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Supporting Irregular Distributions in FORTRAN 90D /HPF

Compilers *

Ravi Ponnusamy '+ Yuan-Shin vaang]L Raja Das'
Joel Saltz! Alok Choudharyi Geoffrey Fox*

Y UMIACS and Computer Science Department I Northeast Parallel Architectures Center
Unwversity of Maryland Syracuse University
College Park, MD 20742 Syracuse, NY 13244

Abstract

This paper presents methods that make it possible to efficiently support irreqular problems using data
parallel languages. The approach involves the use of a portable, compiler-independent, runtime support
library called CHAOS. The CHAOS runtime support library contains procedures that

e support static and dynamic distributed array partitioning,

e partition loop iterations and indirection arrays,

e remap arrays from one distribution to another, and

e carry out index translation, buffer allocation and communication schedule generation.

The CHAOS runtime procedures are used by a prototype Fortran 90D compiler as runtime sup-
port for irreqular problems. This paper also presents performance results of compiler-generated and
hand-parallelized versions of two stripped down applications codes. The first code is derived from
an unstructured mesh computational fluid dynamics flow solver and the second is derived from the
molecular dynamics code CHARMM.

A method is described that makes it possible to emulate irregular distributions in HPF by reorder-
ing elements of data arrays and renumbering indirection arrays. The results suggest that an HPF
compiler could use reordering and renumbering extrinsic functions to obtain performance comparable

to that achieved by a compiler for a language (such as Fortran 90D) that directly supports irreqular
distributions.

*This work was sponsored in part by ARPA (NAG-1-1485), NSF (ASC 9213821), and ONR (5C292-1-22913).



1 Introduction

On distributed memory machines, large data arrays need to be partitioned between local processor
memories. These partitioned data arrays are called distributed arrays. Many applications can be
efficiently implemented by using simple schemes for mapping distributed arrays. One example of such
a scheme is to divide an array into contiguous, equal sized subarrays and to assign each subarray to a
different processor. Another example is to assign consecutively indexed array elements to processors
in a round-robin fashion. These two standard data distribution schemes are often called BLOCK
and CYCLIC data distributions [10], respectively. Languages such as High Performance Fortran
(HPF) [10], Fortran D [6] and Vienna Fortran [4] allow users to control how array elements are
assigned to processor memories.

Many scientific applications make extensive use of indirectly accessed arrays. Examples of such
problems include computational fluid dynamics codes [11], molecular dynamics codes (CHARMM,
AMBER, GROMOS, etc.) [3], diagonal or polynomial preconditioned iterative linear solvers, and time
dependent flame modeling codes. These problems are called irreqular problems. Figure 1 illustrates
code with an irregular loop. This example shows the code that sweeps over nedge mesh edges. Arrays
x and y are data arrays. Loop iteration ¢ carries out a computation involving the edge that connects
vertices edgel(i) and edge2(?). Arrays such as edgel and edge2 which are used to index data arrays

are called indirection arrays.

C  Outer Loop L1
don =1, n_step

C ‘I‘Iiner Loop L2
doi =1, nedge
v(edgel (1)) = vledgel(i)) + f(x(edgel (1)), x(edge2(i)))
dygedgGQ(i)) = y(edge2(i)) + g(x(edgel(i)), x(edge2(i)))

end do

Figure 1: An Example Code with an Irregular Loop

It has been widely observed (e.g. [5], [13]) that performance on distributed memory systems can
be enhanced by distributing data using a non-standard format. Researchers have developed a variety
of methods to obtain data mappings that are designed to optimize irregular problem communication
requirements [1, 16, 18]. The distribution produced by these methods needs to be represented by a
table that associates a processor assignment with each array element. This kind of distribution is
often called an irregular distribution.

Figure 2 depicts three different distributions of data arrays over two processors. Figure 2(a) shows

the graph of 6 nodes and 7 edges. Arrays x and y are data arrays. The edges are represented by two



indirection arrays edgel and edge2, which will be partitioned in blocks. The code listed in Figure 1
can be used to sweep this graph. Figure 2(b) presents the result of BLOCK distribution; nodes 1,
2, and 3 are assigned to processor P0, and nodes 4, 5, and 6 to processor P1. The dashed circles in
indirection arrays edgel and edge2 indicate that the indexed elements are not local. The CYCLIC
distribution of the graph is displayed in Figure 2(c). Nodes are assigned to processors in round robin
fashion. In this distribution, there are 5 non-local data elements. The irregular distribution shown

Figure 2(d) represents the best mapping of the graph since only one remote reference is required.
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Figure 2: Data Distributions

In addition to standard distributions such as BLOCK and CYCLIC, Fortran D and Vienna Fortran
also support irregular data distributions. Fortran D allows a user to explicitly specify an irregular dis-
tribution using an array, to specify a mapping of array elements to processors. Vienna Fortran allows
user-defined functions to describe irregular distributions. The current version of HPF does not directly
support irregular distributions. Language extensions have been proposed by Hanxeleden et al [8] and
Ponnusamy et al [12] to support irregular distributions in languages like Fortran D. A method is de-
scribed in this paper that makes it possible to emulate irregular distributions in HPF by reordering
elements of data arrays and renumbering indirection arrays. This paper presents results that suggest
that an HPF compiler could use reordering and renumbering extrinsic functions to obtain performance
comparable to that achieved by a compiler for a language (such as Fortran 90D) that directly sup-
ports irregular distributions. Researchers have proposed compile-time techniques to partition data
automatically by compilers. But their approaches are only applied to regular programs [14].

This paper considers two additional language features not found in HPF; variants of these language
extensions are found in Fortran D and Vienna Fortran. The first feature is the ON clause; the ON
clause allows users to specify which processor is to execute each iteration of a loop. The second feature

is an intrinsic function that can be used to carry out reduction in a parallel (forall) loop.



In irregular problems, data access patterns and workload are usually known only at runtime,
hence decisions regarding data and work distributions are made at runtime. These on-the-fly decisions
require special runtime support. A set of procedures have been developed, called CHAQS, that can
be used by an HPF style compiler. CHAOS is a successor of PARTI [15] and provides support for
managing user-defined distributions, partitioning loop iterations, remapping data and index arrays,
and generating optimized communication schedules.

The methods proposed in this paper are implemented in the Syracuse Fortran 90D prototype
compiler. Templates from real application codes are employed to study performance. The compiler
generates parallel codes for irregular problems by embedding CHAQOS runtime procedures.

Examples of targeted applications are introduced in Section 2. Section 3 presents the functionality
of the runtime support and an overview of the existing data parallel languages. Section 4 describes the
language support for irregular distributions. Performance results of the runtime system for templates
from real-applications are presented in Section 5. The templates are derived from the application
codes which will be described in Section app-codes. The performance of the compiler-generated codes

is compared to that of hand-written codes. Section 6 presents conclusions.

2 Application Codes

It is useful to describe application codes to introduce the motivation behind irregular distributions.
The loop structures of two application codes (an unstructured Euler solver and a molecular dynamics
code) are described in this section. They consist of a sequence of loops with indirectly accessed arrays
and are similar to those depicted in Figure 1.

The first application code is an unstructured Euler solver used to study the flow of air over an
airfoil [11]. Complex aerodynamic shapes require high resolution meshes and, consequently, large
numbers of mesh points. Physical values (e.g. velocity, pressure) are associated with each mesh
vertex. These values are called flow variables and are stored in arrays. These arrays are called data
arrays. Calculations are carried out using loops over the list of edges that define the connectivity of
the vertices.

To parallelize an unstructured Euler solver, mesh vertices must be partitioned (i.e. arrays that
store flow variables). Since meshes are typically associated with physical objects, a spatial location
can often be associated with each mesh point. The spatial locations of the mesh points and the
connectivity of the vertices is determined by the mesh generation strategy [11]. Figure 3 depicts a
mesh generated by such a process. This is an unstructured mesh representation of a three dimensional
aircraft wing.

The way in which the vertices of such irregular computational meshes are numbered frequently
does not have a useful correspondence to the connectivity pattern (edges) of the mesh. During mesh
generation, vertices are added progressively to refine the mesh. While new vertices are added, new

edges are created or older ones are moved around to fulfill certain mesh generation criteria. This
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Figure 3: An Unstructured Mesh

causes the apparent lack of correspondence between the vertex numbering and edge numbering. One
way to solve this problem is to renumber the mesh completely after the mesh has been generated.

Mesh points are partitioned to minimize communication. Recently, promising heuristics have been
developed that can use one or several of the following types of information: 1) spatial locations of
mesh vertices, 2) connectivity of the vertices, and 3) estimate of the computational load associated
with each mesh point. For instance, a user might choose a partitioner that is based on coordinates [1].
A coordinate bisection partitioner decomposes data using the spatial locations of vertices in the mesh.
If the user chooses a graph-based partitioner, the connectivity of the mesh could be used to decompose
the mesh.

The next step in parallelizing this application involves assigning equal amounts of work to pro-
cessors. A Euler solver consists of a sequence of loops that sweep over a mesh. Computational work
associated with each loop must be partitioned among processors to balance load. Consider a loop that
sweeps over mesh edges, closely resembling the loop depicted in Figure 1. Mesh edges are partitioned
so that 1) load balance is maintained, and 2) computations mostly employ locally stored data.

Other unstructured problems have similar indirectly accessed arrays. For instance, consider the
non-bonded force calculation in the molecular dynamics code, CHARMM [3], shown in Figure 4.
Force components associated with each atom are stored as Fortran arrays. The loop L1 sweeps over

all atoms. In this discussion, it is assumed that L1 is a parallel loop while L2 is a sequential one. The



L1l: doi =1, NATOM

L2: doindex = 1, INB(i)
j = Partners(i, index)
Calculate dF (x, y and z components).
Subtract dI from Fj.
Add dF to F;

end do
end do

Figure 4: Non-bonded Force Calculation Loop from CHARMM

loop iterations of L1 are distributed over processors. All computation pertaining to iteration ¢ of L1
is carried out on a single processor, so loop L2 need not be parallelized.

It is assumed that all atoms within a given cutoff radius interact with each other. The array
Partners(i, *) lists all the atoms that interact with atom 7. The inner loop calculates the three force
components (X, y, z) between atom 7 and atom j (van der Waal’s and electrostatic forces). They are
then added to the forces associated with atom 7 and subtracted from the forces associated with the
atom .

The force array elements are partitioned in a way as to reduce interprocessor communication in
the non-bonded force calculation loop (Figure 4). Figure 5 depicts two possible distributions of atoms
of a Myoglobin and 3830 water molecules onto eight processors. Shading is used to represent the
assignment of atoms to processors. Data sets associated with the sequential version of CHARMM
assign each atom an index number which does not reflect locality. Figure 5(a) depicts a distribution
that assigns consecutively numbered sets of atoms to each processor, i.e. a BLOCK distribution. Since
nearby atoms interact, the choice of a BLOCK distribution is likely to result in a large volume of commu-
nication. Consider, instead, a distribution based on the spatial locations of atoms. Figure 5(b) depicts
a distribution of atoms to processors carried out using an inertial bisection partitioner. Compare
Figure 5(a) and 5(b), the later figure has a much smaller amount of surface area between portions of

the molecules associated with each processor.

3 Runtime Support

This section is an overview of the principles and functionality of the CHAOS runtime support library,
a superset of the PARTT library [15].



(a) BLOCK Distribution (b) Irregular Distribution

Figure 5: Distribution of Atoms on 8 Processors

3.1 Overview of CHAOS

The CHAOS runtime library has been developed to efficiently handle problems that consist of a
sequence of clearly demarcated concurrent computational phases. Solving such concurrent irregular
problems on distributed memory machines using CHAOS runtime support involves six major steps
(Figure 6). The first four steps concern mapping data and computations onto processors. The next
two steps concern analyzing data access patterns in a loop and generating optimized communication
calls. A brief description of these phases follows.

Initially, arrays are decomposed into either regular or irregular distributions.

A. Data Distribution : Phase A calculates how data arrays are to be partitioned by making
use of partitioners provided by CHAOS or by the user. CHAOS supports a number of parallel
partitioners that use heuristics based on spatial positions, computational load, connectivity, etc.
The partitioners return an irregular assignment of array elements to processors; this is stored
as a CHAOS construct called the translation table. A translation table is a globally accessible
data structure which lists the home processor and offset address of each data array element.
The translation table may be replicated, distributed regularly, or stored in a paged fashion,

depending on storage requirements.

B. Data Remapping : Phase B remaps data arrays from the current distribution to the newly

calculated irregular distribution. A CHAOS procedure remap is used to generate an optimized



Phase A : Data Partitioning Assign elements of data arrays to processors

Phase B : Data Remapping Redistribute data array elements
Phase C : Iteration Partitioning Allocate iterations to processors

Phase D : Tteration Remapping Redistribute indirection array elements
Phase E :  Inspector Translate indices; Generate schedules
Phase F' :  Executor Use schedules for data transportation;

Perform computation

Figure 6: Solving Irregular Problems

communication schedule for moving data array elements from their original distribution to the

new distribution.

C. Loop Iteration Partitioning : Phase C determines how loop iterations should be partitioned
across processors. There are a large number of possible schemes for assigning loop iterations
to processors based on optimizing load balance and communication volume. CHAQOS uses the
almost-owner-computes rule to assign loop iterations to processors. Fach iteration is assigned
to the processor which owns a majority of data array elements accessed in that iteration. This

heuristic is biased towards reducing communication costs.

D. Remapping Loop Iterations : Phase D is similar to phase B. Indirection array elements are
remapped to conform with the loop iteration partitioning. For example, in Figure 1, once loop
L2 is partitioned, indirection array elements edgel(i) and edge2(7) used in iteration ¢ are moved

to the processor which executes that iteration.

E. Inspector : Phase E carries out the preprocessing needed for communication optimizations and

index translation.

F. Executor : Phase F uses information from the earlier phases to carry out computation and
communication. Communication is carried out by CHAOS data transportation primitives which

use communication schedules constructed in Phase E.

Phase F is typically executed many times in real application codes, however, phases A through E
are executed only once if the data access patterns do not change. When programs change data access
patterns but maintain good load balance, phases E and I are repeated. If programs require remapping

of data arrays from the current distribution to a new distribution, all phases are executed again.



A brief presentation of some important CHAOS features that are useful to parallelize irregular

programs is given in the following sections.

3.2 Data Access Descriptors — Translation Tables

When an array is irregularly distributed, a mechanism is needed to retrieve required elements of that
array. CHAOS supports a translation mechanism using a data structure called the translation table.
A translation table lists the home processor and the local address in the home processor’s memory for
each element of the irregularly distributed array. In order to access an element A(m) of distributed
array A, a translation table lookup is necessary to find out the location of A(m).

The data structure translation table has the following fields:
1. global size N,

2. distribution type T,

3. block size B,

4. local size L,

5. processor list P, and

6. offset list [.

The first four fields are used to represent regular distributions such as BLOCK and CYCLIC. These
fields are not enough to represent irregular distributions. Two additional fields, processor list and

offset list, are used in this case. The processor list p gives the home processor of each array element;

offset list fgives the local addresses of the elements. A translation table lookup, which is aimed at
computing the home processor and the offset associated with a global distributed array index, is known
as a dereference request. Any preprocessing aimed at communication optimizations needs to perform
dereferencing, since it is required to determine where elements reside.

Several considerations arise during the design of data structures for a translation table. Depending
on the specific parameters of the problem, there is usually a trade-off involving storage requirements,
table lookup latency and table update costs. Of these, table lookup costs are of primary consideration
in adaptive problems, since preprocessing must be repeated frequently, and must be efficient.

The fastest table lookup is achieved by replicating the translation table in each processor’s local
memory. This type of translation table is a replicated translation table. Clearly, the storage cost for
this type of translation table is O(N P), where P is the number of processors and N is the array
size. However, the dereference cost in each processor is constant and independent of the number of
processors involved in the computation. Note that, for the replicated translation table, the translation

table in each processor is identical.



Due to memory considerations, it is not always feasible to place a copy of the translation table
on each processor. The approach taken in these cases is to distribute the translation table between
processors. This type of translation table is a distributed translation table. Farlier versions of PARTI
supported a translation table that was distributed between processors in a blocked fashion. This is
accomplished by distributing the translation table by blocks, i.e., putting the first N/P elements on
the first processor, the second N/ P elements on the second processor, etc. When an element A(m) of
the distributed array A is accessed, the home processor and local offset are found in the portion of the
distributed translation table stored in processor [((m—1)/N)x P|+1. Distributed translation tables
have the highest utilization of available distributed memory for a fixed-size irregularly-distributed
array. The dereference requests on the other hand, now may require a communication step, since
some portions of the translation table may not be residing in the local memory. Similarly, table re-
organization also requires interprocessor communication since each processor is authorized to modify
only a limited portion of the translation table.

Besides supporting replicated and distributed translation tables, CHAOS also supports an inter-
mediate degree of replication with paged translation tables. In this scheme, the translation table is
divided into pages, and pages are distributed across processors. Processors that refer to a page fre-
quently receive a copy of the page, making subsequent references local. A more detailed description
of this scheme is presented in Das et al. [5].

Figure 7 depicts the three translation table structures of a graph partitioned over 2 processors.
Only the processor list p and offset list [ are displayed. The numbers above arrays are the index
numbers of nodes. Figure 7(a) shows an irregular distributed. Nodes 1, 2, and 5 are assigned to

processor P0, and nodes 3, 4, and 6 to processor P1l. The distributed translation table shown in
Figure 7(b) assigns first three elements of the lists § and [ on PO and the last three to P1. By

contrast, the replicated translation table replicates all the 6 elements of j and [ on both processors,
as shown in Figure 7c. Figure 7d illustrate the structure of a paged translation table with the page
size of 2. Each processor owns two pages. The dashed page on P0 is copied from P1 as the result of

remote references of node 5 from P0 to P1.

3.3 Data Redistribution

For efficiency reasons, in scientific programs, distribution of data arrays may have to be changed
between computational domains or phases. For instance, as computation progresses in an adaptive
problem, the work load and distributed array access patterns may change based on the nature of
problem. This change might result in a poor load balance among processors. Hence, data must be
redistributed periodically to maintain balance.

To obtain an irregular data distribution for an irregular concurrent problem, data arrays are
distributed in a known distribution, 4. Then, a heuristic method is applied to obtain an irregular

distribution é5. Once the new data distribution is obtained, all data arrays associated with distribution
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04 must be transformed to distribution ép. Similarly, the loop iterations and the indirection arrays
associated with the loop must be remapped.

To redistribute data and loop iterations, a runtime procedure called remap has been developed.
This procedure takes as input the original and the new distribution in the form of translation tables
and returns a communication schedule. This schedule can be used to move data between initial and

subsequent distributions.

3.4 Loop Iteration Partitioning

Once data arrays are partitioned, loop iterations must also be partitioned. Loop partitioning refers to
determining which processor will evaluate which expressions of the loop body. Loop partitioning can
be performed at several levels of granularity. At the finest level, each operation may be individually
assigned to a processor. At the coarsest level, a block of iterations may be assigned to a processor,
without considering the data distribution and access patterns. Both approaches are expensive. In the
first case, the amount of preprocessing overhead can be very high, and in the second case, commu-
nication cost can be very high. The approach used by CHAOS represents a compromise. Each loop

iteration is individually considered prior to processor assignment.
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To partition loop iterations, a set of runtime procedures has been developed. These procedures
compute, with the current known distribution of loop iterations, a list containing the home processors
of the distinct data references for each local iteration. Currently, the heuristic used for iteration
partitioning is the “almost owner computes” rule, in which an iteration is assigned to the processor
which owns the majority of the elements participating in that particular iteration.

Following the loop iteration distribution, the data references in each iteration must be remapped
to conform with the new loop iteration distribution. An inspector phase is carried out to remap data
references. A communication schedule is built in the inspector phase and it is used to gather the new

data references.

3.5 Communication Schedules

As described in Section 3.1, a communication schedule is used to fetch off-processor elements into a
local buffer and to scatter these elements back to their home processors after the computational phase
is over. Communication schedules determine the number of communication startups and the volume
of communication, so it is important to optimize them.

The schedule for processor p stores the following information:

1. send list — a list of arrays that specifies the local elements of a processor p required by all

processors,

2. permutation list — an array that specifies the data placement order of off-processor elements in

the local buffer of processor p,

3. send size — an array that specifies sizes of out-going messages of processor p to all processors,

and

4. fetch size — an array that specifies sizes of in-coming messages of processor p from all processors.

3.6 Data Transportation

While communication schedules store data send/receive patterns, the CHAOS data transportation
procedures actually move data using these schedules. The procedure gather can be used to fetch a

copy of off-processor elements. The procedure scatter can be used to send off-processor elements.

4 Language Support

A wide range of languages, such as Vienna Fortran [4], pC++ [7], Fortran D [6] and HPF [10], provide
a rich set of directives that allow users to specify desired data decompositions. With these directives,
compilers can partition loop iterations and generate the communication required to parallelize the

code. This research is presented in the Fortran D context. However, the same could be extended for

11



51 REAL A(N, N)

$2 ¢$ DECOMPOSITION D(N, N)
S3 €S ALIGN A(L J) with D(I, J)
S4 C$ DISTRIBUTE D(*, BLOCK)

Figure 8: Fortran D Data Distribution Specifications

other languages. The following discussion involves existing Fortran D language support and compiler
performance for irregular problems.

Fortran D provides users with explicit control over data partitioning using DECOMPOSITION,
ALIGN and DISTRIBUTE directives. In Fortran D a template, called a distribution, is declared
and used to characterize the significant attributes of a distributed array. The distribution fixes the
size, dimension, and way in which the array is to be partitioned between processors. A distribution
is produced using two declarations. The first declaration is DECOMPOSITION. Decomposition
fixes the name, dimensionality and size of the distributed array template. The second declaration
is DISTRIBUTE. DISTRIBUTE is an executable statement and specifies how a template is to be
mapped onto the processors. Fortran D provides the user with a choice of several regular distributions.
In addition, a user can explicitly specify how a distribution is to be mapped onto the processors. A
specific array is associated with a distribution using the Fortran D statement ALIGN.

In the example shown in Figure 8, D is declared to be a two-dimensional decomposition of size N X
N. Array A is then aligned with the decomposition D. Distributing decomposition D by (*,BLOCK)
results in a column partition of arrays aligned with D. A detailed description of the language can be
found in Fox, et al. [6]. The data distribution specifications are then treated as comment statements
in a sequential machine Fortran compiler. Hence, a program written with distribution specifications

can be compiled and executed on a sequential machine.

4.1 Support for Irregular Distributions

Fortran D supports irregular data distributions and dynamic data decomposition, i.e. changing the
alignment or distribution of a decomposition at any point in the program. In Fortran D an irregular
partition of distributed array elements can be explicitly specified. Figure 9 depicts an example of such
a Fortran D declaration. In statement S3 of Figure 9, two 1D decompositions, each of size N, are
defined. In statement 54, decomposition reg is partitioned into equal sized blocks, with one block
assigned to each processor. In statement S5, array map is aligned with distribution reg. Array map will
be used to specify (in statement S7) how distribution irreg is to be partitioned between processors.
An irregular distribution is specified using an integer array; when map(i) is set equal to p, element 7 of
the distribution irreg is assigned to processor p. A data partitioner can be invoked to set the values
of the permutation array. Support for irregular distributions has been provided by Vienna Fortran
also [4].

12



s1 REAL*S x(N).y(N)
52 INTEGER map(N)

$3 (S DECOMPOSITION reg(N),irreg(N)
S4 C$ DISTRIBUTE reg(block)
S5 C$ ALIGN map with reg

S6 ... set values of map array using some mapping method ..
S7 C$ DISTRIBUTE irreg(map)
S8 C$ ALIGN x,y with irreg

o L

Figure 9: Fortran D Irregular Distribution

C  Sweep over edges: Loop 1.2
FORALL (i = 1: nedge)
S1  REDUCE (SUM, y(edgel(i)), f(x(edgel(i)), x(edge2(i))))
52 REDUCE (SUM, y(edge2(i)), g(x(edgel(i)), x(edge2(i))))
END FORALL

Figure 10: Example Irregular Loop in Fortran D

4.2 Computational Loop Structures

Figure 10 shows an irregular Fortran 90D FORALL loop that is equivalent to the sequential loop
L2 in Figure 1. Loop L2 represents a sweep over the edges of an unstructured mesh. Since the mesh
is unstructured, an indirection array must be used to access the vertices during a loop over the edges.
In loop L2, a sweep is carried out over the edges of the mesh and the reference pattern is specified
by integer arrays edgel and edge2. Loop L2 carries out reduction operations which are the only
types of dependency between different iterations of the loop in which they may produce a value to be
accumulated (using an associative and commutative operation) in the same array element. Figure 3
shows an example of an unstructured mesh over which such computations will be executed. For
example, loop L2 represents a sweep over the edges of a mesh in which each mesh vertex is updated
using the corresponding values of its neighbors (directly connected through edges). Each vertex of the
mesh is updated as many times as the number of neighboring vertices.

The implementation of the FORALL construct in Fortran D follows copy-in-copy-out semantics;
loop carried dependencies are not defined. In the present implementation, loop carried dependen-
cies that arise due to reduction operations are allowed. The reduction operations are specified in a
FORALL construct using the Fortran D REDUCE construct. Reduction inside a FORALL construct
is important for representing computations such as those found in sparse and unstructured problems.

This representation also preserves explicit parallelism available in the underlying computations.

13



4.3 Loop Iteration Distribution

Once data arrays are partitioned, computational work must also be partitioned. One convention is to
compute a program assignment statement S in the processor that owns the distributed array element
on S’s left hand side. This convention is normally referred to as the owner computes rule. If the left
hand side of S references a replicated variable then the work is carried out in all processors. One
drawback to the owner computes rule in sparse codes is that communication might be required within

loops, even in the absence of loop-carried dependencies. For example, consider the following loop:

FORALLi=1,N

52 y(ia(i)) = x(ib(i))
END FORALL

This loop has a loop independent dependence between S1 and S2, but no loop carried dependencies. If
work is assigned using the owner computes rule, for iteration i, statement S1 would be computed on the
owner of x(ib(i)), OWNER(x(ib(i))), while statement 52 would be computed on the owner of y(ia(i)),
OWNER(y(ia(i))). The value of y(ib(i)) would have to be communicated whenever OWNER(x(ib(i)))
# OWNER(y(ia(i))).

In Fortran D and Vienna Fortran, a user can specify on which processor to carry out a loop iteration

using the ON clause. For example, in Fortran D, a loop could be written as

FORALL i = 1,N on HOME(x(i))

52 y(ia(i)) = x(ib(i))
END FORALL

This means that iteration ¢ must be computed on the processor on which z(7) resides, where the
sizes of arrays ia and ib are equal to the number of iterations. A similar HPF directive EXECUTE-
ON-HOME, proposed in the journal of development [9], provides such a capability.

A method proposed by Ponnusamy et al. [13] employs a scheme that executes a loop iteration on
the processor that is the home of the largest number of distributed array references in that iteration.

This is referred to as the almost owner computes rule.

C$ EXECUTE (i) ON_HOME(map(i))

FORALLi=1,N
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C  Initially arrays are distributed in blocks
$ DECOMPOSITION reg(14026)

C$ DISTRIBUTE reg(BLOCK)
$ ALIGN x,y, dx, dy WITH reg

S1  Obtain new distribution format (map) from the extrinsic partitioner

C$ DISTRIBUTE reg (map)

Calculate DX and DY

§ EXECUTE (i,*) ON_HOME(reg(i))
FORALL (i = 1: natom)

FORALL (j = inblo(i): inblo(i4+1) — 1

REDUCE (SUM, dx(jnb(j)), x(jnb(j)

REDUCE (SUM, dy(jnb(j)), y(inb(j)

(i), x(1) -

(i), y(1) -

REDUCE (SUM, dx(i), x(i) — x(jnb(j)))
REDUCE (SUM, dy(i), v(i) — y(jnb(j)))
END FORALL
END FORALL

Figure 11: Non-bonded Force Calculation Loop of CHARMM

52 y(ia(i)) = x(ib(i))

END FORALL

In the above example, the proposed HPF directive EXECUTE-ON-HOME has been used to sup-
port the almost owner computes rule. In this example, an iteration 7 is assigned to the processor
map(?). A user-defined function determines the values of array map. This function assigns an iteration
to the processor which owns the majority of the distributed array elements referenced in that iteration.
Figure 11 depicts an irregular loop from CHARMM in Fortran 90D with the HPF EXECUTE-ON-
HOME directive for partitioning loop iterations. The inner loop iterations are executed on processors
which own reg(?), where reg is the decomposition to which arrays x, y, dx, and dy are aligned. The

array inblo is replicated on all processors.

4.4 Applications to HPF

Thus far, the runtime support for irregular problems has been presented in the context of the
Fortran D system, these methods can be used in HPF compilers as well.

The current version of HPF does not support non-standard distributions. However, HPF can
indirectly support such distributions by reordering array elements in ways that lead to reduced com-
munication requirements. Applications scientists have frequently employed variants of this approach

when porting irregular codes to parallel architectures [17]. A partitioner is first used to obtain a
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Figure 12: An Example of Renumbering Technique

mapping of array elements to processors. Array elements are then reordered so that elements mapped
to a given processor are assigned to consecutive locations. When the same number of elements are
mapped to each processor, and the number of processors evenly divides the array size, the benefits
of an irregular distribution can immediately be obtained using a BLOCK distributed reordered array.
The necessary preprocessing can be carried out in HPF by calling extrinsic procedures that invoke par-
titioners to obtain array mappings along with extrinsic procedures that reorder data and indirection
arrays. The following example illustrates the reordering technique.

Figure 12 depicts a simple graph, an irregular grid with 6 nodes and 7 edges, partitioned between
two processors. The graph can be described based on the simple Fortran D program shown in Figure 10.
The graph is used to describe the flow of data between elements of arrays x and y; an edge between
nodes ny and ny means the value of z(nq ) is accumulated to y(ng) and the value of #(ng) is accumulated
to y(n1).

In the example shown in Figure 12, it is clear partitioning should occur to (1) allocate the same
number of nodes to processors, and (2) minimize the number of cross-edges existing between proces-
sors, i.e., minimize the number of edges for which both end-nodes do not lie on the same processor.
Figure 12(a) shows the original graph. In Figure 12(b) the graph is partitioned in BLOCK format
based on node numbers. Nodes 1, 2, and 3 are assigned to processor 0 and the rest to processor 1.
The cross-edges in this distribution are (1, 5), (2, 5), (3, 6), and (3, 4). Figure 12(c) shows a better
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S1 INTERFACE
S2  EXTRINSIC(HPF_LOCAL) SUBROUTINE binary_dissection_2D(reorder, x, y, n)
S3 REAL*8, DIMENSION(:), INTENT(IN) :: x, ¥
S3 INTEGER INTENT(IN) :: n
sS4 INTEGER, DIMENSION(:), INTENT(OUT) :: reorder
S7 END SUBROUTINE binary _dissection_2D
S8 END INTERFACE
Figure 13: Interfacing an Extrinsic Partitioner Procedure
'HPF$ TEMPLATE reg(N), regl(M)
'HPF$ DISTRIBUTE(BLOCK) ONTO P :: reg, regl
'HPF$ ALIGN WITH reg :: x, y, reorder
'HPF$ ALIGN WITH regl :: edgel, edge2, temp
C use an extrinsic partitioner procedure to obtain reorder array
CALL binary_dissection_2D(reorder, x, y, n_local)
C use an extrinsic procedure to reorder data arrays
CALL renumber_data_array(reorder, x, n_local)
CALL renumber_data_array(reorder, y, n_local)
C use an extrinsic procedure to renumber indirection arrays
CALL renumber_indirection_array(reorder, edgel, n_localedge)
CALL renumber_indirection_array(reorder, edge2, n_localedge)
C Sweep over edges: Loop L2

FORALL(i=1:medge) temp(i) = f(x(edgel(i)),x(edge2(i)))
y = SUM_SCATTER(temp, y, edgel)
FORALL(i=1:medge) temp(i) = g(x(edgel(i)),x(edge2(i)))
y = SUM_SCATTER(temp, y, edge2)

distribution of the same graph, with a smaller number of cross-edges. In this distribution, nodes 1, 2,
and 5 are assigned to processor 0 and the rest to processor 1; there is only one cross-edge, edge (2, 3).
This distribution results in an arbitrary assignment of nodes to processors, or irregular distribution of
nodes. The effect of this distribution can be obtained by assigning new indices to the nodes so that
contiguously numbered nodes are assigned to each processor. When this renumbering is carried out,
the graph depicted in Figure 12(c) is transformed to the graph shown in Figure 12(d). Figure 12(c)
and 12(d) depict identical graph partitions; the two figures label nodes (and consequently edges) with
different numbers. Thus, in Figure 12(d), the cross-edge is edge (2, 4). Note that Figure 12(c) corre-

sponds to an irregular distribution in a data parallel language, whereas Figure 12(d) corresponds to a

Figure 14: Irregular Distribution and Loops in HPF

BLOCK distribution.

A non-HPF procedure can be interfaced with HPF programs using the EXTRINSIC directive, as
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shown in Figure 13. In statement 52, the interface from HPF to a partitioner binary_dissection_2D
is specified. The directive HPF_LOCAL indicates that the procedure binary_dissection_2D has been
written in local HPF style. This particular procedure uses information provided in arrays x and y and
writes the result of the partitioning to the permutation array reorder. The statements S3 and 54
specify the input (x and y) and output (reorder) parameters.

Figure 14 illustrates the reordering technique expressed in HPF. To begin, arrays x, y, and reorder
are distributed by BLOCK. Next, an extrinsic partitioner procedure is called to determine the values
of array reorder. An extrinsic procedure, renumber_data_array, is invoked to reorder data arrays x
and y based on the values of array reorder. After the reordering is completed, the ith element of x
array is moved to the position reorder(i) and another extrinsic function renumber_indirection_array
is called to update arrays edgel and edge2 so that values of these arrays reflect the new positions of
array elements of x and y, i.e., the value of edgel(¢) is modified to reorder(edgel(i)).

The current version of HPF does not support the REDUCE construct that is provided by Fortran D.
However, the functionality of the type of irregular loop shown in Figure 1 can be expressed in HPF with
the help of intrinsic procedures. Figure 14 depicts a method of expressing the irregular loop 1.2 in HPF.
Here, the HPF intrinsic function SUM_SCATTFER is used to express an array combining operation.
A statement in a sequential irregular loop, which has indirectly accessed arrays on both right and left
hand sides of the statement, can be written in HPF as two separate phases: (1) a FORALL loop to
carry out the computation in the right hand side and store the values to a temporary array temp, and
(2) an intrinsic function SUM_SCATTER to scatter and combine the elements of array temp to array
y.

Although Figure 14 shows that the irregular loop in Figure 1 can be expressed in HPF, additional
preprocessing operations must be performed. The reordering technique has to be used because HPF
does not support irregular distribution. The temporary array temp has to be introduced for FORALL
statements because HPF does not provide the REDUCE construct. Both features, irregular distribu-
tions and REDUCE constructs supported by Fortran D, provide users with proper facilities to specify
appropriate distributions for applications and to express the reduction operations for irregular loops.

The preceeding discussion assumes that (1) the number of array elements can be evenly divided
by the number of processors and (2) the same number of elements are assigned to each processor.
In many cases it may be advantageous to assign different numbers of data elements to processors in
order to balance the workload. To accomplish this, first the user declares the original array as an
oversized array (in BLOCK distribution); next, a partitioner is called to reassign the array elements
to processors such that no more than a given number of elements are assigned to any processor.

Assume that a one-dimensional array A has N x P elements, where N is the number of elements on
each processor and P is the number of processors. The user decides that no more than M (M > N)

array elements may be assigned to any processor.

1. The user declares A as a M x P BLOCK distributed array. Originally, only the first ¥V x P

elements of A will be initialized with meaningful values, and the last (M — N) X P elements of
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Figure 15: An Example of Array Padding and Reordering

A are unused storage.

2. The user then employs a partitioner that is constrained to assign no more than M elements to
each processor, where M > N. The partitioner returns a reordering array reorder which maps
A(7) to A(reorder(i)),1 <1 < N x P. In order to assign a A(7) to processor p, where 0 < p < P,
the partitioner defines reorder(i) as M x (p—1) < reorder(i) < M X p.

The reordering array reorder can then be used to reorder the elements of A. Once the reordering is
complete, the reordered array A will still have (M — N) x P elements that will not contain meaningful
values; these ghost elements will now be scattered throughout the array.

Figure 15 presents an example of array reordering. An array with 8 meaningful elements, Fig-
ure 15(a), is declared as a 10 element BLOCK array, as shown in Figure 15(b). Figure 15(c) depicts
the result of carrying out a reordering based on the reorder array returned by a partitioner. The ith
element of A is moved to position reorder(i), e.g., when reorder(1) = 6, A(1) in Figure 15(b) is moved
to A(6) in Figure 15(c). Notice that there are two ghost elements (in dashed lines) at the middle of

the reordered array.

5 Compiler Support and Experimental Results

This section presents the compiler transformations used to handle irregular templates that appear in
the molecular dynamics code, CHARMM [3], and fluid dynamics code, EUL3D [11]. Runtime support
has been incorporated in the Fortran 90D compiler being developed at Syracuse University [2]. The
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Table 1: Effect of Data Distribution — Hand-Coded — 32 Processors

(Time Coordinate Bisection Block Partition
in Secs) | 53K Mesh | 14K Atoms | 53K Mesh | 14K Atoms
Partitioner 2.4 0.7 0.0 0.0
Remap 2.6 2.5 1.6 0.0
Inspector 0.9 0.7 0.5 1.4
Executor 14.1 93.5 34.6 187.9
Total 20.0 97.4 36.7 189.3

Table 2: Performance for Block Distribution — EUL3D Loop

Hand Compiler

Tasks 10K Mesh | 53k Mesh | 10K Mesh | 53k Mesh

(Time in Procs Procs Procs Procs
Secs) 8 16 32 64 8 16 32 64
Partitioner | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
Remap 09 | 04 | 16 | 1.0 | 09 | 0.5 | 1.6 | 1.0
Inspector 02 (02|05 1|03 )|02]02]05]| 03
Executor | 14.8 | 10.2 | 34.6 | 26.9 | 154 | 10.5 | 36.0 | 27.5
Total 1591 10.8 | 36.7 | 28.2 | 16.5 | 11.2 | 38.1 | 28.8

Fortran 90D compiler transforms programs and embeds CHAOS procedures in the translated codes.
Performance of the compiler generated codes is compared with that of hand parallelized codes, in
which appropriate CHAOS procedures are inserted by hand. All measurements were done on the Intel
iPSC/860 machine. Initially, data arrays are in BLOCK distribution.

5.1 Effect of Irregular Distribution

A geometry based partitioner, recursive coordinate bisection (RCB) [1], was used to obtain an
irregular data distribution. Performance results obtained using other kinds of partitioners are reported
elsewhere [13].

The effect of irregular distribution is shown in Table 1. The table shows the performance of hand
parallelized versions of the EUL3D template and the CHARMM template with irregular distribution
and BLOCK distribution. Partitioner in the table represents the time needed to partition the arrays.
FEzrecutor depicts the time needed to carry out the actual computation and communication for 100
iterations (time steps), and Inspector shows the time taken to build the communication schedule;
Remap depicts the time taken to partition loop iterations and redistribute data. From the table, it
can be seen that irregular distribution of arrays performs significantly better than the existing BLOCK
distribution supported by HPF.
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Table 3: Performance for Coordinate Bisection — EUL3D Loop

Hand Compiler
Tasks 10K Mesh | 53k Mesh | 10K Mesh | 53k Mesh
(Time in Procs Procs Procs Procs
Secs) 8 16 32 | 64 | 8 16 32 | 64

Partitioner | 0.3 | 04 | 24 | 2.0 | 0.3 | 04 | 2.5 | 2.0
Remap 1.1 06 | 26 | 1.6 [ 1.2| 0.8 | 2.6 | 1.7
Inspector | 0.4 | 0.2 09 [ 0.5 ]04] 0.2 09 | 0.5
Executor | 6.3 | 4.6 | 14.1 | 10.3 | 6.7 | 4.7 | 15.6 | 11.4
Total 8.1 | 5.8 |20.0]|144|86 | 6.1 |21.6|15.6

5.2 Compiler Performance

Performance results that compare the costs incurred by the compiler-generated mapper coupler pro-
cedures with the costs of a hand embedded partitioner are presented.

Tables 2 and 3 present performance results of the Fuler loop for both hand-coded and compiler-
parallelized versions for various input mesh sizes. Table 2 presents performance for using BLOCK
distribution, while Table 3 presents performance for using an irregular distribution obtained using
the RCB partitioner. In the BLOCK version, each contiguous block of array elements is assigned
to processors. Two important observations can be made from Tables 2 and 3. First, the compiler-
generated code performs almost as well as the hand written code. In fact, the compiler generated
code is within 15% of the hand coded version. The hand coded version performs better because the
compiler generated code has to perform bookkeeping for the possibility of communication schedule
reuse. Secondly, the use of a coordinate bisection partitioner leads to an improvement in the executor
time by a factor of two compared to the use of block partitioning. The performance of the code with
the irregular distribution is significantly better than the performance of the block partitioned code

even when the cost of executing the partitioner is included.

5.3 Irregular Distribution via Reordering

This subsection presents performance results for the Euler solver template in Figure 14, in which the
effect of irregular distributions are achieved by reordering array elements (Section 4.4). Recall that
data arrays in the Euler solver code are accessed via integer indirection arrays. Initially, data arrays
are BLOCK distributed. A coordinate partitioner is called and the result of partitioning is used to
reorder data array elements. A procedure is then called to reorder indirection array values to match
new data array element numbers. Note that this process does not involve redistributing data arrays.

Table 4 depicts performance results for the hand-parallelized version of the Euler solver template.
The template is parallelized using CHAOS primitives and extrinsic HPF reordering library functions,

binary_dissection_2D, renumber_data_array and renumber_indirection_array. All HPF extrinsic func-
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tions call CHAOS runtime support procedures to perform partitioning and reordering operations and
a CHAOS primitive scatter_add is used to execute the intrinsic function SUM_SCATTER. The pro-
gram shown in Figure 14 could be transformed by an HPF compiler by embedding calls to CHAOS
primitives and extrinsic HPF reordering library functions. Since both the compiler-transformed code
and the hand-parallelized version of the Euler solver template use the same set of CHAOS primitives
and extrinsic HPF reordering library functions, the performance of the hand-parallelized code can
provide a rough estimate of the performance that could be obtained by the code generated using an
HPF compiler.

As shown in Figure 14, irregular loops are expressed as two-phase computations in HPF when
indirectly accessed arrays appear on both left and right hand sides of statements. The two-phase
computations result in two communication phases. Hence, two sets of communication schedules are
generated. However, it seems plausible that the loop fusion [19] technique and sophisticated data
flow analysis could be used by an HPF compiler to generate efficient code by combining the two

computation phases as well as the two communication phases.

Table 4: Performance of Renumbering - Mesh Template - 53K Mesh

Naive Optimized
(Time in | processors | processors
Secs) 32 | 64 | 32 | 64
Partitioner | 2.6 | 2.1 | 2.6 | 2.1
Renumber | 0.7 | 0.5 | 0.7 | 0.5
Inspector 06 | 0.3 | 03 | 0.1
Remap 1.4 109 | 1.5 | 0.9
Executor | 16.9 | 12.5 | 14.1 | 10.3
Total 22.2 1 16.3 | 19.2 | 14.0

In Table 4, Partitioner depicts the time required 1) to partition data arrays using a coordinate
bisection partitioner and 2) to remap data based on the result of partitioning; Renumber depicts the
time taken to renumber indirection arrays; Remap depicts time taken to partition loop iterations
and redistribute indirection arrays; Inspector shows the time to compute communication schedules;
FErecutor is the time taken to carry out the actual computation and communication. In the optimized
version of the code, both computation and communication phases are executed in a single phase. In
comparing the results for the optimized case presented in Table 4 with those of the hand-coded version
for the coordinate bisection partitioner presented in Table 3, note that while the executor costs are the
same, the pre-processing cost is slightly lower for the reordering technique. This difference is due to
the face that the deference overhead of the optimized version is smaller since the deference operation

is carried out with the new (BLOCK) data distributions.
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6 Conclusions

This paper has presented methods that make it possible to efficiently support an important subclass
of irregular problems using data parallel languages. The approach involved the use of a portable,
compiler-independent, runtime support library called CHAOS. The CHAOS runtime support library

contains procedures that

e support static and dynamic distributed array partitioning,
e partition loop iterations and indirection arrays,
e remap arrays from one distribution to another, and

e carry out index translation, buffer allocation and communication schedule generation.

The CHAOS runtime procedures are used by a Fortran 90D compiler to handle irregular distri-
butions. Performance results of compiler-generated and hand-parallelized versions of an unstructured
mesh computational fluid dynamics template and a molecular dynamics template were presented. The
performance of the compiler-generated code is within 15% of that of the hand coded version.

A reordering method was described that makes it possible to support irregular distributions in HPF.
Irregular distributions can be emulated in HPF by reordering elements of data arrays and renumbering
indirection arrays. An irregular computational kernel was parallelized using CHAOS routines along
with reordering and renumbering procedures. The results suggest that an HPF compiler could use
reordering and renumbering extrinsic functions to obtain performance comparable to that achieved by
a compiler for a language (such as Fortran 90D) that directly supports irregular distributions. This
example kernel also served to illustrate that reordering is no panacea. In order to use the reordering

method, users are forced to make numerous calls to extrinsic library functions.
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