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EXTENSION OF PLURISUBHARMONIC FUNCTIONS WITH

GROWTH CONTROL

DAN COMAN, VINCENT GUEDJ AND AHMED ZERIAHI

Abstract. Suppose that X is an analytic subvariety of a Stein manifold M

and that ϕ is a plurisubharmonic (psh) function on X which is dominated by a
continuous psh exhaustion function u of M . Given any number c > 1, we show
that ϕ admits a psh extension to M which is dominated by cu on M .

We use this result to prove that any ω-psh function on a subvariety of the
complex projective space is the restriction of a global ω-psh function, where ω is
the Fubini-Study Kähler form.

Introduction

Let X ⊂ C
n be a (closed) analytic subvariety. In the case when X is smooth

it is well known that a plurisubharmonic (psh) function on X extends to a psh
function on Cn [Sa] (see also [BL, Theorem 3.2]). Using different methods, Coltoiu
generalized this result to the case when X is singular [Co, Proposition 2].

In this article we follow Coltoiu’s approach and show that it is possible to obtain
extensions with global growth control:

Theorem A. Let X be an analytic subvariety of a Stein manifold M and let ϕ be
a psh function on X. Assume that u is a continuous psh exhaustion function on M
so that ϕ(z) < u(z) for all z ∈ X. Then for every c > 1 there exists a psh function
ψ = ψc on M so that ψ |

X
= ϕ and ψ(z) < cmax{u(z), 0} for all z ∈M .

We recall that a function ϕ : X → [−∞,+∞) is called psh if ϕ 6≡ −∞ on X and
if every point z ∈ X has a neighborhood U in C

n so that ϕ = u |
U

for some psh
function u on U . We refer to [FN] and [D2, section 1] for a detailed discussion of this
notion. We note here that if ϕ is not identically −∞ on an irreducible component
Y of X then ϕ is locally integrable on Y with respect to the area measure of Y . Let
us stress that the more general notion of weakly psh function is not appropriate for
the extension problem (see section 3).

We then look at a similar problem on a compact Kähler manifold V . Here psh
functions have to be replaced by quasiplurisubharmonic (qpsh) ones. Given a Kähler
form ω, we let

PSH(V, ω) =
{
ϕ ∈ L1(V, [−∞,+∞)) : ϕ upper semicontinuous, ddcϕ ≥ −ω

}

denote the set of ω-plurisubharmonic (ω-psh) functions. If X ⊂ V is an analytic
subvariety, we define similarly the class PSH(X,ω |

X
) of ω-psh functions on X (see

section 2 for precise definitions).
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2 DAN COMAN, VINCENT GUEDJ AND AHMED ZERIAHI

By restriction, ω-psh functions on V yield ω |
X
-psh functions on X. Assuming

that ω is a Hodge form, i.e. a Kähler form with integer cohomology class, our second
result is that every ω |

X
-psh function on X arises in this way.

Theorem B. Let X be a subvariety of a projective manifold V equipped with a
Hodge form ω. Then any ω |

X
-psh function on X is the restriction of an ω-psh

function on V .

Note that in the assumptions of Theorem B there exists a positive holomorphic
line bundle L on V whose first Chern class c1(L) is represented by ω. In this case the
ω-psh functions are in one-to-one correspondence with the set of (singular) positive
metrics of L (see [GZ]). Thus an alternate formulation of Theorem B is the following:

Theorem B’. Let X be a subvariety of a projective manifold V and L be an ample
line bundle on V . Then any (singular) positive metric of L |

X
is the restriction of a

(singular) positive metric of L on V .

Recall that it is possible to regularize qpsh functions on P
n, since it is a homoge-

neous manifold. Hence Theorem B has the following immediate corollary:

Corollary C. Let X be a subvariety of a projective manifold V equipped with a
Hodge form ω. If ϕ ∈ PSH(X,ω |

X
) then there exists a sequence of smooth functions

ϕj ∈ PSH(V, ω) which decrease pointwise on V so that lim ϕj = ϕ on X.

When X is smooth this regularization result is well known to hold even when the
cohomology class of ω is not integral (see [D3], [BK]).

Corollary C allows to show that the singular Kähler-Einstein currents constructed
in [EGZ1] have continuous potentials, a result that has been obtained recently in
[EGZ2] by completely different methods (see also [DZ] for partial results in this
direction).

We prove Theorem A in section 1. The compact setting is considered in section
2, where Theorem B is derived from Theorem A. In section 3 we discuss the special
situation when X is an algebraic subvariety of Cn. As an application of Theorem
B, we give a characterization of those psh functions in the Lelong class L(X) which
admit an extension in the Lelong class L(Cn) (see section 3 for the necessary defi-
nitions). In particular, we give simple examples of algebraic curves X ⊂ C

2 and of
functions η ∈ L(X) which do not have extensions in L(C2).

1. Proof of Theorem A

The following proposition will allow us to reduce the proof of Theorem A to the
case M = C

n. We include its short proof for the convenience of the reader.

Proposition 1.1. Let V be a complex submanifold of CN and u be a continuous psh
exhaustion function on V . Then there exists a continuous psh exhaustion function
ũ on C

N so that ũ |
V
= u.

Proof. The argument is very similar to the one of Sadullaev ([Sa],[BL, Theorem
3.2]). By [Si], there exists an open neighborhood W of V in C

N and a holomorphic
retraction r : W → V . We can find an open neighborhood U of V so that U ⊂ W
and ‖r(z) − z‖ < 2 for every z ∈ U . Indeed, if B(p, r) denotes the open ball in
C
N centered at p and of radius r, then Up = r−1(B(p, 1)) ∩ B(p, 1) is an open
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neighborhood of p ∈ V , and we let U =
⋃
p∈V Up. Since u is a continuous psh

exhaustion function on V , it follows that the function u(r(z)) is continuous psh on
U and limz∈U,‖z‖→+∞ u(r(z)) = +∞.

It is well known that there exist entire functions f0, . . . , fN , so that V = {z ∈
C
N : fk(z) = 0, 0 ≤ k ≤ N} (see [Ch, p.63]). The function ρ = log(

∑ |fk|2) is psh
on C

N and V = {ρ = −∞}.
Let D be an open set so that V ⊂ D ⊂ D ⊂ U . Since ρ is continuous on C

N \ V ,
we can find a convex increasing function χ on [0,+∞) which verifies for every R ≥ 0
the following two properties:

(i) χ(R) > R− ρ(z) for all z ∈ C
N \D with ‖z‖ = R.

(ii) χ(R) > u(r(z)) − ρ(z) for all z ∈ ∂D with ‖z‖ = R.
Then

ũ(z) =

{
max{u(r(z)), χ(‖z‖) + ρ(z)}, if z ∈ D,
χ(‖z‖) + ρ(z), if z ∈ C

N \D,
is a continuous psh exhaustion function on C

N and ũ = u on V . �

Employing the methods of Coltoiu [Co] we now construct psh extensions with
growth control over bounded sets in C

n.

Proposition 1.2. Let χ be a psh function on a subvariety X ⊂ C
n and let v be

a continuous psh function on C
n with χ < v on X. If R > 0, there exists a psh

function χ̃ = χ̃R on C
n so that χ̃ |

X
= χ and χ̃(z) < v(z) for all z ∈ C

n with
‖z‖ ≤ R.

Proof. We use a similar argument to the one in the proof of Proposition 2 in [Co].
Consider the subvariety A = (X × C) ∪ (Cn × {0}) ⊂ C

n+1, and let

D = {(z, w) ∈ X × C : log |w| + χ(z) < 0} ∪ (Cn × {0}) ⊂ A.

Since D ∩ (X × C) is Runge in X × C, it follows that D is Runge in A. Let

K = {(z, w) ∈ C
n+1 : ρ(z, w) = max{log+(‖z‖/R), log |w|+ v(z)} ≤ 0}.

Since v is continuous, ρ is a continuous psh exhaustion function on C
n+1, so K is

a polynomially convex compact set. As χ < v on X, we have K ∩ A ⊂ D. By

[Co, Theorem 3] there exists a Runge domain D̃ ⊂ C
n+1, with D̃ ∩ A = D and

K ⊂ D̃. Let δ(z, w) denote the distance from (z, w) ∈ D̃ to ∂D̃ in the w-direction.

Since D̃ is pseudoconvex, − log δ is psh on D̃ (see e.g. [FS, Proposition 9.2]). Hence

χ̃(z) = − log δ(z, 0) is psh on C
n, as C

n × {0} ⊂ D̃. Since D̃ ∩ A = D, it follows

that χ̃ |
X

= χ. Moreover, K ⊂ D̃ implies that χ̃(z) < v(z) for all z ∈ C
n with

‖z‖ ≤ R. �

The proof of Theorem A proceeds like this. Given a partition

C
n =

⋃
{mj−1 < u ≤ mj},

where mj ր +∞, we apply Proposition 1.2 inductively to construct an extension
dominated in each “annulus” {mj−1 < u ≤ mj} by γju, where γj > 1 is an increasing
sequence defined in terms of the mj’s. Theorem A will follow by showing that it is
possible to choose {mj} rapidly increasing so that lim γj is arbitrarily close to 1.

We fix next an increasing sequence {mj}j≥−1 so that

m−1 = m0 = 0 < m1 < m2 < . . . , {u < m1} 6= ∅, mj ր +∞.
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Define inductively a sequence {γj}j≥0, as follows:

γ0 = 1, γj(mj −mj−1) = γj−1(mj −mj−2) + 1 for j ≥ 1.(1)

Clearly, γj > γj−1 > 1 for all j > 1.

Proposition 1.3. Let X, ϕ, u be as in Theorem A with M = C
n, and let {mj},

{γj} be as above. There exists a psh function ψ on C
n so that ψ |

X
= ϕ and for all

z ∈ C
n we have

ψ(z) <

{
γju(z), if mj−1 < u(z) ≤ mj, j ≥ 2,
γ1 max{u(z), 0}, if u(z) ≤ m1.

Proof. We introduce the sets

Dj = {z ∈ C
n : u(z) < mj} , Kj = {z ∈ C

n : u(z) ≤ mj}.
Since u is a continuous psh exhaustion function, Kj is a compact set. Let

ρj = γj max{u−mj−1, 0} − j, j ≥ 0.

Then ρj is psh on C
n and (1) implies that

ρj(z) = ρj−1(z) if u(z) = mj, j ≥ 1.(2)

We claim that

ρj(z) ≥ u(z) if z ∈ C
n \Dj , j ≥ 0.(3)

Indeed, since γj ≥ 1 and using (1) we obtain

ρj(z) − u(z) = (γj − 1)u(z) − γjmj−1 − j ≥ (γj − 1)mj − γjmj−1 − j

= (γj−1 − 1)mj − γj−1mj−2 − j + 1

≥ (γj−1 − 1)mj−1 − γj−1mj−2 − (j − 1).

So xj := (γj − 1)mj − γjmj−1 − j ≥ x0 = 0, and (3) is proved.
Let ϕj = max{ϕ,−j}. We construct by induction on j ≥ 1 a sequence of contin-

uous psh functions ψj on C
n with the following properties:

ψj(z) > ϕj(z) for z ∈ X ,

∫

X∩Kj−1

(ψj − ϕj) < 2−j .(4)

ψj(z) ≥ ρj(z) for z ∈ Dj , ψj(z) = ρj(z) for z ∈ C
n \Dj.(5)

ψj(z) < ψj−1(z) for z ∈ Kj−1, where ψ0 = ρ0 = max{u, 0}.(6)

Here the integral in (4) is with respect to the area measure on each irreducible
component, i.e. ∫

X∩K
f :=

∑∫

Y ∩K
f βdimY ,

where the sum is over all irreducible components Y of X which intersect K and β
is the standard Kähler form on C

n. (Note that this is a finite sum.)
Assume that the function ψj−1 is constructed with the desired properties. We

construct ψj by applying Proposition 1.2 with χ = ϕj and v = ψj−1. (If j = 1,
ψ1 is constructed in the same way by applying Proposition 1.2 with χ = ϕ1 and
v = ψ0.) By (4), ϕj ≤ ϕj−1 < ψj−1 on X (and for j = 1, clearly ϕ1 < ψ0 on
X). Therefore Proposition 1.2 yields a psh function ϕ̃j on C

n so that ϕ̃j |X = ϕj
and ϕ̃j < ψj−1 on Kj . Using the standard regularization of ϕ̃j and the dominated
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convergence theorem (as ϕj ≥ −j) we obtain a continuous psh function ψ̃j on C
n

which verifies

ψ̃j(z) > ϕj(z) for z ∈ X ,

∫

X∩Kj

(ψ̃j − ϕj) < 2−j.

Moreover, since ψj−1 is continuous, we can ensure by the Hartogs lemma that we

also have ψ̃j(z) < ψj−1(z) for z ∈ Kj .
We now define

ψj(z) =

{
max{ψ̃j(z), ρj(z)}, if z ∈ Dj ,
ρj(z), if z ∈ C

n \Dj .

By (5) and (2) we have ψ̃j < ψj−1 = ρj−1 = ρj on ∂Dj (for j = 1, recall that
ψ0 = ρ0 by definition). So ψj is a continuous psh function on C

n which verifies (5).

On X \Dj we have by (3) that ψj = ρj ≥ u > ϕj , while on X ∩Dj , ψj ≥ ψ̃j > ϕj .

Since ρj = −j ≤ ϕj < ψ̃j on X ∩Kj−1, we see that ψj = ψ̃j on X ∩Kj−1 so
∫

X∩Kj−1

(ψj − ϕj) ≤
∫

X∩Kj

(ψ̃j − ϕj) < 2−j .

Hence ψj verifies (4). Finally, we have by (5), ρj = −j < ρj−1 ≤ ψj−1 on Kj−1

(and for j = 1, ρ1 = −1 < ψ0 = 0 on K0). Since ψ̃j < ψj−1 on Kj we conclude that
ψj < ψj−1 on Kj−1, so (6) is verified.

So we have constructed a sequence of continuous psh functions ψj on Cn verifying
properties (4)-(6). Since

⋃
j≥1Dj = C

n, we have by (6) that the function

ψ(z) = lim
j→∞

ψj(z)

is well defined and psh on C
n. As . . . < ψj+2 < ψj+1 < ψj on Kj , it follows that

ψ < ψj on Kj.
Suppose now that z ∈ Kj \Dj−1, for some j ≥ 2, so mj−1 ≤ u(z) ≤ mj. By the

above construction and property (5), we have

ψ̃j(z) < ψj−1(z) = ρj−1(z) =⇒ ψ(z) < ψj(z) ≤ max{ρj−1(z), ρj(z)} ≤ γju(z).

Similarly, for z ∈ K1 we have

ψ(z) < ψ1(z) ≤ max{ρ0(z), ρ1(z)} ≤ γ1max{u(z), 0}.
Hence ψ satisfies the desired global upper estimates on C

n.
Property (4) implies that ψ(z) ≥ ϕ(z) for every z ∈ X. Let K be a compact in

C
n and Y be an irreducible component of X so that ϕ |

Y
6≡ −∞. By (4) we have

that for all j sufficiently large

0 ≤
∫

Y ∩K
(ψj − ϕ) =

∫

Y ∩K
(ψj − ϕj) +

∫

Y ∩K
(ϕj − ϕ) ≤ 2−j +

∫

Y ∩K
(ϕj − ϕ).

Hence by dominated convergence,
∫
Y ∩K(ψ−ϕ) = 0, which shows that ψ = ϕ on Y .

Assume now that Y is an irreducible component of X so that ϕ |
Y
≡ −∞. Then

using (4) and the monotone convergence theorem we conclude that
∫

Y ∩K
ψ = lim

j→∞

∫

Y ∩K
ψj = lim

j→∞

(∫

Y ∩K
(ψj − ϕj) +

∫

Y ∩K
ϕj

)
= −∞,

so ψ |
Y
≡ −∞. Therefore ψ = ϕ on X, and the proof is finished. �
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Proof of Theorem A. We consider first the case M = C
n. Fix c > 1. We define

inductively a sequence {mj} with the following properties: m−1 = m0 = 0 < m1,
{u < m1} 6= ∅, and for j ≥ 1, mj > mj−1 is chosen large enough so that

aj =
mj−1 −mj−2 + 1

mj −mj−1
≤ log c

2j
.

Since γj ≥ γ0 = 1 we have by (1),

γj(mj −mj−1) ≤ γj−1(mj −mj−2 + 1) =⇒ γj ≤ γj−1(1 + aj).

Thus

γj < γ =

∞∏

j=1

(1 + aj) , log γ ≤
∞∑

j=1

aj ≤ log c.

Let ψ = ψc be the psh extension of ϕ provided by Proposition 1.3 for this sequence
{mj}. Then for every z ∈ C

n we have

ψ(z) < γmax{u(z), 0} ≤ cmax{u(z), 0}.

Assume now thatM is a Stein manifold of dimension n. ThenM can be properly
embedded in C

2n+1, hence we may assume that M is a complex submanifold of
C
2n+1 (see e.g. [Ho, Theorem 5.3.9]). Proposition 1.1 implies the existence of a

continuous psh exhaustion function ũ on C2n+1 so that ũ = u on M . By what we

already proved, given c > 1 there exists a psh function ψ̃ on C
2n+1 which extends

ϕ and such that ψ̃ < cmax{ũ, 0} on C
2n+1. We let ψ = ψ̃ |

M
. 2

We end this section by noting that some hypothesis on the growth of u is necessary
in Theorem A. Indeed, suppose that X is a submanifold of Cn for which there exists
a non-constant negative psh function ϕ on X. Then any psh extension of ϕ to C

n

cannot be bounded above. However, by Theorem A, given any ε > 0 there exists a
psh function ψ = ψε so that ψ |

X
= ϕ and ψ(z) < ε log+ ‖z‖ on C

n.

2. Extension of qpsh functions

Let V be a compact Kähler manifold equipped with a Kähler form ω. We let
PSH(V, ω) denote the set of ω-psh functions on V . These are upper semicontinuous
functions ϕ ∈ L1(V, [−∞,+∞)) such that ω + ddcϕ ≥ 0, where d = ∂ + ∂ and
dc = 1

2πi(∂− ∂). We refer the reader to [GZ] for basic properties of ω-psh functions.
Let X be an analytic subvariety of V . Recall that an upper semicontinuous

function ϕ : X → [−∞,+∞) is called ω |
X
-psh if ϕ 6≡ −∞ on X and if there exist

an open cover {Ui}i∈I of X and psh functions ϕi, ρi defined on Ui, where ρi is smooth
and ddcρi = ω, so that ρi + ϕ = ϕi holds on X ∩ Ui, for every i ∈ I. Moreover, ϕ
is called strictly ω |

X
-psh if it is (1 − ε)ω |

X
-psh for some small ε > 0. The current

ω |
X
+ ddcϕ is then called a Kähler current on X (see [EGZ1, section 5.2]). We

denote by PSH(X,ω |
X
), resp. PSH+(X,ω |

X
), the class of ω |

X
-psh, resp. strictly

ω |
X
-psh functions on X.

Every ω-psh function ϕ on V yields, by restriction, an ω |
X
-psh function ϕ |

X
on

X, as soon as ϕ |
X
6≡ −∞. The question we address here is whether this restriction

operator is surjective. In other words, is there equality

PSH(X,ω |
X
)

?
= PSH(V, ω) |

X
.
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2.1. The smooth case. We start with the elementary observation that smooth
strictly ω-psh functions can easily be extended.

Proposition 2.1. Let V be a compact Kähler manifold equipped with a Kähler form
ω, and let X be a complex submanifold of V . Then

PSH+(X,ω |
X
) ∩ C∞(X,R) =

(
PSH+(V, ω) ∩ C∞(V,R)

)
|
X
.

We include a proof for the convenience of the reader, although this is probably
part of the “folklore” (see e.g. [Sch] for the case where ω is a Hodge form).

Proof. Let ϕ ∈ C∞(X,R) be such that (1− ε)ω |
X
+ ddcϕ ≥ 0 on X, for some ε > 0.

We first choose ϕ̃ to be any smooth extension of ϕ to V . Consider

ψ := ϕ̃+Aχ dist(·,X)2,

where χ is a test function supported in a small neighborhood of X and such that
χ ≡ 1 near X. Here dist is any Riemannian distance on V , for instance the distance
associated to the Kähler metric ω. Then ψ is yet another smooth extension of ϕ to
V , which now satisfies (1− ε/2)ω + ddcψ ≥ 0 near X, if A is chosen large enough.

The function log(dist(·,X)2) is well defined and qpsh in a neighborhood of X.
Let χ be a test function supported in this neighborhood so that χ ≡ 1 near X. The
function u = χ log(dist(·,X)2) is Nω-psh on V for a large integer N . Moreover,
exp(u) is smooth and X = {u = −∞}. Replacing ω by Nω, ϕ by Nϕ, and ψ by
Nψ, we may assume that N = 1. Set now

ψC :=
1

2
log

[
e2ψ + eu+C

]
.

This again is a smooth extension of ϕ, and a straightforward computation yields

ddcψC ≥ 2e2ψddcψ + eu+Cddcu

2(e2ψ + eu+C)
.

Hence

(
1− ε

2

)
ω + ddcψC ≥ 2e2ψ

[(
1− ε

2

)
ω + ddcψ

]
+ (1− ε)eu+Cω

2(e2ψ + eu+C)
≥ 0,

if C is chosen large enough. �

This proof breaks down when ϕ is singular and hence a different approach is
needed. We consider in the next section the particular case when ω is a Hodge
form.

2.2. Proof of Theorem B. We assume here that ω is a Hodge form, i.e. that the
cohomology class {ω} belongs to H2(V,Z) (more precisely to the image of H2(V,Z)
in H2(V,R) under the mapping induced by the inclusion Z →֒ R). We prove the
following more precise version of Theorem B.

Theorem 2.2. Let X be a subvariety of a projective manifold V equipped with a
Hodge form ω. If ϕ ∈ PSH(X,ω |

X
) then given any constant a > 0 there exists

ψ ∈ PSH(V, ω) so that ψ |
X
= ϕ and maxV ψ < maxX ϕ+ a.
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In the assumptions of Theorem 2.2 there exists a positive holomorphic line bundle
L on V whose first Chern class c1(L) is represented by ω. By Kodaira’s embedding
theorem L is ample, hence for large k there exists an embedding π : V →֒ P

n such
that Lk = π∗O(1).

Replacing ω by kω, ϕ by kϕ, we can assume that L = O(1), V is an algebraic
submanifold of the complex projective space Pn, and ω = ωFS |V is the Fubini-Study
Kähler form. Hence X is an algebraic subvariety of Pn, and Theorem 2.2 follows if
we show that ωFS-psh functions on X extend to ωFS-psh functions on P

n.

Therefore we assume in the sequel that X ⊂ V = P
n and ω is the Fubini-

Study Kähler form on P
n. Let [z0 : . . . : zn] denote the homogeneous coordinates.

Without loss of generality, we may assume that they are chosen so that no coordinate
hyperplane {zj = 0} contains any irreducible component of X.

Let

θ(z) = log
max{|z0|, . . . , |zn|}√
|z0|2 + . . .+ |zn|2

, z = [z0 : . . . : zn] ∈ P
n.

This is an ω-psh function and for all z ∈ P
n,

−m ≤ θ(z) ≤ 0 , where m = log
√
n+ 1.

We start by noting that Theorem A yields special subextensions of ω-psh functions
on X.

Lemma 2.3. Let ε ≥ 0 and u be a continuous (1 + ε)ω-psh function on P
n so that

u(z) ≤ 0 for all z ∈ P
n. If c > 1 and ϕ is an ω-psh function on X so that ϕ < u,

then there exists a cω-psh function ψ on P
n so that

1

c
ψ(z) ≤ 1

1 + ε
u(z), ∀z ∈ P

n,

and
ψ(z) = ϕ(z) + (c− 1)θ(z) + (c− 1) min

ζ∈Pn
u(ζ), ∀z ∈ X.

Proof. Let
M = −min

ζ∈Pn
u(ζ) ≥ 0.

We work first in an affine chart {zj = 1} ≡ C
n. Let Xj = X ∩ {zj = 1} and let

ρj ≥ 0 be the potential of ω in this chart with ρj(0) = 0. Then ϕ+ ρj is psh on Xj

and since u ≤ 0,

ϕ+ ρj +M < u+ ρj +M ≤ 1

1 + ε
u+ ρj +M on Xj .

Note that (1 + ε)−1u+ ρj +M ≥ 0 is a continuous psh exhaustion function on C
n.

Theorem A yields a psh function ψ̃ on C
n so that

ψ̃ <
c

1 + ε
u+ cρj + cM on C

n , ψ̃ = ϕ+ ρj +M on Xj.

The function ψj = ψ̃ − cρj − cM extends uniquely to a cω-psh function on P
n

which verifies
ψj ≤

c

1 + ε
u on P

n.

Moreover on X ∩ {zj = 1} we have

ψj = ϕ− (c− 1)ρj − (c− 1)M = ϕ+ (c− 1)θj − (c− 1)M,
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where

θj(z) = log
|zj |√

|z0|2 + . . .+ |zn|2
.

Hence ψj = −∞ on X ∩ {zj = 0}.
We finally let ψ = max{ψ0, . . . , ψn}. This is a cω-psh function on P

n which
verifies the desired conclusions, since θ = max{θ0, . . . , θn}. �

Proof of Theorem 2.2. Fix a > 0. Replacing ϕ by ϕ−maxX ϕ− a we may assume
that maxX ϕ = −a. We will show that there exists a sequence of smooth ω-psh
functions ϕj on P

n which decrease pointwise on P
n to a negative ω-psh function ψ

so that ψ = ϕ on X.

Let X ′ be the union of the irreducible components W of X so that ϕ |
W

6≡ −∞.
We first construct by induction on j ≥ 1 a sequence of numbers εj ց 0 and a
sequence of negative smooth (1 + εj)ω-psh functions ψj on P

n so that for all j ≥ 2

ψj
1 + εj

<
ψj−1

1 + εj−1
on P

n , ψj−1 > ϕ on X ,

∫

X′

(ψj − ϕ) <
1

j
,

∫

W
ψj < −j ,

for every irreducible component W of X where ϕ |
W

≡ −∞. Here the integrals are
with respect to the area measure on each irreducible component Xj of X, i.e.

∫

X
f :=

∑

Xj

∫

Xj

f ωdimXj .

Let ε1 = 1, ψ1 = 0, and assume that εj−1, ψj−1, where j ≥ 2, are constructed
with the above properties. Since ϕ < ψj−1 |X and the latter is continuous on the
compact set X, we can find δ > 0 so that ϕ < ψj−1 − δ on X.

Let c > 1. By Lemma 2.3, there exists a cω-psh function ψc so that

ψc
c

≤ ψj−1 − δ

1 + εj−1
on P

n , ψc = ϕ+ (c− 1)θ − (c− 1)Mj−1 on X,

where

Mj−1 = δ − min
ζ∈Pn

ψj−1(ζ) ≥ 0.

We can regularize ψc on P
n: there exists a sequence of smooth cω-psh functions

decreasing to ψc on P
n. Therefore we can find a smooth cω-psh function ψ′

c on P
n

so that

ψ′
c

c
<
ψj−1 − δ

2

1 + εj−1
on P

n, ψ′
c > ϕ+(c−1)θ−(c−1)Mj−1 ≥ ϕ−(c−1)(m+Mj−1) on X.

By dominated, resp. monotone convergence, we can in addition ensure that
∫

X′

(ψ′
c − ϕ) ≤

∫

X′

(ψ′
c − ϕ− (c− 1)θ + (c− 1)Mj−1) < c− 1,

∫

W
ψ′
c < −j − (c− 1)(m+Mj−1)|W |,

for every irreducible component W of X where ϕ |
W

≡ −∞. Here |W | denotes the
(projective) area of W .



10 DAN COMAN, VINCENT GUEDJ AND AHMED ZERIAHI

Now let ψ′′
c = ψ′

c + (c− 1)(m+Mj−1). Then on P
n we have

ψ′′
c

c
<
ψj−1 − δ

2

1 + εj−1
+

(c− 1)(m+Mj−1)

c
<

ψj−1

1 + εj−1
− δ

4
+ (c− 1)(m+Mj−1).

Moreover, ψ′′
c > ϕ on X and
∫

X′

(ψ′′
c − ϕ) =

∫

X′

(ψ′
c − ϕ) + (c− 1)(m +Mj−1)|X ′|

< (c− 1)(1 +m|X ′|+Mj−1|X ′|) ,∫

W
ψ′′
c =

∫

W
ψ′
c + (c− 1)(m+Mj−1)|W | < −j ,

for every irreducible component W of X where ϕ |
W

≡ −∞.
We take c = 1 + εj and ψj = ψ′′

c , where εj > 0 is so that

εj < εj−1/2 , εj(m+Mj−1) <
δ

4
, εj(1 +m|X ′|+Mj−1|X ′|) < 1

j
.

Then εj , ψj have the desired properties.

We conclude that ϕj = (1 + εj)
−1ψj is a decreasing sequence of smooth negative

ω-psh function on P
n, so that ϕj > (1+ εj)

−1ϕ > ϕ on X. Hence ψ = limj→∞ ϕj is
a negative ω-psh function on P

n and ψ ≥ ϕ on X. Note that
∫

X′

(ϕj − ϕ) =
1

1 + εj

∫

X′

(ψj − ϕ)− εj
1 + εj

∫

X′

ϕ <
1

j
− εj

1 + εj

∫

X′

ϕ ,

∫

W
ϕj =

1

1 + εj

∫

W
ψj < − j

2
,

for every irreducible component W of X where ϕ |
W

≡ −∞. It follows that ψ = ϕ
on X and the proof of Theorem 2.2 is finished. 2

3. Algebraic subvarieties of C
n

If X is an analytic subvariety of Cn and γ is a positive number, we denote by
Lγ(X) the Lelong class of psh functions ϕ on X which verify ϕ(z) ≤ γ log+ ‖z‖+C
for all z ∈ X, where C is a constant that depends on ϕ. We let L(X) = L1(X). By
Theorem A, functions ϕ ∈ L(X) admit a psh extension in each class Lγ(Cn), for
every γ > 1. 1

We assume in the sequel that X is an algebraic subvariety of Cn and address the
question whether it is necessary to allow the arbitrarily small additional growth.
More precisely, is it true that

L(X)
?
= L(Cn) |

X
,

i.e. is every psh function with logarithmic growth on X the restriction of a globally
defined psh function with logarithmic growth? We will give a criterion for this to
hold, but show that in general this is not the case.

1If X is algebraic this result is claimed in [BL, Proposition 3.3], but there is a gap in their proof.
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3.1. Extension preserving the Lelong class. Consider the standard embedding

z ∈ C
n →֒ [1 : z] ∈ P

n,

where [t : z] denote the homogeneous coordinates on P
n. Let ω be the Fubini-Study

Kähler form and let

ρ(t, z) = log
√

|t|2 + ‖z‖2
be its logarithmically homogeneous potential on C

n+1.
We denote by X the closure of X in P

n, so X is an algebraic subvariety of Pn.
It is well known that the class PSH(Pn, ω) is in one-to-one correspondence with
the Lelong class L(Cn) (see [GZ]). Let us look at the connection between ω-psh
functions on X and the class L(X).

The mapping

FX : PSH(X,ω |
X
) 7−→ L(X), (FXϕ)(z) = ρ(1, z) + ϕ([1 : z]),

is well defined and injective. However, it is in general not surjective, as shown by
Examples 3.2 and 3.3 that follow.

Conversely, a function η ∈ L(X) induces an upper semicontinuous function η̃ on
X defined in the obvious way:

η̃([t : z]) =





η(z) − ρ(1, z), if t = 1, z ∈ X,

lim sup
[1:ζ]→[0:z],ζ∈X

(η(ζ)− ρ(1, ζ)), if t = 0, [0 : z] ∈ X \X.

The function η̃ is in general only weakly ω-psh on X , i.e. it is bounded above on
X and it is ω |

Xr
-psh on the set Xr of regular points of X. This notion is in direct

analogy to that of weakly psh function on an analytic variety (see [D2, section 1]).
We do not pursue it any further here.

Note that η ∈ FX
(
PSH(X,ω |

X
)
)
if and only if η̃ ∈ PSH(X,ω |

X
). The following

simple characterization is a consequence of Theorem B.

Proposition 3.1. Let η ∈ L(X). The following are equivalent:
(i) There exists ψ ∈ L(Cn) so that ψ = η on X.
(ii) η̃ ∈ PSH(X,ω |

X
).

(iii) For every point a ∈ X \X the following holds: if (Xj , a) are the irreducible

components of the germ (X, a) then the value

lim sup
Xj∋[1:ζ]→a

(η(ζ)− ρ(1, ζ))

is independent of j.

In particular, if the germs (X, a) are irreducible for all points a ∈ X \ X then
L(X) = L(Cn) |

X
.

Proof. Assume that (i) holds. It follows that η̃ = ϕ |
X
, where

ϕ([t : z]) :=

{
ψ(z) − ρ(1, z), if t = 1,
lim sup[1:ζ]→[0:z](ψ(ζ)− ρ(1, ζ)), if t = 0,

is an ω-psh function on P
n. Hence η̃ ∈ PSH(X,ω |

X
).
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Conversely, if (ii) holds then by Theorem B there exists an ω-psh function ϕ on
P
n which extends η̃. Hence ψ(z) = ρ(1, z) + ϕ([1 : z]) is an extension of η and
ψ ∈ L(Cn).

The equivalence of (ii) and (iii) follows easily from [D2, Theorem 1.10]. �

3.2. Explicit examples. In view of section 3.1, it is easy to construct examples of
algebraic curves X ⊂ C

2 and functions in L(X) which do not admit an extension in
L(C2). We write z = (x, y) ∈ C

2.

Example 3.2. Let X = {y = 0} ∪ {y = 1} ⊂ C
2 and η ∈ L(X), where

η(z) =

{
ρ(1, z), if z = (x, 0),
ρ(1, z) + 1, if z = (x, 1).

The function η̃ is not ω-psh on X = {y = 0} ∪ {y = t}, hence η does not have an
extension in L(C2). Indeed, the maximum principle is violated along {y = 0} near
the point a = [0 : 1 : 0], since η̃([t : 1 : 0]) = 0 for t 6= 0, while η̃([t : 1 : t]) = 1.

With a little more effort we can give an example as above whereX is an irreducible
curve. Let C⋆ = C \ {0}.
Example 3.3. Let X ⊂ C

2 be the irreducible cubic with equation xy = x3+1. Then

X = {[t : x : y] ∈ P
2 : xyt = x3 + t3}, X = X ∪ {a}, a = [0 : 0 : 1].

The germ (X, a) has two irreducible components X1, X2, both are smooth at a, X1

being tangent to the line {x = 0}, and X2 to the line {t = 0}.
Note that in fact X ⊂ C

⋆ ×C is the graph of the rational function y = x2 + x−1,
x ∈ C

⋆. If (x, y) ∈ X and x → 0 then (x, y) → a along X1, while as x → ∞ then
(x, y) → a along X2. The function

u(x, y) = max{− log |x|, 2 log |x|+ 1}
is psh in C

⋆ × C. It is easy to check that η := u |
X
∈ L(X) and

lim sup
X1∋[1:ζ]→a

(η(ζ)− ρ(1, ζ)) = 0 , lim sup
X2∋[1:ζ]→a

(η(ζ) − ρ(1, ζ)) = 1.

Hence η does not admit an extension in L(C2).

We conclude this section with an example of a cubic X in C
2 and a psh function

on X of the form η = log |P |, where P is a polynomial, so that η admits a “tran-
scendental” extension with exactly the same growth, but small additional growth is
necessary if we look for an “algebraic” extension.

Proposition 3.4. Let X = {x = y3} and η(x, y) = log |1 + y|, so η |
X
∈ L1/3(X).

Given k ≥ 1, there is a polynomial Qk(x, y) of degree k + 1 so that Qk(y
3, y) =

(y + 1)3k. In particular, ψk =
1
3k log |Qk| ∈ L(k+1)/3k(C

2) is an extension of η |
X
.

There exists no polynomial Q(x, y) of degree k so that Q(y3, y) = (y + 1)3k.
However, η |

X
has an extension in L1/3(C

2).

Proof. We construct Qk by replacing y3 by x in the polynomial

(y + 1)3k =
3k∑

j=0

(
3k

j

)
yj.
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Since j = 3[j/3] + rj , rj ∈ {0, 1, 2}, it follows that

Qk(x, y) =

3k∑

j=0

(
3k

j

)
x[j/3]yrj = 3kxk−1y2 + l.d.t. .

We now check that there is no polynomial Q(x, y) of degree k so that Q(y3, y) =
(y + 1)3k. Indeed, if Q(x, y) =

∑
j+l≤k cjlx

jyl then

Q(y3, y) = ck0y
3k + ck−1,1y

3k−2 + l.d.t.

does not contain the monomial y3k−1.
Note that X = {xt2 = y3} = X ∪ {a}, where a = [0 : 1 : 0], so the germ (X, a) is

irreducible. Proposition 3.1 implies that η |
X

has an extension in L1/3(C
2). �

We conclude with some remarks regarding our last example. If X is an algebraic
subvariety of Cn and f is a holomorphic function on X, f is said to have polynomial
growth if there is an integer N(f) and a constant A so that

|f(z)| ≤ A(1 + ‖z‖)N(f), ∀ z ∈ X.

Then it is well known that there exists a polynomial P of degree at mostN(f)+ε(X)
so that P |

X
= f , where ε(X) > 0 is a constant depending only on X (see e.g. [Bj]

and references therein). However, if X ⊂ P
N is irreducible at each of its points at

infinity then by Proposition 3.1 the psh function η = N(f)−1 log |f | ∈ L(X) has a
psh extension in the Lelong class L(Cn).

On the other hand, Demailly [D1] has shown that in the case of the transcendental
curve X = {ex + ey = 1} any holomorphic function f on X, of polynomial growth,
has a polynomial extension of the same degree to C

n. Hence it is natural to ask if
for this curve one has that L(X) = L(Cn) |

X
.
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