
Syracuse University Syracuse University

SURFACE SURFACE

Theses - ALL

12-2013

Algorithms for the Implementation of a Dynamic Energy Pricing Algorithms for the Implementation of a Dynamic Energy Pricing

Policy Policy

Manek Biswas

Follow this and additional works at: https://surface.syr.edu/thesis

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Biswas, Manek, "Algorithms for the Implementation of a Dynamic Energy Pricing Policy" (2013). Theses -
ALL. 9.
https://surface.syr.edu/thesis/9

This Thesis is brought to you for free and open access by SURFACE. It has been accepted for inclusion in Theses -
ALL by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/thesis
https://surface.syr.edu/thesis?utm_source=surface.syr.edu%2Fthesis%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fthesis%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/thesis/9?utm_source=surface.syr.edu%2Fthesis%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

In the upcoming smart grid era, dynamic pricing using primarily data collected from smart

meters installed in homes and businesses is a virtual certainty. The possibilities this feature may

offer are many, and we examine in this study how subunits of the electricity grid may implement

load scheduling given a model for predicting ever-changing energy prices over a day. We present

a realistic linear model that utilities may use for implementing dynamic pricing, and argue how

accurate prediction of this model by its customers may be profitable both for the utilities and

their customers.

The thesis provides algorithms for achieving balancing using this pricing model. Using the total

demand on the grid for a 24-hour period, we provide a dynamic programming algorithm and a

greedy algorithm that find the partitioning of the total demand into intervals which will minimize

the total cost. The output of the above algorithms can be seen as providing us with the global

ideal load curve. Using this, each subunit of the grid creates its own ideal load curve, which is

the scaled version of the global load curve.

The issue then for each grid subunit is to find a schedule for its flexible loads so that its load

profile is as close to its ideal load curve as possible. We have proposed a number of algorithms

for this purpose using different search heuristics. One needs to resort to heuristics as the

optimization problem can be shown to be NP-hard. The search heuristics that we have

considered are: a Greedy algorithm to traverse through our search space of possible schedules, a

randomized Greedy algorithm with random restarts to explore the search space further, the

Metropolis algorithm, the Tabu search, and finally, a randomized Tabu search with random

restarts.

Algorithms for the
Implementation of a

Dynamic Energy Pricing
Policy

Thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in

Computer Science

Manek Biswas

B.E., Manipal University, 2011

Syracuse University

December 2013

COPYRIGHT © 2013

MANEK BISWAS

ALL RIGHTS RESERVED

Acknowledgements

I am deeply grateful to my advisor, Professor Chilukuri Mohan, for his continuous guidance on

this work- it would not have been possible to complete it without him. I am thankful to Dr.

Tomislav Bujanovic, for always having words of encouragement and suggestions whenever I

needed them. I am grateful to Professor Prasanta Ghosh and Professor Kishan Mehrotra for being

part of this work. The work reported in this thesis has been under the financial support of the

U.S. Department of Energy grant to Syracuse University for Smart Grid-related work. As such, I

would like to express my gratitude to the U.S. Department of Energy.

A huge thanks to my parents- Somenath and Kiran. Your gentle prodding was invaluable in

getting this work done.

iv

Table of Contents

1. Introduction …1

 1.1. Need for Load Balancing …1

 1.2. The Smart Grid …3

 1.3. Problem Considered in the Thesis …4

2. Need for an Appropriate Energy Pricing Mechanism …6

 2.1. Introduction …6

 2.2. Real Time Pricing (RTP) …7

 2.3. Electricity Production Cost …8

 2.4. Marginal Cost Pricing Principle …10

 2.5. Our Pricing Proposal …11

3. Algorithms for Globally Optimal Allocation …13

 3.1. Introduction …13

 3.2. Algorithms for Optimally Distributing Total Load into Intervals …16

 3.3. Dynamic Programming Solution …16

 3.3.1. Input …18

 3.3.2. Output …18

 3.3.3. Pseudo code …18

 3.3.4. Time and Space Complexity of the Dynamic Programming algorithm …19

 3.4. Greedy Solution …20

 3.4.1. Input …20

 3.4.2. Output …20

 3.4.3. Pseudo code …20

 3.4.4. Time and Space Complexity of the Greedy Solution …20

 3.5. Comparison of the Dynamic programming and Greedy Solutions …21

4. Heuristic Algorithms for Load Scheduling …27

v

 4.1. The Load Scheduling Problem and the Need for Heuristic Approximation …27

 4.2. Experimental Simulation Setup …28

 4.2.1. Inflexible Loads …28

 4.2.2. Flexible Loads …29

 4.2.3. Neighborhood Search …31

 4.2.4. Schedule Cost …32

 4.2.5. Helper Functions for Heuristic Searches …33

 4.3. Criteria for Evaluation of Performances between Heuristic Algorithms …34

 4.4. Greedy Search …35

 4.4.1. Input …35

 4.4.2. Output …35

 4.4.3. Pseudo code …35

 4.4.4. Observations …36

 4.5. Randomized Greedy Search …38

 4.5.1. Input …38

 4.5.2. Output …38

 4.5.3. Pseudo code …38

 4.5.4. Observations …39

 4.6. Tabu Search …43

 4.6.1. Input …43

 4.6.2. Output …43

 4.6.3. Pseudo code …43

 4.6.4. Observations …44

 4.7. Randomized Tabu Search …46

 4.7.1. Input …46

 4.7.2. Output …46

 4.7.3. Pseudo code …46

vi

 4.7.4. Observations …48

 4.8. Metropolis Algorithm …53

 4.8.1. Input …53

 4.8.2. Output …53

 4.8.3. Pseudo code …53

 4.8.4. Observations …54

 4.9. Comparison between heuristic algorithms …65

5. Summary and Concluding Remarks …69

References …74

Vita …76

vii

List of Figures

Figure 1: Residential Load Profile for Calgary, Canada …1

Figure 2: Typical input-output curve of a thermal-electric unit …9

Figure 3: Sample Initial Unscheduled Load Profiles and Final Scheduled Load Profiles after
scheduling with the Greedy Algorithm …36

Figure 4: Sample Initial Unscheduled Load Profiles and Final Scheduled Load Profiles after
scheduling with the Randomized Greedy Algorithm …39

Figure 5: Sample Initial Unscheduled Load Profiles and Final Scheduled Load Profiles after
scheduling with the Tabu Search Algorithm …44

Figure 6: Sample Initial Unscheduled Load Profiles and Final Scheduled Load Profiles after
scheduling with the Randomized Tabu Search Algorithm …48

Figure 7: Sample Initial Unscheduled Load Profiles and Final Scheduled Load Profiles after
scheduling with the Metropolis Algorithm …54

Figure 8: Curve denoting Average Final Costs over Metropolis Temperatures for an Initial
Schedule of Cost 91.67 …56

Figure 9: Curve denoting Standard Deviation in Final Costs over Metropolis Temperatures for an
Initial Schedule of Cost 91.67 …57

Figure 10: Curve denoting Average Final Costs over Metropolis Temperatures for an Initial
Schedule of Cost 101.92 …59

Figure 11: Curve denoting Standard Deviation in Final Costs over Metropolis Temperatures for
an Initial Schedule of Cost 101.92 …59

Figure 12: Curve denoting Average Final Costs over Metropolis Temperatures for an Initial
Schedule of Cost 92.28 …61

Figure 13: Curve denoting Standard Deviation in Final Costs over Metropolis Temperatures for
an Initial Schedule of Cost 92.28 …62

Figure 14: Curve denoting Average Final Costs over Metropolis Temperatures for an Initial
Schedule of Cost 78.34 …64

Figure 15: Curve denoting Standard Deviation in Final Costs over Metropolis Temperatures for
an Initial Schedule of Cost 78.34 …64

Figure 16: Graph denoting Average Final Costs computed using Heuristic Algorithms over Time
Taken for Computation for an Initial Schedule of Cost 91.67 …67

viii

List of Tables

Table 1: Fuel Amount, Fuel Cost, Charge for load increment, and Incremental Rate
corresponding to Load …9

Table 2: Dynamic Programming Optimal Cost and Greedy algorithm Best Cost corresponding to
M = 5 intervals and Total Power P …22

Table 3: Dynamic Programming Optimal Cost and Greedy algorithm Best Cost corresponding to
M = 6 intervals and Total Power P …22

Table 4: Dynamic Programming Optimal Cost and Greedy algorithm Best Cost corresponding to
M = 7 intervals and Total Power P …23

Table 5: Dynamic Programming Optimal Cost and Greedy algorithm Best Cost corresponding to
M = 8 intervals and Total Power P …24

Table 6: Dynamic Programming Optimal Cost and Greedy algorithm Best Cost corresponding to
M = 9 intervals and Total Power P …24

Table 7: Dynamic Programming Optimal Cost and Greedy algorithm Best Cost corresponding to
M = 10 intervals and Total Power P …25

Table 8: Household Appliance Data …30

Table 9: Greedy Algorithm Analysis …37

Table 10: Randomized Greedy Algorithm Analysis with Schedule of Initial Cost 91.67 as

Input …40

Table 11: Tabu Search Algorithm Analysis …45

Table 12: Tabu Search Algorithm Analysis for Initial Schedule of Cost 91.67 …45

Table 13: Randomized Tabu Search Analysis for Schedule with Initial Cost 91.67 …49

Table 14: Randomized Tabu Search Analysis for Schedule with Initial Cost 74.12 …50

Table 15: Randomized Tabu Search Analysis for Schedule with Initial Cost 101.92 …50

Table 16: Randomized Tabu Search Analysis for Schedule with Initial Cost 92.28 …51

Table 17: Randomized Tabu Search Analysis for Schedule with Initial Cost 78.34 …52

Table 18: Metropolis Algorithm Analysis for Schedule with Initial Cost 91.67 …55

Table 19: Metropolis Algorithm Analysis for Schedule with Initial Cost 101.92 …57

Table 20: Metropolis Algorithm Analysis for Schedule with Initial Cost 92.28 …60

ix

Table 21: Metropolis Algorithm Analysis for Schedule with Initial Cost 78.34 …62

Table 22: Performance Comparison between Heuristic Algorithms for an Initial Schedule

 of Cost 91.67 …66

x

Chapter 1: Introduction

1.1. Need for Load Balancing

It has been observed that typical energy usage by utility customers varies very predictably and

sharply over a day. The figure below shows typical load profiles observed in a residential unit in

Calgary, Canada over a 24 hour period[13]:

Figure 1: Residential Load Profile for Calgary, Canada

As is evident from the load over a day in summertime and wintertime, there are sharp peaks and

valleys in the curve. On particularly hot or cold days, with heating or cooling being used

maximally, electricity usage spikes even more sharply.

1

The consequences for the utility are twofold. Since supply must always equal demand in the case

of the electricity grid, having to constantly change energy production according to the day’s

fluctuations in demand raises challenges for the utility. Additionally, utilities also need to have

special “peaker” power plants which supply energy when usage is abnormally high. Although the

need for peaker plants arises only a few times for a short duration in any year, building and

maintaining infrastructure for the peaker plants is a massive investment for the utility.

Furthermore, since peaker plants are rarely used, their chances of failure are relatively high. This

leads to blackouts at times of particularly high energy demands.

A natural solution to the problem is to do away with peaks and valleys in load curves by having

an almost flat, averaged-out demand. Such demand can be supported by base-load power plants

with minimal intervention for generating excess power or for removing energy sources (when

demand is low). Load shedding may accomplish the former by eliminating excess demand

completely, but does not address the problem of points of low demand, and is an inconvenience

to utility customers. Load balancing, however, offers a viable alternative. Traditionally, load

balancing meant storing excess power at times of low demand to be released when there is a

demand of more power. This often involves the use of batteries, which is, with existing

technology, not a low-cost or particularly effective solution, since battery storage requires huge

investments and frequent replacements. With the advent of the smart grid, however, there is a

possibility of the concept of a ‘demand response’ approach, with the installation of smart meters

at the customer locations.

2

1.2. The Smart Grid

“"Smart Grid" consists of devices connected to transmission and distribution lines that allow

utilities and customers to receive digital information from and communicate with the grid. These

devices allow a utility to find out where an outage or other problem occurs on the line and

sometimes even fix the problem by sending digital instructions. Smart devices in the home, office,

or factory inform customers of times when an appliance is using relatively high-cost energy and

allow customers to remotely adjust their settings.

Smart devices make a Smart Grid as they help utilities reduce line losses, detect and fix problems

faster, and help customers conserve energy, especially at times when demand reaches

significantly high levels or an energy demand reduction is needed to support system reliability.”

- U.S. Energy Information Administration

The latter part of the above description of the Smart Grid, provided by the U.S. Energy

Information Administration, states that the Smart Grid may be capable of helping customers save

energy at high demand-levels. While this leads to a marked decrease in the customers’ energy

bill, it also benefits the utility by minimizing or doing away with infrastructure needed to support

these critical peak points in the form of peaker plants as mentioned earlier.

Implementing such a scheme requires customers to be aware of high demand-levels in the first

place. This information can be provided to them through the use of “Smart Meters”, which are an

advancement of traditional electricity meters installed at customer points. The earlier traditional

model of the electricity meter involved the utility reading customer usages, and thus supported a

one way communication between the customer and the utility. Smart meters, on the other hand,

work by providing a two-way communication in place of the one-way communication, by

3

allowing the customer to be constantly aware of real-time energy prices. The proposed time for

the customer to read changes in energy price is an hour or less, according to the FERC Report on

Demand Response & Advanced Metering. [1]

Smart appliances are appliances that may be controlled through a central controller installed at

the customer side. A customer with the smart meter, a controller, and smart appliances may

schedule her requirements or loads in a manner which aims to reduce her energy consumption,

and thus lower her energy bill.

1.3. Problem Considered In the Thesis

As mentioned earlier, load balancing has many benefits for the electricity grid. The problem to

be addressed is how to go about load scheduling in a manner that is beneficial for both the utility

and the customer. It has been proposed to make the load curve as flat as possible, thereby

eliminating peaks in energy demand, and to have the demand at any point of the day be close to

the average of total demand for that day. While this proposal does indeed eliminate peak points

in a load profile, it assumes incorrectly that generation costs for a unit of energy are constant

over a day.

Renewable energy accounted for 12.4% of total domestically-produced generation in the US in

2012, and the renewable energy target hopes to see that figure increase to 20% by the end of the

decade in 2020. [2] While the use of renewable energy provides huge gains in pollution control

and (ideally) free sources of energy, there is an associated problem of unpredictability in supply.

Solar photovoltaic (PV) energy and wind energy are the primary sources of renewable energy,

and energy generated using PVs and wind can drop to zero momentarily and rapidly. The use of

4

energy storage devices has been proposed to overcome this unpredictability, wherein surplus

energy produced may be stored in storage devices for use at times when the current demand

exceeds all possible supply. However, batteries and other forms of energy storage are, as of the

technology available today, expensive and unable to store significant amounts of energy that may

be needed to compensate for minimal generation capacity at times of poor irradiation (for PVs)

and a lull in wind (for wind energy). To consider a flat load profile to be ideal would be to

assume that energy supply cost tends to be uniform throughout the day. This may be almost

correct under current circumstances with prevalent use of non-renewable energy sources and

renewable energy penetration being only around 10%, but that assumption is unreasonable in the

near future, with a much higher percentage of renewable energy sources in the energy mix.

This thesis presents an energy pricing mechanism for the utility which can take into

consideration the cost incurred to produce energy over a day. Chapter 2 explores the need for an

appropriate energy pricing mechanism in the Smart Grid era, and why it will likely be linear in

terms of demand. In subsequent chapters, we explore how the pricing model can be used in

conjunction with total predicted load to form an ideal load profile for the customers.

Furthermore, given the ideal load profile, we discuss possibilities for algorithms which may

enable customers to optimally schedule out their loads or demands so as to conform to the ideal

load profile. If followed, the proposal has the potential of massive monetary gains for both

utilities and customers, as well as allowing for the provision to successfully incorporate greener,

pollution-free methods of energy generation by using renewable energy sources.

The next chapter examines why an appropriate energy pricing mechanism must be defined and

implemented for lowering energy production costs and the subsequent reduction in energy bills

for utility customers, as can be a potential benefit of the Smart Grid.

5

Chapter 2: Need for an Appropriate Energy Pricing
Mechanism

2.1. Introduction

As the world is increasingly making use of more appliances within households and as new

industries and commercial establishments are being set up, the demand of electricity is constantly

increasing. Matching demand with supply has therefore been a central issue in the design and

operation of electrical networks. If the demand is not moderated in an appropriate manner then

peaking in far excess of the average is inevitably seen at multiple intervals in a twenty-four hour

period.

The conventional solution to take care of such peaking points has been to increase energy

generation capacity and/or buying shortfall amounts from other networks. Capacity increases

require the addition of substantial infrastructure which will lie idle in the non-peak periods. Also,

as fuel consumption for most conventional generators has a quadratic dependence on output

power, the amount of pollution will be far more in case of uneven demand over a day than when

the demand is relatively uniform. Also, if we would like to encourage the usage of green energy

sources, as is a critical aspect in the nation’s energy policy, we need to shift demand to periods

when such greener sources of energy will be available.

These considerations require us to rely on appropriate demand response (DR) programs to

encourage users to shift their loads away from peak times.[3] It has been noted that ''Reduced

peak demand lowers electricity bills and benefits utilities by reducing complexity of grid

6

stability, occurrences of equipment failures, and blackouts. It also enables utilities to comply

with government mandates to cut peak demand'' [4],[5]

It is clear that DR programs need to provide appropriate economic incentives to encourage users

to shift their demand away from the peak periods. However, a simple-minded approach of having

substantial difference in tariff between peak periods and low-demand periods will not solve the

problem, as it will merely shift the peak rather than ensuring relatively uniform demand over a

twenty-four hour period. This has been established in a simulation study. [6]

Instead, as economists have argued, appropriate real time pricing (RTP) tariffs are needed, as

discussed in the next section.

2.2. Real Time Pricing (RTP)

Conventional electricity tariffs reflect average supply cost over a long period of time and are

fixed for months. In contrast, in RTP as practiced now, customers are charged prices that can

vary over very short time intervals to reflect “contemporaneous marginal supply costs”. The

supplier is not required to quote the price for such short intervals even at the start of the intervals,

it may simply provide the users with recent past tariffs data. RTP achieves twin benefits: it will

result in a relatively flat demand curve, and will also provide the customers with substantial

reduction in their electricity costs. For these reasons, policymakers have identified RTP as a

potential strategy for developing demand response (DR). [7]

RTP tariffs were first introduced in the mid-1980’s. In 2004, more than seventy utilities in the

U.S. offered voluntary RTP tariffs. However, in spite of the potential benefits, RTPs have not

7

been popular. There are two reasons; the first is that on the demand side what was expected often

was manual response to dynamically changing tariffs. It is necessary to alleviate that issue to

automate responses to changing tariffs with appropriate technology. Second, as of now, RTP

appears to be too volatile as there is no rational explanation offered for RTP tariffs except for

declaring that these represent the current market rate. What is needed is to base RTP tariff on a

sound economic principle, and allow utility customers to be aware of the rationale behind the

energy bill they pay based on an RTP tariff. In our proposal of a new pricing policy, we take care

of the second aspect, and also show how automated decision making can be carried out at the

demand side by providing appropriate scheduling algorithms.

2.3. Electricity Production Cost

It has been long accepted that electricity generation cost is a monotonically increasing quadratic

function of the output power, especially for conventional generators that use fossil fuel. The

following figure from [8, page 69] clearly shows the quadratic nature of the function:

8

Figure 2: Typical input-output curve of a thermal-electric unit

For a quantitative appreciation of the phenomenon, we reproduce the following (costing as per

early 1970’s) [8]:

Table 1: Fuel Amount, Fuel Cost, Charge for load increment, and Incremental Rate
corresponding to Load

Load (MW) Fuel Amount
(Btu/hour)

Fuel Cost
(Dollars/hour)

Charge for load
increment

(Dollars/hour)

Incremental
Rate

(Dollars/MWh)
0 200 700 - -

20 300 1050 350 17.50

40 450 1575 525 26.30

60 650 2275 700 35.00

80 950 3320 1045 52.20

100 1500 5250 1930 96.50

Even for virtual power plants, it is standard to assume such a quadratic relationship. For

example, [9] uses the following relationship: Given that C is the hourly cost in currency unit per

9

hour, Ee is the amount of generated active power in MW, and p, q, and r are coefficients that will

depend on the technology used in electricity production, it is defined that

C(Ee) = p Ee
2 + q Ee + r

2.4. Marginal Cost Pricing Principle

Usually the price is taken to be the average revenue per unit of product. However, for public

utilities there has been a strong case to set price to be the marginal cost. Let us suppose for

producing x amount of a product, the cost incurred is C(x). The marginal cost here is defined to

be C'(x), where C'(x) is the function (in x) obtained by differentiating C(x) with respect to the

variable x. The marginal cost pricing principle is that at production level x, the price of the

product is equated to the marginal cost at x, namely, C'(x). We notice, due to the differentiation,

any constant term in C(x) will have no effect on the price function. Often, the constant term will

reflect the amortized set-up cost. For public utilities, one can make a case that since such utilities

are vital for the community, the set-up cost is not to be passed to the customer, but will be paid

by the government through appropriate subsidy. We see this happening especially with respect to

renewable energy infrastructure; in many countries the set-up cost as well as the production cost

is subsidized by the respective governments due to their commitment to lessening pollution.

10

2.5. Our Pricing Proposal

Let a 24-hour period be divided into M (usually 24) equal intervals. As in Section 2.4 above, for

the interval i, let the production cost Ci(x) to produce x amount of electricity be given as

Ci(x) = pi x2 + qi x + ri

To this cost, we add a linear dx mark-up to reflect profit by utility in selling x units of electricity.

Without loss of generality, we assume the profit depends only on amount of electricity sold, and

not the interval.

Let Di(x) denote the marked-up cost to generate x amount of electricity in the ith interval:

Di(x) = pi x2 + ni x + ri , where ni = qi + d.

Using the marginal cost pricing principle, we obtain the price for the ith interval to be:

 ai x + bi, where ai = 2pi.

Thus, our pricing policy is to define the price to be a linear function of demand, taking into

account the time of the day to reflect, for example, overtime cost for personnel, availability of

alternate energy, etc., which can certainly differ from one interval to another. It is to be

emphasized that the price depends on the total demand for electricity in the electrical network. It

is clear that if the total demand over a 24-hour period is distributed in the intervals in such a way

that the total cost of consumption is minimized, then in such a situation we shall not see high

peaks in load profiles. Our proposal will later elaborate scheduling policies for individual

customers designed to lead to global minimization of total cost over the electrical network. The

11

next chapter explores algorithms for optimal allocation of the total demand into intervals over a

day, using the aforementioned pricing policy.

12

Chapter 3: Algorithms for Globally Optimal Allocation

3.1. Introduction

In the previous chapter we defined the electricity pricing policy that we explore in this study. In

this policy, a twenty-four hour period is divided into M equal intervals. For each of these

intervals i, we assume that the electricity price in that interval is ai.xi + bi, where xi is the total

usage of electricity in the interval, and ai and bi are constants. Thus, the total cost C, as incurred

by all customers in that interval is aixi
2 + bixi. We then face the following algorithmic problem:

given the total power consumption, say P, in a twenty-four hour period, what is the best way of

distributing P into the M time slots. The 'best' has a straight-forward interpretation; we consider

that distribution to be best which minimizes C, the total cost as defined above. The notion of

optimality can be justified by noting that by minimizing the total cost, we minimize the physical

and personnel resources used in producing the total amount P of power. We provide here two

solutions to this algorithmic problem- the first is a dynamic programming algorithm, and the

other is a greedy algorithm. The dynamic programming solution provides the exact optimum

solution, whereas the greedy provides an approximate solution. On the other hand, the dynamic

programming runtime complexity is square of the runtime of the greedy algorithm.

We note that it is feasible to estimate the total demand P on a utility for a twenty-four hour

period. P depends on the season of the year, and therefore we can estimate P with some accuracy

by extrapolating historical data pertaining to that season of the year. Once we have an estimate

for P, and the coefficients ai's and bi's, our algorithms will provide the price for each of the M

13

periods: for the ith period, the price is aixi + bi, where xi is the amount of power which is to be

consumed in the ith period as determined by the algorithm being used. However, we need to

specify to individual customers how best each should decide on his demand. The problem is the

following:

If the jth customer decides to consume y{j,i} units of power, the cost that customer incurs is (aixi +

bi)y{j,i}, which depends on the total load xi on the utility in that interval. xi is the total demand for

all customers of the utility. Therefore, to decide how much to consume in an interval, an

individual customer needs to know, a priori, the demands of all customers for that interval,

including his own. This circularity in decision making needs to be avoided.

We provide two ways to address the problem. The first solution is to compute the optimal cost

for a customer from the global cost in proportion to his usage. We elaborate the idea below:

Once we have the total power demand, P, and the coefficients ai's and bi's, we compute the

optimal distribution of P into the M intervals. In this optimal distribution, let the value for the ith

interval be Pi. Let the total usage of the jth customer for the twenty-four hour period be pj. We

now stipulate that the jth customer will use, for the ith interval, an amount of power, the

proportion of which with respect to his total power usage is same as the proportion of Pi to P. In

other words, he sets his usage pj,i for the ith interval to be (pj/P)Pi. We can see that if every

customer follows this usage policy for each of the intervals, then the distribution of P into

intervals will be as per the optimal distribution that was computed; because the sum of (pj/P)Pi

over all customers j will be Pi. Therefore, once we have the optimal distribution of P into M

intervals, the above policy defines an ideal load curve for each user. The goal of each customer

14

will be to schedule his flexible loads in such a manner that his load curve is as close to this ideal

load curve as possible.

The problem with this solution is that it provides a greater advantage to customers with higher

demands than to those with lesser demands. The reason for this is that in this policy, a user A

whose usage is N times the usage of another customer B, will be charged in total (when both the

users schedule their demands corresponding to their ideal load curves) N times more than B.

However, the quadratic nature of the cost implies that the cost of B's usage to the utility is more

than N times that of A. However, the advantage with the policy is that it does recover from all the

customers the projected total cost on the utility for producing the total demand and therefore, the

policy is fair to the utility.

The other possible policy is for each user to pay for the cost of producing an amount of

electricity equal to his demand. Therefore, if the ith customer has a demand of pi in the twenty-

four hour period, then his ideal load curve is obtained by optimally distributing this pi amount

into the M intervals so that the cost of producing this total amount pi is minimized. The policy is

fair to customers but not to utilities, as the total cost incurred by the utility for production (again,

due to the quadratic dependence of the cost on the power generated) will be more than the total

revenue collected from all customers. A way to mitigate this is for the utility, keeping this fact in

consideration, to provide ai and bi values to customers suitably marked up in accordance with

their demand.

15

In either policy the algorithmic problem remains the same: given the power consumption, say P,

in a twenty-four hour period, the best way of distributing P into M time slots needs to be

computed.

3.2. Algorithms for Optimally Distributing Total Load into Intervals

We are given a total of P units of demand, M intervals and a price for each interval i, which is

ai.xi + bi, where xi is the portion of P scheduled at the ith interval and ai and bi are constants

depending upon the interval. The goal is to distribute P units of load into the M intervals so that

the total cost is minimized. To note, if the P units are distributed as x1, x2,…, xM, then the total

cost is obtained as the sum (ai.xi + bi)xi over all xi’s.

3.3. Dynamic Programming Solution

Let best_cost(j,n) denote the optimum cost of allocating n units of power to the first j intervals

1,...,j. In this optimal allocation, suppose k units of power are allocated to the interval j. The cost

incurred in allocating these k units to the jth interval is (ajk + bj)k. We then need to optimally

allocate (n - k) units of power into the remaining j-1 intervals 1,..., j-1. This provides us with the

recurrence:

 best_cost(j,n) = minimize over k, 0 ≤ k ≤ n,{best_cost(j-1, n-k) + k(ajk + bj)}.

As is usual in dynamic programming, the recurrence is solved bottom-up, beginning from j =

1. For j = 1, since there is only one interval, the cost of consumption of n units of power is (na1

+ b1)n, which is best_cost(1, n), for any n = 0 to P. This forms the base case of the recurrence.

16

Once we have computed best_cost(j-1,n) for all values of n ranging from 0 to P, we can use the

above recurrence relation to compute best_cost(j,n), for all n ranging from 0 to P. In this manner,

we can compute best_cost(M, P), which is the minimum cost for allocating P units of power into

M intervals, using the interval prices defined by the coefficients ai's and bi's. To obtain power

allocated to each interval in the optimal allocation, a backward pass may be used: for the Mth

interval, as can be seen in the recurrence, k units will be allocated for that k, in the range 0 to P,

for which the value of best_cost(M-1, P-k) + k(aM.k + bM) is minimized. By performing

memoization and thereby storing best_cost(j,n) values for 1 ≤ j ≤ M, 0 ≤ n ≤ P, we can compute

allocation for intervals M-1 down to 1. If, as explained above, we have determined that kM units

of power is allocated to the Mth interval, then P - kM units of power will be allocated to the first

M-1 intervals. From the memoization, we can get the value of best_cost(M-1, P - kM). This value,

is in turn obtained for that k which minimizes best_cost(M-2, P - kM - k) + k(aM-1.k + bM-1). This

k is to be allocated in the optimal allocation to the interval M-1. In this manner, we can decide on

the allocations to be made to all the intervals.

However, this memoization will require a huge amount of space, M.(P+1). M is often chosen to

be 24, assuming the day is divided into hourly intervals. M can be conceivably larger, for

example, one may consider 15 minute intervals, as smart household meters can communicate at

similar intervals. P, the total 24-hour power demand on a utility is large; a typical value may be

100 megawatts. Even if we take the unit conservatively to be a kilowatt, the value P for 100

megawatts is 100,000. Our implementation of the dynamic program therefore will not perform

the usual memoization in an effort to conserve space. Instead, we make use of two lists of length

(P+1) - we refer to them in the implementation as the 'from' and 'to' lists. Initially, the 'from' list

17

is initialized with best_cost(1,n), n ranging from 0 to P. We now use this 'from' list to compute

best_cost(2,n) values using the recurrence, n ranging from 0 to P. These new values are then

computed into the 'to' array. At this stage, we copy the 'to' list to the 'from' list, and compute into

the 'to' array the values of best_cost(3,n), 0 ≤ n ≤ P. Iterating in this manner, we eventually

obtain best_cost(M,n), n ranging from 0 to P. At this time, we can compute, as explained earlier,

the allocation kM for the Mth interval. The problem is now reduced to allocating optimally P - kM

units into the first M-1 intervals. We now solve this new problem to find the allocation for the

current last interval, namely, M-1; in the same manner as we had computed the allocation for the

Mth interval. We iterate in this manner until the allocation for all the intervals are computed.

3.3.1. Input: List representing ‘a’ and ‘b’ coefficients for the pricing scheme; number of

intervals M and total power to be allocated P.

3.3.2. Output: Lists representing optimal scheduling of flexible demands.

3.3.3. Pseudo code:

current_p := P;
Iterate with m from M to 2:

 Iterate with r from 0 to P:
 from[r] := (r*a[1] + b[1])*r;

 Iterate with i from 2 to m -1:
 to[0] := 0;
 Iterate with x from 1 to current_p:
 to[x] is set to that value of k for which from[x-k] + k*(a[i]*k + b[i])
 is minimized;
 copy to[] list into from[] list;

 alloc[m] is set to that value of k for which {from(current_p - k) + k*(a[m]*k + b[m])}
 is minimized;
 When m is M, the minimum value over K of {from(current_p - k) + k*(a[m]*k + b[m])

18

 is set to global_min_cost;
 current_p := current_p - alloc[m];

/* at this point we have the allocations for levels 2 to M */
Whatever is left of P, is allocated to alloc[1];

3.3.4. Time and space complexity of the Dynamic programming algorithm

Space complexity:

The space usage is dominated by the two lists from[0..P] and to[0..P]. Therefore, the space

complexity is O(P).

Time complexity:

The algorithm makes O(M) iterations wherein in each iteration, the from[0..P] list is initialized

which takes O(P) time, followed by an inner iteration O(M) times, each computing the to[] list

from the current from[] list. Each inner iteration loop body takes O(P2) time.

Therefore, the time complexity is O(M2 P2).

19

3.4. Greedy Solution

The Greedy strategy we use is: For each of the P units we allocate these units successively from

unit 1,…, unit P. Given i allocated units, we check for each interval j the price for the interval if

the (i+1)th unit is allocated to this jth interval. We then allocate the (i+1)th unit to that interval for

which the price is lowest.

3.4.1. Input: List representing ‘a’ and ‘b’ coefficients for the pricing scheme; number of

intervals M and total power to be allocated P.

3.4.2. Output: Lists representing optimal scheduling of flexible demands.

3.4.3. Pseudo code:

for each of the intervals i from 1 to M, set alloc[i] to 0;
Iterate with j from1 to P:
 k is computed to be that interval for which
 (a[k]*(alloc[k]+1) + b[k])*(alloc[k]+1) value is minimum;
 alloc[k] := alloc[k] +1;
greedy_total_cost is set to the sum over j, j ranging from 1 to M, (a[j]*alloc[j] + b[j])*alloc[j];

3.4.4. Time and space complexity of the Greedy solution:

Space Complexity:

The space usage is dominated by the three lists a[], b[], and alloc[], each of size M. Therefore,

the space complexity is O(M).

20

Time Complexity:

Essentially, the algorithm runs a loop with P iterations, each iteration taking O(M) time. Hence,

the time complexity of the algorithm is O(PM).

3.5. Comparison of the Dynamic Programming and Greedy solutions:

In terms of space, the greedy algorithm complexity is O(M) whereas the dynamic programming

space usage is O(P). In terms of time, the greedy algorithm takes O(PM) steps whereas the

dynamic programming takes O(M2 P2) steps, implying that the dynamic programming

algorithm’s runtime complexity is the square of that of its greedy algorithm counterpart.

We note that the dynamic programming algorithm computes the true optimum cost, while the

greedy algorithm an approximation to the true solution. We run implementations of the two

algorithms, varying the total power (P) and number of intervals (M), to obtain a measure of the

differences between the true optimum cost and the approximation of the optimum as computed

by the greedy algorithm and to witness the effect of increasing the number of intervals on the

optimum solution costs.

We considered ten sets of price coefficients ai's and bi's (whole numbers within the range 1

through 5, uniformly distributed), namely: (a1, b1) = (1, 3), (a2, b2) = (3, 1), (a3, b3) = (5, 3), (a4,

b4) = (3, 2), (a5, b5) = (2, 2), (a6, b6) = (3, 5), (a7, b7) = (2, 3), (a8, b8) = (4, 1), (a9, b9) = (2, 4),

and (a10 ,b10) = (3, 4). In the simulation, we find the costs as computed by the two algorithms for

21

total power ranging from 1000 units to 10,000 units, in steps of 1000 units. The number of

intervals are varied from 5 up till 10, using for i intervals, the first i price coefficients, i ranging 5

to 10. The results as follows:

Table 2: Dynamic Programming Optimal Cost and Greedy algorithm Best Cost
corresponding to M = 5 intervals and Total Power P

 Total Power Dynamic Programming
Optimal Cost

Greedy algorithm Best Cost

1000 406514 406748

2000 1602737 1602989

3000 3588436 3588655

4000 6363606 6363844

5000 9928251 9928507

6000 14282370 14282593

7000 19425962 19426204

8000 25359029 25359287

9000 32081567 32081795

10000 39593580 39593826

Table 3: Dynamic Programming Optimal Cost and Greedy algorithm Best Cost
corresponding to M = 6 intervals and Total Power P

 Total Power Dynamic Programming
Optimal Cost

Greedy algorithm Best Cost

1000 359796 360064

2000 1417505 1417745

3000 3172889 3173145

22

4000 5625946 5626180

5000 8776680 8776932

6000 12625087 12625311

7000 17171167 17171409

8000 22414923 22415191

9000 28355354 28356592

10000 34995460 34995712

Table 4: Dynamic Programming Optimal Cost and Greedy algorithm Best Cost
corresponding to M = 7 intervals and Total Power P

 Total Power Dynamic Programming
Optimal Cost

Greedy algorithm Best Cost

1000 306764 307014

2000 1207384 1208061

3000 2702962 2703216

4000 4792150 4792379

5000 7475398 7475652

6000 10752704 10752935

7000 14624072 14624326

8000 19089496 19089727

9000 24148982 24149238

10000 29802526 29802757

23

Table 5: Dynamic Programming Optimal Cost and Greedy algorithm Best Cost
corresponding to M = 8 intervals and Total Power P

 Total Power Dynamic Programming
Optimal Cost

Greedy algorithm Best Cost

1000 285606 285836

2000 1124459 1124695

3000 2516308 2516555

4000 4461151 4461414

5000 6958989 6959265

6000 10009824 10010062

7000 13613653 13613904

8000 17770477 17770739

9000 22480297 22480570

10000 27743114 27743349

Table 6: Dynamic Programming Optimal Cost and Greedy algorithm Best Cost
corresponding to M = 9 intervals and Total Power P

 Total Power Dynamic Programming
Optimal Cost

Greedy algorithm Best Cost

1000 251370 251646

2000 988824 989069

3000 2212107 2212372

4000 3921220 3921461

5000 6116165 6116425

6000 8796937 8797174

24

7000 11963540 11963799

8000 15615973 15616206

9000 19754237 19754492

10000 24378330 24378605

Table 7: Dynamic Programming Optimal Cost and Greedy algorithm Best Cost
corresponding to M = 10 intervals and Total Power P

 Total Power Dynamic Programming
Optimal Cost

Greedy algorithm Best Cost

1000 232821 233080

2000 915334 915609

3000 2047286 2047528

4000 3628674 3628937

5000 5659501 5659737

6000 8139767 8140022

7000 11069471 11069741

8000 14448614 14448855

9000 18277195 18277454

10000 22555213 22555489

25

We see from the results observed above that the greedy solution gives results close to the optimal

as are generated by the dynamic programming solution. A trend is observed in the above data:

for each value of total power, the cost decreases as the number of intervals are increased. For

example, for total power value of 10,000, when we have five intervals using the first five of the

price coefficients, the optimum cost is 39593580. This optimum cost decreases to 22555213

when the number of intervals is ten- a decrease of around 43%. We attribute the reason for this

trend to be that as we increase the number of intervals (using price coefficients which are not

very different), the total power spreads more evenly across the intervals. Therefore, the power

consumption in each interval when the number of intervals is greater will be, in general, less than

the power consumptions in intervals when there is a lesser number of intervals. Since there is a

quadratic dependence of the cost on power consumption, the total cost continually becomes less

as we increase the number of intervals.

In the next chapter, a number of heuristic algorithms are discussed and evaluated for the purpose

of load scheduling on the customer end, given an optimal allocation of total demand over a day.

26

Chapter 4: Heuristic Algorithms for Load Scheduling

4.1. The Load Scheduling Problem and the Need for Heuristic Approximation

We have seen in the last chapter how an ideal load curve can be defined for each grid subunit

customer. Such a customer will have a number of requirements or loads, called inflexible loads

whose schedules are a priori fixed, and another set of loads, called flexible loads, for which there

are margins in scheduling. (The following section 4.2 explains inflexible and flexible loads in

detail). The load scheduling problem that a grid subunit customer faces is the following: Given

the details of his inflexible and flexible loads, and his ideal load curve (as obtained in Chapter 3),

schedule the flexible loads in such a manner that the resultant load curve is as close to his ideal

load curve as possible. This section examines why there is a need for heuristic algorithms for

reaching an optimum and how the scheduling problem can be proven to be NP-hard by reducing

the Partition problem to it. The proof is as follows:

We consider the Partition problem given a set S of n numbers, the sum of all these numbers

being 2M. Is there a subset S’ of S such that the sum of numbers in S’ is exactly M, i.e. half of the

total sum 2M? The reduction of this problem to the load scheduling problem is as follows:

For every number in S, we consider a corresponding flexible demand whose power requirement

is equal to the value of the number, its duration for running is 1, and it can be scheduled at the

start of any hour in the 24-hour period. We consider an ideal load profile to be M amount of

power to be consumed between say 10 AM – 11 AM, and a further M amount to be consumed

27

between 1 PM – 2 PM. Thus, there is an optimal scheduling of the flexible demands to exactly

correspond to the load profile if and only if the solution to the Partition problem is ‘yes’.

The heuristic algorithms used in the thesis for the purpose of load scheduling are the Greedy

search, randomized Greedy search, Tabu search, randomized Tabu search, and finally, the

Metropolis algorithm.

4.2. Experiment Simulation Setup

We consider a domestic dwelling unit whose loads we seek to schedule in a way that conforms to

an ideal load profile. The loads for the unit are divided into two kinds: flexible loads and

inflexible loads.

4.2.1. Inflexible Loads:

These are loads that may not be scheduled any differently than they were originally scheduled to

run. The duration that these loads run for, as well as the time that they were to be started at, may

not be modified under any circumstances. For instance, lighting in a dwelling unit can be

considered to be an inflexible load, since a resident typically needs lighting between certain

times of a 24 hour period that cannot be compromised.

28

4.2.2. Flexible Loads:

Flexible loads are unlike inflexible loads in that they may be rescheduled for a different point in

the day than they were originally scheduled for. It is permissible to deviate their starting times,

but not the duration for which they had originally been slotted. For instance, a washing machine

is an example of a flexible load. While the use of a washing machine in a day may be essential to

the resident, the time that it runs is not typically of concern as long as there is an assurance that

its operation shall be completed within the 24 hour period.

We studied electrical appliances that may be present typically in a residence, along with their

power usages and durations they run for on an average day, as presented in [12]. The assumption

is made that the requirements or demands of a typical household is relatively stable over a

season. These appliances were then separated out into the categories of flexible loads and

inflexible loads.

29

Table 8: Household Appliance Data

Appliance Category Power (kW) Mean duration
(hours)

Start time
(without delay)

Air
conditioning

Inflexible 3.5 8 12

Interior lighting

Inflexible 0.84 6 18

Exterior
lighting

Inflexible 0.3 2 19

Oven

Inflexible 5 0.4 17

Microwave

Inflexible 1.7 0.2 17

Grill

Inflexible 1 0.1 17

Refrigerator &
Freezer

Inflexible 0.7 10 5

Kettle

Inflexible 3.8 0.25 6, 18

Toaster

Inflexible 0.5 0.1 6

Electric shower
with heater

Inflexible 9 0.5 6

Hair dryer

Inflexible 1.5 0.1 7

Home
computing

Flexible/Inflexible 0.6 3 (Flexible), 1
(Inflexible)

19 (Flexible), 18
(Inflexible)

Television

Inflexible 0.6 4 18

Sensors

Inflexible 0.01 24 0

Dishwasher

Flexible 1 1.5 11, 18

Washing
machine

Flexible 1 1.5 19

Spin Dryer

Flexible 3 20 1

Clothes Iron

Flexible 2 0.5 19

Vacuum
Cleaner

Flexible 1.2 0.5 19

DVD Player

Flexible 0.2 2 18

Lawn Mower Flexible 1 0.5 16

30

Swimming Pool
Pumps

Flexible 0.2 12 10

Swimming Pool
Heating

Flexible 4.5 6 17

By considering these appliances as loads, and making educated assumptions for their start times,

we arrive at a load profile for a typical residential customer of the utility.

To successfully test the efficacy of our heuristic algorithms, we generated many different

realistic load profiles for a household to experiment on, with the above load profile as a template.

Start times of loads are generated by adding a random variable conforming to the exponential

probability distribution with the rate parameter 0.5, to the start time of that particular load in the

model in order to simulate a delay. Durations of loads are generated by selecting a random

variable conforming to the normal probability distribution with the duration of that particular

load as the mean, and a percentage of the mean as the standard deviation.

4.2.3. Neighborhood Search

We consider each schedule as a node in a search space graph. Neighbors of a node will consist of

schedules formed by shifting the start time of each flexible load by one unit earlier, and one unit

later, where possible. To increase our reach and improve upon the quality of the local optimum

that the search process yields, we define another set of neighbors of a node, shifting a start time

three units instead of one. Therefore, each node will have 4n neighbors, where n is the number of

flexible requirements.

31

We associate essential and desirable properties with the search space graph defined above. The

first essential property is that every possible schedule must be defined by a node in the graph, the

second being that every such schedule must be reachable from any node in the graph, i.e., the

graph must be connected. The only desirable property is that the number of neighbors for a node

should be polynomial.

Arriving at the optimum schedule will be done through traversals of this neighborhood search

space. These traversals occur by successively examining neighboring nodes’ schedule costs, and

choosing a node based on the algorithm being used. Ultimately, the node (among all explored

nodes) that has the least value of schedule cost is chosen as the search result.

4.2.4. Schedule Cost: The schedule cost of a node is defined as the total area between the

schedule that the node represents and the ideal load profile, as discussed earlier.

For the subsequent experiment simulations, without loss of generality, an ideal load profile is

considered to be a flat curve corresponding to the average of the total demand of a residential

unit over 24 time intervals. Thus, the cost of a schedule (or node in the search space) will be the

total area between the load profile corresponding to the schedule and the flat ideal load profile.

For example, for the cost of a schedule to be 91.67, the absolute sum of the area between the load

profile for that schedule and the ideal load profile for the simulation in question is equal to 91.67

units.

32

4.2.5. Helper Functions for Heuristic Searches

a) Function to compute a load profile:

This function computes and then returns the load profile corresponding to the flexible schedule

given as its argument.

b) Function to calculate cost of a given schedule:

This function is used to calculate the cost of a schedule by using its load profile and the ideal

load profile, summing up their absolute differences for each hour.

c) Function to compute neighbors of a schedule:

A neighbor of a flexible schedule is obtained by choosing one of the flexible demands and then

shifting its start time, either to the left or the right. We consider a shift to be either by one hour or

three hours.

We represent all possible neighbors of a schedule using a bit array- the bits 4i, 4i + 1, 4i + 2, and

4i + 3 are for the ith flexible demand. The 4ith bit being 1 represents a neighboring schedule by

shifting the start time of the ith demand one hour to the left. We note that such a neighboring

schedule could be defined if and only if the start time of the ith flexible demand is not 0 in the

current schedule. Similarly, the bit 4i + 1 being 1 indicates that a neighbor can be obtained by

shifting the start time of the ith demand by one hour to the right of the current start time of the ith

demand. Such a neighbor exists if the sum of the start hour of the ith job and its duration is

strictly less than 23.

The bits 4i + 2 and 4i + 3 represent neighbors obtained by shifting the ith demand’s start time by

-3 or +3 hours.

33

d) Function to generate a random schedule:

We use this function to randomly generate a schedule of flexible demands, which obeys the

constraints of start times and durations for each load. This function is used to restart exploration

of the search space when a particular node is the local optimum. A restart may be necessary for

the Greedy and Tabu Search algorithms, but is not a requirement for the Metropolis algorithm.

4.3. Criteria for Evaluation of Performances between Heuristic Algorithms

Given an initial node that corresponds to an unscheduled residential load profile, the heuristic

algorithms are run a number of times, changing certain parameters that are unique to the

algorithm in question. The average final costs of the scheduled load profile are compared, as are

the standard deviations in the average final costs computed for each algorithm. Averages of

times taken for execution of the algorithms are also considered as a performance criterion. Thus,

average final costs, the standard deviation between final costs, and the execution times of

algorithms are chosen to evaluate performances of the different algorithms. A number of

simulations to measure these performance criteria are performed for different unscheduled load

profiles, and a final conclusion on performance is presented in Section 9 of this chapter.

34

4.4. Greedy Search

In this section, we discuss a Greedy algorithm to walk through the search space, with the aim to

find an acceptable local optimum.

4.4.1. Input: List representing initial schedule of flexible demands; Iteration count.

4.4.2. Output: List representing optimal scheduling of flexible demands.

4.4.3. Pseudo code:

Iterate from 0 to Iteration count:

 Compute neighbors for current schedule;

 Best Schedule := First neighbor for current schedule;

 Best Cost := Cost associated with the first schedule;

 Iterate through all neighbors of the current schedule:

 If cost of neighbor being examined < Best Cost:

 Best Cost := Cost of neighbor being examined;

 Best Schedule := Current neighbor;

 Until Best Neighbor Cost < Current Cost;

35

4.4.4. Observations

X-Axis: Time (Hours) Dashed curve: Sample Initial Load Profiles
Y-Axis: Power (kW) Solid curve: Final load profile after scheduling

with Greedy algorithm

Figure 3: Sample Initial Unscheduled Load Profiles and Final Scheduled Load Profiles
after scheduling with the Greedy Algorithm

36

Table 9: Greedy Algorithm Analysis

Initial Cost Final Cost Time Taken Iterations
91.67 27.43 0.10 1000
74.12 65.72 0.03 1000
101.92 50.28 0.04 1000
92.28 88.32 0.02 1000
78.34 53.33 0.05 1000
91.67 27.43 0.10 10000
74.12 65.72 0.03 10000
101.92 50.28 0.04 10000
92.28 88.32 0.02 10000
78.34 53.33 0.05 10000
91.67 27.43 0.10 50000
74.12 65.72 0.03 50000
101.92 50.28 0.04 50000
92.28 88.32 0.02 50000
78.34 53.33 0.05 50000

As we see from the table above, for our residential unit scenario, the final cost and time taken for

the algorithm to compute for an initial cost is not dependent on the number of iterations that the

Greedy algorithm is run for. Thus, the number of iterations in the Greedy algorithm is not

important, as long as it is above a certain threshold.

This can be explained by understanding that the Greedy algorithm executes only while there

exists a neighboring node with a lower cost, for any given current node. We can conclude from

the results above that the Greedy algorithm reaches a local optimum for all observed cases, and

ceases to execute further.

37

4.5. Randomized Greedy Search

Here we discuss a similar Greedy algorithm to walk through the search space, with a random

component added to maximize its reach for finding the optimum in the search space.

4.5.1. Input: List representing initial schedule of flexible demands; Iteration count.

4.5.2. Output: List representing optimal scheduling of flexible demands.

4.5.3. Pseudo code:

Iterate from 0 to Iteration count:

 Compute neighbors for current schedule;

 Best Schedule := First neighbor for current schedule;

 Best Cost := Cost associated with the first schedule;

 Iterate through all neighbors of the current schedule:

 If cost of neighbor being examined < Best Cost:

 Best Cost := Cost of neighbor being examined;

 Best Schedule := Current neighbor;

 If Current Cost < Best Neighbor Cost:

 Compute a random schedule;

 Current Schedule := Random schedule computed in last step;

38

4.5.4. Observations

X-Axis: Time (Hours) Dashed curve: Sample Initial Load Profiles
Y-Axis: Power (kW) Solid curve: Final load profile after scheduling

with Randomized Greedy algorithm

Figure 4: Sample Initial Unscheduled Load Profiles and Final Scheduled Load Profiles
after scheduling with the Randomized Greedy Algorithm

39

Table 10: Randomized Greedy Algorithm Analysis with Schedule of Initial Cost 91.67 as
Input

Final Cost Percentage Reduction Number of Iterations
25.32 72.37 1000
25.32 72.37 1000
25.32 72.37 1000
25.32 72.37 1000
25.32 72.37 1000
25.32 72.37 1000
25.56 72.11 1000
25.32 72.37 1000
25.32 72.37 1000
25.43 72.25 1000
25.32 72.37 5000
25.32 72.37 5000
25.32 72.37 5000
25.32 72.37 5000
25.32 72.37 5000
25.32 72.37 5000
25.32 72.37 5000
25.32 72.37 5000
25.32 72.37 5000
25.32 72.37 5000

Average Final Cost (1000 iterations) = 25.36

Average Time Taken for each run (1000 iterations) = 4.73 s

Standard deviation in Final Cost (1000 iterations) = 0.078

Average Final Cost (5000 iterations) = 25.32

Average Time Taken for each run (5000 iterations) = 23.78 s

Standard deviation in Final Cost (5000 iterations) = 0

40

Performing a similar simulation for load balancing with a scenario having an initial cost of

74.12, the following results are obtained:

Average Final Cost (1000 iterations) = 25.13

Average Time Taken for each run (1000 iterations) = 4.17 s

Standard deviation in Final Cost (1000 iterations) = 0.019

Average Final Cost (5000 iterations) = 25.12

Average Time Taken for each run (5000 iterations) = 20.99 s

Standard deviation in Final Cost (5000 iterations) = 0

Performing a similar simulation for load balancing with a scenario having an initial cost of

101.92, the following results are obtained:

Average Final Cost (1000 iterations) = 36.79

Average Time Taken for each run (1000 iterations) = 4.14 s

Standard deviation in Final Cost (1000 iterations) = 0

Average Final Cost (5000 iterations) = 36.79

Average Time Taken for each run (5000 iterations) = 20.64 s

Standard deviation in Final Cost (5000 iterations) = 0

Performing a similar simulation for load balancing with a scenario having an initial cost of

92.28, the following results are obtained:

Average Final Cost (1000 iterations) = 26.49

Average Time Taken for each run (1000 iterations) = 4.50 s

Standard deviation in Final Cost (1000 iterations) = 0.756

41

Average Final Cost (5000 iterations) = 25.52

Average Time Taken for each run (5000 iterations) = 22.20 s

Standard deviation in Final Cost (5000 iterations) = 0.194

Performing a similar simulation for load balancing with a scenario having an initial cost of

78.34, the following results are obtained:

Average Final Cost (1000 iterations) = 36.59

Average Time Taken for each run (1000 iterations) = 4.25 s

Standard deviation in Final Cost (1000 iterations) = 0.116

Average Final Cost (5000 iterations) = 36.52

Average Time Taken for each run (5000 iterations) = 21.23 s

Standard deviation in Final Cost (5000 iterations) = 0

It can be observed from the results of the simulations above that the randomized greedy

algorithm consistently generates a schedule of a much lower cost as compared to the cost of a

given initial schedule. The algorithm is different from the deterministic greedy search in that it

does not cease execution upon reaching a local optimum, and instead computes a random

schedule from the initial schedule. Using the random schedule as the current node, it continues

exploring the neighborhood search space. This randomization has clear benefits as can be seen

from the results above, where the randomized greedy search yields much better results for the

same initial schedules, as compared to its deterministic counterpart.

42

4.6. Tabu Search

4.6.1. Input: List representing initial schedule of flexible demands; Iteration count.

4.6.2. Output: List representing optimal scheduling of flexible demands.

4.6.3. Pseudo code:

Iterate from 0 to Iteration count:

 Compute neighbors for current schedule;

 Initialize best and next best costs and schedules;

Append the schedule selected to a Tabu list (implemented as a circular queue
containing pairs (D, x) where D denotes the demand, and x denotes the time by
which it was shifted);

If (D, -x) present in Tabu list:

// If the pair is present, there is a possibility of a cycle

 If a cycle is present:

 Current schedule := Next-best neighborhood schedule;

 Current cost := Next-best neighborhood schedule cost;

 Else:

 Current schedule := Best neighborhood schedule;

 Current cost := Best neighborhood schedule cost;

43

4.6.4. Observations

X-Axis: Time (Hours) Dashed curve: Sample Initial Load Profiles
Y-Axis: Power (kW) Solid curve: Final load profile after scheduling

with Tabu search

Figure 5: Sample Initial Unscheduled Load Profiles and Final Scheduled Load Profiles
after scheduling with the Tabu Search Algorithm

44

Table 11: Tabu Search Algorithm Analysis

Initial Cost Final Cost Time Taken Number of Iterations
91.67 27.43 2.51 500
91.67 27.43 5.31 1000
74.12 65.72 1.89 500
74.12 65.72 3.75 1000
101.92 50.28 1.78 500
101.92 50.28 3.58 1000
92.28 84.91 2.09 500
92.28 84.91 4.09 1000
78.34 53.33 1.98 500
78.34 53.33 3.96 1000

From the table above, it can be observed that increasing the number of iterations for the

algorithm, with the size of the Tabu list remaining constant, is not having any effect on the final

cost computed. We next examine if, for a given initial schedule, changing the Tabu list size has

any effect on the final cost computed.

Table 12: Tabu Search Algorithm Analysis for Initial Schedule of Cost 91.678

Average Final Cost Tabu List Size Number of iterations Average Time Taken
(seconds)

27.43 5 500 2.51
27.43 10 500 2.51
27.43 15 500 2.51
27.43 20 500 2.51
27.43 25 500 2.51
27.43 30 500 2.52
27.43 35 500 2.50
27.43 40 500 2.51
27.43 45 500 2.51
27.43 50 500 2.52
27.43 5 1000 5.31
27.43 10 1000 5.03

45

27.43 15 1000 5.03
27.43 20 1000 5.02
27.43 25 1000 5.03
27.43 30 1000 5.04
27.43 35 1000 5.04
27.43 40 1000 5.38
27.43 45 1000 5.04
27.43 50 1000 5.21

The above simulation is run for scenarios with initial costs of 74.12, 101.92, 92.28 and 78.34.

Similar results are observed wherein there is no change observed in the average final cost

computed, and with minimal changes in the average running times of the Tabu implementation.

Therefore, it is noted that changing the size of the Tabu list does not have any effect on the final

cost computed.

4.7. Randomized Tabu Search

4.7.1. Input: List representing initial schedule of flexible demands; Iteration count.

4.7.2. Output: List representing optimal scheduling of flexible demands.

4.7.3. Pseudo code:

Iterate from 0 to Iteration count:

 Compute neighbors for current schedule;

 Initialize best and next best costs and schedules;

Append the schedule selected to a Tabu list (implemented as a circular queue
containing pairs (D, x) where D denotes the demand, and x denotes the time by
which it was shifted);

46

If (D, -x) present in Tabu list:

// If the pair is present, there is a possibility of a cycle

 If a cycle is present:

 With a 0.5 probability,

 Current schedule := Next-best neighborhood schedule;

 Current cost := Next-best neighborhood schedule cost;

 With a 0.5 probability,

 Current schedule := A random schedule computed;

 Current cost := Random schedule cost;

 Else:

 Current schedule := Best neighborhood schedule;

 Current cost := Best neighborhood schedule cost;

47

4.7.4. Observations

X-Axis: Time (Hours) Dashed curve: Sample Initial load profiles
Y-Axis: Power (kW) Solid curve: Final load profile after scheduling

using Randomized Tabu search

Figure 6: Sample Initial Unscheduled Load Profiles and Final Scheduled Load Profiles
after scheduling with the Randomized Tabu Search Algorithm

48

Starting with a node of a certain initial cost, we run the randomized Tabu search of 500 iterations

a total of ten times, keeping the Tabu list size constant for the ten simulations. The size of the

Tabu list is incrementally increased to evaluate whether it has any effect on the quality of the

solutions computed by the algorithm. The resulting final costs and times taken for execution are

analyzed, and their averages for the ten simulations are displayed in the tables below:

Table 13: Randomized Tabu Search Analysis for Schedule with Initial Cost 91.67

Average Final
Cost

Tabu Size Number of
iterations

Standard
Deviation in
Final Cost

Average Time
Taken (seconds)

25.39 5 500 0.135 2.40
25.47 10 500 0.202 2.41
25.47 15 500 0.276 2.41
25.52 20 500 0.269 2.42
25.69 25 500 0.426 2.62
25.83 30 500 0.729 2.60
25.66 35 500 0.423 2.42
25.99 40 500 0.599 2.44
25.20 45 500 0.659 2.63
26.08 50 500 0.733 2.61
25.33 5 1000 0.033 5.00
25.43 10 1000 0.207 4.82
25.39 15 1000 0.225 4.99
25.42 20 1000 0.135 5.00
25.44 25 1000 0.192 5.04
25.37 30 1000 0.148 5.21
25.63 35 1000 0.547 5.24
25.35 40 1000 0.050 5.20
25.43 45 1000 0.150 4.89
25.53 50 1000 0.489 5.42

49

Table 14: Randomized Tabu Search Analysis for Schedule with Initial Cost 74.12

Average Final
Cost

Tabu Size Number of
iterations

Standard
Deviation in
Final Cost

Average Time
Taken (seconds)

25.20 5 500 0.125 2.01
25.49 10 500 0.541 1.98
25.38 15 500 0.302 2.01
25.33 20 500 0.288 2.00
25.79 25 500 0.797 2.02
25.57 30 500 0.432 1.99
25.78 35 500 0.689 1.96
25.82 40 500 1.319 1.96
25.70 45 500 0.432 1.95
28.29 50 500 8.185 1.93
25.13 5 1000 0.026 4.02
25.13 10 1000 0.038 3.97
25.17 15 1000 0.121 3.99
25.16 20 1000 0.122 3.98
25.29 25 1000 0.333 3.93
25.28 30 1000 0.310 3.92
25.28 35 1000 0.322 3.95
25.22 40 1000 0.170 3.89
25.23 45 1000 0.166 3.88
25.26 50 1000 0.185 4.02

Table 15: Randomized Tabu Search Analysis for Schedule with Initial Cost 101.92

Average Final
Cost

Tabu Size Number of
iterations

Standard
Deviation in
Final Cost

Average Time
Taken (seconds)

36.79 5 500 0 2.01
36.87 10 500 0.168 2.01
37.02 15 500 0.729 2.01
37.00 20 500 0.393 2.01
37.36 25 500 1.006 1.99
37.09 30 500 0.467 1.99
36.93 35 500 0.288 1.98
37.18 40 500 0.598 1.98
37.27 45 500 1.101 1.99
37.99 50 500 0.887 2.00
36.82 5 1000 0.087 4.05
36.79 10 1000 0 4.06
36.79 15 1000 0 4.06

50

36.85 20 1000 0.191 3.99
36.83 25 1000 0.126 3.99
36.96 30 1000 0.392 4.02
36.79 35 1000 0 4.00
36.92 40 1000 0.203 3.97
36.87 45 1000 0.178 4.02
37.06 50 1000 0.258 4.03

Table 16: Randomized Tabu Search Analysis for Schedule with Initial Cost 92.28

Average Final
Cost

Tabu Size Number of
iterations

Standard
Deviation in
Final Cost

Average Time
Taken (seconds)

26.84 5 500 0.671 2.20
27.89 10 500 1.470 2.21
27.31 15 500 1.254 2.20
28.50 20 500 1.670 2.20
28.77 25 500 1.386 2.18
27.83 30 500 1.448 2.17
28.71 35 500 1.209 2.20
28.38 40 500 1.683 2.18
29.04 45 500 1.325 2.15
28.88 50 500 1.750 2.14
26.17 5 1000 0.428 4.41
26.22 10 1000 0.566 4.42
26.54 15 1000 0.990 4.43
26.67 20 1000 0.912 4.41
26.98 25 1000 0.795 4.42
27.29 30 1000 1.058 4.42
27.34 35 1000 0.828 4.40
27.64 40 1000 1.097 4.35
27.63 45 1000 1.239 4.39
27.78 50 1000 0.897 4.35

51

Table 17: Randomized Tabu Search Analysis for Schedule with Initial Cost 78.34

Average Final
Cost

Tabu Size Number of
iterations

Standard
Deviation in
Final Cost

Average Time
Taken (seconds)

36.81 5 500 0.311 2.09
36.87 10 500 0.179 2.10
36.95 15 500 0.503 2.07
37.55 20 500 1.646 2.07
37.03 25 500 0.337 2.09
37.29 30 500 0.656 2.08
38.75 35 500 3.630 2.09
37.55 40 500 1.597 2.10
38.61 45 500 2.307 2.05
38.42 50 500 2.634 2.06
36.70 5 1000 0.136 4.22
36.69 10 1000 0.163 4.18
36.80 15 1000 0.165 4.20
36.82 20 1000 0.233 4.17
36.75 25 1000 0.213 4.18
36.78 30 1000 0.238 4.18
36.80 35 1000 0.220 4.20
37.21 40 1000 0.811 4.14
36.80 45 1000 0.270 4.17
36.99 50 1000 0.746 4.19

As can be observed from the results of the simulations above, the size of the Tabu list and the
number of iterations (beyond a certain threshold) do not have a significant impact in computing
final costs.

52

4.8. Metropolis Algorithm

4.8.1. Input: List representing initial schedule of flexible demands; Metropolis temperature,

Iteration count.

4.8.2. Output: List representing optimal scheduling of flexible demands.

4.8.3. Pseudo code:

Best schedule := Current schedule;

Best cost := Cost of current schedule;

Iterate from 0 to Iteration count:

 Pick at random a neighbor of the current schedule, say v;

 If cost of neighbor v < Cost of current schedule:

 Current schedule := v;

 Best schedule := v;

 Else:

 Compute probability p := Exp((Cost of current Best schedule – Cost of v)/
Metropolis temperature);

 Compute a uniformly random number x between 0 and 1;

 If x ≤ p:

 Current schedule := v ;

53

4.8.4. Observations

X-Axis: Time (Hours) Dashed curve: Sample Initial Load Profiles
Y-Axis: Power (kW) Solid curve: Final load profile after scheduling

using Metropolis algorithm (Temperature: 1)

Figure 7: Sample Initial Unscheduled Load Profiles and Final Scheduled Load Profiles
after scheduling with the Metropolis Algorithm

54

Table 18: Metropolis Algorithm Analysis for Schedule with Initial Cost 91.67

Average Final
Cost

Temperature Number of
Iterations

Standard
Deviation in
Final Cost

Average Time
Taken (seconds)

27.05 1 1000 1.065 0.27
28.21 2 1000 0.971 0.27
29.59 3 1000 1.378 0.27
30.71 4 1000 1.027 0.27
29.61 5 1000 1.924 0.27
31.01 10 1000 1.273 0.27
32.54 15 1000 1.061 0.27
32.14 20 1000 1.323 0.43
32.22 25 1000 1.732 0.27
31.95 30 1000 1.336 0.27
32.95 35 1000 1.515 0.27
32.53 40 1000 1.548 0.27
31.82 45 1000 1.256 0.27
31.60 50 1000 1.689 0.27
32.07 55 1000 1.550 0.27
32.59 60 1000 2.105 0.27
33.00 65 1000 2.150 0.27
31.92 70 1000 1.077 0.27
31.40 75 1000 1.537 0.27
32.60 80 1000 1.780 0.27
32.48 85 1000 2.106 0.27
33.01 90 1000 2.550 0.47
32.19 95 1000 1.547 0.27
32.24 100 1000 1.967 0.28
26.25 1 10000 0.877 2.92
26.45 2 10000 0.723 2.92
27.01 3 10000 0.477 2.75
26.85 4 10000 1.007 2.91
27.56 5 10000 0.700 3.15
28.54 10 10000 0.700 2.92
28.50 15 10000 0.940 2.91
28.95 20 10000 0.592 3.28
29.14 25 10000 1.308 2.97
29.03 30 10000 0.943 2.91
28.56 35 10000 0.855 2.92
30.10 40 10000 0.680 2.75
29.54 45 10000 1.146 2.75
29.75 50 10000 0.912 2.95
29.99 55 10000 0.820 3.13
29.58 60 10000 0.874 2.75
29.86 65 10000 0.618 2.75

55

29.20 70 10000 0.900 2.96
29.27 75 10000 1.284 2.91
29.97 80 10000 1.227 2.91
29.41 85 10000 1.107 2.75
29.42 90 10000 1.135 2.92
29.15 95 10000 1.438 2.92
29.96 100 10000 1.064 2.92

X-Axis: Metropolis temperature

Y-Axis: Average final cost after running algorithm for 10000 iterations

Figure 8: Curve denoting Average Final Costs over Metropolis Temperatures for an Initial
Schedule of Cost 91.67

56

X-Axis: Metropolis temperature

Y-Axis: Standard deviation in final costs after running algorithm for 10000 iterations

Figure 9: Curve denoting Standard Deviation in Final Costs over Metropolis Temperatures
for an Initial Schedule of Cost 91.67

Table 19: Metropolis Algorithm Analysis for Schedule with Initial Cost 101.92

Average Final
Cost

Temperature Number of
Iterations

Standard
Deviation in
Final Cost

Average Time
Taken (seconds)

37.97 1 1000 1.07 0.25
39.61 2 1000 1.30 0.25
39.25 3 1000 1.14 0.25
40.38 4 1000 1.23 0.25
40.36 5 1000 1.42 0.25
42.17 10 1000 3.52 0.25
42.23 15 1000 2.66 0.25
42.52 20 1000 2.08 0.25
42.39 25 1000 2.20 0.25
43.13 30 1000 2.12 0.25
44.79 35 1000 4.78 0.25
43.88 40 1000 2.20 0.25
45.05 45 1000 4.15 0.25
44.99 50 1000 3.48 0.25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120

57

42.49 55 1000 1.89 0.25
43.01 60 1000 2.03 0.25
44.50 65 1000 1.24 0.25
44.81 70 1000 4.15 0.25
42.43 75 1000 2.69 0.25
42.24 80 1000 1.33 0.25
44.65 85 1000 2.63 0.25
45.39 90 1000 2.91 0.25
43.03 95 1000 1.65 0.25
45.69 100 1000 4.63 0.25
36.84 1 10000 0.16 2.49
37.19 2 10000 0.40 2.49
37.40 3 10000 0.38 2.49
37.55 4 10000 0.42 2.49
38.08 5 10000 0.80 2.49
38.74 10 10000 0.79 2.49
39.27 15 10000 0.85 2.49
38.74 20 10000 0.82 2.49
40.06 25 10000 0.75 2.51
39.44 30 10000 1.11 2.50
39.91 35 10000 1.00 2.51
38.76 40 10000 1.08 2.49
39.59 45 10000 0.81 2.49
39.75 50 10000 1.00 2.50
39.40 55 10000 0.95 2.56
40.01 60 10000 1.15 2.53
40.34 65 10000 0.59 2.52
39.76 70 10000 0.69 2.70
39.81 75 10000 0.88 2.53
40.54 80 10000 1.02 2.56
39.97 85 10000 0.76 2.56
39.88 90 10000 0.94 2.71
39.98 95 10000 0.73 2.88
39.61 100 10000 1.11 2.63

58

X-Axis: Metropolis temperature

Y-Axis: Average final cost after running algorithm for 10000 iterations

Figure 10: Curve denoting Average Final Costs over Metropolis Temperatures for an
Initial Schedule of Cost 101.92

X-Axis: Metropolis temperature

Y-Axis: Standard deviation in final costs after running algorithm for 10000 iterations

Figure 11: Curve denoting Standard Deviation in Final Costs over Metropolis
Temperatures for an Initial Schedule of Cost 101.92

59

Table 20: Metropolis Algorithm Analysis for Schedule with Initial Cost 92.28

Average Final
Cost

Temperature Number of
Iterations

Standard
Deviation in
Final Cost

Average Time
Taken (seconds)

28.63 1 1000 1.90 0.26
30.35 2 1000 3.16 0.26
29.83 3 1000 1.76 0.26
33.42 4 1000 2.06 0.26
31.45 5 1000 1.75 0.26
32.30 10 1000 2.34 0.26
35.09 15 1000 2.99 0.26
35.52 20 1000 2.09 0.26
35.81 25 1000 2.18 0.26
35.58 30 1000 2.49 0.26
35.59 35 1000 2.48 0.26
36.15 40 1000 2.63 0.26
33.65 45 1000 2.14 0.26
35.02 50 1000 1.84 0.26
35.04 55 1000 2.66 0.26
34.48 60 1000 3.62 0.26
36.61 65 1000 3.10 0.26
35.44 70 1000 2.15 0.26
35.11 75 1000 2.54 0.26
36.83 80 1000 2.01 0.26
35.03 85 1000 2.40 0.26
36.49 90 1000 2.86 0.26
35.09 95 1000 3.13 0.26
34.46 100 1000 2.17 0.26
25.60 1 10000 0.12 2.59
26.55 2 10000 0.66 2.59
26.94 3 10000 0.49 2.59
27.75 4 10000 0.67 2.59
28.02 5 10000 1.18 2.60
29.78 10 10000 0.90 2.59
29.42 15 10000 1.20 2.67
30.40 20 10000 1.92 2.63
30.23 25 10000 1.13 2.63
30.92 30 10000 1.37 2.66
30.19 35 10000 1.17 2.64
30.47 40 10000 1.07 2.69
30.94 45 10000 0.82 2.67
30.24 50 10000 1.48 2.67
31.65 55 10000 1.83 2.59
30.46 60 10000 1.73 2.59
30.62 65 10000 1.24 2.66

60

30.69 70 10000 1.42 2.88
31.24 75 10000 1.03 2.60
31.68 80 10000 1.03 2.60
30.66 85 10000 1.49 2.60
31.28 90 10000 1.42 2.67
30.74 95 10000 1.49 2.85
30.43 100 10000 1.17 2.86

X-Axis: Metropolis temperature

Y-Axis: Average final cost after running algorithm for 10000 iterations

Figure 12: Curve denoting Average Final Costs over Metropolis Temperatures for an
Initial Schedule of Cost 92.28

61

X-Axis: Metropolis temperature

Y-Axis: Standard deviation in final costs after running algorithm for 10000 iterations

Figure 13: Curve denoting Standard Deviation in Final Costs over Metropolis
Temperatures for an Initial Schedule of Cost 92.28

Table 21: Metropolis Algorithm Analysis for Schedule with Initial Cost 78.34

Average Final
Cost

Temperature Number of
Iterations

Standard
Deviation in
Final Cost

Average Time
Taken (seconds)

41.37 1 1000 4.35 0.25
38.63 2 1000 2.78 0.25
39.03 3 1000 2.45 0.25
40.76 4 1000 3.00 0.25
39.36 5 1000 1.44 0.25
40.40 10 1000 1.82 0.25
40.88 15 1000 1.75 0.25
41.80 20 1000 3.57 0.25
44.01 25 1000 3.54 0.25
43.38 30 1000 3.51 0.25
43.38 35 1000 4.38 0.25
41.69 40 1000 2.42 0.25
43.90 45 1000 3.23 0.25
43.81 50 1000 3.54 0.25
42.95 55 1000 4.52 0.25
43.41 60 1000 4.84 0.25
41.94 65 1000 3.10 0.25
43.09 70 1000 3.43 0.25
41.19 75 1000 3.03 0.25

62

43.75 80 1000 3.55 0.25
43.65 85 1000 5.35 0.25
43.33 90 1000 4.20 0.25
41.95 95 1000 3.44 0.25
42.60 100 1000 3.95 0.25
36.57 1 10000 0.09 2.52
36.80 2 10000 0.20 2.52
36.90 3 10000 0.37 2.52
37.00 4 10000 0.44 2.52
37.33 5 10000 0.28 2.51
37.58 10 10000 0.52 2.51
37.71 15 10000 0.52 2.51
38.14 20 10000 0.71 2.51
38.12 25 10000 0.97 2.52
38.51 30 10000 0.80 2.52
38.56 35 10000 0.85 2.52
38.43 40 10000 0.78 2.53
38.40 45 10000 0.69 2.52
38.32 50 10000 0.98 2.52
38.53 55 10000 0.96 2.53
38.28 60 10000 0.63 2.52
38.42 65 10000 0.57 2.52
38.61 70 10000 1.14 2.52
38.31 75 10000 0.83 2.52
38.71 80 10000 0.77 2.52
38.03 85 10000 0.55 2.52
38.14 90 10000 0.62 2.52
38.95 95 10000 0.85 2.52
38.10 100 10000 0.74 2.52

63

X-Axis: Metropolis temperature

Y-Axis: Average final cost after running algorithm for 10000 iterations

Figure 14: Curve denoting Average Final Costs over Metropolis Temperatures for an
Initial Schedule of Cost 78.34

X-Axis: Metropolis temperature

Y-Axis: Standard deviation in final costs after running algorithm for 10000 iterations

Figure 15: Curve denoting Standard Deviation in Final Costs over Metropolis
Temperatures for an Initial Schedule of Cost 78.34

64

As can be observed from the analyses above of multiple scenarios, executing the Metropolis

algorithm with a lower Metropolis temperature ~ 1 yields the best results, both in terms of the

average final costs of schedules generated, and the standard deviations between final schedule

costs.

4.9. Comparison between heuristic algorithms

Through a study of the simulation results, it is observed that the Greedy and Tabu searches do

not guarantee a good result (a low final cost) given an initial load profile. We note that

randomized versions of both consistently yield much better results as compared to their

deterministic counterparts. The randomized Greedy and randomized Tabu searches both have

low standard deviations in final costs computed from an initial load profile, particularly in the

case of the randomized Greedy search. As seen from the analysis of the Metropolis algorithm in

the previous section, the algorithm also gives consistent results with low final costs computed,

especially when utilizing lower Metropolis temperatures. The following table below summarizes

results observed after running the aforementioned algorithms with a load profile of initial cost

91.67:

65

Table 22: Performance Comparison between Heuristic Algorithms for an Initial Schedule
of Cost 91.67

Algorithm No. of Iterations Avg. Final Cost Avg. Time (s) Std. Dev. (Cost)

Greedy Search 1000 27.43 0.103 0

Greedy Search 10000 27.43 0.103 0

Randomized
Greedy Search

1000 25.36 4.731 0.078

Randomized
Greedy Search

5000 25.32 23.787 0

Tabu Search (Tabu
List Size: 5)

500 27.43 2.51 0

Tabu Search (Tabu
List Size: 5)

1000 27.43 5.31 0

Randomized Tabu
Search

500 25.39 2.401 0.135

Randomized Tabu
Search

1000 25.33 5.009 0.033

Metropolis
(Temperature: 1)

1000 27.05 0.275 1.065

Metropolis
(Temperature: 1)

10000 26.25 2.920 0.877

66

The graph below outlines the average final costs over the average time taken for the above

algorithms (For the initial schedule of cost 91.678):

X-Axis: Average time taken

Y-Axis: Average final cost computed

A: Greedy search (1000 iterations)

B: Greedy search (10000 iterations)

C: Tabu search (500 iterations)

D: Tabu search (1000 iterations)

E: Metropolis algorithm (1000 iterations)

F: Metropolis algorithm (10000 iterations)

G: Randomized Tabu search (500 iterations)

H: Randomized Tabu search (1000 iterations)

I: Randomized Greedy search (1000 iterations)

J: Randomized Greedy search (5000 iterations)

Figure 16: Graph denoting Average Final Costs computed using Heuristic Algorithms over
Time Taken for Computation for an Initial Schedule of Cost 91.67

67

Similar results are obtained when performing the above analysis on scenarios of initial costs

74.12, 101.92, 92.28 and 78.34. We can conclude that if the final schedule generated by the

algorithm and the standard deviation in cost of schedules computed for the same initial schedule

are the foremost criteria for evaluation of performances between algorithms, then the randomized

Greedy search performs best. The randomized Tabu search yields results close to those of the

randomized Greedy search (with slightly worse values of average costs of final schedule and

standard deviation in final schedule costs), and executes faster. The Metropolis algorithm when

executed with low Metropolis temperatures generates results close to (but not as good as) those

generated by the randomized Greedy search and the randomized Tabu search, and executes faster

than even the randomized Tabu search.

68

Chapter 5: Summary and Concluding Remarks

In this thesis, we have a proposed a real-time energy pricing policy and have provided algorithms

for implementing the policy. A major issue for a power grid is to optimally use its capacity. Both

the economic and the environmental costs will be different at periods in a twenty-four hour

timeframe due to various reasons like variable availability of alternate energy sources, variability

in personnel cost over various times of the day, and similar reasons. On the other hand, energy

demands of customers also vary over the day; moreover, there are intervals in a day when a

majority of the customers wish to consume energy and intervals where minimum energy

consumption is observed. As a result, the overall demand seen through a load profile exhibits

sharp peaks and valleys. If utilities aim only to meet demands of the customers at all times then

generation capacity must be augmented through the establishment of special peaker plants which

will be used only in the relatively short periods of large demands, and will remain idle at other

periods. Also, in general, there may not be any positive correlation between periods of greater

demands and periods when substantial supply of alternate energy is available. Overall, there can

be large mismatches between the overall demand curve and the supply curve most suited for the

utilities. Clearly, there is a need to balance overall demand so that these two curves are better

aligned.

One way of achieving the balance mentioned above is to encourage customers to suitably adjust

their energy demands over the twenty-four hour period. Every customer has a number of flexible

loads for which there is a certain amount of flexibility as to when such loads are to be serviced in

69

the twenty-four hour period. It is then desirable that customers schedule their flexible loads in a

manner that will help achieve an overall demand curve which will match as much as possible the

ideal supply curve. Clearly, we need to provide economic incentives to customers so that they

schedule their flexible loads in this manner. A simple-minded solution would be to have higher

energy prices during peak demand hours and correspondingly lower prices during periods when

the load profile exhibits valleys. But simulation studies have shown that this strategy does not

work, it merely tends to shift a peak in demand from one period to another; the load on the grid

still remains far from being balanced.

Our pricing policy, presented in Chapter 2, addresses the above problem. Suppose the twenty-

four hour period is divided in M equal intervals. Our pricing policy is that for the interval i, the

price is aiDi + bi, where Di is the total demand in the interval i, and ai and bi are constants which

will essentially reflect the economic and environmental costs of energy generation at the ith

interval. As demand increases in a certain interval, the price also increases linearly, thereby

discouraging further demand. Similarly, the pricing policy will encourage greater usage in

intervals when demands are less. We show how the marginal cost pricing principle leads to such

a pricing mechanism.

Apart from economic justifications, it is important for the aforementioned pricing policy to

promote load balancing. For each interval i, the utility can specify what the constants ai and bi

are for the price to be charged at that interval. Assuming a total demand of power on the utility

being P, and considering M intervals in a twenty-four hour period, the question then arises how

70

best to distribute the total demand P into the M periods. We provide in Chapter 3 two algorithms

for solving the problem: one is a dynamic programming algorithm which will return the optimal

solution, and the second is a greedy algorithm which will return a non-optimal solution. The

greedy algorithm, being only marginally poorer in terms of quality of solutions that it returns

compared to the optimum-returning dynamic programming algorithm, has the advantage that it

runs much faster than the dynamic programming algorithm. Indeed, its runtime complexity is

square-root of the runtime complexity of the dynamic programming algorithm. We also discuss

in Chapter 3 how the algorithm above can suggest an ideal load curve for each individual

customer. We propose two policies: in the first, the total revenue paid by a customer is in

proportion to his usage in terms of the total usage. This policy, as we have observed in Chapter

3, is fair to the utility but provides an advantage to customers with larger demand in comparison

to those with smaller demands. We, therefore, have proposed another policy in which each

customer pays for the cost of producing the amount of electricity equal to his demand. Although

the second policy is fair to each customer, it will not be so for the utility. A solution is for the

utility to provide to customers coefficients ai and bi suitably marked up.

Once each customer has an ideal load curve, the issue then is for him to schedule his flexible

loads in a manner that his actual load profile comes as close to the ideal load curve as possible.

We address this problem in Chapter 4. As the scheduling problem is NP-hard, we explore a

number of heuristic search algorithms for solving the problem. The heuristic searches that we

have implemented are: local search, Metropolis algorithm, Tabu search and a new randomized

Tabu search. As we find in Section 4.8, Greedy and Tabu searches do not guarantee a good result

(a low final cost) given an initial load profile. We note that randomized versions of both

71

consistently yield much better results as compared to their deterministic counterparts. The

randomized Greedy and randomized Tabu searches both have low standard deviations in final

costs computed from an initial load profile, particularly in the case of the randomized Greedy

search. As seen from the analysis of the Metropolis algorithm in Section 4.7.4, the algorithm also

gives consistent results with low final costs computed, especially when utilizing lower

Metropolis temperatures.

We identify two issues as possibilities for future work. The first issue is that of exploring the

possibility of co-operation amongst customers or amongst groups of customers. This work

provides a method to determine an ideal load curve for each customer, followed by the customer

seeking to schedule his flexible demands in a way so as to conform to the ideal load curve.

However, for a given time period, a user may be unable to limit his usage at certain intervals

within the values specified by his ideal load curve, while a neighboring user’s demand may be

less than what is specified by the neighbor’s ideal load curve. A mechanism can be explored

wherein, transparent to the utility, the excess energy of the neighbor may be used to compensate

the user’s shortfall. In effect, such a mechanism will help flatten out undesirable peaks in

individual load profiles. This idea can be extended to encompass communities as well, where

there may be cooperation between neighboring communities. It can be interesting to explore the

kind of hardware and software support necessary to affect such levels of cooperation.

Another open issue with regard to this study is: we have assumed that no flexible demand can be

preempted- once a flexible demand is scheduled, it is serviced for the length of its duration.

72

However, there are flexible jobs which can be preempted, for instance, a deep freezer. Therefore,

the algorithms of Chapter 4 can be extended to allow pre-emptive scheduling for a specified

subset of the flexible jobs.

73

References

1. Federal Energy Regulatory Commission, “Assessment of Demand Response & Advanced

Metering Staff Report”, 2013

2. Renewable Energy Policy Network for the 21st Century, “Renewables 2007: Global Status

Report”, 2007

3. U.S. Department of Energy, “The Smart Grids: An introduction”, 2009

4. Gang Xiong, Chen Chen, Shalinee Kishore, “Smart (In-home) Power Scheduling for Demand

Response on the Smart Grid”, 2010

5. Pennsylvania Act 129, 2008. http://www.puc.state.pa.us//electric/Act_129_info.aspx

6. Frontier Economics and Sustainability First, “Demand Side Response in the domestic sector- a

literature review of major trials”, 2012

7. Gelen Barbose, Charles Goldman, Bernie Neenan, “A Survey of Utility Experience with Real

Time Pricing”, Berkeley National Laboratory, 2004. Available at

http://eetd.lbl.gov/ea/EMS/EMS_pubs.html

8. Robert H. Miller and James H. Malinowski, “Power System Operation”, McGraw-Hill

Edition, 2009

9. R. Caldon, A. Rossi Patria and R. Turri, “Optimal Control of a Distribution System with a

Virtual Power Plant”, Proceedings of Bulk Power System Dynamics and Control Conference,

2004

10. Frank A. Wolak, “Public Utility Pricing and Finance”, The New Palgrave Dictionary of

Economics, Second Edition. Eds. Steven N. Durlauf and Lawrence E. Blume, Palgrave

74

http://www.puc.state.pa.us/electric/Act_129_info.aspx

Macmillan, 2008. http://www.dictionaryofeconomics.com/article?id=pde2008_P000358

11. R.H. Coase, ''The Theory of Public Utility Pricing and its Application'', The Bell Journal of

Economics and Management Science, Volume 1

12. Woodbank Communications Ltd, “Electricity Demand”, 2005

13. Market Surveillance Administrator, MSA Report on Residential Load Profiles, 2004

75

Vita

Manek Biswas was born in Kanpur, India on March 9, 1990. He completed his undergraduate

studies in Computer Science from Manipal University in Karnataka, India in May 2011.

Currently, he is enrolled in a Master’s program in the same field at Syracuse University in New

York, set to graduate in December 2013. While at Syracuse University, he was a Research

Assistant working on the subject of the Smart Grid, and was also a Teaching Assistant for an

introductory course to the topic.

76

	Algorithms for the Implementation of a Dynamic Energy Pricing Policy
	Recommended Citation

	Algorithms for the Implementation of a Dynamic Energy Pricing Policy

