
Syracuse University Syracuse University 

SURFACE SURFACE 

Northeast Parallel Architecture Center College of Engineering and Computer Science 

1997 

Random Number Generators for Parallel Computers Random Number Generators for Parallel Computers 

Paul D. Coddington 
Syracuse University, Northeast Parallel Architectures Center 

Follow this and additional works at: https://surface.syr.edu/npac 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Coddington, Paul D., "Random Number Generators for Parallel Computers" (1997). Northeast Parallel 
Architecture Center. 13. 
https://surface.syr.edu/npac/13 

This Working Paper is brought to you for free and open access by the College of Engineering and Computer 
Science at SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized 
administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/13?utm_source=surface.syr.edu%2Fnpac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Random Number Generatorsfor Parallel ComputersPaul D. CoddingtonNortheast Parallel Architectures Center, 111 College Place,Syracuse University, Syracuse, NY 13244-4100, U.S.A.paulc@npac.syr.eduVersion 1.128 April 1997AbstractRandomnumber generators are used in many applications, from slot machines to simula-tions of nuclear reactors. For many computational science applications, such as MonteCarlo simulation, it is crucial that the generators have good randomness properties.This is particularly true for large-scale simulations done on high-performance parallelcomputers. Good random number generators are hard to �nd, and many widely-usedtechniques have been shown to be inadequate. Finding high-quality, e�cient algorithmsfor random number generation on parallel computers is even more di�cult. Here wepresent a review of the most commonly-used random number generators for parallelcomputers, and evaluate each generator based on theoretical knowledge and empiricaltests. In conclusion, we provide recommendations for using random number generatorson parallel computers.



OutlineThis review is organized as follows:A brief summary of the �ndings of this review is �rst presented, giving an overview of theuse of parallel random number generators and a list of recommended algorithms.Section 1 is an introduction to random number generators and their use in computer sim-ulations on parallel computers.Section 2 is a summary of the methods used to test and evaluate random number generators,on both sequential and parallel computers.Section 3 gives an overview of the main algorithms used to implement random numbergenerators on sequential computers, provides examples of software implementations of thealgorithms, and states any known problems with the algorithms or implementations.Section 4 gives a description of the most common methods used to parallelize the sequen-tial algorithms, provides examples of software implementing these algorithms, and statesany known problems with the algorithms or implementations on current high-performancecomputers.Section 5 provides an overview our �ndings and gives recommendations for the use of randomnumber generators on parallel computers.Section 6 is a glossary of terms related to random number generators.Finally, a list of the references cited in this article is provided.

1



SummaryRandom number generators use iterative deterministic algorithms for producing a sequenceof pseudo-random numbers that approximate a truly random sequence. Ideally the sequenceshould be uniformly distributed, uncorrelated, reproduceable, portable, easily changed byadjusting an initial seed value, easily split into many independent subsequences, have alarge period of repetition, pass all empirical tests for randomness, and be generated rapidlyusing limited computer memory.Parallel random number generators should in addition have no correlations betweenthe sequences on di�erent processors, produce the same sequence for di�erent numbers ofprocessors, and not require any data communication between processors.Developing random number generators that satisfy all of these requirements is a verydi�cult problem, particularly for parallel computers.The main algorithms used for sequential random number generators are the following:� Linear congruential generators { these work well if the parameters are properlychosen, the modulus is a prime number, and the state used is at least 48 bits, andpreferably 64 bits. Do not use 32-bit versions.� Lagged Fibonacci generators { implementations using multiplication are the best,addition or subtraction can be used if speed is a major concern, XOR should notbe used. The lags used must satisfy certain requirements, and should be as largeas possible, with the largest lag being at least 127 for multiplication and 1279 foraddition, and preferably much larger. Care must be taken in initializing the seedtables, to ensure the entries are random and uncorrelated.� Shift register generators { these are not recommended since they have compara-tively poor randomness properties.� Combined generators { combinations of two linear congruential generators, or alagged Fibonacci generator and a linear congruential or other generator, work well inpractice if two good generators are used.The main techniques used for parallelizing random number generators involve distributingthe sequences of random numbers produced by a sequential generator among the processorsin the following di�erent ways:� Leapfrog { The sequence is partitioned among the processors in a cyclic fashion, likea deck of cards dealt to card players.� Sequence splitting { The sequence is partitioned among processors in a block fash-ion, by splitting it into non-overlapping contiguous sections.� Independent sequences { For some generators, the initial seeds can be chosen insuch a way as to produce long period independent subsequences on each processor.2



Random number generators, particularly for parallel computers, should not be trusted.It is strongly recommended that all simulations be done with two or more di�erent genera-tors, and the results compared to check whether the random number generator is introducinga bias.On a sequential computer, good generators to use are:� a multiplicative lagged Fibonacci generator with a lag of at least 127, and preferably1279 or more;� a 48-bit or preferably 64-bit linear congruential generator, that performs well in theSpectral Test and has a prime modulus;� a 32-bit (or more) combined linear congruential generator, with well-chosen parame-ters, such as those recommended by L'Ecuyer;� if speed is really crucial, an additive lagged Fibonacci generator with a lag of at least1279 and preferably much greater, and possibly combined with another generator, asin RANMAR, or using 3 or more lags rather than 2.All of the parallel random number generators covered in this review have some limitationsor possible problems. Recommended generators to use on a parallel computer are:� Combined linear congruential generators using sequence splitting;� Lagged Fibonacci generators using independent sequences, with careful initializationto ensure the seed tables on each processor are random and uncorrelated.If you do not require the same results for di�erent numbers of processors, a multi-plicative or additive generator with a large lag can be used, with di�erent lag tableson each physical processor.Otherwise a di�erent lag table is used on each abstract processor, requiring a small lagdue to memory constraints, in which case we recommend using multiplication ratherthan addition.Some software implementing these recommended generators is available from the NationalHPCC Software Exchange (NHSE).More work needs to be done on developing better random number generators for parallelcomputers, and subjecting these generators to more thorough empirical testing.
3



1 IntroductionRandom number generators are widely used for simulations in computational science andengineering. Randomness is often present in the formulation of the problem, for examplerandom noise or perturbations, and quantum processes. In addition, many algorithms areprobabilistic, for example Monte Carlo simulation and stochastic optimization techniquessuch as simulated annealing or genetic algorithms. Random number generators are alsoused in many other applications, from slot machines to cryptography.Since \random" numbers are in practice computed using deterministic algorithms, theseare more accurately called pseudo-random number generators. In some simulations, thequality of the pseudo-random numbers (how closely they resemble truly random sequences)is not that important. However in many of the problems for which random numbers are mostheavily used, such as Monte Carlo simulation, the quality of the random number generator iscrucial. This is especially true in large-scale simulations on parallel supercomputers, whichconsume huge quantities of random numbers, and require parallel algorithms for randomnumber generation.As noted in a number of previous review articles [1, 2, 3, 4, 5, 6, 7], random numbergenerators provided by computer vendors or recommended in some papers and computerscience texts have often been of poor quality. Even generators that perform well in standardstatistical tests for randomness have sometimes proven to be unreliable for certain applica-tions, particularly in Monte Carlo simulations [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The manyproblems caused in the past by inadequate random number generators on sequential andvector computers are likely to be repeated in a new generation of simulations using parallelcomputers, unless parallel random number generators are very carefully studied and tested,and the best algorithms made readily available to users.The aim of this review is to provide up-to-date information and recommendations con-cerning the use of random number generators on parallel computers. A summary of thecurrent state-of-the-art in the development of random number generators for parallel com-puters is presented, along with the results of theoretical evaluations and empirical testsof these generators. For each of the common algorithms used in parallel random numbergenerators, we give examples of software implementations of the algorithm, and state anyknown problems with the algorithm or the implementation of the generator on currenthigh-performance computers.Since this review is aimed primarily at users who may not be interested in the theoreticaldetails of the various algorithms for generating random numbers, many of the technicaldetails have been omitted in order to keep the presentation as simple as possible. Moredetailed information can be found in a number of other reviews [1, 2, 3, 4, 5, 6, 7].
4



2 Testing and Evaluation of Random Number Generators2.1 Requirements for Sequential Random Number GeneratorsIdeally a pseudo-random number generator would produce a stream of numbers that1. are uniformly distributed,2. are uncorrelated,3. never repeats itself,4. satisfy any statistical test for randomness,5. are reproduceable (for debugging purposes),6. are portable (the same on any computer),7. can be changed by adjusting an initial \seed" value,8. can easily be split into many independent subsequences,9. can be generated rapidly using limited computer memory.In practice it is impossible to satisfy all these requirements exactly. Since a computeruses �nite precision arithmetic to store the state of the generator, after a certain period thestate must match that of a previous iteration, after which the generator will repeat itself.Also, since the numbers must be reproduceable, they are not truly random, but generatedby a deterministic iterative process, and therefore cannot be completely uncorrelated.For practical purposes, we require that the period of repetition of the sequence be muchlarger than the number of pseudo-random numbers that might be used in any application,and that the correlations be small enough that they do not noticeably a�ect the outcome ofa computation. The �rst requirement can be determined fairly easily, knowing the power ofthe computer to be used. The second is extremely di�cult to ascertain, and will generallybe application-dependent.It has often been the case that the speed of random number generators has been overlyemphasized, to the detriment of the quality of the generators. A fast generator requiresa minimal number of very simple operations, and it is this simplicity that often leads toproblems with the quality of such generators. For most applications the speed of a randomnumber generator is not even a concern, since the amount of time spent generating therandom numbers is insigni�cant compared to the rest of the calculation. Users who yearnfor super-fast random number generators usually have applications that spend most oftheir time generating random numbers, and require a huge number of them. These typesof applications are often the ones that are most sensitive to the quality of the generator,in which case it would seem prudent to sacri�ce a little speed for much better randomnessproperties. In using a random number generator, it's usually better to be slow than sorry.The speed of a random number generator can usually be increased by allowing theroutine to return an array of values, rather than a single value. This is clearly advantageousfor a vector or parallel implementation, however it is also usually true for a sequentialimplementation, since it amortizes the cost of the function call to the random numbergenerator. 5



2.2 Tests for Sequential Random Number GeneratorsOver the years many widely-used methods for generating pseudo-random numbers havebeen shown to be inadequate, either by theoretical arguments, or empirical tests, or both.In some cases theoretical arguments can show that there are correlations in the sequenceof numbers, however in many cases the problems only show up in empirical tests thatstatistically compare the results produced by the random number generators with resultsexpected from a truly random sequence of numbers. Many standard tests of this kind areavailable [1, 2, 18].In addition to standard statistical tests, it is useful to apply application-speci�c teststhat are more relevant to some of the various applications for which random numbers areused. As with the statistical tests, these tests generally compare the results obtained using apseudo-random number generator with known exact results that would occur if the numberswere truly random. Tests of this kind include Monte Carlo simulation [19, 20] of exactlysolvable systems such as the two dimensional Ising model [10, 21, 13, 15, 16, 17], simulationsof percolation models [22], and random walks [14, 22, 17]. Generators that pass standardstatistical tests have sometimes been found to fail these application-speci�c tests. It istherefore important to use as wide a variety of empirical tests as possible. Any applicationcan in principle be used to test random number generators, by comparing results obtainedwith two di�erent generators [8, 9, 10].2.3 Requirements for Parallel Random Number GeneratorsIn addition to the requirements for an ideal sequential random number generator given inSection 2.1, a random number generator for a parallel computer should ideally have thefollowing additional properties:1. The generator should work for any number of processors.2. The sequences of random numbers generated on each processor should all satisfy therequirements of a good sequential generator, e.g. they should be uniformly distributed,uncorrelated, and have a large enough period.3. There should be no correlations between the sequences on di�erent processors.4. The same sequence of random numbers should be produced for di�erent numbersof processors, and for the special case of a single processor. This is bene�cial fordebugging purposes, and is a requirement for some parallel languages such as HighPerformance Fortran (HPF) [53] (which provides a random number generator as anintrinsic function, as does Fortran 90).5. The algorithm should be e�cient, which in practice means there should be no datamovement between processors. Thus, after the generator is initialized, each processorshould generate its sequence independently of the other processors.As with the ideal sequential generator, in practice it is not feasible to meet all theserequirements. Our goal is to �nd a parallel random number generator that measures upto these ideals as well as possible. For example, we may not be able to say for sure that6



there are no correlations between sequences on di�erent processors, but we can at leastensure that there is no overlap between the sequences, and if possible try to minimize anycorrelations.Note that we will use the word \processor" to refer to a single abstract processor, whichmay correspond to a physical processor, a process, a thread of control within a process, oran array element within a data parallel language such as HPF.2.4 Tests for Parallel Random Number GeneratorsAn obvious requirement for a good parallel random number generator is that the sequentialgenerator on which it is based should have acceptable randomness properties. Unfortunately,many of the widely-used parallel generators fail even this �rst requirement.There has been quite a lot of research on developing algorithms for parallel randomnumber generators, but very little work has been done on developing and applying methodsfor testing such generators. Not many rigorous mathematical results are known about theproperties of parallel random number generators, so stringent and varied empirical tests arevital.The many standard statistical tests for checking the randomness properties of sequentialgenerators can be applied to parallel generators, by testing the random number streams oneach processor, and from all processors combined. This is the usual approach in testingparallel generators. However, new techniques are necessary to test algorithms for generatingrandom numbers on parallel computers, for example to look for correlations between randomnumber streams on di�erent processors [25, 26]. Thus far, very little work has been donein this area.A good empirical test of parallel random number generators is to use them with parallelimplementations of the Monte Carlo algorithms used for simulating the two dimensionalIsing model, which have proven to be very e�ective at testing sequential generators. Suchtests have been done for a number of parallel generators [23, 24].3 Random Number GeneratorsIn this section we introduce the most common algorithms used in random number generators{ the linear congruential, lagged Fibonacci, and shift register generators, and techniqueswhich combine two or more of these generators. More detailed information can be found ina number of other review articles [1, 2, 3, 4, 5, 6, 7].3.1 Linear Congruential GeneratorsProbably the most commonly-used random number generators are linear congruential gen-erators (LCGs) [37, 1, 3, 5]. The standard C and Unix generators RAND (32-bit precision),DRAND48 and RANF (48-bit precision) are of this type. LCGs produce a sequence Xi ofrandom integers using the relationXi = (a �Xi�1 + c) mod M; (1)7



where a is known as the multiplier, M is the modulus, and c is an additive constant thatmay be set to zero. The parameters (a; c;M) must be chosen carefully to ensure a largeperiod and good uniformity and randomness properties. The maximum period is M forsuitably chosen parameters (M � 1 if c = 0) [1]. Standard random number generatorsreturn a oating point number xi in the interval [0,1), which can be obtained by dividingXi by M .LCGs work very well for most applications but are known to have some major defects.The main problem is that the least signi�cant bits of the numbers produced are correlated,and a \scatter-plot" of ordered tuples (xi; xi+1, . . . ) of random oating point numbersplotted in the unit hypercube shows regular lattice structure [2, 27, 32, 33, 7]. This problembecomes worse in higher dimensions, which may a�ect some high-dimensional simulations.The problem of lattice structure can be quanti�ed using the Spectral Test [1]. Examplesof LCGs with good parameters that perform well in the Spectral Test are given in Refs. [1,40, 15, 41].Another problem is that many commonly-used LCGs (including DRAND48 and RANF) usea modulus M that is a power of 2, since it is fast and convenient to implement this on acomputer. However this approach produces highly correlated low-order bits [1, 4, 7], as wellas long-range correlations for intervals that are a power of 2 [8, 11, 34, 35, 36]. This cancause problems for certain types of simulations, for example when using a hypercubic gridwith a size that is a power of 2, or for applications that expect the lower-order bits to berandom. To avoid these problems, it is best to use a modulus that is prime rather than apower of 2, however for many applications requiring single-precision oating point pseudo-random numbers (for which the low-order bits are irrelevant), DRAND48 and RANF are quiteadequate, and are often useful for checking the results obtained using other generators.The e�ects of these regularities can be decreased by increasing the precision of thegenerators [2], for example by using 64-bit rather than 32-bit numbers. However thereare practical limits to this approach { if M is greater than machine precision, then muchslower multi-precision arithmetic must be used, so in practice the precision cannot be madearbitrarily large. This means that 48-bit and 64-bit LCGs can be quite slow on 32-bitcomputers, however many high-performance computers now use 64-bit processors, whichshould become standard in the near future. In that case, the speed of these generators isnot a problem for most applications.Note that for 32-bit integers the period of these generators is at most 232, or of order109. On current processors capable of 108 oating point operations per second, this periodcan be exhausted in seconds, so higher precision (48-bit or more) generators should be used.For long simulations on high-performance computers, even 48-bit generators may have toosmall a period.Despite their known problems, large precision LCGs with well-chosen parameters appearto work very well for all known applications, at least on sequential computers. However wewill see later that there are problems with implementations of LCGs on parallel computersif the modulus is a power of 2.Multiple recursive generators (MRG) [1, 5, 6, 41], generalize LCGs by using a recurrenceof the form Xi = (a1Xi�1 + a2Xi�2 + : : :+ akXi�k + b) mod M (2)for a given value of k. Choosing k > 1 will increase the time taken to generate each number,8



but will greatly improve the period and randomness properties of the generator [6, 41]. Somepractical implementations have been provided for k = 2 [41].3.2 Lagged Fibonnaci GeneratorsLagged Fibonacci generators (LFGs) [1, 5, 2] are becoming increasingly popular, since theyo�er a simple method for obtaining very long periods, and they can be very fast. Thestandard C and Unix generator RANDOM is of this type. The sequence is de�ned byXi = Xi�p �Xi�q (3)which we will denote by F(p; q;�), where p and q are the lags, p > q, and � is any binaryarithmetic operation, such as addition or subtraction modulo M , multiplication modulo M ,or the bitwise exclusive OR function (XOR). The arithmetic operations are done modulo anylarge integer value M , or modulo 1 if the X 's are represented as oating point numbers inthe interval [0,1), as can be done if the operation is addition or subtraction. Multiplicationmust be done on the set of odd integers. The modulus function is not required when usingXOR. This method requires storing the p previous values in the sequence in an array calleda lag table.As with the LCGs, it is important that the parameters (p; q;M) be carefully chosen inorder to provide good randomness properties and the largest possible period. If M is takento be 2b (i.e. the X 's have b-bit precision), the maximal period is obtained if the lags arethe exponents of a primitive polynomial [1, 28]. In that case the period is 2p � 1 for XOR,(2p�1)2b�1 for addition and subtraction, and (2p�1)2b�3 for multiplication [28, 7, 1, 2, 31].Tables of suitable lags are available in the literature [1, 28, 30, 29, 31]. An advantage ofthis generator is that the period can be made arbitrarily large by just increasing the lagp. This also improves the randomness properties [2, 15], since smaller lags mean highercorrelations between the numbers in the sequence. The low-order bits can have particularlypoor randomness properties if small lags are used.Empirical tests have shown that the randomness properties of LFGs are best whenmultiplication is used, with addition (or subtraction) being next best, and XOR being byfar the worst [2, 15, 16, 17]. This is intuitively reasonable in that multiplication mixes thebits in two numbers much more than addition, which is in turn much better than XOR.LFGs using addition (or subtraction) are the most popular because they are very simpleand very fast. All the computation can be done in oating point, which avoids a costlyinteger to oating point conversion, and large periods can be obtained on 32-bit processorswithout having to use slow multi-precision arithmetic. Each pseudo-random number canbe generated with just a single oating point addition and a modulus operation.Great care needs be taken in choosing the lags for this type of generator. Many im-plementations use (or recommend in the documentation) lags that are much too small togive adequate randomness properties, even though it has been known for many years thatadditive LFGs fail some standard statistical tests for very small lags (such as p = 17) [2],and that increasing the lag improves the randomness properties of the generator. Morerecently, it was shown that even lags on the order of hundreds can give incorrect results in anumber of tests based on common applications such as Monte Carlo simulation, percolationand random walks [14, 22, 15, 16, 17]. Unfortunately this information seems not to have9



percolated through the mathematical and computational science community, and it is stillextremely rare to see a lag of greater than 1000 recommended for an additive LFG. Werecommend using (p; q) of at least (1279,1063), and preferably much larger values. Thestandard Unix generator RANDOM is an additive LFG with a default lag of 31, which is muchtoo small, however it is possible to initialize it with a larger lag.Setting a minimum acceptable lag is obviously a moving target, since computers arecontinually becoming faster, allowing for more stringent randomness tests that use morerandom numbers. The recommendations given here are based on the results of the currentset of application-speci�c tests mentioned above, using currently available computers. Thesevalues may not be adequate for future applications that use Teraop computers. In anysimulation, the largest feasible lag should be used, and the results should always be checkedusing a di�erent generator.Small lags were necessary in the past because of limited computer memory, however oncurrent high-performance computers (and even personal computers), the additional memoryrequirement of a lag table with a few thousand entries can easily be handled. However wewill see later that memory constraints may be a problem in implementing this algorithmon parallel computers for some applications. The choice of the lag may a�ect the speed ofthe generator, depending on the type of computer used. For example, if vector processorsare used, a larger lag may improve performance, since the vector lengths are longer. If ascalar processor with limited cache memory is used, having a very large lag may cause cachemisses and reduce the performance.Multiplicative LFGs have seen little use, which is somewhat surprising considering theirexcellent randomness properties and extremely long period. Although slower than additiveLFGs, they are just as fast as 32-bit LCGs, and much faster than LCGs that requiremultiple-precision arithmetic. Multiplicative LFGs can also be used with much smaller lagsthan for additive LFGs. Many di�erent tests are failed by additive LCGs with small lags(less than 100) [2, 13, 14, 15, 16, 17], however no currently published results in any testshow failure of a multiplicative LFG for a lag as small as 17. However we recommend usinga lag of at least 100, to ensure a large period and better randomness properties.One of the obstacles in implementing multiplicative LFGs is handling the possible over-ow of the multiplication. In most languages a portable implementation would requiremultiple precision arithmetic, which would be quite slow. However if the C programminglanguage is used, and the X 's are speci�ed to be of type unsigned int, then the languagespeci�cation for the multiplication of two unsigned int values in C guarantees that theresult will be correct modulo M = 2b if b is the word size (the number of bits in X), withouthaving to worry about overow or the use of multiple precision arithmetic. Many Fortrancompilers allow the calling of subroutines written in C.The randomness properties of LFGs can be improved (without sacri�cing too much inspeed) by using multiple lags (or \taps") [39, 28, 22, 14, 15, 17], i.e. by combining three ormore previous elements of the sequence, rather than two. This type of generator has notyet been widely used or studied, however it seems likely that a 3- or 4-lag additive LFGwould be a very fast and e�ective random number generator.10



3.3 Shift Register GeneratorsShift register (or Tausworthe) generators [1, 2, 38, 21, 39] are generally used in a form wherethey can be considered as a special case of a lagged Fibonacci generator using XOR. XORgives by far the worst randomness properties of any operation for an LFG [1, 2, 15], so thesegenerators are not recommended.Despite their serious drawbacks, shift register generators have been very popular in thepast, mainly because they were comparatively fast. However on modern processors additionis not markedly slower than XOR, so there is little reason to use these generators.3.4 Combined GeneratorsCombining two di�erent generators has been shown (both theoretically and empirically) toproduce an improved quality generator in many circumstances [2, 32, 6, 42].Based on an algorithm introduced by Wichmann and Hill [43], L'Ecuyer [32] has shownhow to additively combine two di�erent 32-bit LCGs to produce a generator that passes allknown statistical tests and has a long period of around 1018, thus overcoming the majordrawbacks of standard 32-bit LCGs. This has been implemented in a program known asRANECU [32, 5]. Combining two LCGs in this way is e�ectively a more e�cient way ofimplementing an LCG with a much larger modulus [44]. Recently L'Ecuyer et al. [41]have implemented combined 48-bit and 64-bit LCGs and MRGs, with even larger periodsand better randomness properties. A combined 32-bit LCG is substantially slower than astandard 32-bit LCG, although it is more appropriate to compare it to a 64-bit LCG (whichhas the same period), in which case the performance is similar, at least on a 32-bit machinewhere multiple-precision arithmetic is required for the 64-bit LCG.Other proposed combined generators include algorithms combining an LFG with anLCG [2], or an LFG with a simple Weyl (or arithmetic sequence) generator, which is thebasis for the RANMAR generator [5, 45] commonly used in computational physics applications.The addition of the Weyl generator greatly improves the randomness properties over thesingle additive LFG, but RANMAR still fails some Monte Carlo tests [15], since the lag used(p = 97) is much too small. If you are using this generator, you should greatly increase thelags, to at least (1279,1063).4 Parallel Random Number GeneratorsMany di�erent parallel random number generators have been proposed, but most of themuse the same basic concept, which is to parallelize a sequential generator by taking theelements of the sequence of pseudo-random numbers it generates and distributing themamong the processors in some way. There are three basic ways to do this:1. Leapfrog { The sequence is partitioned in turn among the processors like a deck ofcards dealt to card players.2. Sequence splitting { The sequence is partitioned by splitting it into non-overlappingcontiguous sections. 11



3. Independent sequences { For some generators, the initial seeds can be chosen insuch a way as to produce long period independent subsequences on each processor.The �rst two techniques are closely analogous to the cyclic and block methods for datadistribution in a data parallel language [53], while the third technique is loosely analogousto a scattered data distribution [49].Finding a good parallel random number generator has proven to be a very challengingproblem, and is still the subject of much research and debate. One of the reasons goodparallel random number generators are so hard to create is that any small correlations thatexist in the sequential generator may be ampli�ed by the method used to distribute thesequence among the processors, producing stronger correlations in the subsequences on eachprocessor. Inter-processor correlations may also be introduced. Also, the method used toinitialize a parallel random number generator (i.e. to specify the seeds for each processor)is at least as important as the algorithm used for generating the random numbers, since anycorrelations between the seeds on di�erent processors could produce strong inter-processorcorrelations.In this section we describe some of the most common parallel random number generators.More information is available in other review articles [4, 46] and in the references given inthis section.4.1 The Leapfrog MethodIdeally we would like a parallel random number generator to produce the same sequence ofrandom numbers for di�erent numbers of processors. A simple way to achieve this goal isfor processor P of an N processor machine to generate the sub-sequenceXP ; XP+N ; XP+2N ; : : : ;so that the sequence is spread across processors in the same way as a deck of cards is dealtin turn to players in a card game. This is known as the leapfrog technique, since eachprocessor leapfrogs by N in the sequence [47, 48, 49, 50, 4]. In order to use this methodwe need to be able to easily jump ahead in the sequence. This can be done quite easilyfor linear congruential generators, and merely involves replacing the multiplier a and theadditive constant c by new values A = aN and C = c(aN � 1)=(a � 1) (both modulo M)[47, 48, 49, 50]. Jumping ahead in the sequence can also be done for combined LCGs[6, 51] and shift-register generators [52], but is not practical for LFGs using addition ormultiplication, since the computations are much more complex, making it too slow forpractical use.A 48-bit LCG using the leapfrog technique has been used on vector machines such as theCRAY and CYBER-205 [47, 4, 8], and for the intrinsic random number generator functionused in IBM's XL HPF High Performance Fortran release (which o�ers the option of a32-bit or a 48-bit LCG { beware that the totally inadequate 32-bit LCG is the default!)[61].A potentially serious problem with the leapfrog method for LCGs is that although themultiplier a may be chosen to perform well in the Spectral Test, there is no guarantee thatA = aN will also have good spectral properties, particularly since N will in general be12



arbitrary. This method could work well in situations for which N is �xed (for example, ifan application is always run on the same number of processors), since it would be possibleto choose a multiplier so that both a and aN do well in the Spectral Test. However it is notpossible to choose a multiplier for which aN has good spectral properties for any value ofN , so this algorithm is not recommended as a general-purpose generator.There is another potential problem with this type of generator. As mentioned in Sec-tion 3.1, linear congruential generators using a modulus that is a power of 2 are known tohave correlations between elements in the sequence that are a power of 2 apart. For manyparallel computers the number of physical processors is a power of 2, and this is also oftenthe case for the number of abstract processors, i.e. the size of the arrays used in a simu-lation. This means that the pseudo-random numbers generated on a given processor maybe more strongly correlated than the sequence on a single processor. In fact the leapfroglinear congruential algorithm used on the CRAY and CYBER-205, which has a power of2 modulus, has produced spurious results in some Monte Carlo calculations [8, 11]. Thisproblem can be avoided by using a prime modulus.For these reasons, we do not recommend the leapfrog method, although it may beadequate for many applications. If you do use this type of generator, at least be sure thatthe LCG is 48-bit or higher (32-bit or higher for a combined LCG) and preferably has aprime modulus.4.2 Sequence SplittingAnother method for parallelizing random number generators is to split the sequence intonon-overlapping contiguous sections, each generated by a di�erent processor [4, 6, 7]. Forexample, one could divide the period of the generator by the number of processors, andjump ahead in the sequence by this amount for each processor. Alternatively, the length ofeach section of numbers could be chosen much larger than could possibly be used by anyprocessor. If the length of the sections is L, then processor P would generate the sequenceXPL; XPL+1; XPL+2; : : :This method also requires the ability to quickly jump ahead in the sequence by a givenamount. It is therefore restricted primarily to the same type of generators as the leapfrogmethod, however in this case it is also possible to use additive lagged Fibonacci generators.Although jumping ahead using additive LFGs is too slow to do every time a number isgenerated (which is required for leapfrog), it may be fast enough to be feasible for sequencesplitting, which only needs to be done once, in the initialization of the generator. A parallelgenerator of this type has been implemented by Brent [7], who presents an initializationmethod that takes O(r logn) time to jump ahead n for a lag r. An implementation usingsequence splitting of a combined linear congruential generator has been given by L'Ecuyerand Côt�e [51].A possible problem with this method is that although the sequences on each processor aredisjoint (i.e. there is no overlap), this does not necessarily mean that they are uncorrelated.In fact it is known that linear congruential generators with modulus a power of 2 havelong-range correlations that may cause problems, since the sequences on each processor13



are separated by a �xed number of iterations (L). Other generators may also have subtlelong-range correlations that could be ampli�ed by using sequence splitting.A disadvantage of this type of generator is that it does not produce the same sequencefor di�erent numbers of processors. However in a data parallel programming model (forexample, as used by High Performance Fortran [53]) it is possible to split the sequenceamong \abstract processors", or distributed data elements, such that the sequences will bethe same for any number of physical processors. For a combined LCG, this requires onlytwo integer values per array element to store the state of the generator, which should notbe too great a memory requirement. This method appears capable of providing a very goodparallel random number generator, particularly for data parallel languages such as HPF[54].4.3 Independent SequencesThe previous two methods were restricted to generators for which arbitrary elements ofthe sequence could be quickly and easily computed. This means they are impractical forLFGs using multiplication, which is unfortunate since these are among the best sequentialgenerators available.There is, however, an even simpler way to parallelize a lagged Fibonacci generator,which is to run the same sequential generator on each processor, but with di�erent initiallag tables (or seed tables) [55, 56]. In fact this technique is no di�erent to what is done on asequential computer, when a simulation needs to be run many times using di�erent randomnumbers. In that case, the user just chooses di�erent seeds for each run, in order to getdi�erent random number streams.This method is similar to sequence splitting, in that each processor generates a di�erent,contiguous section of the sequence. However in this case the starting point in the sequenceis chosen at random for each processor, rather than computed in advance using a regularincrement. This has the advantage of avoiding (or at least reducing) possible long-rangecorrelations, but only if the seed tables on each processor are random and independent.The initialization of the seed tables on each processor is a critical part of this algorithm.Any correlations within the seed tables or between di�erent seed tables could have direconsequences. This leads to the Catch-22 situation of requiring an excellent parallel randomnumber generator in order to provide a good enough initialization routine to implement anexcellent parallel random number generator. However this is not as di�cult as it seems{ the initialization could be done by a combined LCG, or even by a di�erent LFG (usingdi�erent lags and perhaps a di�erent operation).A potential disadvantage of this method is that since the initial seeds are chosen atrandom, there is no guarantee that the sequences generated on di�erent processors will notoverlap. However using a large lag eliminates this problem to all practical purposes, since theperiod of these generators is so enormous that the probability of overlap will be completelynegligible (assuming that the initial lag tables are not correlated). In fact, the likelihood ofoverlap is even less than might be expected, due to a useful property of lagged Fibonaccigenerators. Any LCG produces a single periodic sequence of numbers, with the di�erentseeds just providing di�erent starting points in the sequence. However, LFGs have manydisjoint full-period cycles [31, 63], so two di�erent seed tables may produce two completely14



di�erent non-overlapping periodic sequences of numbers. In fact, since the number of suchdisjoint cycles is 2(p�1)(b�1) for suitably chosen parameters [31, 63], then the probability ofdi�erent processors producing the same cycle should be completely negligible (for example,values of p = 127 and b = 32 give roughly 101000 disjoint cycles!). Of course this assumesthat the initial seed tables are really random, and do not have any correlations that mightnegate this argument.This type of generator is quite popular, and has been implemented for a number ofparallel computers and parallel languages. The Connection Machine Scienti�c Software Li-brary (CMSSL) routine FAST RNG [57] uses an additive LFG with the seeds being initializedby a di�erent parallel random number generator (CMF RANDOM, described in Section 4.4).The interface to this routine allows the user to specify the lag, so in principle the routinecan be very good, although the CMSSL documentation suggests using a lag of 17, which ismuch too small to ensure adequate randomness properties.The Maspar (or DECmpp) uses p random, a parallel version of RANDOM, the standardUnix LFG random [60]. The initial implementation of this generator gave extremely poorquality pseudo-random numbers (the lower order bits were not even uniformly distributed),due to a poor initialization of the seed tables on each processor, which left them highlycorrelated. This was greatly improved in a later release, although the newer version stillfailed a Monte Carlo Ising model test [23, 24], presumably because the new method forinitializing the generator is still introducing some correlations between the seed tables oneach processor.As with sequence splitting, just because the sequences on each processor do not overlap,does not necessarily mean they are uncorrelated. However in this case, if each processor doesindeed generate part of a disjoint full-period cycle, there are some theoretical argumentsfor why any correlations between processors might be expected to be small [63].Mascagni et al. have proposed a method for initializing the lag tables on each processorwhich guarantees that each processor will generate a sequence from a di�erent full-periodcycle [63]. It has been suggested that this method be established as a standard parallelrandom number generator [64, 65], and it has been used for the intrinsic random numbergenerator in the Portland Group PGHPF High Performance Fortran [62]. The method usedfor seeding the lag tables is similar in complexity to jumping ahead in the sequence, so theinitialization time increases with the size of the largest lag, and the current implementationis restricted to additive LFGs with lags ranging from 17 to 127 [63]. Improved techniquesmay be needed to make the initialization fast enough to be practical with the much largerlags required for acceptable randomness properties. Note however that although an ini-tialization time of say, one minute, would be unacceptable for a general-purpose randomnumber generator, for speci�c applications such as large-scale Monte Carlo simulations,which usually require many hours of running time, it would be perfectly adequate.A de�ciency of the independent sequence method is that, like sequence splitting, itdoes not produce the same sequence for di�erent numbers of processors. However, as withsequence splitting, this can be achieved by assigning a separate generator (i.e. a di�erent lagtable) to every abstract, rather than physical, processor. This method is used in the CMSSLVP RNG generator [57], and the PGHPF implementation mentioned above. A major problemwith this method is that each abstract processor needs to have its own lag table, whichbecomes an exorbitant memory requirement if the lag is large enough to ensure adequate15



randomness properties. Both the CMSSL and PGHPF implementations use a lag of 17,which is too small. It might be possible to overcome this problem by using a multiplicative,rather than additive, lagged Fibonacci generator, for which a lag as small as 17 is enoughto pass all current empirical tests [2, 15].Of course, if the user is willing to forgo the luxury of generating the same sequence forany number of processors, then memory is not a problem, and the independent sequencemethod for large-lag additive or multiplicative LFGs is one of the best methods currentlyavailable for generating random numbers on parallel computers, as long as the initializationof the lag tables is done properly.4.4 Other MethodsThe cellular automata generator [58] is a generalization of the shift register generator, basedon cellular automata rules. A parallel version called CMF RANDOM is provided by ThinkingMachines [59]. Both the sequential and parallel versions of this generator have passed manyof the standard statistical tests [58, 59], however CMF RANDOM failed a Monte Carlo Isingmodel test [23, 24] and therefore cannot be recommended. This generator is also muchslower than those provided in the CMSSL, so it is not often used for large-scale simulations.There are a number of other methods used for implementing parallel random numbergenerators, including using a di�erent generator for each processor. These methods are notcovered here, since they are not widely used.5 Conclusions and RecommendationsThe main recommendation we would give to someone who needs to use a random numbergenerator on a parallel computer is very simple { never trust a parallel random numbergenerator. In particular, never trust the default random number generator provided withthe system you are using. We would o�er the same advice for sequential random numbergenerators. Many people (including this author) would have spared themselves a lot oftribulation and saved a lot of time if they had followed this simple tenet in the past.There are very sound reasons for adopting such a skeptical stance. Developing a good,e�cient algorithm for generating pseudo-random numbers on a computer is a very di�cultproblem, especially for parallel computers. The theoretical understanding of random num-ber generators is rather limited, and no amount of empirical testing can ever determine howwell a given generator will perform for a new application. There is a long and inglorioushistory of various random number generators being proposed, studied, tested, approved,advocated, widely used, and then being found to perform poorly in certain circumstancesor for certain applications. Unfortunately, many generators have been (and continue to be)advocated, made available in software libraries, and widely used, even after they have beenshown to be awed.If a generator is shown to fail a certain empirical test, that does not necessarily meanthat it will also perform poorly for your application, or the results you spent many monthsgathering using that generator are now invalid. However, to avoid this possibility, it isstrongly recommended that for any computation requiring random numbers, at least two16



very di�erent random number generators should be used and the results compared, in orderto check that the random number generator is not introducing a bias.On a sequential computer, good generators to use are:� a multiplicative lagged Fibonacci generator with a lag of at least 127, and preferably1279 or more;� a 48-bit or preferably 64-bit linear congruential generator that performs will in theSpectral Test and has a prime modulus;� a 32-bit (or more) combined linear congruential generator, with well-chosen parame-ters, such as those recommended by L'Ecuyer;� if speed is an issue (but note the comment on this in Section 2.1), use an additivelagged Fibonacci generator with a lag of at least 1279 and preferably much greater,possibly combined with another generator, as in RANMAR, or using 3 or more lags.All of the parallel random number generators covered in this review have some lim-itations or possible problems. There has also been very little empirical testing done onparallel random number generators, and few theoretical results are known. It is thereforemuch more di�cult to recommend good parallel random number generators, but with thatcaveat, we will recommend:� A combined linear congruential generator using sequence splitting;� A lagged Fibonacci generator, although great care must be exercised in the initial-ization procedure, to ensure that the seed tables on each processor are random anduncorrelated.If your application does not require the same results for di�erent numbers of proces-sors, we recommend using a large-lag multiplicative (or additive) generator with adi�erent (randomly initialized) lag table on each physical processor. This could becombined with another generator, as in RANMAR.Otherwise a small lag must be used due to memory constraints, as with the PGIHPF andVP RNG generators, however we recommend using multiplication rather than addition.Many of the past problems with random number generators have been caused in partby the rapid pace of improvement in computers. 32-bit LCGs were perfectly adequate formany years, but the speed of modern processors has rendered them obsolete. This hasbeen noted in the documentation for most (but unfortunately not all) implementations ofthese generators, which are kept only for backward compatibility. Shift register generatorsbecame very popular because XOR was so much faster than addition and multiplicationon processors available at that time, but that is no longer the case, and their relativelypoor randomness properties now far outweigh their slight performance advantage. Earlyimplementations of lagged Fibonacci generators used very small lags, even though largerlags were known to give better results, because of worries about memory constraints thatare no longer a problem on current computers (except for data parallel implementations).Many comments on the quality of various generators have been made based on statisticaltests performed many years ago, using samples of random numbers that are so small as to be17



almost irrelevant to the results of simulations done on current (and future) high-performancecomputers.The improvement in computer performance continues unabated, of course, and it iscrucial that the implementation and testing of random number generators keeps pace withthese changes. By the year 2000 supercomputers will have Teraop (1012 oating pointoperations per second) performance, and a Teraop-year of computation (3�1019 ops)will become realizable for such problems as Monte Carlo simulation of lattice gauge theoryand condensed matter physics [66]. Such large-scale Monte Carlo simulations will easilyexhaust the period (of roughly 1018) of 64-bit LCGs or 32-bit combined LCGs. It willtherefore be necessary in the near future to move to very long period generators such aslarge-lag LFGs or combined 64-bit LCGs or MRGs (which have periods large enough for aPetaop-age-of-the-universe computation!).Since faster computers and better algorithms are improving the precision of computersimulations at a rapid pace, it is important to continue to search for better random numbergenerators, and to make more precise and varied tests of the randomness properties of thesegenerators. This is particularly true for parallel computers, where satisfactory algorithmsare still lacking.5.1 Recommended Random Number Generator SoftwareThe following random number generator software is recommended for parallel computers.Software catalog entries for each of these programs are available at the National HPCCSoftware Exchange (NHSE).� Combined linear congruential generators with parameters recommended by L'Ecuyer,parallelized using sequence splitting.{ RANECU from CERNLIB� Lagged Fibonacci generator using multiplication, parallelized using independent se-quences.{ FIBMULT from Syracuse University� Lagged Fibonacci generator using addition, parallelized using independent sequences.Be sure to use the largest possible lag.{ Scalable Parallel Random Number Generator (SPRNG) Library from NCSA{ FIBADD from Syracuse UniversityAcknowledgementsI would like to thank Sung-Hoon Ko, Alan Sokal, Kari Kankaala, John Apostolakis, AlanMiddleton, and Enzo Marinari for their help, discussions, and suggestions. Work supportedin part by the Center for Research on Parallel Computation with NSF cooperative agree-ment No. CCR-9120008 and by the National Aeronautics and Space Administration undercooperative agreement No. NCCW-0027. 18



6 Glossarycombined generatorA random number generator that combines results from two or more di�erent generatorsinto a single resultant value.independent sequencesA method of parallelizing a random number generator by choosing initial seeds for eachprocessor in such a way as to produce long period independent (i.e. non-overlapping)subsequences on each processor.lagsThe distances to the previous elements of the sequence that are used to generate the nextelement. The largest lag is usually referred to as the lag of the generator.lag tableThe array of prior elements of the sequence that must be stored to produce the next elementin a lagged Fibonacci generator.lagged Fibonacci generator (LFG)A random number generator that combines previous elements in the sequence to generate thenext element, using a simple binary arithmetic operation such as multiplication, addition,subtraction, or exclusive OR.leapfrogA method of parallelizing a random number generator by partitioning the sequence ofnumbers among the processors in a cyclic fashion, like a deck of cards dealt to card players.linear congruential generator (LCG)A random number generator that uses a simple linear function of the current element inthe sequence to produce the next element.modulusThe maximum value allowed by a random number generator.multiplierThe constant used to multiply the current value to get the next value for a linear congruentialgenerator.multiple recursive generatorA generalization of the linear congruential generator, for which any linear combination ofprevious elements in the sequence can be used to generate the next element.periodThe length of the cyclic sequences produced by a random number generator.seedA number chosen by the user to initialize a random number generator.seed tableThe initial values of the lag table for a lagged Fibonacci generator.19



sequence splittingA method of parallelizing a random number generator by partitioning the sequence ofnumbers in a block fashion, splitting it into non-overlapping contiguous sections.shift register generatorA random number generator that uses a simple combination of the bits of previous elementsin the sequence to produce the next element.stateThe numbers that are required to be stored in order to implement the iterative procedureused in a random number generator. These are the values that must be stored at the endof each run of the program in order for a subsequent run to start at the same point in thesequence of random numbers.uniform distributionThe probability of a number falling in a particular interval is proportional only to the sizeof the interval.

20



References[1] D.E. Knuth, The Art of Computer Programming Vol. 2: Seminumerical Methods (sec-ond edition), Addison-Wesley, Reading, Mass., 1981.[2] G.A. Marsaglia, A current view of random number generators, in Computational Sci-ence and Statistics: The Interface, ed. L. Balliard, Elsevier, Amsterdam, 1985.[3] S.K. Park and K.W. Miller, Random number generators: Good ones are hard to �nd,Comm. ACM 31:10, 1192 (1988).[4] S.L. Anderson, Random number generators on vector supercomputers and other ad-vanced architectures, SIAM Rev. 32, 221 (1990).[5] F. James, A review of pseudorandom number generators, Comp. Phys. Comm. 60, 329(1990).[6] P. L'Ecuyer, Random numbers for simulation, Comm. ACM 33:10, 85 (1990).[7] R.P. Brent, Uniform random number generators for supercomputers, Proc. Fifth Aus-tralian Supercomputer Conference, Melbourne, December 1992, p. 95.[8] C. Kalle and S. Wansleben, Problems with the random number generator RANF im-plemented on the CDC CYBER 205, Comp. Phys. Comm. 33, 343 (1984).[9] G. Parisi and F. Rapuano, E�ects of the random number generator on computer sim-ulations, Phys. Lett. 157B, 301 (1985).[10] A. Hoogland, A. Compagner and H.W.J. Bl�ote, Smooth �nite-size behavior of thethree-dimensional Ising model, Physica 132A, 593 (1985).[11] T. Filk, M. Marcu and K. Fredenhagen, Long range correlations in random numbergenerators and their inuence on Monte Carlo simulations, Phys. Lett. B165, 125(1985).[12] A. Milchev, K. Binder, D.W. Heermann, Fluctuations and lack of self-averaging in thekinetics of domain growth, Z. Phys. B 63, 521 (1986).[13] A.M. Ferrenberg, D.P. Landau and Y.J. Wong, Monte Carlo simulations: Hidden errorsfrom \good" random number generators, Phys. Rev. Lett. 69, 3382 (1992).[14] P. Grassberger, On correlations in \good" random number generators, Phys. Lett. A181, 43 (1993).[15] P.D. Coddington, Analysis of random number generators using Monte Carlo simulation,Int. J. Mod. Phys. C 5, 547 (1994).[16] I. Vattulainen, T. Ala-Nissila and K. Kankaala, Physical tests for random numbers insimulations, Phys. Rev. Lett. 73, 2513 (1994).21



[17] I. Vattulainen, T. Ala-Nissila and K. Kankaala, Physical models as tests of randomness,Phys. Rev. E 52, 3205 (1995).[18] E.T. Dudewicz and T.G. Ralley, The Handbook of Random Number Generation andTesting with TESTRAND Computer Code, American Science Press, Columbus, Ohio,1981.[19] K. Binder ed., Monte Carlo Methods in Statistical Physics, Springer-Verlag, Berlin,1986; K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics,Springer-Verlag, Berlin, 1988.[20] H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods, Vol.2, Addison-Wesley, Reading, Mass., 1988.[21] S. Kirkpatrick and E. Stoll, A very fast shift-register sequence random number gener-ator, J. Comput. Phys. 40, 517 (1981).[22] R.M. Zi�, Reduction of correlations in shift-register sequence random number genera-tors using multiple feedback taps, unpublished.[23] P.D. Coddington, Tests of random number generators using Ising model simulations, inProc. of the 1995 US-Japan Bilateral Seminar on New Trends in Computer Simulationsof Spin Systems, Int. J. Mod. Phys. C 7, 295 (1996).[24] P.D. Coddington, S.-H. Ko, W.E. Mahoney and J.M. del Rosario, Monte Carlo testsof parallel random number generators, in preparation.[25] S.A. Cuccaro, M. Mascagni and D.V. Pryor, Techniques for testing the quality ofparallel pseudo-random number generators, in Proc. of the 7th SIAM Conf. on ParallelProcessing for Scienti�c Computing, SIAM, Philadelphia, 1995, p. 279.[26] A. De Matteis, S. Pagnutti, Controlling correlations in parallel Monte Carlo, ParallelComputing 21, 73 (1995).[27] G.A. Marsaglia, Random numbers fall mainly in the planes, Proc. Nat. Acad. Sci. 61,25 (1968).[28] R.P. Brent, On the periods of generalized Fibonacci recurrences, Math. Comp. 63, 389(1994).[29] N. Zierler and J. Brillhart, On primitive trinomials (mod 2), Information and Control13, 541 (1968).[30] J.R. Heringa, H.W.J. Bl�ote and A. Compagner, Mersenne-exponent degrees forrandom-number generation, Int. J. Mod. Phys. C 3, 561 (1992).[31] G.A. Marsaglia and L.H. Tsay, Matrices and the structure of random number sequences,Linear Algebra Appl. 67, 147 (1985).[32] P. L'Ecuyer, E�cient and portable combined random number generators, Comm. ACM31:6, 742 (1988). 22



[33] H. Neiderreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer.Math. Soc. 84, 957 (1978).[34] O.E. Percus and J.K. Percus, Long range correlations in linear congruential generators,J. Comput. Phys. 77, 267 (1988).[35] J. Eichenauer-Herrmann and H. Grothe, A remark on long-range correlations in mul-tiplicative congruential pseudo-random number generators, Numer. Math. 56, 609(1989).[36] A. De Matteis and S. Pagnutti, Parallelization of random number generators and longrange-correlations, Numer. Math. 53, 595 (1988).[37] D.H. Lehmer, Mathematical methods in large-scale computing units, Ann. Comput.Lab. Harvard U. 26, 141 (1951).[38] R.C. Tausworthe, Random numbers generated by linear recurrence modulo two,Math.Comp. 19, 201 (1965).[39] S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967.[40] G.S. Fishman, Multiplicative congruential random number generators with modulus2� : an exhaustive analysis for � = 32 and a partial analysis for � = 48, Math. Comp.54, 331 (1990).[41] P. L'Ecuyer, F. Blouin, and R. Couture, A search for good multiple recursive genera-tors, ACM Trans. on Modeling and Computer Simulation 3, 87 (1993).[42] L.-H. Deng, E.O. George and Y.-C. Chiu, On improving pseudo-random number gen-erators, in Proc. of the 1991 Winter Simulation Conference, ed. B.L. Nelson et al,p. 1035.[43] B.A. Wichmann and I.D. Hill, An e�cient and portable pseudorandom number gener-ator, Appl. Statist. 31, 188 (1982).[44] P. L'Ecuyer and S. Tezuka, Structural properties for two classes of combined randomnumber generators, Math. Comp. 57, 735 (1991).[45] G.A. Marsaglia, Toward a universal random number generator, Stat. Prob. Lett. 8, 35(1990).[46] W.F. Eddy, Random number generators for parallel processors, J. Comp. Appl. Math.31, 63 (1990).[47] W. Celmaster and K.J.M. Moriarty, A method for vectorized random number genera-tors, J. Comput. Phys. 64, 271 (1986).[48] K.O. Bowman and M.T. Robinson, Studies of random number generators for parallelprocessing, in Proc. 2nd Conference on Hypercube Multiprocessors, ed. M.T. Heath,SIAM, Philadelphia, 1987, p. 445. 23



[49] G. Fox et al., Solving Problems on Concurrent Processors, Vol. 1, Prentice-Hall, En-glewood Cli�s, 1988.[50] W. Evans and B. Sugla, Parallel random number generation, in Proc. of the 4th Confer-ence on Hypercube Concurrent Computers and Applications, ed. J. Gustafson, GoldenGate Enterprises, Los Altos, CA, 1989, p. 415.[51] P. L'Ecuyer and S. Côt�e, Implementing a random number package with splitting facil-ities, ACM Trans. Math. Soft. 17, 98 (1991).[52] S. Aluru, G.M. Prabhu and J. Gustafson, A random number generator for parallelcomputers, Parallel Computing 18, 839 (1992).[53] C. Koelbel et al., The High Performance Fortran Handbook, MIT Press, Cambridge,Mass., 1994.[54] P.D. Coddington, S.H. Ko, O. Odeyemi and C. Stoner, A random number generatorfor High Performance Fortran, in preparation.[55] T.-W. Chiu, Shift-register sequence random number generators on the hypercube con-current computers, in Proc. of the 3rd Conference on Hypercube Concurrent Computersand Applications, ed. G. Fox, (ACM Press, New York, 1988), p. 1421.[56] W.P. Peterson, Some vectorized random number generators for uniform, normal, andPoisson distributions for the CRAY X-MP, J. Supercomput. 1, 327 (1988).[57] CM Scienti�c Software Library, Thinking Machines Corporation, Reading, Mass., 1993.[58] S. Wolfram, Random sequence generation by cellular automata, Adv. Appl. Math. 7,123 (1986).[59] CM Fortran User's Guide, Thinking Machines Corporation, Reading, Mass., 1994.[60] See the online manual pages for the Maspar.[61] XL High Performance Fortran for AIX Language Reference V1.1, IBM Corporation,1996.[62] pghpf User's Guide V2.0, The Portland Group, Inc., Wilsonville, Oregon, October1995.[63] D.V. Pryor, S.A. Cuccaro, M. Mascagni and M.L. Robinson, Implementation and usageof a portable and reproducible parallel pseudorandom number generator, in Proc. ofSupercomputing '94, IEEE, 1994, p. 311.[64] M. Mascagni and D.H. Bailey, Requirements for a parallel pseudorandom number gen-erator, Supercomputing Research Center technical report, unpublished.[65] Cherri Pancake et al., Speci�cation of Baseline Development Environment, Section 3,Component BDE-3i, in Guidelines for Writing System Software and Tools Require-ments for Parallel and Clustered Computers.Available at http://www.nero.net/~pancake/SSTguidelines/baseline.html.24



[66] P. Rodgers, Physics World (Feb. 1991) p. 13;S. Aoki et al., Int. J. Mod. Phys. C 2, 829 (1991);K. Binder, Large-scale simulations in condensed matter physics { the need for a teraopcomputer, Int. J. Mod. Phys. C 3, 565 (1992).

25


	Random Number Generators for Parallel Computers
	Recommended Citation

	tmp.1285252205.pdf.acMN7

