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EXTENSION OF PLURISUBHARMONIC FUNCTIONS WITH
GROWTH CONTROL

DAN COMAN, VINCENT GUEDJ AND AHMED ZERIAHI

ABSTRACT. Suppose that X is an analytic subvariety of a Stein manifold M
and that ¢ is a plurisubharmonic (psh) function on X which is dominated by a
continuous psh exhaustion function u of M. Given any number ¢ > 1, we show
that ¢ admits a psh extension to M which is dominated by cu on M.

We use this result to prove that any w-psh function on a subvariety of the
complex projective space is the restriction of a global w-psh function, where w is
the Fubini-Study Ké&hler form.

INTRODUCTION

Let X C C™ be a (closed) analytic subvariety. In the case when X is smooth
it is well known that a plurisubharmonic (psh) function on X extends to a psh
function on C™ [Sa] (see also [BL, Theorem 3.2]). Using different methods, Coltoiu
generalized this result to the case when X is singular [Co, Proposition 2].

In this article we follow Coltoiu’s approach and show that it is possible to obtain
extensions with global growth control:

Theorem A. Let X be an analytic subvariety of a Stein manifold M and let ¢ be
a psh function on X. Assume that u is a continuous psh exhaustion function on M
so that p(z) < u(z) for all z € X. Then for every ¢ > 1 there exists a psh function
Y =1 on M so that ¢ |, = ¢ and (z) < cmax{u(z),0} for all z € M.

We recall that a function ¢ : X — [—00, +00) is called psh if ¢ Z —o0 on X and
if every point z € X has a neighborhood U in C" so that ¢ = u|, for some psh
function u on U. We refer to [FN] and [D2, section 1] for a detailed discussion of this
notion. We note here that if ¢ is not identically —oo on an irreducible component
Y of X then ¢ is locally integrable on Y with respect to the area measure of Y. Let
us stress that the more general notion of weakly psh function is not appropriate for
the extension problem (see section 3).

We then look at a similar problem on a compact Kéhler manifold V. Here psh
functions have to be replaced by quasiplurisubharmonic (qpsh) ones. Given a Kéhler
form w, we let

PSH(V,w) ={p € LYV, [—00,+00)) : ¢ upper semicontinuous, ddp > —w}

denote the set of w-plurisubharmonic (w-psh) functions. If X C V is an analytic
subvariety, we define similarly the class PSH(X,w |, ) of w-psh functions on X (see
section 2 for precise definitions).
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By restriction, w-psh functions on V' yield w|,-psh functions on X. Assuming
that w is a Hodge form, i.e. a Kahler form with integer cohomology class, our second
result is that every w |, -psh function on X arises in this way.

Theorem B. Let X be a subvariety of a projective manifold V equipped with a
Hodge form w. Then any w|,-psh function on X is the restriction of an w-psh
function on V.

Note that in the assumptions of Theorem B there exists a positive holomorphic
line bundle L on V' whose first Chern class ¢; (L) is represented by w. In this case the
w-psh functions are in one-to-one correspondence with the set of (singular) positive
metrics of L (see [GZ]). Thus an alternate formulation of Theorem B is the following:

Theorem B’. Let X be a subvariety of a projective manifold V' and L be an ample
line bundle on V. Then any (singular) positive metric of L |, is the restriction of a
(singular) positive metric of L on V.

Recall that it is possible to regularize qpsh functions on P", since it is a homoge-
neous manifold. Hence Theorem B has the following immediate corollary:

Corollary C. Let X be a subvariety of a projective manifold V equipped with a
Hodge formw. If p € PSH(X,w |, ) then there ezists a sequence of smooth functions
@; € PSH(V,w) which decrease pointwise on V' so that lim ¢; = ¢ on X.

When X is smooth this regularization result is well known to hold even when the
cohomology class of w is not integral (see [D3], [BK]).

Corollary C allows to show that the singular Kahler-Einstein currents constructed
in [EGZ1] have continuous potentials, a result that has been obtained recently in
[EGZ2] by completely different methods (see also [DZ] for partial results in this
direction).

We prove Theorem A in section 1. The compact setting is considered in section
2, where Theorem B is derived from Theorem A. In section 3 we discuss the special
situation when X is an algebraic subvariety of C™. As an application of Theorem
B, we give a characterization of those psh functions in the Lelong class £(X) which
admit an extension in the Lelong class £(C™) (see section 3 for the necessary defi-
nitions). In particular, we give simple examples of algebraic curves X C C? and of
functions 7 € £(X) which do not have extensions in £(C?).

1. Proor oF THEOREM A

The following proposition will allow us to reduce the proof of Theorem A to the
case M = C™. We include its short proof for the convenience of the reader.

Proposition 1.1. Let V be a complex submanifold of CN and u be a continuous psh
exhaustion function on V. Then there exists a continuous psh exhaustion function
w on CN so that u|, = u.

Proof. The argument is very similar to the one of Sadullaev ([Sa],[BL, Theorem
3.2]). By [Si], there exists an open neighborhood W of V in C¥ and a holomorphic
retraction 7 : W — V. We can find an open neighborhood U of V so that U C W
and ||r(z) — z|| < 2 for every z € U. Indeed, if B(p,r) denotes the open ball in
CN centered at p and of radius r, then U, = rYB(p,1)) N B(p,1) is an open
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neighborhood of p € V, and we let U = Upev U,. Since u is a continuous psh
exhaustion function on V, it follows that the function u(r(z)) is continuous psh on
U and Hm ey ||2)|— oo u(7(2)) = +00.

It is well known that there exist entire functions fo,..., fn, so that V = {z €
CN': fr(2) =0, 0 < k < N} (see [Ch, p.63]). The function p = log(>_ | fx|?) is psh
on CN and V = {p = —o0}.

Let D be an open set so that V€ D € D C U. Since p is continuous on CV \ V,
we can find a convex increasing function y on [0, +00) which verifies for every R > 0
the following two properties:

(i) x(R) > R — p(z) for all z € CN\ D with ||z|| = R.

(77) x(R) > u(r(2)) — p(2) for all z € 9D with ||z|| = R.

Then
(0 = { D) g i <D
x(l12]) + p(2), if 2 € TN\ D,
is a continuous psh exhaustion function on C and % = v on V. O

Employing the methods of Coltoiu [Co|] we now construct psh extensions with
growth control over bounded sets in C™.

Proposition 1.2. Let x be a psh function on a subvariety X C C" and let v be
a continuous psh function on C"™ with x < v on X. If R > 0, there exists a psh
function X = Xr on C" so that X |, = x and X(z) < v(z) for all z € C" with
2] < R.

Proof. We use a similar argument to the one in the proof of Proposition 2 in [Co].
Consider the subvariety A = (X x C)U (C" x {0}) ¢ C"*!, and let
D ={(z,w) € X x C: log|w| + x(z) < 0} U(C" x {0}) C A.
Since DN (X x C) is Runge in X x C, it follows that D is Runge in A. Let
K ={(z,w) € C"": p(z,w) = max{log™(||z||/R),log |w| + v(z)} < 0}.

Since v is continuous, p is a continuous psh exhaustion function on C"*!, so K is
a polynomially convex compact set. As xy < v on X, we have K N A C D. By
[Co, Theorem 3] there exists a Runge domain D C (C:‘*l, with DN A = D and
K C D. Let §(z,w) denote the distance from (z,w) € D to dD in the w-direction.
Since D is pseudoconvex, —log d is psh on D (see e.g. [F'S, Proposition 9.2]). Hence
X(2) = —logd(z,0) is psh on C", as C" x {0} C D. Since DN A = D, it follows
that X |, = x. Moreover, K C D implies that Y(z) < v(z) for all z € C" with
1]l < R. O

The proof of Theorem A proceeds like this. Given a partition
C" = U{mj—l <u < mj},

where m; " 400, we apply Proposition 1.2 inductively to construct an extension

dominated in each “annulus” {m;_; < v < m;} by yju, where y; > 1is an increasing

sequence defined in terms of the m;’s. Theorem A will follow by showing that it is

possible to choose {m;} rapidly increasing so that lim~; is arbitrarily close to 1.
We fix next an increasing sequence {m;};>_1 so that

m_1:m020<m1<m2<...,{u<m1}7$@, mj/+oo.
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Define inductively a sequence {v;};>0, as follows:
(1) Yo =1, vj(m; —m;_1) =~vj—1(m; —m;_2)+1forj > 1.
Clearly, v; > vj—1 > 1 for all j > 1.

Proposition 1.3. Let X, ¢, u be as in Theorem A with M = C", and let {m;},
{~;} be as above. There exists a psh function 1 on C" so that |, = ¢ and for all
z € C" we have

viu(z), if mi—1 <wu(z) <mj, j > 2,
¥(z) < { ’yjl max{u(z)?Oi, if u(z) < nil.

Proof. We introduce the sets
Dj={2€C": u(z) <my}, K;={z€C": u(z) <my}.
Since u is a continuous psh exhaustion function, K is a compact set. Let
pj = max{u —m;_1,0} —j, j > 0.
Then p; is psh on C™ and (1) implies that

(2) pi(2) = pj-1(2) if u(z) = my, j > 1.
We claim that
(3) pi(z) > u(z)if =€ C"\ Dj, j > 0.

Indeed, since v; > 1 and using (1) we obtain
pi(2) —u(z) = (v = Dul2) =ymj-1—Jj = (v = Ymy —yjmj-1 = j
= (-1 —Dmy —yj—amj—2 —j+1
(-1 — Dmj—1 —yj—1mj—2 — (j — 1).
So xj := (v; — 1)mj —yymj—1 — j > xo = 0, and (3) is proved.
Let ¢; = max{¢, —j}. We construct by induction on j > 1 a sequence of contin-
uous psh functions ¢; on C™ with the following properties:

v

(4) Pi(2) > pj(z) for z € X | - () — ;) < 277,
() $j(2) > pj(2) for z € Dj , 1;(2) = pj(z) for z € C"\ Dj.
(6) Y;(2) < j_1(z) for z € K;_1, where 1y = pgp = max{u,0}.

Here the integral in (4) is with respect to the area measure on each irreducible

component, i.e.
f=X [ pe,
/XmK Z YNK

where the sum is over all irreducible components Y of X which intersect K and (3
is the standard Kahler form on C™. (Note that this is a finite sum.)

Assume that the function ;_; is constructed with the desired properties. We
construct t; by applying Proposition 1.2 with x = ¢; and v = ¢;_;. (If j = 1,
11 is constructed in the same way by applying Proposition 1.2 with x = ¢; and
v =1p.) By (4), ¢; < ¢j—1 < ¥j—1 on X (and for j = 1, clearly ¢1 < 9y on
X). Therefore Proposition 1.2 yields a psh function ¢; on C™ so that ¢; |, = ¢;
and ¢; < 9;_1 on K;. Using the standard regularization of ¢; and the dominated
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convergence theorem (as ¢; > —j) we obtain a continuous psh function {/;j on C"
which verifies

zzj(z) > pj(z) for z € X, ({/;] — ) <279
XﬂKj
Moreover, since v;_1 is continuous, we can ensure by the Hartogs lemma that we
also have 1;(2) < v¢;_1(2) for z € Kj.
We now define
()= { P PO i € s
pj(z), if z€ C*\ Dj.
By (5) and (2) we have Jj < Yj_1 = pj—1 = pj on 0D; (for j = 1, recall that
1o = po by definition). So 9; is a continuous psh function on C™ which verifies (5).
On X \ D; we have by (3) that ¢; = p; > u > ¢;, while on X N Dj, ; > 1; > ;.

Since p; = —j < j < 1j on X N K;_1, we see that ¢; = zzj on X NK;_1so

/ (Y5 —pj) < / (P — ) <279,
XNK; 4 XNK;

Hence 1; verifies (4). Finally, we have by (5), pj = —j < pj—1 < ¥j—1 on Kj_
(and for j =1, p1 = =1 < 19 = 0 on Kj). Since zzj < ;1 on K; we conclude that
1 <j_1 on K;_1, so (6) is verified.

So we have constructed a sequence of continuous psh functions v; on C" verifying
properties (4)-(6). Since (J;»; D; = C", we have by (6) that the function

P(z) = lim ¢;(z)
j—o0

is well defined and psh on C". As ... < 9j12 < ¥j41 < 9, on Kj, it follows that
P < wj on Kj.

Suppose now that z € K; \ D;_1, for some j > 2, so m;j_; < u(z) < m;. By the
above construction and property (5), we have

¥i(2) < j1(2) = pjo1(2) = $(2) < 5(2) < max{p;1(2),p5(2)} < Yju(z).
Similarly, for z € Ky we have

¥(z) <1h1(z) < max{po(2), p1(2)} < 71 max{u(z),0}.

Hence 1 satisfies the desired global upper estimates on C™.

Property (4) implies that 1(z) > ¢(z) for every z € X. Let K be a compact in

C"™ and Y be an irreducible component of X so that ¢ |, # —oo. By (4) we have
that for all j sufficiently large

OS/YOK(%_(’D):/YHK(%_%)JF/YM(%_(’D)§2_j+/YmK(%‘—90)-

Hence by dominated convergence, me i (1 — ) = 0, which shows that 1) = p on Y.
Assume now that Y is an irreducible component of X so that ¢ |, = —oo. Then
using (4) and the monotone convergence theorem we conclude that

¢ = lim Yj = lim </ (V5 — ¢5) +/ %’) = —o0,
YNK I JynK J7o \JyYnK YNK
so ¢ |, = —oo. Therefore 1) = ¢ on X, and the proof is finished. O
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Proof of Theorem A. We consider first the case M = C". Fix ¢ > 1. We define
inductively a sequence {m;} with the following properties: m_; = mg = 0 < my,
{u<mi}#0, and for j > 1, mj > m;j_; is chosen large enough so that

mMi_1 — Mj_ 1 log ¢

m; —mj_1 -2
Since v; > 70 = 1 we have by (1),

Yi(myj —mj1) < vj-1(my —mj—2 +1) = 75 < v5-1(1 + aj).
Thus

o o
v <y = H(l +aj), logy < Zaj < logec.
j=1 j=1
Let 1) = 1. be the psh extension of ¢ provided by Proposition 1.3 for this sequence
{m;}. Then for every z € C" we have

¥(2) < ymax{u(z),0} < cmax{u(z),0}.

Assume now that M is a Stein manifold of dimension n. Then M can be properly
embedded in C?"*! hence we may assume that M is a complex submanifold of
C2?"+1 (see e.g. [Ho, Theorem 5.3.9]). Proposition 1.1 implies the existence of a
continuous psh exhaustion function % on C?**! so that u =wu on M. By what we
already proved, given ¢ > 1 there exists a psh function ¥ on C?*+! which extends
¢ and such that ¢ < cmax{w,0} on C*"*1. We let v = |,,. O

We end this section by noting that some hypothesis on the growth of v is necessary
in Theorem A. Indeed, suppose that X is a submanifold of C" for which there exists
a non-constant negative psh function ¢ on X. Then any psh extension of ¢ to C"
cannot be bounded above. However, by Theorem A, given any € > 0 there exists a
psh function ¥ = 9. so that ¢ |, = ¢ and ¥(z) < elog™ ||| on C™.

2. EXTENSION OF QPSH FUNCTIONS

Let V be a compact Kahler manifold equipped with a Kéhler form w. We let
PSH(V,w) denote the set of w-psh functions on V. These are upper semicontinuous
functions ¢ € LY(V,[—o00,+o0)) such that w + dd°p > 0, where d = 9 + 0 and
d° = ﬁ(@ — d). We refer the reader to [GZ] for basic properties of w-psh functions.

Let X be an analytic subvariety of V. Recall that an upper semicontinuous
function ¢ : X — [—00,+00) is called w |, -psh if ¢ #Z —oco on X and if there exist
an open cover {U; };er of X and psh functions ¢;, p; defined on U;, where p; is smooth
and dd°p; = w, so that p; + ¢ = ; holds on X NU;, for every i € I. Moreover, ¢
is called strictly w|,-psh if it is (1 — €)w | . -psh for some small € > 0. The current
wly + dd° is then called a Kahler current on X (see [EGZ1, section 5.2]). We
denote by PSH(X,w |, ), resp. PSH™(X,w ), the class of w |, -psh, resp. strictly
w | c-psh functions on X.

Every w-psh function ¢ on V yields, by restriction, an w |, -psh function ¢ |, on
X, as soon as ¢ |, # —oo. The question we address here is whether this restriction
operator is surjective. In other words, is there equality

PSH(X,wl|,) = PSH(V,w)

-
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2.1. The smooth case. We start with the elementary observation that smooth
strictly w-psh functions can easily be extended.

Proposition 2.1. Let V be a compact Kahler manifold equipped with a Kdhler form
w, and let X be a complex submanifold of V.. Then

PSH*(X,w|,) NC®(X,R) = (PSHT(V,w) NC®(V,R)) |.

We include a proof for the convenience of the reader, although this is probably
part of the “folklore” (see e.g. [Sch] for the case where w is a Hodge form).

Proof. Let ¢ € C*°(X,R) be such that (1 —¢)w |, +dd°@ > 0 on X, for some ¢ > 0.
We first choose ¢ to be any smooth extension of ¢ to V. Consider

Y= @+ Ay dist(-, X)?,

where y is a test function supported in a small neighborhood of X and such that
X = 1 near X. Here dist is any Riemannian distance on V, for instance the distance
associated to the Kéhler metric w. Then v is yet another smooth extension of ¢ to
V', which now satisfies (1 — &/2)w + dd“y) > 0 near X, if A is chosen large enough.

The function log(dist(-, X)?) is well defined and gpsh in a neighborhood of X.
Let x be a test function supported in this neighborhood so that x = 1 near X. The
function u = xlog(dist(-, X)?) is Nw-psh on V for a large integer N. Moreover,
exp(u) is smooth and X = {u = —oc0}. Replacing w by Nw, ¢ by N¢, and ¢ by
N1, we may assume that N = 1. Set now

1
Yo = 3 log [ew + e“+c] .

This again is a smooth extension of ¢, and a straightforward computation yields

2e2¥ ddp + e"tCdd u

dd“pe >
ve =z 2(e20 + eut0)
Hence
£ 2% [(1 - £)w+ddy] + (1 —e)e*™Cw
< 2) wtddye 2 2(e?¥ + eutC) -
if C' is chosen large enough. O

This proof breaks down when ¢ is singular and hence a different approach is
needed. We consider in the next section the particular case when w is a Hodge
form.

2.2. Proof of Theorem B. We assume here that w is a Hodge form, i.e. that the
cohomology class {w} belongs to H?(V,Z) (more precisely to the image of H?(V,Z)
in H2(V,R) under the mapping induced by the inclusion Z < R). We prove the
following more precise version of Theorem B.

Theorem 2.2. Let X be a subvariety of a projective manifold V' equipped with a
Hodge form w. If ¢ € PSH(X,w|,) then given any constant a > 0 there exists
Y € PSH(V,w) so that ¢ |, = ¢ and maxy 1) < maxx ¢ + a.
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In the assumptions of Theorem 2.2 there exists a positive holomorphic line bundle
L on V whose first Chern class ¢; (L) is represented by w. By Kodaira’s embedding
theorem L is ample, hence for large k there exists an embedding 7 : V < P" such
that L*¥ = 7O(1).

Replacing w by kw, ¢ by k¢, we can assume that L = O(1), V is an algebraic
submanifold of the complex projective space P", and w = wpg |,, is the Fubini-Study
Kahler form. Hence X is an algebraic subvariety of P", and Theorem 2.2 follows if
we show that wpg-psh functions on X extend to wrg-psh functions on P".

Therefore we assume in the sequel that X € V = P" and w is the Fubini-
Study Kahler form on P". Let [zp : ... : z,] denote the homogeneous coordinates.
Without loss of generality, we may assume that they are chosen so that no coordinate
hyperplane {z; = 0} contains any irreducible component of X.

Let
max{|zol, ..., |zn|}
V1P + .+ |z
This is an w-psh function and for all z € P",

—m < 0(z) <0, wherem =logvn+ 1.

We start by noting that Theorem A yields special subextensions of w-psh functions
on X.

0(z) = log z=[z0:...: 2, €P".

Lemma 2.3. Let € > 0 and u be a continuous (1 + €)w-psh function on P" so that
w(z) <0 for all z € P". If ¢ > 1 and ¢ is an w-psh function on X so that ¢ < u,
then there exists a cw-psh function b on P™ so that

“0(:) S T u(e), Ve e B
and
9(2) = ¢() + = DO(E) + (e~ 1) minu(0), ¥z € X.
Proof. Let

M = — mi > 0.
ggﬁggu(o >

We work first in an affine chart {z; = 1} = C". Let X; = X N {z; = 1} and let
p;j > 0 be the potential of w in this chart with p;(0) = 0. Then ¢ + p; is psh on X;
and since u < 0,
1
otpi+M<u+pi+M< 1—+€u+pj+Moan.
Note that (14 &)~*u+ p; + M > 0 is a continuous psh exhaustion function on C™.
Theorem A yields a psh function ¢ on C” so that

~ c ~
1[)<1—+€u+cpj—|—cMon(C", Y =@+ pj+ Mon Xj.

The function v; = QZ — c¢pj — cM extends uniquely to a cw-psh function on P"
which verifies
u on P".

C
<
1/}]_14-6

Moreover on X N {z; = 1} we have
Yi=p—(c=1pj—(c=1)M =+ (c=1)0; — (c=1)M,
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where

||
0:(z) =lo .
i(2) SV AR

Hence ¢; = —oo on X N {z; = 0}.
We finally let ¢ = max{ty,... ,%¥,}. This is a cw-psh function on P™ which
verifies the desired conclusions, since § = max{fo, ... ,0,}. O

Proof of Theorem 2.2. Fix a > 0. Replacing ¢ by ¢ — maxyx ¢ — a we may assume
that maxx ¢ = —a. We will show that there exists a sequence of smooth w-psh
functions ¢; on P" which decrease pointwise on P" to a negative w-psh function
so that ¢ = ¢ on X.

Let X’ be the union of the irreducible components W of X so that ¢|,, # —o.
We first construct by induction on j > 1 a sequence of numbers £; \, 0 and a
sequence of negative smooth (1 + ¢;)w-psh functions ¢; on P™ so that for all j > 2

¥j Yi—1 1 / .
< onP" | ;i1 >¢ponX, i—p) < =, <=7,
1+ £ 1+ 51 ¢J 1~ @ ” (Tzz)j ‘P) ] W T;Z)y J
for every irreducible component W of X where ¢ |,, = —oo. Here the integrals are

with respect to the area measure on each irreducible component X; of X, i.e.

/)(f::%:/)(jfwdiij‘

Let €1 = 1, 1 = 0, and assume that €;_1, ¥j_1, where j > 2, are constructed
with the above properties. Since ¢ < 91|, and the latter is continuous on the
compact set X, we can find § > 0 so that ¢ < ;1 — 0 on X.

Let ¢ > 1. By Lemma 2.3, there exists a cw-psh function . so that

¢c w'—l_é n
?Slj—i-i&]_l onP s TZJCZQO‘F(C—l)Q—(C—l)Mj_l OI]X,
where

Mjy =0 —ming;1(¢) 2 0

We can regularize . on P": there exists a sequence of smooth cw-psh functions
decreasing to 1. on P". Therefore we can find a smooth cw-psh function ¢, on P"
so that

5
¢_é<¢j—1—§

onP", ¢ > o+ (c—1)0—(c—1)M;_1 > p—(c—1)(m+M;_;) on X.
c 1+4+¢e1

By dominated, resp. monotone convergence, we can in addition ensure that

/(%—w%é/(%—w—@—D9+@—DM}Q<c—L
X’ X’

/¢&&d—@—Mm+MmeL
w

for every irreducible component W of X where ¢|,, = —co. Here |W| denotes the
(projective) area of W.
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Now let ¢ = ¢/, 4+ (¢ — 1)(m + M;_1). Then on P" we have

" )
i1 — 5 —1 M,_ i 1)
& < 1/}] 1 2 + (C )(m+ J 1) < 7/)] 1 ——I—(c—l)(m—l—Mj_l).
c 1+4+e51 c 1+ej1 4

Moreover, 9! > ¢ on X and

/ We —¢) = / (W, — @) + (e — 1)(m + M;_1)| X'|
X/ X/
< (C—l)(l‘i‘m‘X/‘"FMj_l‘X/’) ,

/w;' - /w;+<c—1><m+Mj_1>rwr<—j,
w w

for every irreducible component W of X where ¢ |, = —oc.
We take ¢ =1 +¢; and ¢; = ¢, where ¢; > 0 is so that

1) 1
g < Ej_1/2 R Ej(m+Mj_1) < Z R Ej(l +m]X'\ +Mj_1’X/D < ; .

Then €, ¥; have the desired properties.

We conclude that ¢; = (1+ ej)_1¢j is a decreasing sequence of smooth negative
w-psh function on P", so that ¢; > (1+ Ej)_ltp > ¢ on X. Hence ¢ = lim;_, @; is
a negative w-psh function on P” and ¥ > ¢ on X. Note that

1 Ej / 1 Ej /
. — R _ < = —
/,(“’J 2 1+e; /X,(l/’] #) Tte; v ” 7 1+¢ Jx”

1 J
Jp— P <=2
/W% 1+5j/W¢] 2

for every irreducible component W of X where ¢|,, = —oo. It follows that ¢ = ¢
on X and the proof of Theorem 2.2 is finished. O

3. ALGEBRAIC SUBVARIETIES OF C"

If X is an analytic subvariety of C™ and + is a positive number, we denote by
L(X) the Lelong class of psh functions ¢ on X which verify ¢(z) < ylog™ ||z]| + C
for all z € X, where C' is a constant that depends on ¢. We let £(X) = £1(X). By
Theorem A, functions ¢ € £(X) admit a psh extension in each class £,(C"), for
every v > 1. 1

We assume in the sequel that X is an algebraic subvariety of C" and address the
question whether it is necessary to allow the arbitrarily small additional growth.

More precisely, is it true that
R

L(X) = L(CY) |y,

i.e. is every psh function with logarithmic growth on X the restriction of a globally
defined psh function with logarithmic growth? We will give a criterion for this to
hold, but show that in general this is not the case.

e X is algebraic this result is claimed in [BL, Proposition 3.3], but there is a gap in their proof.
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3.1. Extension preserving the Lelong class. Consider the standard embedding
z2€Chr—[1:2] P,
where [t : z] denote the homogeneous coordinates on P". Let w be the Fubini-Study
Kahler form and let
p(t,z) = log /[t[* + [|z]|>
be its logarithmically homogeneous potential on _(C"H.
We denote by X the closure of X in P”, so X is an algebraic subvariety of P".
It is well known that the class PSH(P", w) is in one-to-one correspondence with
the Lelong class £(C™) (see [GZ]). Let us look at the connection between w-psh

functions on X and the class £(X).
The mapping

Fx : PSH(X,wlg) — LX), (Fxe)(z) = p(1,2) + o([1 : 2]),

is well defined and injective. However, it is in general not surjective, as shown by
FExamples 3.2 and 3.3 that follow.

Conversely, a function 1 € £(X) induces an upper semicontinuous function 77 on
X defined in the obvious way:

n(z) — p(1, 2), ift=1, z € X,

n([t: z]) = limsup (n(¢) — p(1,¢)), if t =0, [0: 2] € Y\X‘
[1:¢]—[0:2],C€X

The function 7j is in general only weakly w-psh on X, i.e. it is bounded above on

X and it is w \Y -psh on the set X, of regular points of X. This notion is in direct

analogy to that of weakly psh function on an analytic variety (see [D2, section 1]).
We do not pursue it any further here.

Note that n € Fx (PSH(X,w |?)) ifand only if 7 € PSH(X,w |¢)- The following
simple characterization is a consequence of Theorem B.

Proposition 3.1. Let n € L(X). The following are equivalent:

(i) There exists 1 € L(C™) so that ¢p =n on X.

(ii) n € PSH(X,w le)-

(iii) For every point a € X \ X the following holds: if (X;,a) are the irreducible
components of the germ (X, a) then the value

limsup (n(¢) — p(1,Q))
X;3[1:(]—a

is independent of j.

In particular, if the germs (X,a) are irreducible for all points a € X \ X then
LX) =L(C")]y-

Proof. Assume that (i) holds. It follows that 7 = ¢|_, where

. o T/)(Z) —p(l,z), if t = 1,
ot =)= { lm suppy. 0.2 (¥ (C) — p(1,()), if t =0,

is an w-psh function on P". Hence 7 € PSH(X,w|.).
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Conversely, if (ii) holds then by Theorem B there exists an w-psh function ¢ on
P" which extends 7. Hence ¢(z) = p(1,2) + ¢([1 : z]) is an extension of n and
P e L(C™).

The equivalence of (ii) and (iii) follows easily from [D2, Theorem 1.10]. O

3.2. Explicit examples. In view of section 3.1, it is easy to construct examples of
algebraic curves X C C? and functions in £(X) which do not admit an extension in
L(C?). We write z = (z,y) € C2

Example 3.2. Let X = {y =0} U{y =1} C C? and n € L(X), where

_ (172)7 if z = (x70)7
n(z) = { 5(172) +1, if 2 = (z,1).

The function 7 is not w-psh on X = {y = 0} U {y = t}, hence n does not have an
extension in L(C?). Indeed, the mazimum principle is violated along {y = 0} near
the point a =[0:1:0], since ([t : 1:0]) =0 fort # 0, while n([t : 1:¢]) = 1.

With a little more effort we can give an example as above where X is an irreducible
curve. Let C* = C\ {0}.

Example 3.3. Let X C C? be the irreducible cubic with equation xy = x>+1. Then
7:{[t:x:y] eP?: a;yt:a;3+t3}, Y:XU{aL a=1[0:0:1].

The germ (X ,a) has two irreducible components X1, Xo, both are smooth at a, X1
being tangent to the line {x = 0}, and Xy to the line {t = 0}.

Note that in fact X C C* x C is the graph of the rational function y = x> 4+ z 71,
x e Cr. If (r,y) € X and x — 0 then (z,y) — a along Xy, while as x — oo then
(z,y) = a along Xo. The function

u(,y) = max{—log |z, 2log | + 1}
is psh in C* x C. It is easy to check that n:=u|, € L(X) and

limsup (n(¢) —p(1,¢)) =0, limsup (n(¢) —p(1,¢)) = 1.
X13[1:(¢]—a X23[1:(]—a

Hence 1 does not admit an extension in L(C?).

We conclude this section with an example of a cubic X in C? and a psh function
on X of the form n = log|P|, where P is a polynomial, so that  admits a “tran-
scendental” extension with exactly the same growth, but small additional growth is
necessary if we look for an “algebraic” extension.

Proposition 3.4. Let X = {z = y*} and n(z,y) =log|1+y|, sonl, € L1/3(X).
Given k > 1, there is a polynomial Qy(x,y) of degree k + 1 so that Qi(y>,y) =
(y 4+ 1)**. In particular, ¢y, = 37108 |Qx| € L11)/31(C?) is an extension of n|, .

There exists no polynomial Q(z,y) of degree k so that Q(y>,y) = (y + 1)3F.
However, 1|, has an extension in Lq,3(C?).

Proof. We construct @y, by replacing ¢ by z in the polynomial

(y+1)* = ikj <3k> Y.

=0 7
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Since j = 3[j/3] +rj, r; € {0,1,2}, it follows that
3k

k .
Qulz,y) =Y (i )x[ﬂ/i”}y’“ﬂ' = 3ka*y? + Ld.t. .

J=0

We now check that there is no polynomial Q(x,%) of degree k so that Q(y>,y) =
(y + 1)3%. Indeed, if Q(z,y) = D jti<k cjix’y! then

QW’,y) = croy* +—Ck_qﬂ1y3k_2 +l.d.t.

does not contain the monomial y3k-1 o
Note that X = {zt? = 43} = X U {a}, where a = [0 : 1: 0], so the germ (X, a) is
irreducible. Proposition 3.1 implies that 1|, has an extension in £4 /3((C2). O

We conclude with some remarks regarding our last example. If X is an algebraic
subvariety of C" and f is a holomorphic function on X, f is said to have polynomial
growth if there is an integer N(f) and a constant A so that

[f()] < A+ [zDYV), vz e X

Then it is well known that there exists a polynomial P of degree at most N (f)+e(X)
so that P |, = f, where ¢(X) > 0 is a constant depending only on X (see e.g. [Bj]
and references therein). However, if X C PV is irreducible at each of its points at
infinity then by Proposition 3.1 the psh function n = N(f)~'log|f| € £(X) has a
psh extension in the Lelong class £(C™).

On the other hand, Demailly [D1] has shown that in the case of the transcendental
curve X = {e” 4+ €Y = 1} any holomorphic function f on X, of polynomial growth,
has a polynomial extension of the same degree to C". Hence it is natural to ask if
for this curve one has that £(X) = L(C")

-
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