Copty, Nawal; Ranka, Sanjay; Fox, Geoffrey C.; and Shankar, Ravi V., "A Data Parallel Algorithm for Solving
the Region Growing Problem on the Connection Machine" (1994). College of Engineering and Computer
Science - Former Departments, Centers, Institutes and Projects. 16.
https://surface.syr.edu/lcsmith_other/16

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Flcsmith_other%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/16?utm_source=surface.syr.edu%2Flcsmith_other%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

A Data Parallel Algorithm for Solvingthe Region Growing Problemon the Connection Machine 1Nawal Copty Sanjay Ranka Geo�rey FoxRavi V. ShankarSchool of Computer and Information ScienceSyracuse UniversitySyracuse, NY 13244Published in:Journal of Parallel and Distributed Computing, Special Issue onData Parallel Languages and Programming 21, 1(April 1994), pp. 160-168
1This work was supported in part by NSF under CCR-9110812 and DARPA under contract #DABT63-91-C-0028. The content of the information does not necessarily re
ect the position or thepolicy of the Government and no o�cial endorsement should be inferred.

AbstractRegion growing is a general technique for image segmentation, where image characteristics areused to group adjacent pixels together to form regions. This paper presents a parallel algorithmfor solving the region growing problem based on the split and merge approach, and uses it totest and compare various parallel architectures and programming models. The implementationswere done on the Connection Machine, models CM-2 and CM-5, in the data parallel and messagepassing programming models. Randomization was introduced in breaking ties during mergingto increase the degree of parallelism, and only one and two-dimensional arrays of data were usedin the implementations.Keywords: Region growing, Split and merge, Parallel processing, Data parallelism,Message passing, and Connection machine.

1 The Region Growing ProblemRegion growing is a general technique for image segmentation. Image characteristics are used togroup adjacent pixels together to form regions. Regions are merged with other regions to growlarger regions. A region might correspond to a world object or a meaningful part of one [2].The merging of pixels or regions to form larger regions is usually governed by a homogeneitycriterion that must be satis�ed. A variety of homogeneity criteria have been investigated forregion growing. If f(x; y) is the image intensity at the pixel with coordinate (x; y), then thepixel range homogeneity criterion for a region R is true whenever kf(x1; y1)� f(x2; y2)k < Tfor all point pairs (x1; y1) and (x2; y2) in R, and false otherwise. This particular homogeneitycriterion requires that the range between the minimum and maximum intensities within a regionR not exceed a threshold value T .There are many algorithms for solving the region growing problem [1, 2, 6, 7, 10, 15]. Thee�ectiveness of a particular algorithm depends on the application area and the input image. Inthis paper, we present a parallel algorithm for solving the region growing problem based on thesplit and merge approach proposed by Horowitz and Pavlidis [8].While previous parallel implementations [13, 14] of the split and merge approach have useddynamic or tree structures to represent the regions in the image, our implementations use onlyone and two-dimensional arrays. We also introduce an element of randomness to the algorithmwhenever a tie occurs during merging; this has signi�cantly reduced the execution time. Acomponent labeling algorithm proposed by Hambrusch et al [6] de�nes as initial regions adjacentpixels that have the same intensity value, instead of using a split stage. Moreover, Hambruschet al use extra selection criteria that improve the quality of the solution for some input imagesand reduce the possibility of a tie during merging.2 The Split and Merge ApproachThe split and merge approach solves the region growing problem in two stages: the split stageand the merge stage. The split stage is a preprocessing stage that aims to reduce the numberof merge steps required to solve the problem.2.1 The Split StageIn the split stage, an N � N image is partitioned into square regions which conform to thehomogeneity criterion. At �rst, each pixel is considered a homogeneous square region of size1� 1. Then every group of four adjacent pixels are tested for homogeneity. If the homogeneitycriterion is satis�ed, the pixels are combined into one larger square region of size 2 � 2, and soon... The split stage terminates when the whole image is one square region of size N � N , orwhen no more square regions can be merged. Figure 1 shows the square regions produced bythe split stage for a 4 � 4 image, where the threshold value T = 3. The numbers in the imagerepresent pixel intensities. 1

6 7 1 3

8 6 5 4

8 8 65

6687

(a)

6 7 1 3

8 6 5 4

8 8 65

6687

(b)Square regions: (a) at start of the split stage; (b) after �rst and �nal split iterationFigure 1: The Split Stage2.2 The Merge StageIn themerge stage of the split and merge approach, the square regions determined by the splitstage are iteratively merged into larger and larger regions which conform to the homogeneitycriterion. The merge continues until no more merges are possible.The merge is achieved by reformulating the region growing problem as a weighted, un-directed graph problem, where the vertices of the graph represent the regions in the image, andthe edges represent the neighboring relationships between these regions. That is, an edge eexists between two vertices v and w of the graph, if and only if the regions represented by v andw share a common boundary. The weight of the edge e is the di�erence between the maximumand minimum pixel intensities in the union of the two regions represented by v and w.Obviously, only vertices connected by edges satisfying the homogeneity criterion can bemerged. In one merge iteration, each region selects for merging the neighbor that best satis�esthe homogeneity criterion, namely the neighbor connected to it by the edge of least weight.This \best merge" approach yields better results by minimizing the increase in range with eachmerge [14]. A tie between two or more neighbors may be broken by selecting the neighbor withthe smallest (largest) ID, or by using some other criteria.Two regions actually merge if they select each other for merging. Once two regions merge,the region with the smaller ID becomes the representative of the two, and the vertices andedges of the graph are updated. The merge stage terminates when no more edges satisfying thehomogeneity criterion exist in the graph.Figure 2 shows the di�erent regions obtained and their corresponding graphs in each iterationof the merge stage, for the 4 � 4 image of Figure 1. Ties are broken by selecting the neighborwith the smallest ID. The small numbers in parenthesis in the corners of the regions denote theregion IDs.Resolving Ties at Random: The region growing problem is a representative of a type ofloosely synchronous problems, known as adaptive irregular problems, whose data objects evolveduring the computation in a time synchronized manner [5]. The problem exhibits a dynamicbehavior that starts with a high degree of parallelism that very rapidly diminishes to a muchlower degree of parallelism.In order to increase the degree of parallelism in the algorithm, we introduced an elementof randomness to our parallel implementations. Whenever a tie occurs during the merging ofregions, the tie is broken by selecting one of the tied neighbors at random instead of selecting2

(a) (b) (c) (d)

6 7 1 3

8 8 656

8 6 5

6 7 1 3

2 5

3

4

0

2

2

1

3

4

3

7

1

1

6

0 3

2

3 2
5

7

2
5

6

1

0 3

2

3

7

3

5

3
5

0

2
7

1

2

(0)(0) (2) (5) (5)(2) (0) (2)

8 5 46 8 6 4
(3)

(0)

(6)

(5)(2)
6 7 1 3

8 6 5 4
(1) (4)

7 8 66 7 8 6 6 7 6687 8 6 6

8 8 5 6 8 8 5 6 8 58

4(3) (6)
5

(3)

6 317

Regions: (a) at start of the merge stage; (b) after �rst merge iteration; (c) after second mergeiteration; (d) after third and �nal merge iterationFigure 2: The Merge Stage When Ties are Broken by Choosing Neighbor With Smallest IDthe neighbor with the smallest (largest) ID. In Figure 2(a), both regions 3 and 5 tie for mergingwith region 6, as they best satisfy the homogeneity criterion for region 6. Region 6 chooses tomerge with region 3, since ties in Figure 2 are broken by choosing the neighbor with the smallestID. However, no merge actually takes place, since region 3 chooses to merge with region 4. If,instead, ties were broken at random, then, in the �rst merge iteration, the three region pairs:0 and 1, 3 and 4, 5 and 6 could merge at the same time, and the merge stage could take 2iterations instead of 3.Experimentally, the random approach in breaking ties proved to be signi�cantly faster thanthe approach of selecting the neighbor with the smallest (largest) ID, as shown in Table I. Thisis due to the fact that the random approach generally results in a larger number of mergesper merge iteration, while the approach of selecting the neighbor with the smallest (largest) IDimposes a serialization on the order of merges.3 The Parallel ImplementationsThe region growing problemwas implemented on two distinct models of the Connection Machine:the CM-2 and CM-5.The CM-2 is a massively parallel computer that belongs to the range of SIMD (Single In-struction Multiple Data) machines. The CM-2 operates under the programmed control of a frontend computer that provides the program development and execution environment. All CM-2programs execute on the front end; during the course of the execution, the front end issues in-structions to the CM-2 processors. The CM-2 supports the data parallel model of programming,and provides the CM Fortran language which is essentially standard Fortran 77 supplementedwith the array processing extensions of Fortran 90.The CM-5, on the other hand, is an MIMD machine composed of a control processor and3

tens or hundreds of node processors connected together in the form of a fat tree [9]. Everynode processor is a general-purpose computer that can fetch and interpret its own instructionstream, execute arithmetic and logical instructions, calculate memory addresses, and performinterprocessor communication. The CM-5 supports both the data parallel and message passingmodels of programming. For the data parallel model, the CM-5 provides the CM Fortranlanguage. For the message passing model, the CM-5 provides the CMMD library, which isa collection of routines that permit cooperative message passing among the node processors.CMMD supports a version of message passing known as host/node programming, where a hostprogram runs on the control processor, and independent copies of a node program run on eachof the node processors.3.1 The Data Parallel ImplementationIn the data parallel model of execution, the same CM Fortran program can be executed on boththe CM-2 and the CM-5 without modi�cation. The data parallel implementation of the splitand merge region growing algorithm consists of the following steps:1. The two-dimensional pixel image is repeatedly split into homogeneous square regions. Thesplit stage stops when the whole image is one homogeneous square region, or when no moremerges are possible.2. For each square region in the pixel image, a corresponding graph vertex is created, andfor each pair of neighboring square regions, an edge is created. Edges that do not satisfythe homogeneity criterion are de-activated.3. A region determines its neighboring region that best satis�es the homogeneity criterion.In the case of a tie, the region chooses one of the tied neighboring regions at random. Tworegions merge if their merge choices are mutual. In one merge iteration, several regionpairs can merge at the same time without con
icting with each other.4. The vertices and edges of the graph are updated to re
ect the new regions in the image.Edges that do not satisfy the homogeneity criterion are de-activated.5. If there still exist any active edges, then steps 3 and 4 are repeated. Otherwise, theprogram terminates.3.2 The Message Passing ImplementationIn contrast to the data parallel model of execution, the message passing model requires theprogrammer to explicitly specify the detailed behavior of individual processors operating asyn-chronously. The message passing implementation of the split and merge algorithm is a hand-coded translation of the data parallel one. It consists of the following steps:0. The pixel image is partitioned equally among the node processors. Given a pixel image ofsize N �N and P1�P2 node processors, the pixel image is mapped to the processor gridsuch that each processor receives an NP1 � NP2 sub-image of the original image.4

1. Each node processor independently splits its NP1 � NP2 sub-image and determines the ho-mogeneous square regions within it. If the sub-image within a processor is rectangular inshape, it is divided into square sections and the split stage is applied independently toeach of these sections in turn.2. Each node processor sets up the vertices and edges of the graph associated with its sub-image. Boundary information is exchanged so that edges connected to vertices in otherprocessors are created.3. The node processors cooperate to merge the regions determined so far in the image.4. The node processors cooperate to update the vertices and edges of their graphs.5. If there still exist any active edges in any of the node processors, then steps 3 and 4 arerepeated. Otherwise, the host and node programs terminate.Irregular Communication: At several points in the message passing implementation, irregu-lar communication is required, where each of the node processors sends zero or more messages toother processors in an irregular fashion. An e�cient communication scheme is needed wherebymessages are sent and received without causing deadlock.Two di�erent communication schemes were investigated. The �rst, called Linear Permu-tation (LP) [12], uses synchronous (blocked) message passing. In this scheme, each processorobtains a copy of the communication matrix, using a global concatenation operation. Then,in step i, 0 < i < Q, processor pk sends a message to processor p(k+i) MOD Q and receives amessage from processor p(k�i) MOD Q, where Q is the total number of node processors. Thesender and receiver processors are blocked until the message is transmitted. The steps of theLinear Permutation algorithm are as follows:For all processors pk, 0 � k � Q� 1, in parallel dofor i = 1 to Q� 1 doProcessor pk sends a message to processor p(k+i) MOD QProcessor pk receives a message from processor p(k�i) MOD QendforThe second communication scheme uses asynchronous message passing. In this scheme, aprocessor that wishes to send or receive a message does not block while waiting for its partner.A processor announces its intention to send or receive a message, and then pursues other com-putation until the message is ready to be sent and received. When both the sender and receiverare ready, the system interrupts whatever else is happening on the processors and the messageis transmitted. The steps of the asynchronous communication algorithm are as follows:1. Using a global reduction operation, each processor determines the number of messages itmust receive from the other processors.2. Every processor sends, asynchronously, all the messages it wishes to send to other proces-sors.3. Every processor receives the required number of messages.5

In order to reduce the communication overhead in both schemes, whenever a processor needsto send more than one message to the same destination, all the messages are concatenatedtogether and sent as one large message.3.3 Data StructuresIn implementing the split and merge algorithm for solving the region growing problem, nosophisticated data structures were needed to solve the problem. Two-dimensional arrays wereused to store the intensities as well as other information pertaining to the pixels, such as whethera pixel is a region representative or not. One-dimensional arrays were used to store informationabout the vertices and edges of the graph modeling the problem.To illustrate the way in which data is stored in the various arrays, consider Figure 2(a) whichshows the regions in the image at the start of the merge stage where the threshold value T = 3.Information on vertices corresponding to these regions is stored in one-dimensional arrays, asfollows: Region ID:Min. pixel value:Max. pixel value: 068 178 211 355 456 533 644Information on edges is stored in one-dimensional arrays, as follows:6801Yes 1802No 5803Yes 5814Yes 1523No 1325Yes 5634Yes 4536Yes 4646Yes 3456Yesof 2 regions:of 2 regions:Min. pixel value in unionMax. pixel value in unionID of �rst region of Edge:ID of second region of Edge:Edge active?4 ComplexityGiven an N �N pixel image, the complexity of the parallel split and merge algorithm dependson the number of processors used and the number of iterations required to �nd the regions inthe image. The number of iterations in turn depends on the shape and size of those regions.4.1 The Split StageIn the best case, when every pixel is a region by itself, only one split iteration is required. Inthe worst case, when the whole image is one homogeneous square region, log(N) split iterationsare required.CM-2 Implementation: Suppose that P processors are used by the data parallel implemen-tation on the CM-2, and P is smaller than N2. At the beginning of the split stage, each pixel6

is considered a square region and the �rst split iteration can be done in N2P steps. In the secondsplit iteration, there are O(N24) square regions and this iteration can be done in O(N24�P) steps,and so on, until the number of square regions becomes � P . When this occurs, each iterationcan be done in one step and there will be at most log(P) of these iterations. So, the complexityof the split stage in the data parallel implementation on the CM-2 is given by O(N2P + logP).CM-5 Implementations: In both the data parallel and message passing implementationson the CM-5, the �rst logN2P split iterations are done locally, while the last logP iterationsrequire communication. Assuming that communication in each of the last logP split iterationsrequires O(�) time units, where � is the setup time, then the total time for the split stage isO(N2P + (� � logP)). If the split stage is stopped after logN2P iterations, then the time is O(N2P).4.2 The Merge StageThe number of iterations needed to complete the merge stage of the algorithm is upper boundedby the maximum number of sub-regions that must be merged to connect any single region in theimage. If a region consists of r sub-regions, then it will require at least log(r) merge iterations.In the worst case, when only one pair of regions is merged in each iteration, it will require r� 1merge iterations.The total time for the merge stage depends on the number of regions in the image at thebeginning and at the end of the merge stage. Let Ri and Rf denote these two numbers, re-spectively. Suppose that the number of regions is reduced by a factor of k at every step in themerge stage (1 � k � 2). Then the number of iterations required is logk RiRf . The exact valueof k depends on the input image and the approach used in resolving ties. As the timings inTable I show, the random tie breaking approach generally results in a greater value of k thanthe smallest (largest) ID approach.The number of edges, E, and the number of regions, Ri, at the beginning of the merge stagecan be derived by Euler's formula [4]: V +Ri �E = 2, where V is the total number of cornersof the square regions. Since E = V +Ri � 2 and V � 4�Ri, then Ri � E � 5�Ri. Thus, thenumber of edges is linearly proportional to the number of regions.CM-2 Implementation: Suppose that P processors are used by the data parallel implemen-tation on the CM-2. Then the total time required for any step of the merge stage in which Eedges are active is EP� (Cost of a Random Access Write + Cost of a Random Access Read).The time taken by a Random Access Read and a Random Access Write of B data elementson a P -processor hypercube is O(logP) if B � P , and O(B�logBP) if B � P 1+2;2> 0.If we assume that the number of active edges decreases by a factor of k in each iterationof the merge stage (same as for number of regions), then the total time required for the mergestage, assuming B � P in every iteration, is O(logP � logk RiRf). The total time required in thegeneral case is O(Ri�logRiP + logP � logk RiRf). Note that this is a very loose complexity analysis.CM-5 Implementations: In the data parallel and message passing implementations on theCM-5, each merge step of the algorithm requires a many-to-many communication. The complex-ity of the many-to-many communication is di�cult to analyze, since it depends on the numberof the messages sent by every processor, which in turn depends on the image.7

5 PerformanceThe data parallel implementation (CM Fortran) of the split and merge algorithm was executedon both a 16K CM-2 and a 32-node CM-5, while the message passing implementation (F77 +CMMD) was executed on a 32-node CM-5 only. Several images were used to test the variousimplementations. These images are shown in Figure 5 in the Appendix.5.1 Smallest-ID vs. Random Approach in Resolving TiesTable I compares the smallest-ID and random approaches in resolving ties during the mergestage. The table presents the execution time and the number of iterations required by themerge stage of the data parallel implementation (CM Fortran) on the CM-5, using each of thetwo approaches. Invariably, in all of the images, the random approach in resolving ties provedto be signi�cantly faster than the approach of selecting the region with the smallest ID. Similarresults were obtained for the message passing implementation on the CM-5, as well as the dataparallel implementation on the CM-2.Merge Stage Merge Stage(Smallest-ID Approach) (Random Approach)Time (sec) Iterations Time (sec) IterationsImage 1: 334.948 290 33.013 19Image 2: 151.670 153 31.615 20Image 3: 1406.099 809 42.570 27Image 4: 622.980 549 37.588 25Image 5: 186.834 226 24.471 16Image 6: 1754.254 1062 75.582 45Table I: Comparison of Smallest-ID and Random Approaches in Breaking Tiesin the Data Parallel Implementation on the CM-5 (32 nodes)5.2 Comparison of the Parallel ImplementationsThe bar chart of Figure 3 gives a visual comparison of the times taken by the merge stage inthe various implementations. LP refers to the Linear Permutation communication scheme andAsync refers to the asynchronous one.Figure 4 presents the execution time and speedup of the merge stage in the message passingimplementation on the CM-5 using asynchronous communication, as a function of the numberof processors used.The detailed timings of the various implementations (using the random approach in resolvingties) is presented in Table II in the Appendix. 8

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

T
im

e
(s

ec
)

T
ak

en
 b

y
M

er
ge

 S
ta

ge

CM Fortran on CM-2 (8K Procs)
CM Fortran on CM-2 (16K Procs)
CM Fortran on CM-5 (32 nodes)
F77 + CMMD on CM-5 (32 nodes, LP)
F77 + CMMD on CM-5 (32 nodes, Async)

Figure 3: Execution time of the Merge Stage in the Various Implementations
0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35

Ti
me
(s
ec
)

Number of CM-5 Processors

Timings for Merge Stage (F77+CMMD on CM-5, Async)

Image 1
Image 2
Image 3
Image 4
Image 5
Image 6

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

Sp
ee
du
p

Number of CM-5 Processors

Speedup of Merge Stage (F77+CMMD on CM-5, Async)

Image 1
Image 2
Image 3
Image 4
Image 5
Image 6

Figure 4: Execution Time and Speedup of the Merge Stage on the CM-5 as a Function of theNumber of Processors9

As was previously mentioned, the message passing version of the region growing algorithmis essentially a straightforward, hand-coded translation of the data parallel CM Fortran version.The CM Fortran version was easier to program than the message passing one (the number oflines of source code was 2525 and 1128 in the message passing and CM Fortran versions, re-spectively). In the message passing version, the programmer explicitly speci�es synchronization,data partitioning, and communication, while, in the CM Fortran version, the compiler and therun-time system insert synchronization, lay out the data, and provide communication amongthe node processors.The experimental results presented in Table II and Figures 3, 4 show that the message passingversion exhibits reasonable speedup on the CM-5, an MIMD machine. However, the compiledCM Fortran version on the same machine runs signi�cantly slower. We believe that with a moree�cient implementation of a CM Fortran/High Performance Fortran (HPF) compiler, the per-formance of the data parallel version should be closer to that of the hand-coded message passingone. We are developing a Fortran 90D/HPF compiler which supports the above conversion [3].We plan to test the performance of the region growing algorithm with this compiler and presentresults at a later stage.Of the two communication schemes investigated on the CM-5, the asynchronous scheme isfaster. In the Linear Permutation scheme, the processors must iterate Q times, where Q isthe number of processors used, until all the required sends and receives are completed. In theasynchronous scheme, however, the number of iterations is � Q and is dependent on the numberof messages to be sent and received.The graph that models the region growing problem constantly evolves during the course ofthe computation. In the current message passing implementation, the vertices and edges of thegraph remain in the same processors throughout the merge stage. This, in general, leads to loadimbalance. A potential approach would be to let the active vertices and edges migrate betweenthe processors, so the load is more evenly distributed. We are currently investigating variousload balancing schemes and their tradeo�s.6 ConclusionsWe have presented a parallel algorithm for solving the region growing problem based on the splitand merge approach. Ties during merging were resolved by selecting a partner at random. Thealgorithm was implemented on the Connection Machine, models CM-2 and CM-5, in both thedata parallel and message passing programming paradigms. The performance of the algorithmusing the di�erent architectures and programming models was analyzed and compared.Acknowledgements: We would like to thank Paul Coddington, Pablo Tamayo, and Jhy-ChunWang for interesting and helpful discussions; Gregor von Laszewski for help in preparing themanuscript; and the referees for their useful and insightful comments.
10

References[1] H. Alnuweiri and V. Prasanna, \Parallel Architectures and Algorithms for Image Compo-nent Labeling", IEEE Trans. Patt. Anal. Machine Intell., 14, pp. 1014-1034, 1992.[2] D. Ballard and C. Brown, Computer Vision, Prentice Hall, Englewood Cli�s, NJ, 1982.[3] Z. Bozkus et al, \Compiling Fortran 90D/HPF for Distributed MemoryMIMDComputers",Tech. Report # 444, Northeast Parallel Architectures Center, Syracuse Univ., May 1993.[4] S. Even, Graph Algorithms, Computer Science Press, Potomac, MD, 1979.[5] G. Fox et al, \Software support for irregular and loosely synchronous problems", Tech.Report, Northeast Parallel Architectures Center, Syracuse Univ., May 1992.[6] S. Hambrusch, X. He, and R. Miller, \Parallel Algorithms for Gray-Scale Digitized PictureComponent Labeling on a Mesh-Connected Computer", J. Parallel Distrib. Comput., toappear.[7] R. M. Haralick and L. G. Shapiro, \Image Segmentation Techniques", Computer Vision,Graphics, and Image Processing 29, pp. 100-132, 1985.[8] S. L. Horowitz and T. Pavlidis, \Picture Segmentation By a Directed Split-and-MergeProcedure", Proc. 2nd International Joint Conf. on Pattern Recognition, pp. 424-433, 1974.[9] C. Leiserson, \The Network Architecture of the Connection Machine CM-5", Proc. 4thAnnual ACM Symposium on Parallel Algorithms and Architectures, San Diego, CA, 1992.[10] T. Pavlidis, \Image Analysis", Annual Review of Computer Science 3, pp. 121-146, 1988.[11] S. Ranka and S. Sahni, Hypercube Algorithms. Springer-Verlag, New York, 1990.[12] S. Ranka, J. Wang, and G. Fox, \Static and runtime algorithms for all-to-many personal-ized communication on permutation networks", Proc. International Conf. on Parallel andDistributed Systems, 1992.[13] J. C. Tilton, \Image segmentation by iterative parallel region growing with applications todata compression and image analysis", Proc. 2nd Symposium on the Frontiers of MassivelyParallel Computation, 1988.[14] M. Willebeek-LeMair and A. Reeves, "Solving non-uniform problems on SIMD computers:Case study on region growing", J. Parallel Distrib. Comput. 8, pp. 135-149, 1990.[15] S. W. Zucker, \Region growing: Childhood and adolescence", Computer Graphics andImage Processing 5, pp. 382-399, 1976. 11

APPENDIX
Image 1 (128 x 128 image)

Image 3 (128 x 128 image)

Image 5 (256 x 256 image)

Image 4 (256 x 256 image)

Image 6 (256 x 256 image)

Image 2 (128 x 128 image)

Figure 5: Images 1-612

Image 1: 128� 128 image composed of two nested rectangular regionsNo. of square regions found at end of split stage = 436No. of regions found at end of merge stage = 2Split Stage Merge Stage(Random Approach)Time (sec) Iterations Time (sec) IterationsCM Fortran on :CM-2 (8K procs) 0.200 4 9.511 19CM-2 (16K procs) 0.112 4 7.027 20CM-5 (32 nodes) 0.361 4 33.013 19F77 + CMMD on :CM-5 (32 nodes, LP) 0.022 4 6.914 24CM-5 (32 nodes, Async) 0.021 4 4.025 20Image 2: 128� 128 image composed of a collection of rectanglesNo. of square regions found at end of split stage = 193No. of regions found at end of merge stage = 7Split Stage Merge Stage(Random Approach)Time (sec) Iterations Time (sec) IterationsCM Fortran on :CM-2 (8K procs) 0.200 4 8.184 18CM-2 (16K procs) 0.112 4 5.345 17CM-5 (32 nodes) 0.360 4 31.615 20F77 + CMMD on :CM-5 (32 nodes, LP) 0.022 4 9.236 35CM-5 (32 nodes, Async) 0.021 4 6.441 35Image 3: 128� 128 image composed of a collection of circlesNo. of square regions found at end of split stage = 1732No. of regions found at end of merge stage = 11Split Stage Merge Stage(Random Approach)Time (sec) Iterations Time (sec) IterationsCM Fortran on :CM-2 (8K procs) 0.200 4 13.711 24CM-2 (16K procs) 0.112 4 9.538 25CM-5 (32 nodes) 0.361 4 42.570 27F77 + CMMD on :CM-5 (32 nodes, LP) 0.022 4 9.454 33CM-5 (32 nodes, Async) 0.021 4 5.516 28Table II: Comparison of the Performance of the Parallel Implementations13

Image 4: 256� 256 image composed of two nested rectangular regionsNo. of square regions found at end of split stage = 823No. of regions found at end of merge stage = 2Split Stage Merge Stage(Random Approach)Time (sec) Iterations Time (sec) IterationsCM Fortran on :CM-2 (8K procs) 1.008 5 13.882 26CM-2 (16K procs) 0.529 5 10.381 28CM-5 (32 nodes) 2.052 5 37.588 25F77 + CMMD on :CM-5 (32 nodes, LP) 0.097 5 16.512 37CM-5 (32 nodes, Async) 0.097 5 10.942 29Image 5: 256� 256 image composed of a collection of rectanglesNo. of square regions found at end of split stage = 298No. of regions found at end of merge stage = 7Split Stage Merge Stage(Random Approach)Time (sec) Iterations Time (sec) IterationsCM Fortran on :CM-2 (8K procs) 1.008 5 9.287 19CM-2 (16K procs) 0.529 5 6.633 20CM-5 (32 nodes) 2.046 5 24.471 16F77 + CMMD on :CM-5 (32 nodes, LP) 0.099 5 14.388 35CM-5 (32 nodes, Async) 0.098 5 6.640 35Image 6: 256� 256 image of a \tool"No. of square regions found at end of split stage = 2248No. of regions found at end of merge stage = 4Split Stage Merge Stage(Random Approach)Time (sec) Iterations Time (sec) IterationsCM Fortran on :CM-2 (8K procs) 1.008 5 19.530 34CM-2 (16K procs) 0.529 5 13.426 33CM-5 (32 nodes) 2.066 5 75.582 45F77 + CMMD on :CM-5 (32 nodes, LP) 0.098 5 12.192 36CM-5 (32 nodes, Async) 0.098 5 7.236 38Table II, cont'd.: Comparison of the Performance of the Parallel Implementations14

	A Data Parallel Algorithm for Solving the Region Growing Problem on the Connection Machine
	Recommended Citation

	tmp.1286816405.pdf.a_WFd

